
J. Non-Newtonian Fluid Mech. 97 (2001) 99–124

On the reproducibility of the rheology of shear-thinning liquids
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Abstract

The independent analysis of flow measurements is frequently hampered by incomplete characterisation of the
working fluid. This problem is particularly acute in situations which require working fluids with identical properties,
such as the development of scaling laws for the turbulent flow of drag-reducing liquids. In this paper, we demon-
strate that the viscometric viscosity, loss and storage moduli for two of the most common polymers used for flow
experiments, carboxymethylcellulose (CMC) and xanthan gum (XG), are practically insensitive to the chemistry
of the tap water used as a solvent, to the method of mixing, and to the biocide added. However, the properties of
CMC from two different manufacturers were found to be significantly different, whereas there was no difference
between XG solutions prepared from different batches from the same manufacturer. Our conclusion is that for a
given concentration in water, the properties of certain non-Newtonian liquids, such as CMC and XG, are essentially
fixed and reproducible. Although the situation is less than ideal, comparisons of fluid-flow data from entirely in-
dependent laboratories can thus be made even in the absence of direct rheological measurements. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Scaling of data for the turbulent flow of drag-reducing non-Newtonian liquids remains an unsolved
problem of great practical significance. In the absence of theoretical guidance, reliance has to be placed
on experiments carried out with identical fluids in geometrically similar configurations at appreciably
different scales. Few individual laboratories have the resources to carry out such parallel experiments and
ideally a coordinated collaborative effort between several laboratories is required. Unfortunately, such
collaborations are few and far between and attempts to analyse published data are often hampered because
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Nomenclature

a parameter in Carreau–Yasuda model
B bias limit
G′ storage modulus (Pa)
G′′ loss modulus (Pa)
L cylinder length (m)
m power-law exponent for Cross model
M torque (N m)
n power-law exponent for Carreau–Yasuda model
N number of data points in sample
P precision limit
rI inner radius of inner gap (m)
rO inner radius of outer gap (m)
R Pearson correlation coefficient
RI outer radius of inner gap (m)
RO outer radius of outer gap (m)
t time (s)
U uncertainty

Greek letters
γ̇ shear rate (s−1)
γ̇MAX maximum shear rate (s−1)
γ̇MIN minimum shear rate (s−1)
ε radius ratio
θ sensitivity coefficient
λCR time constant in Cross model (s)
λCY time constant in Carreau–Yasuda model (s)
µ apparent viscosityτ/γ̇ (Pa s)
µCR value ofµ calculated from Cross model (Pa s)
µCY value ofµ calculated from Carreau–Yasuda model (Pa s)
µM value ofµ derived from measurements (Pa s)
µMAX maximumµM (Pa s)
µMIN minimumµM (Pa s)
µ0 asymptotic value ofµ for zero shear rate (Pa s)
µ∞ asymptotic value ofµ for infinite shear rate (Pa s)
σA standard deviation betweenµM and referenceµCY

σ I inherent standard deviation betweenµM andµCY

τ shear stress (Pa)
τMAX maximum shear stress (Pa)
τMIN minimum shear stress (Pa)
ω angular velocity (rad/s)
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characterisation of the working fluid is inadequate, often limited to the concentration of a polymer in
water and a power-law representation of the flow curve. By increasing the number of free parameters in
the viscosity model, the fit to measured data can be improved but there will still be an inherent deviation
due to inaccuracies in the model, scatter in the data and other systematic uncertainties in the measurement
of the flow curve. What is still ignored, however, are the possible influences on the fluid rheology of such
factors as the solvent chemistry, especially pH and salinity, the mixing procedure, and differences in the
polymer chemistry. Hoyt [1], for example, was limited to the data of Ollis [2], De Loof et al. [3] and Wang
[4] with which to test his negative roughness scaling hypothesis for pipe flow. Similarly, the incomplete
fluid characterisations of Allan et al. [5] and Luchik and Tiederman [6] prevents comparisons with the
results for the nominally identical polyacrylamide solutions of Hartnett [7], who clearly demonstrated
that changes in the solvent chemistry can affect the viscosity of a given solution by as much as one
order of magnitude. Our own experience with carbopol is similar, with major variations being found
in the properties of nominally identical solutions. Another good example of this lack of consistency is
associated with the work of Reischman and Tiederman [8]. Although initially reported to have a constant
viscosity, Tiederman et al. [9] subsequently indicated that the viscosity of their fluid was in fact variable,
a result confirmed by the data of Hartnett [7]. On the other hand, Escudier et al. [10] were able to
demonstrate that Hoyt’s [1] negative roughness concept provided a basis for scaling the results of data
for the turbulent flow of 0.2% carboxymethylcellulose through a concentric annulus using both their own
data and those for a smaller scale experiment reported by Nouri et al. [11] even though the latter provided
only a power-law representation of the flow curve for a different brand of CMC.

In the present paper, we report on the experience of two research groups, one in Liverpool the other
in Porto, which have been carrying out experiments on the turbulent flow of shear-thinning polymer so-
lutions (tylose, carboxymethylcellulose (CMC), xanthan gum (XG) and polyacrylamide) through pipes,
annuli and sudden expansions at different scales (typically 2:1). To minimise and quantify uncertainties
associated with the fluid rheology in comparing our results, we have quantitatively analysed the errors in
our characterisation procedures, established whether our solvents (local tap water), biocides and prepa-
ration procedures affect fluid rheology, and identified the extent to which the polymers themselves differ.
So far as we are aware, this is the first time in which two separate groups have attempted to standardise the
preparation and characterisation of non-Newtonian liquids in common use in turbulent-flow experiments.
Such an approach is essential at a time when strenuous efforts are being made to relate hydrodynamic and
heat transfer behaviour to the rheological properties of non-Newtonian liquids. The advantage of such a
standardised approach has been recognised in the past by rheologists and progress made towards some
common ground for carefully formulated oil-based viscoelastic liquids of high viscosity, as in the M1
and Al fluid experiments reported by JNNFM [12] and Hudson and Jones [13], respectively.

2. Measuring programme and fluid preparation

For the present work, moderately high concentrations of the two polymers most commonly used by
the Liverpool and Porto research groups (0.4% CMC and 0.25% XG) were chosen to achieve relatively
high levels of both viscosity and viscoelasticity in order to improve the accuracy of the measurements.
The CMC solutions were used to investigate the influence of similar polymer additives from two different
manufacturers, i.e. similar brand names and grades, whereas the XG solutions are used to investigate the
effects of biocide and method of mixing. The CMC used by the Liverpool group has a molecular weight of
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Table 1
Chemical analysis of the solvent (tap water)

Porto Liverpool

pH 6.9 7.6
Alkalinity (mg/l of HCO3) 65.9 29
Chlorides (mg/l) 11.9 24.8
Nitrates (mg/l) 6.2 7.05
Sulphates (mg/l) 31.0 33.8
Calcium (mg/l) 21.4 18.9
Magnesium (mg/l) 4.96 2.87
Iron (mg/l) 0.05 0.0705

about 700 000 kg/kg mol and was supplied by Aldrich Chemical Co. whilst that in Porto was manufactured
by Hercules (grade 7H4C, molecular weight about 300 000 kg/kg mol). The XG was nominally the same in
Liverpool and Porto, Keltrol TF from Kelco with a molecular weight in excess of 106 kg/kg mol, although
undoubtedly from different manufacturing batches since they were purchased separated by more than a
2 year time gap.

For each polymer, solutions were mixed using both Liverpool and Porto tap water. A four-letter code
(ABCD) is used to identify each fluid with A identifying the origin of the polymer (L for Liverpool, P
for Porto), B the origin of the water and place of mixing (again L or P), C the polymer (X for XG, C for
CMC) and D the biocide: 0.02% Kathon LXE from Rohm and Haas (K) or 100 ppm formaldehyde (F),
the biocides normally used in Porto and Liverpool, respectively.

The chemical composition of the Porto tap water was analysed at the Department of Chemical Engi-
neering at the University of Porto and that of the Liverpool tap water was provided by the drinking water
register of the supplier, North West Water Limited in Liverpool. The results are presented in Table 1.

In Porto the polymer in powder form was added to 4 kg of non-filtered tap water with 200 ppm of the
biocide Kathon. As the polymer was being added to the water in a 10 l covered vessel, the solution was
agitated by a four-bladed pitched impeller, powered by an 18 W motor rotating at 700 rpm. After adding
all the polymer, the rotational speed was reduced to 200 rpm and the agitation continued for a further
90 min, which was sufficient to completely dissolve the polymer. At the end of this operation any water
condensed on the inside surface of the tank lid was returned to the mixture and the solution agitated
for 5 min, with the stirred vessel again closed by the lid. The solution was then left standing for 24 h
to completely hydrate the molecules prior to shipment to Liverpool where all rheological measurements
were carried out. The shipments were delivered within 54 h of preparation. The solution was again agitated
for 30 s in order to fully homogenise it immediately before making the measurements.

In Liverpool polymer was added to 3 kg of non-filtered tap water contained in a 5 l vessel. A four blade
impeller was used to mix the fluid at the maximum rotational speed obtainable without entraining air
(560–1000 rpm) until it was visibly homogeneous. 24 h was allowed for the mixture to hydrate and the
fluid agitated prior to testing to ensure homogeneity.

It should be noted that for our hydrodynamic work (reported elsewhere) the polymer solutions are
prepared differently in Porto and Liverpool. In Porto, the procedure is similar to that described above,
except that either a 100 or 400 l tank is used, according to the amount of fluid required by the particular
experimental rig to be used (see Pereira and Pinho [14] and Coelho et al. [15]). In Liverpool, the solutions
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are mixed in one of two 800 l mixing loops, such as the annular flow rig described by Escudier et al. [10].
In this case, the polymer is added to a large tank while the solution is circulated through a mixing loop, by
a Mono pump for a period of 10 h, after which it is left standing for 30 h to hydrate the molecules. Prior
to taking samples for the rheometer the fluid is mixed for at least 30 min to homogenize it. No significant
differences were found when the results obtained here with solutions prepared in the small stirred vessels
were compared with the data for the same fluids prepared in the flow loops in Liverpool and in the large
stirred vessels in Porto.

3. Measuring equipment and uncertainties

All measurements were carried out in Liverpool using a TA Instruments Rheolyst AR 1000N controlled-
stress rheometer. A 4 cm diameter parallel plate geometry was used to achieve the highest possible shear
rates (103–2 × 104 s−1). For a wide range of intermediate shear rates (10−2–103 s−1) a 6 cm diameter
2◦ acrylic cone was used. The lowest shear rates were achieved using a 4.12 cm mean diameter double
concentric cylinder arrangement, in steady shear down to shear rates close to 10−3 s−1 and using the creep
mode to extend the range to 5× 10−4 s−1. Creep data were also obtained at higher shear rates to confirm
the validity of the procedure. All measurements were carried out at a temperature of 20◦C. Temperature
control of the TA rheometer is achieved via a plate that uses the Peltier effect to control the temperature
of the sample within±0.1◦C. The instrument is capable of performing measurements of the viscometric
viscosity in steady shear flow and of the complex dynamic viscosity in oscillatory shear flow. Although
the rheometer is in principle capable of measuring the first normal stress difference, for the two polymer
solutions investigated here the magnitude of this property is below the sensitivity of the instrument for
concentrations below about 1%. The paper is limited therefore to measurements of the flow curve and the
loss and storage moduli. A detailed uncertainty analysis, which was performed for the double-concentric
gap geometry, is presented in Appendix A. The final outcome is that forγ̇ > 1 s−1 the total uncertainty is
about 2%. For the cone-and-plate and parallel-plate geometries at high shear rates, the same values of total
uncertainty apply because in that range the uncertainty is dominated by the angular speed contribution
which is independent of the geometry used.

4. Results and discussion

4.1. Viscometric viscosity

4.1.1. Xanthan gum (XG)
The overall consistency of the XG viscosity data over almost eight decades of shear rate is evident from

Fig. 1. Also included in Fig. 1 is a curve representing the Carreau–Yasuda model [16]:

µCY = µ∞ + (µ0 − µ∞)[1 + (λCYγ̇ )a]n/a, (1)

µ0 being the zero-shear-rate viscosity,µ∞ the infinite-shear-rate viscosity,λCY a time constant,n a
power-law index anda a parameter introduced by Yasuda et al. [16] to describe the transition region
between the zero-shear-rate and power-law regions. In principle, there are several different methods by
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Fig. 1. Viscometric viscosity of xanthan gum solutions together with Carreau–Yasuda (—) and Cross (– – – –)model fits: (h)
LLXF; (d) LLXF2; (s) LLXF3; (j) LPXF; (4) PLXF; (m) PPXF; (+) PPXK.

which to determine the model parametersµ0, µ∞, λCY, n anda. For example, minimisation of one of
either of the following standard deviations could be used∑

N

(µM − µCY)2 or
∑
N

(1 − µM/µCY)2, (2)

whereµM is the measured apparent viscosity (i.e.τ/γ̇ ) at a particular shear rate, andµCY the value of
the viscosity calculated from the Carreau–Yasuda model at the same shear rate, andN the number of
data points. In our view, the latter is to be preferred because for fluids where (as here) the range ofµM

covers several orders of magnitude, the former quantity is heavily weighted (for shear-thinning liquids)
towards the low shear-rate data. The Carreau–Yasuda model is a better representation of XG viscosity at
low shear rates than the Carreau model (a = 2 in Eq. (1)) or any other model of which we are aware.

The aim of the present work was to identify differences in polymer-solution rheology ascribable to
solvent/mixing procedure, polymer source and biocide. Once it became apparent that such differences
were small (practically undetectable to the eye in a log–log plot such as Fig. 1) it was felt appropriate
to quantify the consistency with which nominally identical fluids could be produced (i.e. using the same
solvent, mixing procedure, polymer batch and biocide) and characterised. Fig. 1, therefore, includes seven
sets of data: the five sets identified in Section 2 (i.e. LLXF, LPXF, PLXF, PPXF and LLXK) together
with two additional sets (LLXF2 and LLXF3) for fluids nominally identical to LLXF.

We have fitted the Carreau–Yasuda model individually to each of the seven sets of data to determine the
“inherent” standard deviationσ I and the Pearson correlation coefficientR. The inherent standard deviation
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Fig. 2. Standard deviationsσ I (h) andσ A ( ) based on the Carreau–Yasuda model for xanthan gum viscosity.

σ I can be attributed to two sources: first measurement uncertainty, associated with the rheometer and
the measurement procedure, and second the degree to which the Carreau–Yasuda (or any other model)
completely characterises the viscometric viscosity of xanthan gum. For present purposes the standard
deviation is defined by

σ ≡
√∑

(1 − µM/µCY)2

N
(3)

and the Pearson correlation coefficient as defined by Weiss and Hassett [17] is

R = N
∑

µMµCY − ∑
µM

∑
µCY√[

N
∑

µ2
M − (∑

µM
)2

] [
N

∑
µ2

CY − (∑
µCY

)2
] . (4)

According to Syed Mustapha et al. [18], a correlation is unacceptably poor for rheological work of the
type under discussion ifR < 0.9975. We have preferred to list (1−R) so that acceptable correlations
correspond to(1 − R) < 2.5 × 10−3. As can be seen from Table 2, this criterion is well satisfied in all
cases, the lowest value ofRbeing 0.9982. Table 2 includes the model parameters for these fits, theN, σ I

and (1−R) values and the ranges ofγ̇ , τ andµM. Also included are values for the standard deviationσA

for the individual data sets but for whichµCY was calculated from the curve fit of the Carreau–Yasuda
model to the entire data set.

The standard deviationsσ I andσA for XG are presented as a bar chart in Fig. 2. Immediately apparent
is that the inherent standard deviationσ I is practically the same for the three pure Liverpool fluids (LLXF,
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Table 3
Cross model parameters and correlation statistics

Fluid µ0 (Pa s) µ∞ × 103 (Pa s) m λCR (s) N σ A (%) σ I (%) (1−R) × 103

LLXF 12.1 1.89 0.680 63.0 48 5.19 4.23 1.2
LLXF2 11.6 2.26 0.680 54.2 16 4.99 3.35 1.1
LLXF3 10.6 2.16 0.688 42.7 14 5.35 3.70 0.8
LPXF 12.2 2.17 0.667 72.2 16 5.29 2.72 0.8
PLXF 11.8 1.73 0.682 53.5 22 4.82 2.71 0.2
PPXF 10.7 1.91 0.681 49.3 28 4.66 3.04 0.6
PPXK 12.4 2.71 0.595 65.0 23 6.17 2.96 0.9
ALL XG 11.6 2.09 0.675 58.7 167 5.22 5.22 1.8

LLXF2, LLXF3) at around 3.7% and thatσ I for the “hybrid” Porto and Liverpool fluids (LPXF, PLXF)
and also for the pure Porto fluid (PPXF) stands at around 1.5%. In all cases theσA values are higher by
between 1 and 4%. The two fluids for which the difference betweenσ I andσA is higher than average are
LPXF and PPXK but theσA values are between 4 and 6%. It is clear that a lowσ I is not mirrored in a low
σA, the parameter that better indicates the existence of a systematic difference. Since there is no clear
trend to the observed differences, the overall conclusion is that no systematic effect of solvent/mixing
procedure, polymer batch or biocide is discernible.

To explore further the influence of the viscosity model onσ I andσA, we have carried out the same
analysis as above for the Cross model:

µCR = µ∞ + µ0 − µ∞
1 + (λCRγ̇ )m

, (5)

with the corresponding parameters listed in Table 3. A curve representing the best fit of the Cross model
to the XG data is also included in Fig. 1. Since the Cross model has only four parameters, against the five
of Carreau–Yasuda, slightly higher standard deviations are expected a priori. In fact all the fits are still
good with (1−R) well within the acceptability criterion of Syed Mustapha et al. [18]. What is noticeable,
however, is that now in the bar chart of the standard deviations (Fig. 3) theσ I values for LLXF, LLXF2
and LLXF3 are practically the same as for the Carreau–Yasuda model but only slightly higher than the
values for LPXF, PLXF, PPXF and PPXK. TheσA values on the other hand show no systematic increase
or decrease.

To further assess the fitting quality of the Carreau–Yasuda model we have plottedµM/µCY − 1 versus
shear stress (Fig. 4) and this reveals quite clearly that there is both a random and a systematic contribution
to σ I . There is less scatter compared with the best fit Cross model (not shown here). For CMC, which
we consider next, there is also a systematic trend but one which is different from that for XG. We
conclude from these observations that the systematic trend is associated with the selected viscosity model
representation rather than the rheometer/measurement procedure.

There is little to choose between the Carreau–Yasuda and Carreau (not shown in Fig. 1) model fits
except at the lowest shear rates (γ̇ < 10−2 s−1) where the Carreau model (a = 2) asymptotes to a lower
value ofµ0 than the Carreau–Yasuda model. This difference is associated with the entirely different
behaviour of the two models at infinitesimally low shear rates: fora < 1, the Carreau–Yasuda model
approachesµ0 with infinite gradient dµ/dγ̇ whereas the Carreau model exhibits a Newtonian plateau
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Fig. 3. Standard deviationsσ I (h) andσ A ( ) based on Cross model for xanthan gum viscosity.

associated with zero gradient. The Cross model behaves in the same way as the Carreau–Yasuda model
for a < 1.

4.1.2. Carboxymethylcellulose (CMC)
The CMC data plotted in Fig. 5 reveal that the Aldrich CMC used in Liverpool produces a fluid about

30% more viscous than the Porto polymer manufactured by Hercules. Here again, however, there is no
discernible difference associated with the water solvent. The two sets of curves (4, m, + andh, j) have
qualitatively the same shear-thinning trend, suggesting that the differences are due to molecular weight,
that for the BDH polymer being greater than that from Hercules.

The statistical data in Fig. 6 and Table 2, reveal that the inherent standard deviationσ I is higher for the
Aldrich polymer. In view of our conclusions for XG, it seems that the differences in molecular weight affect
not only the viscosity level but also the dependence of viscosity on shear stress/shear rate. Fig. 6 also shows
that for the Liverpool (Aldrich) polymer the transition from power-law behaviour to the first Newtonian
plateau takes place over a wider range of shear rates than for the Porto (Hercules) polymer. This difference
is reflected in the lower values ofa for the Liverpool polymer and also suggests a wider distribution of
molecular weight. There is some evidence for these suggestions regarding molecular weight in Fig. 7
where the LLCF data show a systematic variation not apparent in the other three data sets. Apart from
this set, however, the Carreau–Yasuda model is quite clearly an excellent fit to the CMC viscosity data.

If the bar charts for the two fluids are compared, we see that the highest overallσA values for both
CMC and XG are obtained for solutions prepared with the Porto polymers and solvent with Kathon as
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Fig. 4. Difference between experimentally determined viscosity and Carreau–Yasuda model fit for xanthan gum (symbols as for
Fig. 1).

the biocide (i.e. PPCK and PPXK). Although this increase inσA is small, it could indicate an influence
of the biocide.

The highestσ I values are for solutions prepared with the Liverpool polymers and solvent (LLXF and
LLCF), whereas for XG the lowestσ I is for LPXF and for CMC it is PLCF, confirming that there is no
consistent influence of the solvent.

The minimum shear rates obtainable for the CMC solutions plotted in Fig. 5 are noticeably greater
(of the order of two orders of magnitude) than those obtained for the xanthan gum solutions. This can
be attributed to CMC’s lower zero shear-rate viscosity value (<3% of xanthan gum) so that when the
minimum shear stress of the rheometer is applied, a much higher shear rate results for the CMC solution
compared to the xanthan gum solution.

4.2. Oscillatory tests

The 6 cm diameter, 2◦ acrylic cone geometry was used to provide the oscillation data to minimise
the effects of inertia. A linearity check was conducted for each fluid to determine the linear viscoelastic
region prior to each frequency sweep. All frequency sweeps were performed at a shear stress of 0.1 Pa, a
value well within the linear regime. Comparison with frequency sweep data at 1 Pa, again within the linear
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Fig. 5. Viscometric viscosity of CMC solutions together with Carreau–Yasuda model fits: (h) LLCF; (j) LPCF; (4) PLCF;
(m) PPCF; (+) PPCK.

region, showed good agreement and confirmed that the viscoelastic properties observed were independent
of the shear-stress value.

The XG results forG′ andG′′ plotted in Figs. 8 and 9 show that there is no systematic influence on
either modulus of the polymer itself or the water solvent. In Figs. 10 and 11 the storage (G′) and loss

Fig. 6. Standard deviationsσ I (h) andσ A ( ) based on Carreau–Yasuda model fit for CMC viscosity.
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Fig. 7. Difference between experimentally determined viscosity for CMC and Carreau–Yasuda model fits (symbols as for Fig. 5).

(G′′) moduli are plotted for CMC. The lower magnitude of both moduli, and particularlyG′, for CMC
compared with those for XG leads to an increase in the scatter of the data, especially at low frequencies of
oscillation. However, as a comparison between Figs. 8 and 10 shows, it is at low frequencies that the higher
elasticity of the xanthan gum solutions becomes apparent, withG′ for XG an order of magnitude higher
at frequencies of about 10−2 Hz but tending to the same level as for CMC at frequencies around 10 Hz. It
is remarkable that although the viscosity of the BDH CMC is 30% higher than that of the Hercules CMC
there is practically no polymer effect uponG′ or G′′. The reason for these different behaviours is certainly
related to the different molecular configurations in both flows. In the steady shear flow used in the viscosity
measurements the molecules are uncoiled by the shear forces and the longer molecules result in higher

Fig. 8. Storage modulusG′ of xanthan gum solutions: (h) LLXF; (j) LPXF; (4) PLXF; (m) PPXF; (+) PPXK.
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Fig. 9. Loss modulusG′′ of xanthan gum solutions (symbols as for Fig. 8).

flow resistance. In oscillatory shear flow the molecules stay in the near-equilibrium configuration and the
resistance is less sensitive to small differences in molecular length. However, as for XG, for neither CMC
was there evidence of any influence of the solvent. The data were also compared with that from fluids
prepared in the large flow loop at Liverpool, and again no significant differences were found.

Fig. 10. Storage modulusG′ of CMC solutions: (h) LLCF; (j) LPCF; (4) PLCF; (m) PPCF; (+) PPCK.
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Fig. 11. Loss modulusG′′ of CMC solutions (symbols as for Fig. 10).

5. Concluding remarks

The most important conclusion of this work is that for the test polymer solutions, carboxymethylcel-
lulose and xanthan gum, there seems to be negligible influence of the tap-water solvent and method of
preparation of the fluids on either the viscosity or the storage and loss moduli, thus, facilitating compar-
isons of hydrodynamic results from different laboratories. A very small influence could be ascribed to
the biocide used but is not practically significant.

For practical purposes, the same rheology resulted for aqueous solutions of xanthan gum manufactured
from polymers having the same grades and manufactured by the same company, even though almost
certainly manufactured at different times.

Although the viscosities of the solutions based on the CMC supplied by BDH were 30% higher than
those based on the CMC from Hercules, the differences in the loss and storage moduli were within
experimental uncertainty.

As pointed out in Section 1, other polymers such as polyacrylamide and carbopol show less consistency
in their rheological properties. In the absence of the collaborative arrangements we advocate, comparisons
and scaling laws based upon data from different laboratories using nominally identical fluids have to be
viewed with caution.
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Appendix A. Uncertainty analysis of the TA Rheolyst AR 1000N rheometer

A.1. Geometrical characteristics

This uncertainty analysis depends on the specific viscosity values measured with samples of aque-
ous solutions of 0.4% CMC and 0.25% XG. These viscosity measurements were carried out using the
parallel-plate, cone-and-plate and double-concentric cylinder geometries. This analysis refers to the latter,
which was the geometry used at the low end of the shear rate range where uncertainties are higher. At
the end of this Appendix A we explain briefly the effect of geometry type upon the total uncertainty. The
double-concentric geometry has an inner annular gap defined byr I = 20.00 mm andRI = 20.38 mm,
an outer gap based onrO = 21.96 mm andRO = 22.38 mm, and the immersed lengthL of the cylinder
is 20.5 mm. The radius ratioε is 0.981 for each gap and consequently, for Couette flow of a Newtonian
fluid, the fraction of the total torque measured in the inner and outer gaps can be determined as

MI

MT
= 0.4533 and

MO

MT
= 0.5467 (A.1)

A.2. Fluids

As shown in Section 4.1 of the main text, the viscosities of the 0.4% CMC and 0.25% XG solutions
are best represented by the Carreau–Yasuda model (Eq. (1)). However, since some terms of the total
uncertainty need to be quantified on the basis of the exponentn of a power-law fit, power laws were fitted
to the viscosity of these solutions over various ranges of shear rate to determine values ofn. The results
are listed in the middle column of Tables 4 and 5.

A.3. Total uncertainty, bias and precision error limits

The uncertainty analysis follows the philosophy outlined in Coleman and Steele [19]. The total uncer-
tainty in the viscosity measurements (Uµ) is calculated as

Table 4
Determination of the bias error associated with the Newtonian simplification for XG solutions

Range ofγ̇ n 1µ/µ (%)

0.000425 s−1 ≤ γ̇ ≤ 0.01 s−1 0.854 0.02
0.01 s−1 ≤ γ̇ ≤ 1.00 s−1 0.482 0.09
1.00 s−1 ≤ γ̇ ≤ 100 s−1 0.342 0.11
100 s−1 ≤ γ̇ ≤ 20300 s−1 0.538 0.08

Whole range 0.471 0.09
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Table 5
Determination of the bias error associated with the Newtonian simplification for CMC solutions

Range ofγ̇ n 1µ/µ (%)

0.0849 s−1 ≤ γ̇ ≤ 10 s−1 0.878 0.02
10 s−1 ≤ γ̇ ≤ 100 s−1 0.677 0.05
100 s−1 ≤ γ̇ ≤ 11100 s−1 0.551 0.08

Whole range 0.695 0.05

Uµ =
√

B2
µ + P 2

µ (A.2)

or in normalised form as

Uµ

µ
=

√(
Bµ

µ

)2

+
(

Pµ

µ

)2

(A.3)

whereBµ andPµ represent estimates of the bias and precision error limits. The bias is a fixed error that
can be reduced by calibration, but which has not been removed either because the calibration was not
performed or because those contributions were not included in the calibration. This happens whenever an
estimate rather than the exact value of the bias is known. The precision error is the variable error that can be
reduced statistically by the use of multiple readings. The inherent distinction between the two types of error
suggests that we treat them separately until the end, where they are combined to yield the total uncertainty.

Given that the viscosity is a function of several variables

µ = µ(x1, x2, . . . , xj ), (A.4)

the sensitivity coefficients are defined by

θi ≡ ∂µ

∂xi

. (A.5)

Following Coleman and Steele [19], the bias limit for the viscosity is then expressed as

B2
µ =

J∑
i=1

[
θ2
i B2

i +
J∑

k=1

θiθkρikBiBk(1 − δik)

]
(A.6)

whereδik is the Kronecker delta (δik = 1 wheni = k, but 0 otherwise) andρik = ρki are the coefficients of
correlation between biases inxi , andxk. The first term on the right-hand-side calculates the individual bias
contributions to the total bias assuming total independence of events whereas the second term makes the
necessary corrections when the measurements of variables are not independent (for instance, the difference
between measurements of two quantities using the same instrument, such as a temperature difference).
The precision error limit of the viscosity is determined in a similar fashion except that there are no
corrections for correlated error contributions because the precision is inherently random. Accordingly,

P 2
µ =

J∑
i=1

[θ2
i P 2

i ]. (A.7)
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Finally, we note that each contribution to the bias limitBi , or precision error limitPi , can be made up of
biases or precisions fromM significant elemental error sources, i.e.

B2
i =

[
M∑

k=1

(Bi)
2
k

]
and P 2

i =
[

M∑
k=1

(Pi)
2
k

]
. (A.8)

Here, we are concerned with the uncertainty of viscosities which vary with the shear rate, a quantity
which must also be measured and its uncertainty estimated using similar equations to the above.

A.4. Equations of reduction

A.4.1. Viscometric viscosity
The viscosity depends on torque (M), angular velocity (ω) and geometry (R,L) whereas the shear rate

depends only onω, RandL. In a single gap concentric cylinder the viscosity of a Newtonian fluid is given
by

µ = M

4πLωR2

1 − ε2

ε2
(A.9)

whereR now represents the outer radius. In the case of a double-gap geometry both annuli contribute to
the total torque, so generally we can say that

µ = MI

4πLωR2
I

1 − ε2
I

ε2
I

and µ = MO

4πLωR2
O

1 − ε2
O

ε2
O

(A.10)

with the subscripts I and O indicating inner and outer gap, respectively. Note thatRI , andRO are the outer
radii in each gap. Eq. (A.10) pertain to Newtonian fluids, the assumption upon which most rheometer
manufacturers base their software although for a non-Newtonian fluid this leads to a bias error that will
be quantified later.

The total torque is the sum of the torques in the two gaps, i.e.

M = 4πLωµ

[
R2

I
ε2

I

1 − ε2
I

+ R2
O

ε2
O

1 − ε2
O

]
(A.11)

so that

µ = M

4πLω[R2
I (ε

2
I /(1 − ε2

I )) + R2
O(ε2

O/(1 − ε2
O))]

. (A.12)

AlthoughεI = εO, εI andεO are intentionally retained since there are contributions to the total uncertainty
coming from the uncertainties in the individual measurements of the four different radii of the double
gap.

A.4.2. Shear rate
The shear rate depends on angular velocity and geometry with the added complication that it is not

constant across each gap and different shear rates exist in both gaps, i.e.

γ̇I = 2ωε2
I

1 − ε2
I

and γ̇O = 2ω

1 − ε2
O

(A.13)
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so that even thoughεI = εO (=0.981 here) the shear rates are different. The two shear rates are at the bob
surface, which is directly connected to the torquemeter and the angular displacement transducer.

A.5. Contributions to the total uncertainty of viscosity and shear rate

The total uncertainty can be calculated from Eq. (A.3) providedBµ andPµ are known. These quantities
are determined from the elemental sources using Eqs. (A.6) and (A.7), respectively.

A.5.1. Bias error limit of the viscosity
The relative bias error of the viscosity is given by(

Bµ

µ

)2

=
(

BM

M

)2

+
(

Bω

ω

)2

+
[
2
BRO

RO

ε2

1 − ε2

]2

+
[
−2

BRI

RI

ε2

1 − ε2

]2

−8
BRO

RO

ε2

1 − ε2

BRI

RI

1

1 − ε2
.

(A.14)

A.5.2. Bias error limit of the shear rate
From Eq. (A.13) combined with Eq. (A.6), the bias error limit for the shear rate is given by(

Bγ̇

γ̇

)2

=
(

Bω

ω

)2

+
[
2
BRO

RO

ε2

ε2 − 1

]2

+
[
2
BRI

RI

ε2

ε2 − 1

]2

− 8
BRO

RO

BRI

RI

[
ε2

ε2 − 1

]2

(A.15)

which, withBRO = BRI = BR, simplifies to(
Bγ̇

γ̇

)2

=
(

Bω

ω

)2

+ 4

[
ε2

ε2 − 1

]2

B2
R

[
1

R2
O

+ 1

R2
I

− 2

RORI

]
. (A.16)

A.5.3. Precision error limit of the viscosity
The combination of Eqs. (A.7) and (A.12) produces the precision error limit of the viscosity(

Pµ

µ

)2

=
(

PM

M

)2

+
(

Pω

ω

)2

+
[
2
PRO

RO

ε2

1 − ε2

]2

+
[
−2

PRI

RI

1

1 − ε2

]2

, (A.17)

i.e. the difference compared with the corresponding bias error equation (Eq. (A.10)) is that now there is
no correlated measurement contribution.

A.5.4. Precision error limit of the shear rate
For the precision error limit of the shear rate, Eqs. (A.7) and (A.13) combine to yield(

Pγ̇

γ̇

)2

=
(

Pω

ω

)2

+
[
2
PRO

RO

ε2

ε2 − 1

]2

+
[
2
PRI

RI

ε2

ε2 − 1

]2

. (A.18)

A.6. Quantification of the bias

The general sources of bias identified in Section A.5 are those originating in the measurements of torque,
angular velocity and radius. Other sources of bias exist but can be regarded as elemental contributions to
the general sources mentioned above. This is the case, for instance, of temperature.
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Table 6
Torquemeter calibration check

Set torque (mN m) Percentage difference (%)

1991 −0.43
3002 0.06
3993 −0.18
5003 0.06
6033 0.55
7029 0.41
8020 0.25
9030 0.33

A.6.1. Temperature variation and control
The temperature control of the samples is carried out within±0.1◦C, according to the manufacturer

(Costello [20]). All the measurements were carried out at a temperature of 25◦C from which the room
temperature does not differ by more than 5◦C. Thus, we estimate the variation of the temperature across
the annular gap to be well less than 0.1◦C and, accordingly, only the control variation is taken into account.
The uncertainty of temperature variation affects the viscosity of the solutions which has an effect upon
the measurement of the torque because of the dependence of fluid viscosity on temperature. For small
temperature differences the viscosity can be assumed to vary linearly with temperature in a similar way
to that of water (3%/◦C). From the linear relationship between torque and viscosity (Eq. (A.12)), the
temperature control accuracy will have a relative contribution to the total torque biasB1M

/M = 0.3%.

A.6.2. Torquemeter bias
For the torquemeter, it is necessary to distinguish between high and low values of torque. In the upper

range, we have quantified the bias on the basis of the calibration provided by the manufacturer and
presented in Table 6. These differences were not used to correct readings and consequently are estimates
of the bias limit in the torquemeter reading.

As can be seen, the differences between imposed and measured torque vary between−0.43 and 0.55%,
with more positive than negative values. We have opted for the largest value and assumed it to apply in the
torque range above 2000mN m, so that the estimate of the bias in the torquemeter isB2M

/M = ±0.55%.

In the low torque region the bias limit is likely to be larger. According to the manufacturer (Costello
[20]), in the range 10–1000mN m the torque should be within±1% at zero speed, with a small correction
to this value if the speed is non-zero. However, provided the speed is less than 1 rad/s, this error will be
negligible. A further correction is introduced to allow for bearing runout in the bearing mapping and so
a further 0.1mN m should be allowed for bias. Finally, there will also be residual friction in the bearing
(besides the runout) which can be removed by calibrating in air and introducing the correction manually.
If this is not done then at 1 rad/s an extra bias of 0.5mN m should be added. This correction is done
automatically by the software when the rheometer operates in rotating flow, but not in creep mode. Since
the low shear rate measurements reported here were carried out using the creep mode, this bias source
must be taken into account. With this limited amount of information these values will be generalised and
assumed to apply to the whole low range of torque. This is a conservative estimate for higher rotational
speeds but may result in underestimation at very low rotational speeds.
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Table 7
Typical measured values for 0.25% XG

γ̇ (s−1) µ (Pa s) ω (rad/s) M (mN m) B2M
/M (%) (creep) B2M

/M (%) (no creep)

0.0005 11.048 9.6190e−6 0.65184 78.2 15.4
0.001 10.498 1.9238e−5 1.2388 41.2 8.1
0.005 8.3117 9.6190e−5 4.9040 10.5 2.3
0.01 6.9935 0.00019238 8.2525 6.3 1.6
0.05 3.8040 0.00096190 22.444 2.5 1.1
0.1 2.6928 0.0019238 31.776 1.9 1.0
0.5 1.0591 0.0096190 62.487 1.3 1.0
1 0.68415 0.019238 80.732 1.3 1.0
5 0.23916 0.096190 141.11 1.1 1.0

10 0.15108 0.19238 178.28 1.0 1.0
50 0.052236 0.96190 308.20 1.0 1.0

100 0.033360 1.9238 393.66 1.0 1.0
500 0.012436 9.6190 733.72 1.0 1.0

1000 0.0084707 19.238 999.56 1.0 1.0
5000 0.0040869 96.190 2411.3 0.55 0.55

As a result of these various contributions, at low torque we have the following relative bias limit

B2M

M
=

√
0.012 +

(
0.1

M

)2

+ creep×
(

0.5

M

)2

(A.19)

where “creep” takes the value 1 for a creep test and 0 otherwise (note thatM is in mN m).
Since the relative uncertainty is no longer constant, but depends on the value of torque, it is necessary

to know representative values of torque and in Tables 7 and 8 such information is summarised for the low
torque region.

A.6.3. Accuracy of geometrical dimensions
According to Costello [20], the measurements of the diameters are accurate to within±0.025 mm.

As this is a very sensitive part of the rheometer, and can lead to very large errors, a special measuring
device was used by the manufacturer to carry out the measurements of diameters, all four being measured

Table 8
Typical measured values for 0.4% CMC

γ̇ (s−1) µ (Pa s) ω (rad/s) M (mN m) B2M
/M (%) creep B2M

/M (%) no creep

0.1 0.33872 0.0019238 3.9970 12.8 2.7
0.5 0.30630 0.0096190 18.072 3.0 1.1
1 0.28551 0.019238 33.690 1.8 1.0
5 0.22106 0.096190 130.43 1.1 1.0

10 0.18869 0.19238 222.66 1.0 1.0
50 0.11598 0.96190 684.30 1.0 1.0

100 0.089791 1.9238 1059.6 1.0 1.0
500 0.045860 9.6190 2705.8 0.55 0.55
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with the same instrument. This is a very important consideration and only in this way is it possible to
remove/decrease the amount of total bias that could be introduced by the geometrical measurements.
ConsequentlyBR = BRO = BRI = 0.025 mm.

A.6.4. Accuracy of the motor drive
Based upon information from the manufacturer that the motor drive has been calibrated to a tolerance

of ±1.5% at a fixed torque of 5000mN m referenced to a standard weight, this calibration accuracy will
be applied to all measurements.

A.6.5. Newtonian simplification
In Section A.4 it was mentioned that rheometer manufacturers usually calculate the viscosity assuming

the fluid inside the annulus behaves as a constant viscosity fluid, whereas in general this is obviously
not the case. The errors incurred in such an approach are small unless the gap is wide. Even for a wide
gap, the range of shear rates from the inner to the outer surface of the gap is still sufficiently small that
a power-law description can be assumed to prevail across it, even if the flow curve as a whole shows the
fluid to behave differently. Based on this assumption it is possible to calculate the error between the true
viscosity and that given by the assumed constant viscosity equations. From the values of the power-law
exponent in Tables 4 and 5, the resulting bias in viscosity is tabulated in column 3 of these two tables for
XG and CMC, respectively. All values are positive, but for the sake of simplicity in the ensuing analysis
they will be considered as± values.

Although the Newtonian simplification also results in a bias of the shear rate, the shear rate bias and the
true viscosity bias can be combined into a single equivalent viscosity bias. Since the viscosity reduction
equation in Section A.4 is not yet combined with the shear rate bias to give the equivalent viscosity bias,
this contribution to the total uncertainty must be added at the end, after determination of the equivalent
bias. This effect is in any case rather small and can be simply quantified as±0.1% for the XG solution
and±0.05% for the CMC solution.

A.7. Quantification of the sources of precision error limit

Basically, all the measurements referred to previously are also sources of precision error. The precision
errors of those measurements are related to the sampling process of the reading instrument and the accuracy
of the data acquisition system: the larger the sample size the smaller the precision error. According to the
manufacturer of the rheometer the samples were sufficiently large that corresponding precision errors are
well below the accuracy of the sensors (bias error) and in consequence negligible precision errors were
assumed for all quantities.

A.8. Determination of total uncertainty

A.8.1. Total bias error
To determine the total bias error given in Eq. (A.14), the total torquemeter bias must be calculated. For

high values of torque this contribution is given by

(
BM

M

)
=

√(
B1M

M

)2

+
(

B2M

M

)2

=
√

0.32 + 0.552 = 0.626% (A.20)
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Table 9
Total viscosity bias in the low torque region for 0.25% XG solution

γ̇ (s−1) Bµ/µ (%) creep Bµ/µ (%) no creep

0.0005 78.2 15.5
0.001 41.2 8.3
0.005 10.6 2.9
0.01 6.5 2.4
0.05 3.0 2.0
0.1 2.6 2.0
0.5 2.2 2.0
1 2.1 2.0
5 2.0 2.0

10 2.0 2.0
50 2.0 2.0

100 2.0 2.0
500 2.0 2.0

1000 2.0 2.0
5000 1.81 1.81

which after substitution in Eq. (A.14) gives

(
Bµ

µ

)2

=
(

0.626

100

)2

+ (0.015)2 +
[
2

0.025

22.32

0.981

(1 − 0.981)2

]2

+
[
−2

0.025

20.38

1

(1 − 0.981)2

]2

−8
0.025

22.32

0.9812

(1 − 0.981)2

0.025

20.38

1

(1 − 0.981)2
= (0.00626)2 + (0.015)2 + 0.0000625,

(A.21)

i.e. a final value of 1.81% is calculated regardless of the fluid because of the dominant contribution from
the angular speed bias. For low values of torque the total torquemeter bias given by

(
BM

M

)
=

√(
B1M

M

)2

+
(

B2M

M

)2

=
√

0.32 +
(

B2M

M

)2

(A.22)

whereB2M
/M is given by Eq. (A.19) and is tabulated in Tables 7 and 8 for XG and CMC, respectively,

depending on whether the viscosity measurements were performed in creep or rotational mode. Eq. (A.22)
is inserted into Eq. (A.14) for the total bias in viscosity which becomes

(
Bµ

µ

)2

=
(

BM

M

)2

+ (0.015)2 +
[
2

0.025

22.32

0.9812

(1 − 0.981)2

]2

+
[
−2

0.025

20.38

1

(1 − 0.981)2

]2

−8
0.025

22.32

0.9812

(1−0.981)2

0.025

20.38

1

(1 − 0.981)2
=

(
BM

M

)2

+ (0.015)2 + 0.0000625. (A.23)

The total viscosity bias now depends on the shear rate and the results are tabulated in Tables 9 and 10 for
the XG and CMC solutions, respectively.
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Table 10
Total viscosity bias in the low torque region for 0.4% CMC

γ̇ (s−1) Bµ/µ (%) creep Bµ/µ (%) no creep

0.1 12.9 3.2
0.5 3.5 2.0
1 2.5 2.0
5 2.0 2.0

10 2.0 2.0
50 2.0 2.0

100 2.0 2.0
500 1.81 1.81

The bias from the torquemeter is high at very low shear rates, and so dominates the total viscosity bias,
but at higher values of torque the contributions from the torque and the rotational speed measurements
are both important and a total bias of about 2% is approached.

A.8.2. Total precision error limit
Since the precision error limits were considered negligible in comparison with the bias limit, they are

taken as zero. Therefore, the total viscosity uncertainty equals the total bias in viscosity, i.e. 1.81% at
high torque and the values in Tables 9 and 10 in the low torque range.

A.8.3. Bias and precision error limits of the shear rate
For the shear rate the bias error contributions are combined as follows:

Bγ̇

γ̇
= (0.015)2 + 4

[
ε2

ε2 − 1

]2

(0.025)2 × [7.3 × 10−7] = (0.015)2 + 1.22× 10−6 (A.24)

and it is seen that the total bias error for shear rate is basically that of the angular speed and equal to 1.5%.

A.9. Equivalent viscosity uncertainty

So far we have total uncertainties for viscosity (Uµ/µ) and for shear rate (Uγ̇ /γ̇ ) and also an equivalent
bias error for viscosity originating from the Newtonian behaviour assumption (Uµ,Newtonian= Bµ,Newtonian).
Since the viscosity depends on shear rate it is possible, and more convenient, to calculate an equivalent vis-
cosity uncertainty that combines the original viscosity and shear rate uncertainties, as well asUµ,Newtonian.
This is done here, and it is necessary to consider the different ranges of shear rate in Tables 4 and 5 because
of the different power-law exponents. The equivalent viscosity uncertainty is defined as(

Ueq,µ

µ

)2

=
(

Uµ

µ

)2

+ (n − 1)2

(
Uγ̇

γ̇

)2

+
(

Uµ,Newtonian

µ

)2

. (A.25)

The effect ofn and of the “Newtonian” contribution on the equivalent viscosity is assessed in Table 11
which comparesUeq,µ/µ with Uµ/µ for the high torque range. In the low torque range these contributions
are negligible in comparison toUµ/µ.
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Table 11
The effect ofn onUeq,µ/µ and comparison withUµ/µ

n Uµ/µ (%) Ueq,µ/µ (%)

1 1.81 1.81
0.8 1.81 1.83
0.6 1.81 1.91
0.4 1.81 2.02

Table 11 shows that for a Newtonian fluid there is little difference betweenUeq,µ/µ andUµ/µ. The
fluids tend to exhibit a Newtonian behaviour at low shear rates where the torques are small. So, in this
region we can take the values of Tables 9 and 10 to represent the final equivalent viscosity uncertainty. At
the high end of the low torque rangeUµ/µ ≈ 2% and this leads toUeq,µ/µ ≈ 2%. In the other extreme
of the high torque range the fluids tend to behave as pure power-law fluids having a power-law exponent
in the range 0.4–0.6 and soUeq,µ/µ can be taken as≈2%.

Finally, a comment is required regarding rheometer geometry. This analysis was carried out for the
double-concentric cylinder but is equally valid for the cone-plate and parallel plate geometries because
the dominant contributions to the total uncertainty are associated with the torque and the angular speed
measurements provided the dependence of viscosity on torque and speed for these geometries is also
linear (or inversely linear), which is indeed the case.
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