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Abstract. In a Lévy insurance risk model, under the assumption that
the tail of the Lévy measure is log-convex, we show that either a horizon-
tal barrier strategy or the take-the-money-and-run strategy maximizes,
among all admissible strategies, the dividend payments subject to an
affine penalty function at ruin. As a key step for the proof, we prove
that, under the aforementioned condition on the jump measure, the
scale function of the spectrally negative Lévy process has a log-convex
derivative.

1. Introduction and main result

In 1957, Bruno de Finetti [14] formulated the optimal dividends problem:
it is the quest for the dividend policy maximizing the expected present value
of the dividend payments made by an insurance company. Nowadays, this
control problem is known as de Finetti’s optimal dividends problem and
still attracts a lot of research interest. Another burgeoning research topic in
insurance mathematics is the analysis of the so-called Gerber-Shiu functions.
As it is now well known, these functions, also called expected discounted
penalty functions, were first introduced by Gerber and Shiu [18]. In this
paper, we formulate and solve an optimal dividends problem taking into
account the time of ruin and the deficit at ruin using a particular Gerber-
Shiu function.

1.1. Lévy insurance risk processes. The compound Poisson risk model
describes the (free) surplus of an insurance company/portfolio using a com-
pound Poisson process with drift, that is

(1) Xt −X0 = ct−
Nt∑
i=1

Ci,

where c > 0 denotes the constant premium intensity, N = (Nt)t≥0 is a
Poisson process and the Ci’s are (strictly) positive independent and identi-
cally distributed random variables representing the claim amounts. In this
model, the random variable

∑Nt
i=1Ci represents the aggregate claim payments
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made up to time t. One way to generalize this risk process is to consider a
spectrally negative Lévy process X = (Xt)t≥0, that is a Lévy process with
no positive jumps. This process is defined on a filtered probability space
(Ω,F , (Ft)t≥0,P) and its law when X0 = x is denoted by Px (and the cor-
responding expectation by Ex). For short, we write P and E when X0 = 0.
The process X has independent and stationary increments, and has càdlàg
paths (right-continuous with left limits). We assume that the filtration sat-
isfies les conditions habituelles (usual conditions), namely right-continuity
and completeness. To avoid trivialities, it is implicitly assumed that X does
not have monotone sample paths, that is X is not a negative subordinator,
as for example a compound Poisson process with a negative drift, or just
a deterministic drift. In the actuarial literature, X is often called a Lévy
insurance risk process; see [9, 22] for more details.

As the Lévy process X has no positive jumps, its Laplace transform exists
and is given by

E
[
eθXt

]
= etψ(θ),

for θ ≥ 0 and t ≥ 0, where

ψ(θ) = γθ +
1
2
σ2θ2 −

∫ ∞
0

(
1− e−θz − θzI(0,1](z)

)
ν(dz),

for γ ∈ R and σ ≥ 0, and where ν is a measure on (0,∞) such that∫ ∞
0

(1 ∧ z2) ν(dz) <∞.

The measure ν is called the Lévy measure ofX, while (γ, σ, ν) is referred to as
the Lévy triplet of X. Note that the compound Poisson risk process defined
in (1) corresponds to the case γ = c−

∫ 1
0 z ν(dz), σ = 0 and ν(dz) = λF (dz),

where λ is the jump intensity of N and where F is the distribution of the
Ci’s, while a Brownian motion risk process corresponds to the case σ > 0
and ν(dz) ≡ 0. It is well known that X has paths of bounded variation if
and only if σ = 0 and

∫ 1
0 z ν(dz) < ∞. Finally, note that the net profit

condition for a general Lévy insurance risk process is given by

E[X1] = ψ′(0+) = γ −
∫ ∞

1
z ν(dz) > 0,

which agrees with the classical formulation if X is a compound Poisson
process with drift, as in the Cramér-Lundberg model. However, in what
follows, this condition will not be assumed.

1.2. Problem formulation. We now state the control problem considered
in this paper. A dividend strategy π consists of a nondecreasing, left-
continuous and adapted process Lπ = (Lπt )t≥0, where Lπt represents the
cumulative amount of dividends paid until time t under this strategy, and
such that Lπ0 = 0. A lump sum dividend payment is then represented by a
jump of the process Lπ. For a given dividend policy π, the corresponding
controlled reserve process Uπ = (Uπt )t≥0 is defined by Uπt = Xt−Lπt and the
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ruin time is then given by σπ = inf {t ≥ 0: Uπt < 0}. A strategy π is said to
be admissible if Lπt+ −Lπt ≤ Uπt , for all t < σπ, and if Lπσπ+ −Lπσπ = 0 when
σπ < ∞. In other words, the company does not make a lump sum divi-
dend payment which is larger than its current surplus. The set of admissible
dividend strategies will be denoted by Π.

Let q > 0 represent the force of interest. In this paper, the value function
of a dividend strategy π is defined by

vπ(x) = Ex
[∫ σπ

0
e−qt dLπt + e−qσ

π
P (Uπσπ) I{σπ<∞}

]
,

where P (y) = S + Ky, for S ∈ R and K ∈ (0, 1]. By definition, it follows
that vπ(x) = S +Kx for x < 0. The control problem is to find the optimal
value function v∗ defined by

v∗(x) = sup
π∈Π

vπ(x)

and an optimal strategy π∗ ∈ Π such that

vπ∗(x) = v∗(x),

for any starting capital x ≥ 0.
Note that the function P is a (degenerate) penalty function and that

Ex
[
e−qσ

π
P (Uπσπ) I{σπ<∞}

]
is the corresponding (degenerate) Gerber-Shiu function. Therefore, we refer
to this problem as de Finetti’s optimal dividends problem with a Gerber-Shiu
function.

This specific choice of penalty function, namely P (y) = S + Ky, can be
motivated as follows. As K ∈ (0, 1], the shareholders are held responsible
to cover (part of) the deficit at ruin and, if S < 0, early ruin is penalized,
while, if S > 0, shareholders will benefit from a liquidation value at ruin.
However, this modification of the classical optimal dividend problem is not
completely new. First, it should be noted that the ’original’ de Finetti’s
optimal dividends problem corresponds to S = K = 0, i.e., when the penalty
function P is identically zero. This case has been extensively studied. The
case S < 0 and K = 0 was studied by Thonhauser and Albrecher [33] for
the compound Poisson risk process and the Brownian motion risk process,
while Boguslavskaya [11], and Shreve, Lehoczky and Gaver [32], considered
the case S ∈ R and K = 0 in a Brownian motion and diffusion setting,
respectively. Finally, the case S ∈ R and K = 0 has been analyzed by
Loeffen [25] for spectrally negative Lévy processes. Dickson and Waters
[15], Gerber, Shiu and Smith [19], and Gerber, Lin and Yang [17] looked
at related value functions and problems in the compound Poisson setting;
the case S = 0 and K = 1 was discussed in [15, 19] and a numerical study,
for penalty functions taking the form of a polynomial of degree less than or
equal to 2, was carried out in [17]. In the Lévy setting, Avram, Palmowski
and Pistorius [7] studied a model where capital is injected (repeatedly) to
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keep the surplus process afloat (for the compound Poisson case, see also the
paper of Kulenko and Schmidli [21]). This is close in spirit to our problem as
it considers the fact that the surplus process can go negative eventually and
that the shareholders should then be held responsible to cover the deficit.
Consequently, the objective function under study is closely related to the
so-called Dickson and Waters modifications [15]. For more background and
literature coverage on dividend strategies and optimal dividends problems
in risk theory, we refer the reader to the reviews of Avanzi [5] and Albrecher
and Thonhauser [1] respectively.

1.3. Main results. Before stating our main results, we introduce πb, the
horizontal barrier strategy at level b ≥ 0. Under this strategy, σb denotes
the time of ruin, which is then almost surely finite, and the controlled risk
process is denoted by U bt = Xt−Lbt , with Lb0 = 0 and Lbt = (sup0≤s≤tXs−b)+,
for all t > 0. Note that πb ∈ Π and, if X0 = x > b, Lb0+ = x− b.

As ruin occurs when the controlled risk process is strictly below 0, the
barrier strategy at 0 will cause immediate ruin for all but one risk pro-
cess, namely the compound Poisson risk process. Therefore, we define the
take-the-money-and-run strategy as the strategy where all the surplus is im-
mediately paid out, that is at time 0, and then ruin is forced. We denote
this admissible strategy by πrun. Clearly, we have that vrun(x) = x+ S, for
all x ≥ 0.

Recall that the tail of the Lévy measure is the function x 7→ ν(x,∞),
where x ∈ (0,∞) and that a function f : (0,∞) → [0,∞) is said to be
log-convex (log-concave) if log(f) is convex (concave) on (0,∞).

Theorem 1.1. Let X be a Lévy insurance risk process with Lévy triplet
(γ, σ, ν) and let c = γ+

∫ 1
0 z ν(dz). Recall that q > 0, 0 < K ≤ 1 and S ∈ R.

If the tail of the Lévy measure is log-convex, then the following hold:
(i) Suppose ψ′(0+) > −∞. If σ > 0, or ν(0,∞) = ∞, or ν(0,∞) < ∞

and c ≥ K
∫∞

0 z ν(dz) + Sq, then an optimal strategy for the control
problem is formed by a barrier strategy.

(ii) Suppose ψ′(0+) > −∞. If σ = 0 and ν(0,∞) < ∞ and c <
K
∫∞

0 z ν(dz) + Sq, then the take-the-money-and-run strategy is an
optimal strategy for the control problem.

(iii) If ψ′(0+) = −∞, then the take-the-money-and-run strategy is an
optimal strategy for the control problem.

Note that ψ′(0+) > −∞ is equivalent to
∫∞

1 zν(dz) < ∞, which means
that the large claims, modelled by the compound Poisson part of the pro-
cess, have a finite mean. Part (iii) agrees with the intuition that if those large
claims do not have a finite mean, i.e., if ψ′(0+) = −∞, then there is no eco-
nomic interest in running the company/portfolio. Similarly, when ψ′(0+) >
−∞, one could interpret the relationship between c and K

∫∞
0 z ν(dz) + Sq

as another measure of viability. Finally, note that, when X has paths of
bounded variation, c could be seen as the premium intensity of X and that
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it is a (strictly) positive constant since we assumed that the paths of X are
not monotone decreasing.

Let, for q ≥ 0, W (q) : (0,∞) → (0,∞) be the scale function of the
spectrally negative Lévy processX, which is defined as the unique continuous
function with Laplace transform

∫∞
0 e−θzW (q)(z)dz = 1/(ψ(θ)−q) for θ large

enough. More details on these functions will be given in the next section. In
order to prove Theorem 1.1, we need the following monotonicity property of
the scale function.

Theorem 1.2. Suppose the tail of the Lévy measure is log-convex. Then,
for all q ≥ 0, W (q) has a log-convex first derivative.

The need for a certain monotonicity property of the scale function has
cropped up in several related optimal dividend problems for spectrally nega-
tive Lévy processes in order to show that a certain simple strategy is optimal.
In Theorem 2 of [24] it was shown that for the original de Finetti’s dividend
problem (when K = S = 0), a barrier strategy is optimal when W (q)′ is
increasing after the last point where it attains its minimum (modulo some
smoothness conditions). In Theorem 3 of the same paper, it was shown
that this condition on the scale function is satisfied when the Lévy mea-
sure has a completely monotone density, i.e., infinitely differentiable with
derivatives alternating in sign. Then, in Theorem 2.6 of [23], this result was
pushed further by assuming the weaker condition that the Lévy measure
has a density which is log-convex. While dealing with the case K = 0 and
S ∈ R, Loeffen [25] needed (strict) log-convexity of W (q)′ in order to show
that a barrier strategy or the take-the-money-and-run strategy is optimal
and proved that W (q)′ satisfies this if the density of the Lévy measure is
completely monotone. Loeffen [26] also studied the version of the original de
Finetti’s problem where transaction costs are introduced and showed that
when the Lévy measure has a log-convex density, then a so-called (c1; c2)
policy is optimal; for the proof he used that under this condition on the
Lévy measure, there exists numbers 0 ≤ a′ ≤ a∗ such that W (q)′ is strictly
decreasing on (0, a′), constant on (a′, a∗) and strictly increasing on (a∗,∞).
We also mention here the paper of Alvarez and Rakkolainen [2] in which
optimal dividend problems ‘of de Finetti type’ are studied where the driving
process is a spectrally negative Lévy diffusion with a jump component of
geometric form. An important role in their analysis (cf. Theorem 3.5 of [2])
is played by a monotonicity property of a certain function which can be seen
as the analogue of the scale function for spectrally negative Lévy processes.

Now, Theorem 1.2 implies that the results on optimal dividend strategies
derived in [23, 24, 25, 26] are still valid when the corresponding condition
imposed on the Lévy measure in these papers is replaced by the condition
that the tail of the Lévy measure is log-convex. In fact, this even improves
these results since the Lévy measure having a log-convex (or completely
monotone) density implies that the tail of the Lévy measure is log-convex
(cf. Remark 4 in [3]). There are examples for which the tail of the Lévy
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measure is log-convex, but its density is not; consider the following example
taken from Section 3 of [23]:

ν(x,∞) =

{
e2−x 0 < x < 1

1−λ ,

e1−λx x ≥ 1
1−λ ,

where 0 < λ < 1.
Theorem 1.1 states that the results obtained in the case K = 0 carry over

to the case when 0 < K ≤ 1. Note that the case K = 0 in Theorem 1.1 is
excluded since this is a degenerate case where the condition ψ′(0+) > −∞
is irrelevant, cf. Theorem 1 of [25]. Recall that the case S = 0 and K = 1
was discussed in [15, 19] and that a numerical study of the behaviour of
the optimal barrier level was carried out in [17]. In these three papers,
the optimality of the barrier level within the family of barrier strategies is
considered, not the optimality of the barrier strategy among all admissible
strategies. It is important to note that a barrier strategy (or the take-
the-money-and-run strategy) cannot be optimal for every jump distribution:
Azcue and Muler [8] have provided a counter-example for the caseK = S = 0
and similar counter-examples can be found in other cases. This is in contrast
with the dividend problem with capital injections considered in [7, 21]: there
a barrier strategy always forms the optimal strategy, no matter the form of
the jump measure.

The rest of the paper is organized as follows. In the next section, we
state some facts about scale functions and prove Theorem 1.2. In Section 3,
we compute the value function of a barrier strategy and, in Section 4, it is
shown how to determine the optimal barrier level. Finally, in Section 5, a
verification lemma and Theorem 1.1 are proved. Some proofs are left for the
Appendix.

2. Scale functions

We first introduce some terminology. The terms positive, negative, in-
creasing and decreasing are meant in the weak sense and for a function
f : (0,∞) → R and for 0 ≤ a < b ≤ ∞, we call f increasing-decreasing
on (a, b) if there exists c ∈ [a, b] such that f is increasing on (a, c) and de-
creasing on (c, b). We call f ultimately increasing if there exists R > 0 such
that f is increasing on (R,∞). Finally, as f(x) is defined for x > 0, we set
f(0+) := limx↓0 f(x) (in case this limit is well defined). Further, for a right-
continuous increasing function F : [0,∞)→ [0,∞), we denote by F (dx) the
(unique) Borel measure on [0,∞) such that F [0, x] = F (x). Conversely, for
a Borel measure F (dx) on [0,∞) with F [0, x] < ∞ for all x ≥ 0, we will
write F (x) = F [0, x].

For an arbitrary spectrally negative Lévy process, the Laplace exponent
ψ is strictly convex and limθ→∞ ψ(θ) = ∞. Thus, there exists a function
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Φ: [0,∞) → [0,∞) defined by Φ(θ) = sup{ξ ≥ 0 | ψ(ξ) = θ} (its right-
inverse) and such that

ψ(Φ(θ)) = θ, θ ≥ 0.

We now recall the definition of the (q-)scale function W (q) and some prop-
erties of this function. For further details, amongst others, on its existence
and origin, we refer to [22]. The scale function of the process X is defined
as the unique continuous function with Laplace transform∫ ∞

0
e−θzW (q)(z) dz =

1
ψ(θ)− q

, for θ > Φ(q),

and this function is positive and strictly increasing. Although we primarily
regard W (q) as a function on (0,∞), if needed, we extend the scale function
to the entire real line by setting W (q)(0) = W (q)(0+) and W (q)(x) = 0
for x < 0. Since W (q) is log-concave (cf. p.89 of [25]), it is differentiable
except for at most countably many points. Moreover, W (q) is continuously
differentiable if X has paths of unbounded variation or if the tail of the
Lévy measure is continuous. Further, from Theorem 1 in [12], W (q) is twice
continuously differentiable on (0,∞) if σ > 0. The initial values of W (q) and
W (q)′ are given by

W (q)(0+) =

{
1/(γ +

∫ 1
0 z ν(dz)) when σ = 0 and

∫ 1
0 z ν(dz) <∞,

0 otherwise,

W (q)′(0+) =


2/σ2 when σ > 0,
(ν(0,∞) + q)/c2 when σ = 0 and ν(0,∞) <∞,
∞ otherwise.

(2)

We will also use the functions
{
W

(q); q ≥ 0
}

defined by

W
(q)(x) =

∫ x

0
W (q)(z) dz.

Since W (q) is log-concave, it follows that W (q) is log-concave (cf. Prékopa
[29]).

Finally, note that W (q) appears naturally in insurance risk theory. For
the underlying/uncontrolled risk process X, denote the time of ruin by

(3) τ−0 = inf{t > 0: Xt < 0},

with the convention inf ∅ =∞. Then, for x ≥ 0, it is known that

Ex
[
e−qτ

−
0 I{τ−0 <∞}

]
= 1 + qW

(q)(x)− q

Φ(q)
W (q)(x),

of which the probability of ruin is a special case.
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2.1. Proof of Theorem 1.2. In Theorem 2.6, Kyprianou et al. [23] showed
that, for q > 0, W (q)′ is strictly (increasing and) convex on (a∗,∞) if the
Lévy measure has a log-convex density. Here a∗ ∈ [0,∞) is the last point
whereW (q)′ attains its minimum. This result was later slightly strengthened
in Proposition 1 of Loeffen [26]. Kyprianou et al. [23] used that potential
functions of subordinators satisfy a certain linear convolution Volterra equa-
tion and deduced this monotonicity property of W (q) by applying the theory
of Volterra equations in combination with the well-known connection be-
tween these potential functions and the scale functions of spectrally negative
Lévy processes. However, since the scale function itself satisfies a renewal
equation in the case where X has paths of bounded variation (see equation
(11) below), one can use the theory of renewal equations to obtain a stronger
result, namely Theorem 1.2. In the proof of Theorem 4.3 of Yin and Wang
[34], this approach via renewal equations was undertaken as part of reprov-
ing the abovementioned result of Kyprianou et al. [23] and the contours of
our Theorem 1.2, and its proof, can already be found there.

Before we give the proof of Theorem 1.2, we need some preparatory lem-
mas. First we recall some facts about (log-)convex functions and sequences,
and about renewal equations both in continuous and in discrete time. A
function f : (0,∞) → R is convex if and only if there exists an increasing
function g : (0,∞)→ R such that, for a fixed a > 0,

f(x) = f(a) +
∫ x

a
g(y) dy;

see, e.g., p.9-10 of [31]. This function g can be taken as the left-hand deriv-
ative of f , which we denote by f ′−. Moreover, f ′− is then left-continuous
(cf. p.7 of [31]). This implies in particular that if f is log-convex, then
d−

dx log(f(x)) = f ′−(x)/f(x) is increasing on (0,∞). Further properties of
log-convex functions are that a log-convex function is convex, the sum of two
log-convex functions is log-convex and the limit of a pointwise convergent se-
quence of log-convex functions is log-convex (cf. p.19 of [31]).

Consider now the following renewal equation:

Z(x) = 1 +
∫ x

0
Z(x− y)F (dy), x ≥ 0,

where F is a measure on [0,∞) such that F (0) = 0 and F (x) < ∞ for all
x > 0. It is well known (cf. Theorem 2.4 of [4]) that the function

(4) Z(x) =
∞∑
m=0

F ∗m(x)

is the unique solution of the above renewal equation satisfying Z(x) <∞ for
all x > 0. Here, for m ≥ 0, F ∗m(x) is the m-fold convolution of F , defined
recursively by F ∗0(x) = 1 and F ∗m(x) =

∫ x
0 F

∗m−1(x− y)F (dy), for m ≥ 1.
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For a sequence of positive real numbers (fn)∞n=1, the renewal sequence
(un)∞n=0 is defined recursively (and thus uniquely) by u0 = 1 and

(5) un =
n∑
k=1

un−kfk, n ≥ 1.

Similarly as for the continuous-time case, we have

(6) un =
∞∑
m=0

f∗mn ,

where the m-fold convolution of (fn)∞n=0, whereby we set f0 = 0, is defined
recursively by f∗0n = I{n=0} and f∗mn =

∑n
k=0 f

∗m−1
n−k fk, for m ≥ 1.

We denote the generating function of a sequence (an)∞n=k by â(s), i.e.,
â(s) :=

∑∞
n=k s

nan where s > 0 is such that â(s) is well defined. The
sequence (an)∞n=k is called log-convex if, for all n ≥ k, an ≥ 0 and

(7) an+2an ≥ (an+1)2.

The following lemma is taken from De Bruijn and Erdös [13]. Note that De
Bruijn and Erdös [13] assume that

∑∞
n=1 fn = 1, but that they do not use

this assumption in the proof.

Lemma 2.1 (Theorem 1 of [13]). If the sequence (fn)∞n=1 is log-convex, then
the renewal sequence (un)∞n=0 is log-convex.

The next lemma is a continuous-time version of Lemma 2.1 and is based
on Theorem 3.2 of Hansen and Frenk [20], in which the case where F is
a probability measure is dealt with. For F not necessarily a probability
measure, the proof is virtually the same, though we provide some more
details.

Lemma 2.2. Consider an absolutely continuous measure F (dx) = f(x)dx
on [0,∞), where f : (0,∞) → [0,∞) is bounded, log-convex and such that∫∞

0 e−λxf(x)dx < ∞, for λ large enough. Then Z(x) =
∑∞

n=0 F
∗n(x) is

well defined and has a log-convex density, i.e., Z(x) = 1 +
∫ x

0 z(s)ds, where
z : (0,∞)→ [0,∞) is log-convex.

Proof. Note that
∫∞

0 e−λxf(x)dx <∞ for λ large enough implies that F (x) <
∞ for all x > 0 and thus Z(x) is well defined. Define, for j ≥ 1, the sequence
(f (j)
n )∞n=1 by

f (j)
n =

f
(
n
j

)
j

.

Then, for each j ≥ 1, the sequence (f (j)
n )∞n=1 is log-convex since f is log-

convex. Define, for j ≥ 1, the renewal sequence (u(j)
n )∞n=0 by (5), using

(f (j)
n )∞n=1. Then, by Lemma 2.1, for each j ≥ 1, the sequence (u(j)

n )∞n=0 is
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log-convex. For a ∈ [0,∞), denote its integer part by bac. For j ≥ 1, define
the function zj : [0,∞)→ [0,∞), by

zj(x) = j(u(j)
n )n+1−jx(u(j)

n+1)jx−n, where n = bxjc.
Note that log(zj) is a piecewise linear function and has an increasing left-
derivative due to the log-convexity of (u(j)

n )∞n=0. Hence log(zj) is convex on
[0,∞). Moreover, we have, for n ≥ 1,

zj

(
n

j

)
= ju(j)

n = j

n∑
k=1

u
(j)
n−kf

(j)
k =

n−1∑
k=0

jf
(j)
n−ku

(j)
k

=
∫ n−1

0
f

(
n− y
j

) ∞∑
k=0

u
(j)
k δk(dy) =

∫ n−1
j

0
f

(
n

j
− y
)
Zj(dy),

(8)

where Zj(dy) =
∑∞

k=0 u
(j)
k δ k

j
(dy) and δa is the Dirac delta measure at a. We

further define the functions z(1)
j and z(2)

j by

z
(1)
j (x) = zj(bxjc/j) = ju

(j)
bxjc, z

(2)
j (x) = zj((bxjc+ 1)/j) = ju

(j)
bxjc+1.

Note that then we have the following inequalities for all j ≥ 1 and for all
x ≥ 0:

(9) z
(1)
j (x) ∧ z(2)

j (x) ≤ zj(x) ≤ z(1)
j (x) ∨ z(2)

j (x).

Since
∫∞

0 e−λxf(x)dx <∞ for λ large enough, we have, by the dominated
convergence theorem, that limλ→∞

∫∞
0 e−λxf(x)dx = 0 and thus there exists

λ∗ such that, for all λ ≥ λ∗,
∫∞

0 e−λxf(x)dx < 1. It follows that by definition
of the Riemann integral, we have, for λ > λ∗,∫ ∞

0
e−λxf(x)dx = lim

j→∞

∞∑
n=1

e−λn/jf(n/j)j−1 = lim
j→∞

f̂ (j)(e−λ/j).

Also, setting f (j)
0 = 0 for j ≥ 1, using (6), Fubini’s theorem and a well-known

property regarding generating functions and convolutions, we have, for s > 0
such that f̂ (j)(s) < 1,

û(j)(s) =
∞∑
n=0

sn
∞∑
m=0

(f (j))∗mn =
∞∑
m=0

∞∑
n=0

sn(f (j))∗mn =
∞∑
m=0

(f̂ (j)(s))m

=
1

1− f̂ (j)(s)
.

We can now deduce, for λ > λ∗, that

lim
j→∞

∫ ∞
0

e−λxZj(dx) = lim
j→∞

∞∑
k=0

e−λk/ju(j)
k = lim

j→∞
û(j)(e−λ/j)

=
1

1−
∫∞

0 e−λxf(x)dx
.
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Since the right-hand side of the above equation is the Laplace transform
of Z, it follows by the continuity theorem for Laplace transforms (see e.g.
Theorem 2a in Section XIII.1 of Feller [16]) that limj→∞ Zj(x) = Z(x) for
all x ≥ 0 and this implies in particular that for all x ≥ 0

(10) lim
j→∞

∫ x

0
g(y)Zj(dy) =

∫ x

0
g(y)Z(dy),

for any bounded, continuous function g on [0, x].
Since bxjc/j → x as j → ∞ and f is bounded and continuous, we have

f(bxjc/j − y)→ f(x− y) as j →∞ uniformly in y ∈ [0, x], whereby we set
f(y) = f(0+) for y ≤ 0. Hence, together with (10), this implies that

lim
j→∞

∣∣∣∣∫ x

0
f

(
bxjc
j
− y
)
Zj(dy)−

∫ x

0
f(x− y)Z(dy)

∣∣∣∣
≤ lim

j→∞

∣∣∣∣∫ x

0

[
f

(
bxjc
j
− y
)
− f(x− y)

]
Zj(dy)

∣∣∣∣
+ lim
j→∞

∣∣∣∣∫ x

0
f(x− y)Zj(dy)−

∫ x

0
f(x− y)Z(dy)

∣∣∣∣ = 0,

for all x > 0. Using (8), we can now deduce that for x > 0,

lim
j→∞

z
(1)
j (x) = lim

j→∞

∫
[0,
bxjc−1

j
]
f

(
bxjc
j
− y
)
Zj(dy)

= lim
j→∞

∫
[0,x]

f

(
bxjc
j
− y
)
Zj(dy)− lim

j→∞

∫
(
bxjc−1

j
,x]
f

(
bxjc
j
− y
)
Zj(dy)

=
∫ x

0
f(x− y)Z(dy)− f(0+) lim

j→∞
Zj{bxjc/j} =

∫ x

0
f(x− y)Z(dy).

In order to justify the last equality, let ε > 0 and note that since Z{x} = 0,
there exists δ > 0 such that Z(x− δ, x] < ε. Hence we get

lim
j→∞

Zj{bxjc/j} ≤ lim
j→∞

Zj(x− δ, x] = Z(x− δ, x] < ε,

which shows that limj→∞ Zj{bxjc/j} = 0. Similarly, we can deduce that
limj→∞ z

(2)
j (x) =

∫ x
0 f(x − y)Z(dy) and thus, by (9), we have that for all

x > 0,

z(x) := lim
j→∞

zj(x) =
∫ x

0
f(x− y)Z(dy).

It follows that z is log-convex, since it is the limit of a convergent sequence of
log-convex functions. We now finish the proof by showing that z is a density
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of Z. Indeed, we have for λ > λ∗,∫ ∞
0

e−λx
(

1 +
∫ x

0
z(s)ds

)
dx =

1
λ

+
1
λ

∫ ∞
0

e−λxf(x)dx
∫ ∞

0
e−λxZ(dx)

=
1
λ

(
1 +

∫∞
0 e−λxf(x)dx

1−
∫∞

0 e−λxf(x)dx

)

=
∫ ∞

0
e−λxZ(x)dx,

which implies Z(x) = 1 +
∫ x

0 z(s)ds. �

The next lemma is the final lemma we need before we prove Theorem 1.2.
Note that part (i) is Lemma 8.1.6 of Müller and Stoyan [27].

Lemma 2.3. (i) Let f : (0,∞) → R be differentiable. Then f ′ is log-
convex if and only if, for all h > 0, the function

x 7→ f(x+ h)− f(x)

is log-convex.
(ii) Suppose (fn)n≥1 is a sequence of differentiable functions on (0,∞)

which converges pointwise to another differentiable function f . If f ′n
is log-convex for all n ≥ 1, then f ′ is log-convex.

Proof. (i) For the necessity part, fix h > 0 and, for δ > 0, let Tδ = {0 =
t
(δ)
0 , t

(δ)
1 , . . . , t

(δ)
n(δ) = h} be a finite partition of the interval [0, h] such that

max0≤i≤n(δ) |ti − ti−1| ≤ δ. Define the functions gδ by

gδ(x) =
n(δ)∑
i=1

f ′(x+ t
(δ)
i )(t(δ)i − t

(δ)
i−1).

Since for a given c ≥ 0, x 7→ f ′(x + c) is log-convex and the sum of log-
convex functions is log-convex, it follows that gδ is log-convex. By definition
of the Riemann integral, limδ↓0 gδ(x) =

∫ x+h
x f ′(y)dy = f(x+h)− f(x), and

since the pointwise limit of a convergent sequence of log-convex functions is
log-convex, it follows that f(x+ h)− f(x) is log-convex.

To prove the sufficiency part, we use again that a convergent sequence of
log-convex functions is log-convex together with

f ′(x) = lim
h↓0

f(x+ h)− f(x)
h

.

(ii) Since f ′n is log-convex, it follows by (i) that, for all h > 0, fn(x+h)−
fn(x) is log-convex. Fix x, y > 0 and λ ∈ [0, 1]. Thus,

log [fn(λx+ (1− λ)y + h)− fn(λx+ (1− λ)y)]

≤ λ log[fn(x+ h)− fn(x)] + (1− λ) log[fn(y + h)− fn(y)].
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Taking limits as n → ∞ gives that the above inequality holds with fn re-
placed by f and thus for each h > 0, f(x + h) − f(x) is log-convex. Using
(i), we conclude that f ′ is log-convex. �

Proof of Theorem 1.2. We recall that W (q) is the scale function of the
spectrally negative Lévy process X with Lévy triplet (γ, σ, ν) and Laplace
exponent ψ. Note that W (q) is differentiable since the tail of the Lévy mea-
sure is log-convex and thus continuous. We prove the theorem in three steps.

Step 1: Assume that ν(0,∞) <∞ and σ = 0. Then we can write ψ(λ) =
cλ−

∫∞
0 (1−e−λx)ν(dx) = λ(c−

∫∞
0 e−λxν(x,∞)dx), where c = γ+

∫ 1
0 xν(dx).

The scale function W (q) satisfies the following renewal equation

(11) cW (q)(x) = 1 +
∫ x

0
W (q)(x− y) (ν(y,∞) + q) dy,

which can be proved by showing that the Laplace transforms of both sides
of the equation are equal, hereby noting that both sides are continuous in x.
Since W (q)(x) <∞ for all x > 0, it follows that W (q)(x) = 1

c

∑∞
m=0 F

∗m(x),
where F (x) = 1

c

∫ x
0 (ν(y,∞) + q) dy (cf. (4)) and so, by Lemma 2.2, W (q)′

is log-convex.

Step 2: Assume that ν(0,∞) = ∞ and σ = 0. We write ν(x) = ν(x,∞).
Since ν(x) is log-convex, ν ′−(x), the left-hand derivative of ν at x, is well
defined for all x > 0 and, moreover, ν(dx) = −ν ′−(x)dx. Define now, for
n ≥ 1, the measure νn(dx) by

νn(x,∞) =

{
ν(1/n) exp

{
ν′−(1/n)
ν(1/n) (x− 1

n)
}

0 < x < 1/n,

ν(x) x ≥ 1/n.

Then, for each n ≥ 1, νn(0,∞) < ∞ and νn(x) := νn(x,∞) is log-convex.
Let W (q)

n be the scale function corresponding to the Lévy triplet (γ, 0, νn)
and denote the corresponding Laplace exponent by ψn. From the first step,
we know that W (q)′

n is log-convex.
Further, by the log-convexity of ν, we have that ν′−(x)

ν(x) is an increasing
(and negative) function and thus for 0 < x ≤ 1/n,

(12)
d−

dx
log(νn(x)) =

ν ′−n (x)
νn(x)

=
ν ′−(1/n)
ν(1/n)

≥ ν ′−(x)
ν(x)

=
d−

dx
log(ν(x)).

Since log(νn(1/n)) = log(ν(1/n)), inequality (12) implies that log(νn(x)) ≤
log(ν(x)) and thus νn(x) ≤ ν(x) for all 0 < x ≤ 1/n. Now using (12) again,
we conclude that

ν ′−(x) ≤ ν ′−n (x) ≤ 0, for all 0 < x ≤ 1/n.
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We can now use the dominated convergence theorem to deduce that for all
θ ≥ 0,

lim
n→∞

ψn(θ) = γθ + lim
n→∞

∫ ∞
0

(
1− e−θx − θxI(0,1](x)

)
ν ′−n (x)dx

= γθ +
∫ ∞

0

(
1− e−θx − θxI(0,1](x)

)
ν ′−(x)dx

= ψ(θ)

and this implies that the Laplace transform of W (q)
n converges as n → ∞

to the Laplace transform of W (q). Hence, by the continuity theorem for
Laplace transforms, we have limn→∞W

(q)
n (x) = W (q)(x) for all x ≥ 0 and

so we conclude by Lemma 2.3(ii) that W (q)′ is log-convex.

Step 3: Assume that σ > 0. Define for n ≥ 1, the measure νn(dx) by

νn(x,∞) = ν(x,∞) +
1
2
σ2n2e−nx.

Then, for each n ≥ 1, νn is a Lévy measure and νn(x,∞) is log-convex on
(0,∞). Define γn = γ + 1

2σ
2ne−n(n + 1), let W (q)

n be the scale function
corresponding to the Lévy triplet (γn, 0, νn), and denote the corresponding
Laplace exponent by ψn. From the second step, we know that W (q)′

n is log-
convex. Further, for all θ ≥ 0,

lim
n→∞

ψn(θ) = ψ(θ)− 1
2
σ2θ2 + lim

n→∞

{
1
2
σ2ne−n(n+ 1)θ

−
∫ ∞

0

(
1− e−θx − θxI(0,1](x)

) 1
2
σ2n3e−nxdx

}
= ψ(θ)− 1

2
σ2θ2 +

1
2
σ2 lim

n→∞

{
n3

θ + n
− n2 + θn

}
= ψ(θ)

and thus, by the continuity theorem for Laplace transforms, W (q)
n (x) →

W (q)(x) as n → ∞ for all x ≥ 0. Now, by Lemma 2.3(ii), we deduce that
W (q)′ is log-convex. �

3. Value function of a barrier strategy

For the rest of the paper we make the assumption that the scale function
is continuously differentiable on (0,∞). The proof of the lemma below is
given in the Appendix.

Lemma 3.1. Suppose ψ′(0+) > −∞. Then, for all q > 0 and x ≥ 0,

(13) Ex
[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]
> −∞
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and, for 0 ≤ x ≤ b,

(14) Ex
[
e−qσ

b
U bσb
]
> −∞.

We are now ready to compute the value function of a horizontal barrier
strategy.

Lemma 3.2. Assume ψ′(0+) > −∞. For b ≥ 0, the value function of a
barrier strategy at level b is given by

vb(x) =

{
S +

∫ x
0 A(y) dy + 1−A(b)

W (q)′(b)
W (q)(x), if 0 ≤ x ≤ b,

x− b+ vb(b), if x > b,

where

(15) A(y) = K
(

1− ψ′(0+)W (q)(y) + qW
(q)(y)

)
+ SqW (q)(y).

Proof. The following was established in [6] (Theorem 1 and Remark 4): for
q, r ≥ 0, we have

Ex
[
e−qσ

b+rUb
σb

]
=erx + (q − ψ(r))

∫ x

0
er(x−z)W (q)(z) dz

−W (q)(x)
rerb + (q − ψ(r))

∫ b
0 er(b−z)W (q)(dz)

W (q)′(b)
.

(16)

Taking the right-hand derivative with respect to r on both sides and then
evaluating at zero leads to, with the help of the dominated convergence
theorem and (14), which allows switching expectation and derivative,

Ex
[
e−qσ

b
U bσb
]

= x− ψ′(0+)W (q)(x) + q

∫ x

0
W

(q)(y) dy

−W (q)(x)
1− ψ′(0+)W (q)(b) + qW

(q)(b)
W (q)′(b)

.

The result follows by combining the above with Proposition 2 in [25]. �

4. Determining the optimal barrier level

For x ≥ 0, define F (x) = 1−A(x)

W (q)′(x)
, with A given by (15), and then define

b∗ = sup {b ≥ 0: F (b) ≥ F (x), ∀x ≥ 0} ,
the candidate for the optimal barrier level. We mention here that it is well
known that, as q > 0, limx→∞W

(q)′(x) = ∞ and therefore by the log-
concavity of W (q), we must have that W (q)′ is strictly positive and thus F is
well defined and continuous on (0,∞). The proof of the following lemma is
provided in the Appendix.

Lemma 4.1. Assume ψ′(0+) > −∞. The function F cannot be ultimately
increasing. This implies, in particular, that b∗ <∞.

The following is a key step in proving part (i) of Theorem 1.1.
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Lemma 4.2. Assume ψ′(0+) > −∞. If W (q)′ is log-convex on (0,∞),
then F is increasing-decreasing on (0,∞). In particular, F is decreasing on
(b∗,∞).

Proof. Recall that since W (q)′ is log-convex and thus convex on (0,∞), one
can write for some fixed a > 0,

W (q)′(x) = W (q)′(a) +
∫ x

a
W (q)′′−(z) dz,

where W (q)′′− is the left-hand derivative of W (q)′. Recall also that W (q)′′−

is a left-continuous and increasing function. Since W (q)′′− is increasing and
limx→∞W

(q)′(x) =∞, we have, for some 0 ≤ a′ ≤ a∗ <∞, that

(17) W (q)′′−(x)


< 0 for all x ∈ (0, a′);
= 0 for all x ∈ (a′, a∗);
> 0 for all x ∈ (a∗,∞),

which correspond to W (q)′ being strictly decreasing, constant and strictly
increasing, respectively.

We now introduce the following functions related to F . For x > 0, define

f(x) =
1−A(x)
W (q)(x)

, g(x) =
−A′(x)
W (q)′(x)

,

G(x) =
−A′(x)

W (q)′′−(x)
, x ∈ (0, a′) ∪ (a∗,∞).

It is easily seen that the following hold:

F (x) =
W (q)(x)
W (q)′(x)

f(x), G(x) =
W (q)′(x)
W (q)′′−(x)

g(x), x ∈ (0, a′) ∪ (a∗,∞),

(18)

F ′−(x) =
W (q)′′−(x)
W (q)′(x)

(G(x)− F (x)) , x ∈ (0, a′) ∪ (a∗,∞),(19)

f ′(x) =
W (q)′(x)
W (q)(x)

(g(x)− f(x)) ,(20)

and

(21) F ′(x) = g(x), x ∈ (a′, a∗).

Note that since F is the ratio of two absolutely continuous functions where
the corresponding denominator is nowhere zero, F itself is absolutely contin-
uous. Hence for 0 < x1 < x2, F (x2) = F (x1) +

∫ x2

x1
F ′−(y)dy and so the sign

of F ′− on (x1, x2) determines precisely where F is increasing or decreasing
on (x1, x2).

Since

g(x) = Kψ′(0+)− Sq −Kq W
(q)(x)

W (q)′(x)
,
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K > 0 and W (q) is log-concave, it follows that g is a decreasing function.
Together with the log-convexity of W (q)′, (17) and (18), we get

if g(x) ≤ 0 for all x ∈ (c, d) ⊆ (0, a′), then G is increasing on (c, d),(22)
if g(x) ≥ 0 for all x ∈ (c, d) ⊆ (a∗,∞), then G is decreasing on (c, d).(23)

Further, using (17) and (19), we immediately see that, for x ∈ (0, a′),

F ′−(x) ≥ 0 if and only if F (x) ≥ G(x),(24)

F ′−(x) ≤ 0 if and only if F (x) ≤ G(x),(25)

and, for x ∈ (a∗,∞),

F ′−(x) ≥ 0 if and only if F (x) ≤ G(x),(26)

F ′−(x) ≤ 0 if and only if F (x) ≥ G(x),(27)

Moreover, with a little bit more work, the following are established:

if x ∈ (0, a′) and g(x) ≥ 0, then F ′−(x) ≥ 0,(28)

if x ∈ (a∗,∞) and g(x) ≤ 0, then F ′−(x) ≤ 0.(29)

To see this, first note that

f(x) = Kψ′(0+)− Sq +
1−K
W (q)(x)

−KqW
(q)(x)

W (q)(x)
,

and since 0 < K ≤ 1 and W is log-concave, it follows that f is decreasing
on (0,∞). Hence by (20), f(x) ≥ g(x), for all x > 0. Secondly, note that by
the log-concavity of W (q) and (17) we have[

W (q)(x)
W (q)′(x)

− W (q)′(x)
W (q)′′−(x)

]{
≥ 0 on (0, a′),
≤ 0 on (a∗,∞).

Finally, if the conditions in (28), respectively in (29), hold, then, using that
f(x) ≥ g(x), we have

F (x)−G(x) ≥ g(x)

[
W (q)(x)
W (q)′(x)

− W (q)′(x)
W (q)′′−(x)

]
≥ 0,

and, using (24), respectively (27), we deduce the conclusions in (28), respec-
tively (29).

With the above relations established, we now proceed with proving that
F is increasing-decreasing. Define rg = inf{x ≥ 0: g(x) < 0}, using again
the convention inf ∅ =∞. We split the analysis into three cases:
• Assume rg < a′. Then (28) implies that F is increasing on (0, rg). Now
let p = inf{x ∈ (rg, a′) : F (x) < G(x)}, whereby we set p = a′ if F ≥ G on
(rg, a′). Then by (24), F is increasing on (rg, p) and by (25) and the fact
that G is increasing on (rg, a′) because of (22), we have that F is decreasing
on (p, a′). Finally, due to (21) and (29), F is decreasing on (a′,∞).
• Assume a′ ≤ rg ≤ a∗. Then (28) implies that F is increasing on (0, a′),
while (21) implies that F is increasing on (a′, rg) and decreasing on (rg, a∗),
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and finally (29) implies that F is decreasing on (a∗,∞). So, in this case,
b∗ = rg.
• Assume a∗ < rg ≤ ∞. Then (28) implies that F is increasing on (0, a′)
while (21) implies that F is increasing on (a′, a∗). Before going any further
we prove the following:

(30) suppose F (p) = G(p) for some p ∈ (a∗, rg), then F ≥ G on (p, rg).

Fix x ∈ (p, rg) and let z̄ = sup{z ∈ (p, x) : F (z) ≥ G(z)}. By continuity
of F and left-continuity of G, F (z̄) ≥ G(z̄). If z̄ = x, then F (x) ≥ G(x).
If z̄ < x, then F (z) < G(z) for all z ∈ (z̄, x), which implies F ′−(z) ≥ 0 for
all z ∈ (z̄, x) by (26) and thus F (x) = F (z̄) +

∫ x
z̄ F

′−(z)dz ≥ F (z̄) ≥ G(z̄).
Since G is decreasing on (a∗, rg) by (23), we have G(z̄) ≥ G(x) and thus
F (x) ≥ G(x). This proves (30).

Now let p = inf{x ∈ (a∗, rg) : F (x) ≥ G(x)}, whereby we set p = rg if
F < G on (a∗, rg). Then by (26), F is increasing on (a∗, p) and by (30) and
(27), F is decreasing on (p, rg). Note that this forces that p < ∞ since F
cannot be ultimately increasing (cf. Lemma 4.1). Finally, due to (29), F is
decreasing on (rg,∞). �

5. Verification lemma

Lemma 5.1. Suppose π is an admissible dividend strategy such that vπ
is continuously differentiable on (0,∞) and v′π is absolutely continuous on
(0,∞) with a density which is bounded on sets of the form [1/n, n], n ≥ 1.
Suppose further that for all x > 0, v′π(x) ≥ 1 and (Γ− q)vπ(x) ≤ 0, where Γ
is the operator defined by

Γv(x) = γv′(x) +
σ2

2
v′′(x) +

∫ ∞
0

(
v(x− z)− v(x) + v′(x)zI(0,1](z)

)
ν(dz).

Here v is a function on R such that Γv(x) is well defined for all x > 0.
Suppose further that vπ(0) ≥ S. Then π is an optimal strategy for the control
problem.

Proof. Noting that vπ(x) ≥ S for x ≥ 0 by the assumptions and vπ(x) =
S + Kx for x < 0 by definition, we see that the proof is virtually identical
to the proof of Lemma 1 in [25]. Hereby we note that since vπ is not twice
continuously differentiable, instead of the standard Itô’s formula (cf. Theo-
rem II.32 of [30]), one has to appeal to the Meyer-Itô formula (cf. Theorem
IV.71 of [30]). �

Before we prove the main result, we need one more lemma. Again the
proof is given in the Appendix.

Lemma 5.2. Assume ψ′(0+) > −∞ and W (q)′ is absolutely continuous on
(0,∞) with a density which is bounded on sets of the form [1/n, n], n ≥ 1.
Then for all x > 0, (Γ− q)W (q)(x) = 0 and (Γ− q)

(
S +

∫ x
0 A(y) dy

)
= 0.
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Proof of Theorem 1.1. In each case, we will show that vb∗ , or vrun, sat-
isfies the conditions of Lemma 5.1. Note that by Theorem 1.2, W (q)′ is
log-convex.

(i). Since W (q)′ is log-convex and limx↑b∗ v
′
b∗(x) = 1, it can be easily verified

that vb∗ satisfies the required smoothness conditions of Lemma 5.1. By the
definition of b∗, we have for all x ≤ b∗,

v′b∗(x) = A(x) + F (b∗)W (q)′(x) ≥ A(x) + F (x)W (q)′(x) = 1.

Further, using Lemma 5.2, we clearly have that (Γ − q)vb∗(x) = 0 for all
0 < x < b∗ and by continuity we have (Γ− q)vb∗(b∗) = 0 (cf. Lemma 4.1 of
[23]). On the other hand, for all x > b∗, we have

(Γ− q)vb∗(x)

= (Γ− q)vb∗(x)− (Γ− q)
(
S +

∫ x

0
A(y)dy

)
− F (x)(Γ− q)W (q)(x)

= −σ
2

2

(
A′(x) + F (x)W (q)′′−(x)

)
− q(vb∗ − vx)(x)

+
∫ ∞

0
((vb∗ − vx)(x− z)− (vb∗ − vx)(x)) ν(dz).

If σ > 0, then W (q) is twice continuously differentiable which implies that F
is continuously differentiable and thus by Lemma 4.2, A′(x)+F (x)W (q)′′(x) =
−W (q)′(x)F ′(x) ≥ 0 for x > b∗. For u ∈ [0, b∗], (v′b∗ − v′x)(u) = (F (b∗) −
F (x))W (q)′(u) ≥ 0 by definition of b∗ and, for u ∈ (b∗, x],

(v′b∗−v′x)(u) = 1−
[
A(u) + F (x)W (q)′(u)

]
≥ 1−

[
A(u) + F (u)W (q)′(u)

]
= 0,

by Lemma 4.2. This implies that (vb∗ − vx)(u) − (vb∗ − vx)(x) ≤ 0 for all
u ∈ [0, x] and that (vb∗ − vx)(x) ≥ 0, since (vb∗ − vx)(0+) = (F (b∗) −
F (x))W (q)(0+) ≥ 0 by definition of b∗. Note also that (vb∗ − vx)(u) = 0 for
u < 0. Putting all this together gives us (Γ− q)vb∗(x) ≤ 0 for x > b∗.

In order to show the last condition of Lemma 5.1, note that vb∗(0) =
S + F (b∗)W (q)(0+) and so it is enough if we show that F (0+) ≥ 0. How-
ever, this follows from the assumptions on the Lévy triplet and the values of
W (q)(0+) and W (q)′(0+) given in (2).

(ii). Since vrun(x) = x+S for x ≥ 0, the only non-trivial thing to show is that
(Γ − q)vrun(x) ≤ 0 for all x > 0. Since ν(0,∞) < ∞ and

∫∞
x z ν(dz) < ∞
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for all x > 0 by assumption, one can write

(Γ− q)vrun(x)

= c−
∫ x

0
zν(dz) +K

∫ ∞
x

(x− z)ν(dz)− xν(x,∞)− q(x+ S)

= c−
∫ ∞

0
zν(dz) + (1−K)

∫ ∞
x

(z − x)ν(dz)− q(x+ S)

= c−K
∫ ∞

0
zν(dz)− Sq + (1−K)

∫ ∞
0

z (ν(x+ dz)− ν(dz))− qx.

Because the tail of ν is log-convex, ν has in particular a decreasing density.
Together with the other assumptions on the Lévy triplet and the fact that
K ≤ 1, we get that (Γ− q)vrun(x) ≤ 0 for all x > 0.

(iii). Again the only non-trivial thing to show is that (Γ− q)vrun(x) ≤ 0 for
all x > 0. We have

(Γ− q)vrun(x) ={
γ −

∫ x
1 z ν(dz) + (K − 1)xν(x,∞)−K

∫∞
x z ν(dz)− q(x+ S), x ≥ 1,

γ +
∫ 1
x z ν(dz) + (K − 1)xν(x,∞)−K

∫∞
x z ν(dz)− q(x+ S), x < 1.

Since in this case
∫∞
x z ν(dz) =∞ for all x > 0, and since K > 0, it follows

that (Γ− q)vrun(x) = −∞ for all x > 0. �
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7. Appendix

Proof of Lemma 3.1. Using a standard computation involving the com-
pensation formula (see e.g. Section 8.4 in [22]), we obtain an expression for
the Gerber-Shiu function consisting of the first moment of the deficit at ruin:

Ex
[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]

=
∫ ∞

0

∫ ∞
y

(y − θ)ν(dθ)
∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < τ−0

)
dt,

where∫ ∞
0

e−qtPx
(
Xt ∈ dy, t < τ−0

)
dt =

{
e−Φ(q)yW (q)(x)−W (q)(x− y)

}
dy



DIVIDENDS MAXIMIZATION WITH A GERBER-SHIU FUNCTION 21

(see Corollary 8.8 in [22]). We deduce∣∣∣∣∫ ∞
1

∫ ∞
y

(y − θ) ν(dθ)
{

e−Φ(q)yW (q)(x)−W (q)(x− y)
}

dy
∣∣∣∣

≤
∫ ∞

1
θ ν(dθ)

∫ ∞
1

{
e−Φ(q)yW (q)(x)−W (q)(x− y)

}
dy <∞

and∣∣∣∣∫ 1

0

∫ ∞
y

(y − θ) ν(dθ)
{

e−Φ(q)yW (q)(x)−W (q)(x− y)
}

dy
∣∣∣∣

≤W (q)(x)
∫ 1

0

∫ ∞
y

θ ν(dθ) dy

= W (q)(x)
(∫ ∞

1
θ ν(dθ) +

∫ 1

0
θ2 ν(dθ)

)
<∞,

which proves (13). By a similar reasoning, for 0 ≤ x ≤ b, using that∫ ∞
0

e−qtPx
(
U bt ∈ dy, t < σb

)
dt =

W (q)(x)
W (q)′(b)

W (q)(b− dy)−W (q)(x− y) dy

(see Theorem 1 (ii) in [28]), we deduce (14). �

Proof of Lemma 4.1. We first show that

(31) lim
x→∞

Ex
[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]

= 0.

For this we need some facts about the resolvent measure of a spectrally
negative Lévy process. On the negative half line, this measure is given by∫ ∞

0
e−qtP(Xt ∈ −dx)dt = θ(q)(x) dx

with

(32) θ(q)(x) = Φ′(q)eΦ(q)x −W (q)(x), x ≥ 0,

(see e.g. Corollary 8.9 in [22]). We recall the following two identities derived
by Bingham (see Theorem 6b in [10]): for x, q, r ≥ 0,

(33) Ex
[
e
−qτ−0 +rX

τ−0 I{τ−0 <∞}

]
=
q − ψ(r)
Φ(q)− r

θ(q)(x) + (q − ψ(r))erx
∫ ∞
x

e−rzθ(q)(z) dz

and, for q > 0, r ≥ 0,

(34) θ̂(r) :=
∫ ∞

0
e−rxθ(q)(x) dx =

Φ′(q)
r − Φ(q)

− 1
ψ(r)− q

.

When r = Φ(q) in (33), the term q−ψ(r)
Φ(q)−r should be read as limr→Φ(q)

q−ψ(r)
Φ(q)−r =

ψ′(Φ(q)) = 1/Φ′(q). A similar thing is understood when r = Φ(q) in (34).
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Taking the right-hand derivative in r at zero on both sides of (33) leads to,
using the dominated convergence theorem, (13) and (34),

Ex
[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]

=
d
dr

[
q − ψ(r)
Φ(q)− r

]
r=0

θ(q)(x)− ψ′(0+)
∫ ∞
x

θ(q)(z) dz

+ q

(
x

∫ ∞
x

θ(q)(z) dz + θ̂′(0) +
∫ x

0
zθ(q)(z) dz

)
.

Note that |θ̂′(0)| < ∞ if and only if |ψ′(0+)| < ∞. By (33) and the domi-
nated convergence theorem,

lim
x→∞

θ(q)(x) = Φ′(q) lim
x→∞

Ex
[
e
−qτ−0 +Φ(q)X

τ−0 I{τ−0 <∞}

]
= 0

and, since θ(q)(x) ≥ 0, limx→∞
∫∞
x θ(q)(z) dz = 0. We now see that (31)

holds if

lim
x→∞

(
x

∫ ∞
x

θ(q)(z) dz +
∫ x

0
zθ(q)(z) dz

)
= −θ̂′(0).

In order to show the latter, note that by integration by parts∫ x

0
zθ(q)(z) dz = −x

∫ ∞
x

θ(q)(z) dz +
∫ x

0

∫ ∞
y

θ(q)(z) dz dy

and by the monotone convergence theorem, Fubini’s theorem and L’Hôpital’s
rule, ∫ ∞

0

∫ ∞
y

θ(q)(z) dz dy = lim
λ↓0

∫ ∞
0

e−λy
∫ ∞
y

θ(q)(z) dz dy

= lim
λ↓0

θ̂(0)− θ̂(λ)
λ

= −θ̂′(0).

Combining (33) with (32) using (34), we deduce

(35) Ex
[
e
−qτ−0 +rX

τ−0 I{τ−0 <∞}

]
= erx + (q − ψ(r))erx

∫ x

0
e−rzW (q)(z) dz − q − ψ(r)

Φ(q)− r
W (q)(x)

and by now taking the right-hand derivative with respect to r at zero, we
get an expression for the expected discounted deficit at ruin in terms of scale
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functions

Ex
[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]

= x− ψ′(0+)
∫ x

0
W (q)(z) dz + q

∫ x

0
(x− z)W (q)(z) dz

− d
dr

[
q − ψ(r)
Φ(q)− r

]
r=0

W (q)(x)

= x− ψ′(0+)
∫ x

0
W (q)(z) dz + q

∫ x

0
W

(q)(z) dz

− q − Φ(q)ψ′(0+)
Φ(q)2

W (q)(x),

(36)

where we have used integration by parts for the second equality. Setting
r = 0 in (35) and using the dominated convergence theorem, we get

(37) lim
x→∞

(
1 + q

∫ x

0
W (q)(z) dx− q

Φ(q)
W (q)(x)

)
= 0.

By (31) the right-hand side of (36) goes to zero when x goes to infinity and
together with (37) and the continuous differentiability of W (q), we get

(38)

lim inf
x→∞

{
K

(
1− ψ′(0+)W (q)(x) + qW

(q)(x)− q − Φ(q)ψ′(0+)
Φ(q)2

W (q)′(x)
)

+ S

(
qW (q)(x)− q

Φ(q)
W (q)′(x)

)}
= 0,

for any K,S ∈ R. Note that we used here that, for a continuously dif-
ferentiable function f , if we have limx→∞ f(x) = a with a ∈ R, then
lim infx→∞ f ′(x) = 0.

We are now ready to prove the lemma. Using the well-known fact that
limx→∞

W (q)(x)

W (q)′(x)
= 1/Φ(q) (see e.g. Section 3.3 in [7]) and L’Hôpital’s rule,

we deduce

lim
y→∞

F (y) = −Kq − Φ(q)ψ′(0+)
Φ(q)2

− S q

Φ(q)
.

Since we can write

F (x) = lim
y→∞

F (y) +
1−

[
A(x) + limy→∞ F (y)W (q)′(x)

]
W (q)′(x)

and lim infx→∞
[
A(x) + limy→∞ F (y)W (q)′(x)

]
= 0 by (38), it follows that

for all R > 0 there exists x ≥ R such that F (x) > limy→∞ F (y). Hence F is
not ultimately increasing. �
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Proof of Lemma 5.2. The first part is proved in Lemma 4 of [7] (see also
[9]) when X has paths of bounded variation or σ > 0 and in Lemma 4.2
of [23] when X has paths of unbounded variation and σ = 0. In a similar
way, the second part, after a standard application of Itô’s formula (note that
x 7→ S +

∫ x
0 A(y) dy is twice continuously differentiable on (0,∞)), follows

from (36) and the martingale property of the process (Mt)t≥0 given by

Mt = e−q(t∧τ
−
0 )EX

t∧τ−0

[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]
.

In order to show the latter, note that by the strong Markov property, we
have that

Ex
[

e−qτ
−
0 Xτ−0

I{τ−0 <∞}
∣∣∣Ft]

= Ex
[

e−qτ
−
0 Xτ−0

I{τ−0 >t}I{τ−0 <∞}
∣∣∣Ft]+ Ex

[
e−qτ

−
0 Xτ−0

I{τ−0 ≤t}
∣∣∣Ft]

= I{τ−0 >t}e
−qtEXt

[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]

+ I{τ−0 ≤t}e
−qτ−0 Xτ−0

= I{τ−0 >t}Mt + I{τ−0 ≤t}e
−q(t∧τ−0 )EX

τ−0

[
e−qτ

−
0 Xτ−0

I{τ−0 <∞}
]

= Mt.

Now Ex|Mt| <∞ follows from the above, (36) and (13) and, in combination
with the tower property of conditional expectation, the martingale property
of M is shown. �
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