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Abstract

We consider an optimal dividends problem with transaction costs where
the reserves are modeled by a spectrally negative Lévy process. We make
the connection with the classical de Finetti problem and show in particu-
lar that when the Lévy measure has a log-convex density, then an optimal
strategy is given by paying out a dividend in such a way that the reserves
are reduced to a certain level c1 whenever they are above another level
c2. Further we describe a method to numerically find the optimal values
of c1 and c2.
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1 Introduction

In this paper we consider an offshoot of the classical de Finetti’s optimal divi-
dends problem in continuous time for which a transaction cost is incurred each
time a dividend payment is made. Because of this fixed cost, it is no longer
feasible to pay out dividends at a certain rate and therefore only lump sum
dividend payments are possible.

Within this problem we assume that the underlying dynamics of the risk
process is described by a spectrally negative Lévy process which is now widely
accepted and used as a replacement for the classical Cramér-Lundberg process
(cf. [1,4,8–10,13,16,18,20,21,24]). Recall that a Cramér-Lundberg risk process
{Xt : t ≥ 0} corresponds to

Xt = x+ ct−
Nt∑

i=1

Ci, (1)
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where x > 0 denotes the initial surplus, the claims C1, C2, . . . are i.i.d. positive
random variables with expected value µ, c > 0 represents the premium rate
and N = {Nt : t ≥ 0} is an independent Poisson process with arrival rate λ.
Traditionally it is assumed in the Cramér-Lundberg model that the net profit
condition c > λµ holds, or equivalently that X drifts to infinity. In this paper
X will be a general spectrally negative Lévy process and the condition that X
drifts to infinity will not be assumed.

We will now state the control problem considered in this paper. As men-
tioned before, X = {Xt : t ≥ 0} is a spectrally negative Lévy process which is
defined on a filtered probability space (Ω,F ,F = {Ft : t ≥ 0},P) satisfying the
usual conditions. Within the definition of a spectrally negative Lévy process
it is implicitly assumed that X does not have monotone paths. We denote by
{Px, x ∈ R} the family of probability measures corresponding to a translation
of X such that X0 = x, where we write P = P0. Further Ex denotes the ex-
pectation with respect to Px with E being used in the obvious way. The Lévy
triplet of X is given by (γ, σ, ν), where γ ∈ R, σ ≥ 0 and ν is a measure on
(0,∞) satisfying ∫

(0,∞)

(
1 ∧ x2

)
ν(dx) <∞.

Note that even though X only has negative jumps, for convenience we choose
the Lévy measure to have only mass on the positive instead of the negative half
line. The Laplace exponent of X is given by

ψ(θ) = log
(
E

(
eθX1

))
= γθ +

1
2
σ2θ2 −

∫

(0,∞)

(
1− e−θx − θx1{0<x<1}

)
ν(dx)

and is well defined for θ ≥ 0. Note that the Cramér-Lundberg process corre-
sponds to the case that σ = 0, ν(dx) = λF (dx) where F is the law of C1 and
γ = c− ∫

(0,1)
xν(dx). The process X will represent the risk process/reserves of

the company before dividends are deducted.
We denote a dividend or control strategy by π, where π = {Lπ

t : t ≥ 0} is a
non-decreasing, left-continuous F-adapted process which starts at zero. Further
we assume that the process Lπ is a pure jump process, i.e.

Lπ
t =

∑

0≤s<t

∆Lπ
s for all t ≥ 0. (2)

Here we mean by ∆Lπ
s = Lπ

s+ − Lπ
s the jump of the process Lπ at time s.

The random variable Lπ
t will represent the cumulative dividends the com-

pany has paid out until time t under the control π. We define the controlled (net)
risk process Uπ = {Uπ

t : t ≥ 0} by Uπ
t = Xt−Lπ

t . Let σπ = inf{t > 0 : Uπ
t < 0}

be the ruin time and define the value function of a dividend strategy π by

vπ(x) = Ex




∫ σπ

0

e−qtd


Lπ

t −
∑

0≤s<t

β1{∆Lπ
s >0}





 ,
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where q > 0 is the discount rate and β > 0 is the transaction cost incurred
for each dividend payment. Note that because of (2) we can write vπ(x) =
Ex

[∑
0≤t<σπ e−qt(∆Lπ

t − β1{∆Lπ
t >0})

]
. By definition vπ(x) = 0 for x < 0. A

strategy π is called admissible if ruin does not occur due to a lump sum dividend
payment, i.e. ∆Lπ

t ≤ Uπ
t for t < σπ. Let Π be the set of all admissible dividend

policies. The control problem consists of finding the optimal value function v∗
given by

v∗(x) = sup
π∈Π

vπ(x)

and an optimal strategy π∗ ∈ Π such that

vπ∗(x) = v∗(x) for all x ≥ 0.

Since control strategies of the form (2) are known as impulse controls, we refer
to this problem as the impulse control problem.

An important type of strategy for the impulse control problem is the one
we call in this paper the (c1; c2) policy and which is similar to the well known
(s, S) policy appearing in inventory control models, see e.g. [3,25]. The (c1; c2)
policy is the strategy where each time the reserves are above a certain level c2,
a dividend payment is made which brings the reserves down to another level c1
and where no dividends are paid out when the reserves are below c2. In case
X is a Brownian motion plus drift, Jeanblanc and Shiryaev [14] showed that an
optimal strategy for the impulse control problem is formed by a (c1; c2) policy.
Paulsen [22] considered the case when X is modeled by a diffusion process and
showed that under certain conditions a (c1; c2) policy is optimal. Note that
in Paulsen [22] this type of strategy is referred to as a lump sum dividend
barrier strategy. Further, Alvarez and Rakkolainen [2] study the case where the
driving process is a spectrally negative Lévy diffusion with a jump component
of geometric form. In this paper we will investigate when an optimal strategy
for our impulse control problem is formed by a (c1; c2) policy.

When the assumption (2) is dropped and the transaction cost β is taken to
be equal to zero, then the impulse control problem transforms into the classical
de Finetti optimal dividends problem. The latter optimal dividends problem
will be referred to as the de Finetti problem in the remainder of the paper. This
particular problem was introduced by de Finetti [7] in a discrete time setting for
the case that the risk process evolves as a simple random walk. Thereafter the
de Finetti problem has been studied in a continuous time setting for the case
that X is a Cramér-Lundberg risk process [5, 11] and for the case that the risk
process is a general spectrally negative Lévy process [4,18,20]. For this problem
an important strategy is the so called barrier strategy. The barrier strategy at
level a is the strategy where initially (in case the starting value of the reserves
are above a) a lump sum dividend payment is made to bring the reserves back
to level a and thereafter each time the reserves reach the level a, non-lump sum
dividend payments are made in such a way that the reserves do not exceed the
level a, but where no dividends are paid out when the reserves are strictly below
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a. Mathematically this corresponds to reflecting the risk process X at a. The
barrier strategy at level a may be seen (at least intuitively) as a limit of (c1; c2)
policies where c1 and c2 converge to the barrier a.

Gerber [11] proved that an optimal strategy for the de Finetti problem is
formed by a barrier strategy in the case where X is a Cramér-Lundberg risk
process with exponentially distributed claims. Building on the work of Avram
et al. [4], Loeffen [20] showed that optimality of the barrier strategy for the
de Finetti problem depends on the shape of the so-called scale function of a
spectrally negative Lévy process. To be more specific, the q-scale function of X,
W (q) : R→ [0,∞) where q ≥ 0, is the unique function such that W (q)(x) = 0 for
x < 0 and on [0,∞) is a strictly increasing and continuous function characterized
by its Laplace transform which is given by

∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ)− q
for θ > Φ(q), (3)

where Φ(q) = sup{θ ≥ 0 : ψ(θ) = q} is the right-inverse of ψ. Theorem
2 of Loeffen [20] then says that if W (q) is sufficiently smooth and if W (q)′ is
increasing on (a∗,∞) where a∗ is the largest point where W (q)′ attains its global
minimum, then the barrier strategy at a∗ is optimal for the de Finetti problem.
Here W (q) being sufficiently smooth means that W (q) is once/twice continuously
differentiable when X is of bounded/unbounded variation. It was then shown in
[20] that when X has a Lévy measure which has a completely monotone density,
these conditions on the scale function are satisfied and in particular that W (q)′ is
strictly convex on (0,∞). (Note that it was shown in [21] that W (q)′ is actually
strictly log-convex.) Shortly thereafter, Kyprianou et al. [18] proved that W (q)′

is strictly convex on (a∗,∞) under the weaker condition that the Lévy measure
has a density which is log-convex and then used Theorem 2 from [20] mentioned
above, to conclude that the barrier strategy at a∗ is optimal (though they needed
to relax the sufficiently smoothness assumption). It is important to note that
without a condition on the Lévy measure the barrier strategy is not optimal in
general. Indeed Azcue and Muler [5] have given an example for which no barrier
strategy is optimal.

In this paper we will show that the results for the de Finetti problem men-
tioned in the previous paragraph have their counterparts for the impulse control
problem, whereby the role of the barrier strategy is now played by the (c1; c2)
policy. In particular we will give a theorem similar to Theorem 2 in [20] and
then use this theorem to show that a certain (c1; c2) policy is optimal if the
Lévy measure has a log-convex density. Moreover we give an example for which
no (c1; c2) policy is optimal.

The outline of this paper is as follows. In the next section we review some
properties concerning scale functions and in Section 3 we give sufficient condi-
tions under which the (c1; c2) policy is optimal. We treat the case when the
Lévy measure has a log-convex density in Section 4 and show that the opti-
mal strategy is formed by a unique (c1; c2) policy. Further we show how to
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numerically find the optimal values of c1 and c2. In the last section we treat
two explicit examples including one for which we show that no (c1; c2) policy is
optimal.

2 Scale functions

The scale function, defined via its Laplace transform given by (3), appears in
almost all fluctuation identities for spectrally negative Lévy processes. As an
example we mention the two sided exit above problem for which

Ex

(
e−qτ+

a 1(τ+
a <τ−0 )

)
=
W (q)(x)
W (q)(a)

, (4)

where x ≤ a, τ−0 = inf{t > 0 : Xt < 0} and τ+
a = inf{t > 0 : Xt > a}. For

background on scale functions we refer to Chapter 8 of Kyprianou [15].
We will now recall some properties of scale functions which we will need later

on. The initial value of the scale function W (q)(0) is equal to 1/c when X is of
bounded variation and is equal to 0 when X is of unbounded variation. Here
c = γ+

∫ 1

0
xν(dx) stands for the drift of X when it is of bounded variation. The

initial value of the derivative of the scale function is given by (see e.g. [19])

W (q)′(0) := lim
x↓0

W (q)′(x) =





2/σ2 when σ > 0
(ν(0,∞) + q)/c2 when σ = 0 and ν(0,∞) <∞
∞ otherwise.

The scale function is log-concave for all q ≥ 0 (see e.g. [21]) and thus W (q)′(x)
W (q)(x)

is a decreasing function (in the weak sense). For q ≥ 0 there is the following
relation between scale functions

W (q)(x) = eΦ(q)xWΦ(q)(x), (5)

where WΦ(q) is the (0-)scale function of X under the measure PΦ(q) defined by

dPΦ(q)

dP

∣∣∣∣
Ft

= eΦ(q)Xt−qt.

When the Lévy measure has a density which is log-convex, Kyprianou et
al. [18] proved that W (q)′ is strictly increasing and strictly convex on (a∗,∞),
where a∗ is defined (as in Section 1) by

a∗ = sup
{
a ≥ 0 : W (q)′(a) ≤W (q)′(x) for all x ≥ 0

}

which is necessarily finite since limx→∞W (q)′(x) = ∞. Note also that by the
log-concavity of W (q), it follows that W (q)′(a∗) > 0. In the next proposition we
show that slightly more can be said in this case.
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Proposition 1. If the Lévy measure has a log-convex density, then there exists
0 ≤ a′ ≤ a∗ such that W (q)′ is strictly decreasing on (0, a′), constant on (a′, a∗)
and strictly increasing and strictly convex on (a∗,∞).

Proof. Under the condition that the Lévy measure has a log-convex density,
Kyprianou, Rivero & Song [18, Proof of Theorem 2.6] proved that uq(x) =
eΦ(q)xW ′

Φ(q)(x) is convex on (0,∞). Therefore the function k : (0,∞) → R
defined by k(y) = Φ(q)W (q)′(y)+u′+q (y) is well defined and u′+q is an increasing
function. Here u′+q stands for the right-derivative of uq. Using (5) we can write
for arbitrary a > 0

k(y) =eΦ(q)y
{

Φ2(q)WΦ(q)(y) + 2Φ(q)W ′
Φ(q)(y) +W ′′+

Φ(q)(y)
}

=eΦ(q)y

{
u′+q (y)e−Φ(q)y +

∫ y

a

u′+q (z)Φ(q)e−Φ(q)zdz

+Φ2(q)WΦ(q)(a) + Φ(q)W ′
Φ(q)(a)

}
.

Suppose now that x, y > 0 with x ≤ y and let

M =

∫ y

x
u′+q (z)Φ(q)e−Φ(q)zdz
e−Φ(q)x − e−Φ(q)y

.

Since u′+q is an increasing function, it follows that M ∈ [u′+q (x), u′+q (y)] and
hence we deduce

k(y)e−Φ(q)y − k(x)e−Φ(q)x

= u′+q (y)e−Φ(q)y − u′+q (x)e−Φ(q)x +M(e−Φ(q)x − e−Φ(q)y)

=
(
u′+q (y)−M

)
e−Φ(q)y +

(
M − u′+q (x)

)
e−Φ(q)x ≥ 0.

Hence y 7→ k(y)e−Φ(q)y is an increasing function and it follows that there exists
0 ≤ a1 ≤ a2 ≤ ∞ such that k is strictly negative on (0, a1), zero on (a1, a2)
and strictly positive and strictly increasing on (a2,∞). Since we can use (5) to
write for arbitrary a > 0

W (q)′(x) = Φ(q)W (q)(x) + uq(x) = W (q)′(a) +
∫ x

a

k(y)dy for x > 0,

the statement of the proposition follows with a′ = a1 and a∗ = a2. Note also
that the fact that limx→∞W (q)′(x) = ∞ forces a2 to be finite. ¥

Despite the fact that the scale function is in general only implicitly known
through its Laplace transform, there are plenty examples of spectrally negative
Lévy processes for which there exists closed-form expressions for their scale
functions, although most of these examples only deal with the q = 0 scale
function. In case no explicit formula for the scale function exists, one can use
numerical methods as described in [26] to invert the Laplace transform of the
scale function. We refer to the papers [12, 17, 18] for an updated account on
explicit examples of scale functions and their properties.
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3 Conditions for optimality of a (c1; c2) policy

In this section the main result will be a theorem which gives sufficient condi-
tions on the scale function W (q) such that a certain (c1; c2) policy is optimal for
the impulse control problem; this result is similar to Theorem 2 in [20] which
concerns optimality of the barrier strategy at a∗ for the de Finetti problem.
The way we show this result is similar to the approach taken in [4], [20] and
[21], namely we first calculate the value function of a parameterized class of
strategies (in our case the class of (c1; c2) policies), then we choose the (candi-
date) optimal strategy from this class by optimizing over the parameters and
finally we put this particular strategy through a verification lemma. The main
additional complexity compared to the de Finetti problem is to characterize the
optimal values of the parameters c1 and c2 which is a 2-dimensional optimization
problem, whereas finding the optimal barrier strategy is just a 1-dimensional
one.

We first derive the value function corresponding to a (c1; c2) policy. A de-
scription of a (c1; c2) policy was given in Section 1. We now define this strategy
mathematically. For c2 > c1 ≥ 0, let {T c1,c2

i , i = 1, 2, . . .} be the set of stopping
times defined by

T c1,c2
i = inf{t > 0 : Xt > X0 ∨ c2 + (c2 − c1)(i− 1)}, i = 1, 2, . . . .

Then πc1,c2 = {Lc1,c2
t : t ≥ 0} is defined by

Lc1,c2
t = 1{T c1,c2

1 <t} (X0 ∨ c2 − c1) +
∞∑

i=2

1{T c1,c2
i <t} (c2 − c1) , t ≥ 0.

Note that with U c2,c2
t = Xt − Lc1,c2

t the above defined stopping times can then
be identified as T c1,c2

1 = inf{t > 0 : U c1,c2
t > c2} and T c1,c2

i+1 = inf{t > T c1,c2
i :

U c1,c2
t > c2} for i ≥ 1. Let vc1,c2 denote the value function of the strategy πc1,c2 .

Proposition 2. The value function of the strategy πc1,c2 is given by

vc1,c2(x) =

{
c2−c1−β

W (q)(c2)−W (q)(c1)
W (q)(x) if x ≤ c2,

x− c1 − β + c2−c1−β
W (q)(c2)−W (q)(c1)

W (q)(c1) if x > c2.

Proof. Since U c1,c2 is a Markov process, the proposition only needs to be proved
for 0 ≤ x ≤ c2. Let x ∈ [0, c2]. Since no dividends are paid out until X reaches
the level c2, we get by applying the strong Markov property at τ+

c2
and (4)

vc1,c2(x) = Ex

(
e−qτ+

c21{τ+
c2<τ−0 }

)
vc1,c2(c2) =

W (q)(x)
W (q)(c2)

vc1,c2(c2). (6)

When X0 = c2, a dividend payment of size c2 − c1 is made immediately plus a
transaction cost of size β is incurred and so by using the above equation we get

vc1,c2(c2) = c2 − c1 − β + vc1,c2(c1) = c2 − c1 − β +
W (q)(c1)
W (q)(c2)

vc1,c2(c2).
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Now solving for vc1,c2(c2) and plugging the result in (6) will give us the desired
expression for vc1,c2(x). ¥

We now want to find the values of (c1; c2) which is likely to give us the best
(c1; c2) policy. A good guess would be the values of (c1; c2) that minimizes

g(c1, c2) =
W (q)(c2)−W (q)(c1)

c2 − c1 − β
,

where the domain of g is given by dom(g) = {(c1; c2) : c1 ≥ 0, c2 > c1 + β}. Let
C∗ be the set of minimizers of g, i.e.

C∗ = {(c∗1; c∗2) ∈ dom(g) : g(c∗1, c
∗
2) = inf

(c1;c2)∈dom(g)
g(c1, c2)}.

Proposition 3. Assume W (q) ∈ C1(0,∞). Then the set C∗ is non-empty and
for each (c∗1; c

∗
2) ∈ C∗ we have

W (q)′(c∗2) =
W (q)(c∗2)−W (q)(c∗1)

c∗2 − c∗1 − β
(7)

and further one of the following holds: (i) W (q)′(c∗1) = W (q)′(c∗2) or (ii) c∗1 = 0.

Proof. First, by the mean value theorem

g(c1, c2) ≥ min
x∈[c1,c2]

W (q)′(x)
c2 − c1

c2 − c1 − β
> min

x∈[c1,c2]
W (q)′(x) (8)

and since limx→∞W (q)′(x) = ∞, this implies that an infimum of g is not reached
when c1 →∞. Hence there exists C1 > 0 such that

inf
dom(g)

g = inf
dom(g),c1≤C1

g(c1, c2).

Second,

lim
c2→∞

inf
c1∈[0,C1]

g(c1, c2) = lim
c2→∞

inf
c1∈[0,C1]

(
W (q)(c2)
c2 − c1 − β

− W (q)(c1)
c2 − c1 − β

)

≥ lim
c2→∞

(
W (q)(c2)
c2 − β

− W (q)(C1)
c2 − C1 − β

)
= ∞

and hence an infimum of g is also not reached when c2 → ∞. Finally, by the
mean value theorem

g(c1, c2) ≥ W (q)′(a∗)(c2 − c1)
c2 − c1 − β

≥W (q)′(a∗)
β

c2 − c1 − β

and thus since W (q)′(a∗) > 0, an infimum of g is not reached when (c1; c2)
converges to the line c2 = c1 + β.
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By the previous conclusions and the continuity of g it follows that C∗ is
non-empty and that for each (c∗1; c

∗
2) ∈ C∗ either c∗1 = 0 or (c∗1; c

∗
2) is an interior

point of dom(g). In the latter case it follows since g is partial differentiable in
c1 and c2 (which follows from the hypothesis W (q) ∈ C1(0,∞)) that

∂g(c1, c2)
∂c1

(c∗1, c
∗
2) = 0 and

∂g(c1, c2)
∂c2

(c∗1, c
∗
2) = 0,

which in turn implies (7) and (i). In the case that c∗1 = 0, we have that c∗2
minimizes the function g0 : (β,∞) → (0,∞) defined by g0(c2) = g(0, c2) =
W (q)(c2)−W (q)(0)

c2−β and hence g′0(c
∗
2) = 0 which implies (7). ¥

Corollary 4. Assume W (q) ∈ C1(0,∞). Then for each (c∗1; c
∗
2) in C∗

vc∗1 ,c∗2 (x) =





W (q)(x)
W (q)′(c∗2)

for x ≤ c∗2,

x− c∗2 + W (q)(c∗2)

W (q)′(c∗2)
for x > c∗2

and so vc∗1 ,c∗2 (x) = vc∗2 (x), where vc∗2 is the value of the barrier strategy at level
c∗2 in the de Finetti problem. Moreover, W (q)′(c∗2) > W (q)′(a∗).

Proof. The corollary follows directly from the two previous propositions and
(8). Note that the formula for the value of a barrier strategy was given by
Avram et al. [4]. ¥

Corollary (4) shows that the value function of any (c1; c2) policy with (c1; c2)
belonging to C∗ is equal to the value function of a barrier strategy; in particular
this means that the derivative of the value function at c∗2 is equal to one (the
marginal value of paying dividend) and thus vc∗1 ,c∗2 is continuously differentiable.
This will later allow us to use results for barrier strategies in order to solve the
impulse control problem.

A necessary condition for a certain strategy π to be optimal is that the
extra gain obtained by starting with a higher initial capital x compared to
starting with a lower amount of initial capital y, should not be less than the
gain generated by paying out immediately a dividend which brings you from
level x down to level y. In the next lemma we show that the strategy πc∗1 ,c∗2
with (c∗1; c

∗
2) ∈ C∗ satisfies this necessary condition.

Lemma 5. Assume W (q) ∈ C1(0,∞) and let (c∗1; c
∗
2) ∈ C∗. Then for x ≥ y ≥ 0,

vc∗1 ,c∗2 (x)− vc∗1 ,c∗2 (y) ≥ x− y − β. (9)

Proof. Note that since vc∗1 ,c∗2 is an increasing function, we can assume without
loss of generality that x − y > β. First suppose x ≥ y ≥ c∗2, then vc∗1 ,c∗2 (x) −
vc∗1 ,c∗2 (y) = x− y ≥ x− y − β. Second, if c∗2 ≥ x ≥ y, then

vc∗1 ,c∗2 (x)− vc∗1 ,c∗2 (y) =
W (q)(x)−W (q)(y)

W (q)′(c∗2)
≥ x− y − β, (10)
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where the inequality follows since (c∗1; c
∗
2) ∈ C∗ and therefore with the help of

(7)

W (q)′(c∗2) =
W (q)(c∗2)−W (q)(c∗1)

c∗2 − c∗1 − β
≤ W (q)(x)−W (q)(y)

x− y − β
.

Finally, suppose x ≥ c∗2 ≥ y, then using Corollary 4

vc∗1 ,c∗2 (x)− vc∗1 ,c∗2 (y) =x− c∗2 +
W (q)(c∗2)−W (q)(y)

W (q)′(c∗2)
≥x− c∗2 + c∗2 − y − β,

where the inequality follows from (10). ¥

Since in the verification lemma below the Meyer-Itô formula is applied we
require some smoothness on the value function of a (c1; c2) policy which in
turn requires some smoothness on the scale function. We will call the scale
function W (q) sufficiently smooth if W (q) ∈ C1(0,∞) when X is of bounded
variation. A necessary and sufficient condition for this is that the Lévy measure
has no atoms (see [18, Theorem 2.9]). When X is of unbounded variation
we call the scale function sufficiently smooth if W (q) ∈ C1(0,∞) and W (q)′

is absolutely continuous on (0,∞) with a density which is bounded on sets of
the form [1/n, n], n ≥ 1. In [18, Theorem 2.6] it is proved that these latter
conditions are fulfilled if the Gaussian coefficient σ is strictly positive (the scale
function is then even twice continuously differentiable) or if the Lévy measure
has a log-convex density. Note that the term sufficiently smooth is used here in
a slightly weaker sense than in [20].

We let Γ be the operator defined by

Γf(x) = γf ′(x) +
σ2

2
f ′′(x) +

∫ ∞

0+

[f(x− y)− f(x) + f ′(x)y1{0<y<1}]ν(dy).

Here x ∈ R and f is a function on R such that Γf(x) is well defined.

Lemma 6 (Verification lemma). Suppose the scale function W (q) is sufficiently
smooth, (c∗1, c

∗
2) ∈ C∗ and

(Γ− q)vc∗1 ,c∗2 (x) ≤ 0 (11)

for almost every x > 0. Then vc∗1 ,c∗2 = v∗(x) for all x ≥ 0 and hence πc∗1 ,c∗2 is
an optimal strategy for the impulse control problem.

Proof. The proof is similar to the proofs of [18, Theorem 3.1] and [21, Lemma
5] and for the sake of brevity we only list the main differences.

1. We don’t have that v′c∗1 ,c∗2
(x) ≥ 1 for all x > 0 which is used in the proofs

appearing in the two above mentioned references. Instead the inequality
(9) should be employed.
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2. Since vc∗1 ,c∗2 is not twice continuously differentiable, we cannot use anymore
the standard Itô’s formula when X is of unbounded variation as in [21],
but we have to appeal to the (extand second derivative) Meyer-Itô formula
(cf. [23, Theorem IV.71]) as has been done in [18].

3. In [18,21] inequality (11) has to hold for all x > 0, whereas here we relaxed
this in the sense that (11) needs to hold for almost every x > 0. When
the Gaussian coefficient σ equals zero, these two conditions are equivalent
thanks to the continuity of (Γ− q)vc∗1 ,c∗2 (cf. [18, Lemma 4.1]). However,
when σ > 0, the left-derivative of v′c∗1 ,c∗2

at c∗2 does not necessarily equal
zero and therefore v′′c∗1 ,c∗2

(c∗2) and thus (Γ−q)vc∗1 ,c∗2 (c
∗
2) are not well defined.

We claim that when σ > 0 the result still holds under the assumption that
(11) only holds for almost every x > 0.

Indeed, on inspection of [21, Lemma 5], we see that it is enough to show
that for any t > 0

∫ t

0

e−qs(Γ− q)vc∗1 ,c∗2 (Ũ
c∗1 ,c∗2
s )ds ≤ 0 (12)

almost surely, where Ũ c∗1 ,c∗2 is the right-continuous modification of U c∗1 ,c∗2 .
Now let A = {x ∈ (0,∞) : (Γ − q)vc∗1 ,c∗2 (x) > 0} and B = {s ∈ [0, t] :

Ũ
c∗1 ,c∗2
s ∈ A}. Since Ũ c∗1 ,c∗2 is a semi-martingale we can use the occupa-

tion formula for the semi-martingale local time (see e.g. [23, Corollary 1,
p.219]), to deduce a.s.

∫ t

0

1{s∈B}σ2ds =
∫ t

0

1{s∈B}d[Ũ c∗1 ,c∗2 , Ũ c∗1 ,c∗2 ]cs =
∫ ∞

−∞
La

t 1{a∈A}da

with La being the semi-martingale local time at a of Ũ c∗1 ,c∗2 . Since by
assumption σ > 0 and Leb(A) = 0 (Leb(·) being the Lebesgue measure),
it follows that Leb(B) = 0 and hence (12) holds.

¥

We now present the main result of this section.

Theorem 7. Suppose that W (q) is sufficiently smooth and that there exists
(c∗1; c

∗
2) ∈ C∗ such that

W (q)′(a) ≤W (q)′(b) for all c∗2 ≤ a ≤ b. (13)

Then the strategy πc∗1 ,c∗2 is an optimal strategy for the impulse control problem.

Proof. From the verification lemma we see that it is enough to show that
(11) holds for almost every x > 0. First recall that by Corollary 4 we have
vc∗1 ,c∗2 = vc∗2 . Hence we can use e.g. [18, Lemma 4.2] to conclude that (11)
holds for x ∈ (0, c∗2). For x > c∗2 the property that (Γ− q)vc∗2 (x) ≤ 0 follows by
mimicking the proof of Theorem 2 in Loeffen [20]. Note that it is here that one
uses condition (13). ¥
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4 Optimal strategy when density is log-convex

Throughout this section it is assumed that the Lévy measure has a log-convex
density. Let a′ be as in Proposition 1. We know then that W (q)′ is strictly
decreasing on (0, a′), constant on (a′, a∗) and strictly increasing on (a∗,∞).
Moreover the scale function is sufficiently smooth and W (q)′′+(x) and W (q)′′−(x)
exist for all x > 0. Here W (q)′′+ and W (q)′′− stand for respectively the right-
and left-derivative of W (q)′.

It is then easy to see from Proposition 3 and (8) that for each (c∗1, c
∗
2) ∈ C∗

we have c∗1 ≤ a′ and c∗2 > a∗ and hence by Theorem 7 the strategy πc∗1 ,c∗2
is optimal. Indeed, when c∗1 > 0 then W (q)′(c∗1) = W (q)′(c∗2) and thus since
W (q)′(c∗2) > W (q)′(a∗) we must have c∗1 < a′ and c∗2 > a∗. When c∗1 = 0, then
by (7) and (8) it follows that c∗2 cannot be smaller or equal to a∗.

Further it is straightforward to show that C∗ consists of only one element
and hence there is a unique (c1, c2) policy which is optimal for the control
problem. Indeed, suppose that (c1, c2) and (c′1, c

′
2) are both in C∗. By (7) we

then have W (q)′(c2) = W (q)′(c′2) and since c2, c′2 > a∗ and W (q)′ is increasing
on (a∗,∞), this implies that c2 = c′2. Similar arguments show that c1 and
c′1 can only be different if one of them is zero and the other strictly positive.
Suppose without loss of generality that c′1 = 0 and c1 > 0. Then by Proposition
3, W (q)′(c1) = W (q)′(c2) = (W (q)(c2) −W (q)(0))/(c2 − β) and hence by using
Proposition 3 again, the mean value theorem and W (q)′ being strictly decreasing
on (0, c1), we get the following contradiction

W (q)′(c1) =

{
W (q)′(c1)(c2 − β) +W (q)(0)

}−W (q)(c1)
c2 − c1 − β

=
W (q)′(c1)(c2 − β)−W (q)′(ξ)c1

c2 − c1 − β

<W (q)′(c1).

Here ξ ∈ (0, c1) is the number such that W (q)′(ξ)c1 = W (q)(c1) −W (q)(0). It
follows that c1 has to be equal to c′1.

We now denote by (c∗1, c
∗
2) the unique element of C∗ and give some conditions

which specify whether c∗1 = 0 or c∗1 > 0. We first introduce some new functions
and parameters. These will later also play a role in finding numerically the
optimal parameters c∗1 and c∗2. The idea hereby is that due to Proposition 3
we can solve this 2-dimensional minimization problem by solving two auxiliary
1-dimensional minimization problems.

Let ς2 : (0, a′) → (a∗,∞) be the function implicitly defined by W (q)′(x) =
W (q)′(ς2(x)). Then ς2 is a strictly decreasing function. This together with the
fact that W (q)′ is left- and right-differentiable and strictly increasing on (a∗,∞)
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implies that

lim
x↓a

ς2(x)− ς2(a)
x− a

= lim
x↓a

ς2(x)− ς2(a)
W (q)′(ς2(x))−W (q)′(ς2(a))

W (q)′(x)−W (q)′(a)
x− a

= lim
y↑ς2(a)

y − ς2(a)
W (q)′(y)−W (q)′(ς2(a))

lim
x↓a

W (q)′(x)−W (q)′(a)
x− a

=
W (q)′′+(a)

W (q)′′−(ς2(a))

for a ∈ (0, a′) and thus ς2 is right-differentiable. (A similar calculation shows
that ς2 is left-differentiable.) Note that from the proof of Proposition 1 it follows
thatW (q)′′+(x) < 0 for all x < a∗ and similarly we can deduce thatW (q)′′−(x) >
0 for all x > a∗. Hence ς ′+2 (x) < 0 for all x ∈ (0, a′).

Let
c1max = inf{c1 ∈ (0, a′) : ς2(c1)− c1 ≤ β},

where we put c1max = 0 when limx↓0 ς2(x) ≤ β and then define the function
g1 : (0, c1max) → (0,∞) by

g1(c1) = g(c1, ς2(c1)) =
W (q)(ς2(c1))−W (q)(c1)

ς2(c1)− c1 − β
.

Further define the function g0 : (β,∞) → (0,∞) by

g0(c2) = g(0, c2) =
W (q)(c2)−W (q)(0)

c2 − β
.

From the construction of the functions g1 and g0 and the existence of a unique
minimizer for g, it is easy to see that if c∗1 > 0, then c∗1 is the unique minimizer
of g1 and that if c∗1 = 0, then c∗2 is the unique minimizer of g0. For g1 and g0
we have the following differential equations

g′+1 (c1) =
ς ′+2 (c1)− 1

ς2(c1)− c1 − β

(
W (q)′(c1)− g1(c1)

)
,

g′0(c2) =
1

c2 − β

(
W (q)′(c2)− g0(c2)

)

and hence we get since ς ′+2 (c1) < 0,

g′+1 (c1) < 0(> 0,= 0) iff g1(c1) < W (q)′(c1)(> W (q)′(c1),= W (q)′(c1)),

g′0(c2) < 0(> 0,= 0) iff g0(c2) > W (q)′(c2)(< W (q)′(c2),= W (q)′(c2)).
(14)

We now show that g0 has a unique minimizer. Note that limx↓β g0(x) =

∞ > W (q)′(β) and that further for x large enough, g0(x) ≤ W (q)(x)
(1−ε)x , for any ε ∈

(0, 1) and by (5) W (q)′(x) ≥ Φ(q)W (q)(x), which implies that g0(x) < W (q)′(x)
for x large enough. This combined with (14), the behaviour of W (q)′ and (8)
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implies that that there exists a unique point ĉ2 ∈ (β ∨ a∗,∞) such that g0 is
strictly decreasing on (β, ĉ2) and strictly increasing on (ĉ2,∞). Further, we
have g0(ĉ2) = W (q)′(ĉ2). Hence if c∗1 = 0, then c∗2 = ĉ2.

Note that when W (q)′(0) < ∞ and a′ > 0, then ς2(0) := limx↓0 ς2(x) < ∞
and therefore the following parameter βmax is well defined,

βmax =

{
∞ if W (q)′(0) = ∞,

ς2(0)− W (q)(ς2(0))−W (q)(0)
W (q)′(0) if W (q)′(0) <∞ and a′ > 0.

Consider now the following three cases: (i) a′ > 0 and β < βmax, (ii) a′ > 0 and
β ≥ βmax, βmax <∞ and (iii) a′ = 0.

Suppose we are in case (i). We show that then g1 also has a unique minimizer.
When βmax = ∞, we have W (q)′(0) = ∞ and when βmax <∞, then

g1(0) =
W (q)(ς2(0))−W (q)(0)

ς2(0)− β
<
W (q)(ς2(0))−W (q)(0)

ς2(0)− βmax
= W (q)′(0).

This together with limx↑c1max g1(x) = ∞ > W (q)′(c1max), (14) and the fact
that W (q)′ is strictly decreasing on (0, a′) implies that there exists a unique
point ĉ1 ∈ (0, c1max) such that g1 is strictly decreasing on (0, ĉ1) and strictly
increasing on (ĉ1, c1max). Also g1(ĉ1) = W (q)′(ĉ1).

From earlier considerations we now see that in case (i), (c∗1; c
∗
2) is either equal

to (0; ĉ2) or (ĉ1; ς2(ĉ1)). We will show that (c∗1; c
∗
2) is equal to the latter. First

note that by (14) and ĉ1 being strictly positive, we have g1(ĉ1) = W (q)′(ĉ1) <
W (q)′(0). This implies that if g0(ĉ2) ≥ W (q)′(0), then g1(ĉ1) < g0(ĉ2) and so g
is minimized in (ĉ1; ς2(ĉ1)). Assume now that g0(ĉ2) < W (q)′(0). Then we have

lim
x↓0

∂

∂x
g(x, ĉ2) =

1
ĉ2 − β

(
g0(ĉ2)−W (q)′(0)

)
< 0

and hence g is not minimized in (0; ĉ2). It follows that (c∗1; c
∗
2) = (ĉ1; ς2(ĉ1)).

Now assume that we are in case (ii). Then limx↓0 g1(x) ≥W (q)′(0) and hence
by (14) and the fact that W (q)′ is strictly decreasing on (0, a′), we have that g1
is strictly increasing on (0, c1max). Hence (c∗1; c

∗
2) = (0; ĉ2).

Finally, suppose that we are in case (iii). ThenW (q)′ is an increasing function
on (0,∞) and hence we conclude (c∗1; c

∗
2) = (0; ĉ2).

We put the conclusions of this section in the following theorem.

Theorem 8. If the Lévy measure has a log-convex density, then there is a
unique (c1; c2) policy which is optimal for the impulse control problem. Further,
c∗1 = 0 if and only if β ≥ βmax or a′ = 0, where c∗1 is the unique optimal value
of c1.

5 Examples

In order to obtain the (candidate) optimal (c1; c2) policy one has to find the
element(s) in C∗. In order to do this one first needs to evaluate the scale function
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which often has to be done by inverting the Laplace transform via numerical
methods. But, even when there is a (simple) explicit expression for the scale
function, it is not possible to give an explicit formula for the optimal parameters
c∗1 and c∗2 (if they exist); see e.g. Theorem B in Jeanblanc and Shiryaev [14] for
the case when X is a Brownian motion plus drift. Hence one has to resort to
numerical methods to find the minimizer(s) of g. One possibility is to minimize
the function g over c1 and c2 via a numerical program, but it might be that one
ends up with a local instead of a global minimum. However, from the previous
section we know that when the Lévy measure has a log-convex density, we can
find the optimal parameters by minimizing either g0 or g1, both being functions
of just one variable and with only one local minimum. In case the Lévy measure
does not have a log-convex density, the element(s) of C∗ might still be found
by applying some of the methods described in Section 4 locally. We give an
example of both cases. The figures and calculations in these examples are all
made with the help of Matlab.

Example 1 The first example concerns the case when X is a spectrally neg-
ative stable process with index α ∈ (1, 2). Its Laplace exponent is given by
ψ(θ) = θα. An explicit expression for its scale function was found by Bertoin [6]
and is given by W (q)(x) = αxα−1E′α(qxα) for q, x ≥ 0, where E′α is the deriva-
tive of the Mittag-Leffler function of index α given by Eα(x) =

∑∞
n=0

xn

G(1+αn)

with G(·) being the gamma function. Since the Lévy measure of this process,
given by ν(dx) = α(α−1)

G(2−α)x
−1−αdx, has a completely monotone density and

W (q)′(0) = ∞ = βmax, we know by Theorem 8 that the set C∗ consists of ex-
actly one point, denoted by (c∗1; c

∗
2), that c∗1 > 0 and that the strategy πc∗1 ,c∗2 is

optimal for the impulse control problem. Further we know from Section 4 that
c∗1 is the unique minimum of the function g1 on (0, c1max) and the only intersec-
tion point of W (q)′ and g1; moreover, c∗2 is given by the unique point in (a∗,∞)
such that W (q)′(c∗2) = W (q)′(c∗1). In our example the parameters are chosen as
follows: α = 1.5, q = 0.1 and β = 1. In Figure 1 the graphs of W (q)′ and g1 are
plotted and the optimal levels are found to be equal to (c∗1; c

∗
2) = (0.41; 4.85),

whereas the parameter c1max = 1.33.

Example 2 For the second example we consider, we let X be a Cramér-
Lundberg risk process as in (1) with Lévy measure given by ν(dx) = λα2xe−αx.
This means that the claims are Erlang(2, α) distributed. The scale function for
X, which can be derived by the method of partial fraction, is given by

W (q)(x) =
3∑

i=1

Dieθix, x ≥ 0,

where {θi : i = 1, 2, 3} are the (distinct) roots of

ψ(θ)− q = cθ − λ+
λα2

(α+ θ)2
− q,
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Figure 1: Stable with index 1.5

with θ1 > 0 and θ2, θ3 < 0 and where {Di : i = 1, 2, 3} are given by Di =
1/ψ′(θi). We now choose the parameters as follows: c = 21.4, λ = 10, α = 1,
q = 0.1 and for β we consider two cases, the case when β = 0.015 and β = 0.2.
This example corresponds to the one in Azcue and Muler [5] for which they
showed that the optimal strategy for the de Finetti problem is not a barrier
strategy. Note that the Lévy measure does not have a log-convex density and
therefore Theorem 8 does not apply.

The derivative of this scale function is plotted in Figure 2. We see from
Figure 2 that the absolute minimum of W (q)′ is attained at x = 0, but that
this function further also has a local maximum and a second local minimum.
Denote by a1 resp. a2 the point on the x-axis at which W (q)′ has this local
maximum resp. local minimum. Further denote by ς(a1) ∈ (a2,∞) the point
such that W (q)′(ς(a1)) = W (q)′(a1) and by ς(a2) ∈ (0, a1) the point such that
W (q)′(ς(a2)) = W (q)′(a2). Note that one can see from the figure that these
points exist.

We now want to find for a given β the elements of C∗; we can then use
Theorem 7 to find out if a certain (c1; c2) policy is optimal. Let (c∗1; c

∗
2) ∈

C∗. Since by Proposition 3 we must have c∗1 = 0 or W (q)′(c∗1) = W (q)′(c∗2),
it follows that there are three possible cases: (i) c∗1 = 0, (ii) c∗2 ∈ (a2, ς(a1)),
c∗1 ∈ (ς(a2), a2) and (iii) c∗2 ∈ (a1, a2), c∗1 ∈ (ς(a2), a1). Though we will now
show that (iii) cannot happen. Let ς̃2 : (ς(a2), a1) → (a1, a2) be the function
implicitly defined by W (q)′(ς̃2(x)) = W (q)′(x) and let g̃1(x) = g(x, ς̃2(x)) =
W (q)(ς̃2(x))−W (q)(x)

ς̃2(x)−x−β , where we take the domain of g̃1 to be all x ∈ (ς(a2), a1) big
enough such that the denominator of g̃1(x) is strictly positive. By the mean
value theorem and the fact that W (q)′ is strictly increasing on (ς(a2), a1) and
strictly decreasing on (a1, a2), we get for all x in the domain of g̃1

g̃1(x) ≥ min
ξ∈[x,ς̃2(x)]

W (q)′(ξ)
ς̃2(x)− x

ς̃2(x)− x− β
> W (q)′(x)

and thus by Proposition 3, case (iii) is not possible.
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This leaves the remaining two cases (i) and (ii). To find out which value(s)
(c∗1; c

∗
2) takes, we introduce the function ς2 : (ς(a2), a2) → (a2, ς(a1)) implicitly

defined by W (q)′(ς2(x)) = W (q)′(x) and let

D = {c1 ∈ (ς(a2), a2) : ς2(c1)− c1 > β}.

As in Section 4, we define the functions g1 : D → (0,∞) and g0 : (β,∞) →
(0,∞) given by g1(x) = g(x, ς2(x)) and g0(x) = g(0, x). Note that the minimum
of g will be equal to either the minimum of g0 or to the minimum of g1, whichever
one lies lower; in case (i) the minimum of g0 will lie lower, in case (ii) it will be
the other way around.

In Figure 2 the graphs of g0, g1 and W (q)′ are plotted for both values of β.
For β = 0.015, we see that the minimum of g0 lies lower than the minimum of
g1 and hence c∗1 = 0; the other level is then found to be equal to c∗2 = 0.316.
Further we see that condition (13) of Theorem 7 is not satisfied. Hence we
cannot conclude at this stage that an optimal strategy for the impulse control
problem is formed by a (c1; c2) policy.
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Figure 2: Cramér-Lundberg with Erlang(2, 1) claims; left: β = 0.015, right:
β = 0.2

But this does not mean that the strategy πc∗1 ,c∗2 is not optimal, since Theorem
7 only gives sufficient, and not necessary, conditions for a particular (c1; c2)
policy to be optimal. To see that actually no (c1; c2) policy is optimal for the
impulse control problem, we first note that by the representation for the value
function of a (c1; c2) policy given in Proposition 2 and the fact that (c∗1; c

∗
2) is

the only minimizer of g, that for all (c1; c2) 6= (c∗1; c
∗
2),

vc∗1 ,c∗2 (x) > vc1,c2(x) for all 0 < x ≤ c∗2 ∧ c2
and hence the only (c1; c2) policy which can be optimal is the one with the levels
equal to c∗1 and c∗2. But if the parameters c′1 = 8 and c′2 = 12 are taken, one can
calculate that for the starting value x = 6,

vc′1,c′2(6) = 8.235 > 7.883 = vc∗1 ,c∗2 (6)
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and thus πc∗1 ,c∗2 is not optimal and therefore no (c1; c2) policy is optimal for the
impulse control problem in this case.

In the other case when β = 0.2, we see that (c∗1; c
∗
2) satisfies (13) and hence we

can conclude that πc∗1 ,c∗2 is an optimal strategy for the impulse control problem.
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Lévy risk model, Journal of Applied Probability 44 (2007), 420-427.

[25] A. Sulem, A solvable one-dimensional model of a diffusion inventory system, Mathemat-
ics of Operations Research 11 (1986), no. 1, 125-133.

[26] B.A. Surya, Evaluating scale functions of spectrally negative Lévy processes, Journal of
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