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Introduzione

My task which I am trying to achieve is, by the power of the written word, to

make you hear, to make you feel – it is, before all, to make you see. That –

and no more, and it is everything. If I succeed, you shall find there according

to your deserts: encouragement, consolation, fear, charm – all you demand;

and, perhaps, also that glimpse of truth for which you have forgotten to ask.

Joseph Conrad, “The Nigger of the Narcissus”, preface.

1 Spazi di moduli

In questo lavoro studiamo spazi i cui punti rappresentano, o parametrizzano, classi di

isomorfismo di oggetti geometrici: questi spazi sono chiamati spazi di moduli. Esempi

classici e molto studiati in geometria algebrica classica di spazi di moduli sono gli

spazi proiettivi, più in generale le Grassmaniane e le varietà di bandiera. L’idea di

costruire spazi i cui punti parametrizzano oggetti geometrici modulo isomorfismo può

essere naturalmente estesa a oggetti geometrici in un’accezione più generale (oggetti

che non siano necessariamente varietà algebriche) e il loro studio può contribuire

a fornire sugli enti geometrici di partenza informazioni che non sono direttamente

osservabili sulla base di un loro studio caso per caso. Proprietà come la connessione,

la irriducibilità, la singolarità si traducono per gli oggetti geometrici studiati nel fatto

che, ad esempio, non si possa passare mediante deformazioni dall’uno all’altro oppure

nel fatto che per deformare un certo spazio in un altro, si deve passare inevitabilmente

per un terzo.

Il primo passo da fare per uno studio di tali spazi di moduli in geometria alge-

brica è naturalmente dotare gli stessi di una struttura algebro-geometrica. Il nome

“spazio di moduli” è dovuto a Riemann, che con il termine moduli indicava gene-

ricamente i parametri continui da cui dipende una curva. Nel 1857 egli calcolò, in

5



6 INTRODUZIONE

un modo che oggi definiremmo intuitivo, la dimensione di questo spazio, che per

le curve di genere g è 3g − 3 se g ≥ 2, uno se g = 1 e zero se g = 0, dando per

scontata la struttura algebro-geometrica dello spazio dei moduli, ritenuta in qualche

modo ovvia. Con un approccio analitico al problema, Klein dimostrò che lo spazio

delle curve algebriche di genere g è irriducibile, utilizzando mappe su rivestimenti

n-upli di P1. Anche Hurwitz segùı un metodo analogo, studiando le varietà dei mo-

duli di tali rivestimenti di genere g e mappe da essi nello spazio dei moduli delle

curve di genere g. Nei primi anni del XX secolo Enriques e Severi furono interessati,

marginalmente il primo, più sistematicamente il secondo, al problema di produrre

una dimostrazione puramente algebrico-geometrica dell’irriducibilità dello spazio dei

moduli delle curve di genere fissato. Entrambi ritenevano di potersi restringere allo

studio delle classi d’isomorfismo delle curve piane con singolarità ordinarie, di genere

fissato. La loro dimostrazione risultò incompleta, e solo nel 1969 il celebre lavoro di

Deligne e Mumford riusc̀ı a produrre una dimostrazione della irriducibilità di questo

spazio di moduli, basandosi tuttavia su risultati classici topologici. In questo la-

voro, Deligne e Mumford affrontavano il problema dotando in due modi differenti

questo spazio di moduli di struttura algebrica: dandogli la struttura di varietà al-

gebrica mediante tecniche di Teoria Geometrica degli Invarianti, e dotandolo della

struttura di stack algebrico, proponendo in quello stesso lavoro la parola stack come

traduzione dal francese champ. La parola champ era stata usata per la prima volta

da Giraud nel suo libro Cohomologie non abelienne, nel quale l’autore sviluppava tra

le altre la nozione di stack, la cui invenzione possiamo in ultima analisi ricondurre a

Grothendieck. La nozione di stack algebrico, oggi usato come strumento per dotare

di struttura algebrica spazi di moduli di molteplici oggetti geometrici, è per nascita

pertanto intimamente legata agli spazi di moduli di curve algebriche. La prima delle

due costruzioni di Deligne e Mumford produce una varietà quasiproiettiva singolare,

che tuttavia vedremo non essere una famiglia universale. In altre parole il funtore di

moduli (che verrà definito in seguito) non risulta rappresentabile da questa varietà

quasiproiettiva ma è solamente corappresentabile. Si parla in questo caso di spazio

dei moduli grossolano. La seconda costruzione produce invece uno stack algebrico

liscio (detto anche orbifold), che invece riesce a rappresentare il funtore di moduli, e

per questo viene detto spazio dei moduli fine per il problema di moduli. Come ve-

dremo meglio in seguito, responsabile per la non esistenza di una varietà algebrica che

sia uno spazio dei moduli fine è la presenza di un gruppo di automorfismi non banale

per alcune curve proiettive. Nel corso degli anni sono state proposte diverse soluzioni
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per ovviare a questo inconveniente. Innanzitutto si è pensato di escludere le curve

con gruppo degli automorfismi non banale e di studiare l’insieme che parametrizza

queste ultime. Un altro approccio ha invece portato ad aggiungere struttura alle

curve, imponendo che abbiano dei punti fissati. Un passo ulteriore nello studio di

questi spazi è una loro compattificazione: si tratta di aggiungere punti allo spazio

dei moduli delle curve di genere fissato che possano interpretarsi come punti limite.

La scelta giusta risulta nelle classi di isomorfismo di famiglie di curve nodali con

determinate proprietà di intersezione.

L’idea di base degli stack è quella di sostituire l’insieme delle classi d’isomorfismo

di famiglie di curve con il gruppoide che ha per oggetti le famiglie e per morfismi gli

isomorfismi di famiglie. Le condizioni a cui il gruppoide deve soddisfare per essere

uno stack sono analoghe alle condizioni di fascio per un funtore. Sempre nel lavoro di

Deligne e Mumford si dimostra che gli stack dei moduli delle curve di genere fissato

con n punti fissati sono algebrici, i.e. localmente isomorfi a schemi (in una topologia,

quella étale, che verrà introdotta più avanti, e che è più fine di quella di Zariski).

2 La coomologia orbifold

Negli ultimi 20 anni gli stack algebrici sono stati molto studiati, anche in ambito

fisico. La motivazione per la geometria e topologia degli orbifold in ambito fisico viene

dalla teoria delle stringhe sugli orbifold, annunciata dai fisici Dixon, Harvey, Vafa,

Witten nel 1985 [DHVW]. Gli orbifold sono stati studiati in matematica dagli anni

cinquanta, come estensione della teoria delle varietà lisce. La geometria e topologia

“stringy” degli orbifold ha una natura diversa: il suo scopo è studiare proprietà degli

orbifold legate alle stringhe. Negli ultimi anni la teoria delle stringhe su orbifold è

diventata molto popolare in ambito fisico, come dimostra anche il numero di lavori che

sono stati pubblicati su questo argomento. Contemporaneamente la sua controparte

matematica ha avuto numerosi sviluppi con l’inizio del nuovo millennio.

Una nuova descrizione degli orbifold nasce nella geometria algebrica a partire

dai problemi di moduli di curve con punti marcati: essi vengono visti in questo

caso come stack algebrici lisci di Deligne-Mumford. In questa nuova descrizione la

struttura di 2-categoria risulta naturalmente dalla costruzione, laddove la nozione di

morfismo fra orbifold nella descrizione precedente aveva richiesto un lungo travaglio

nella comunità scientifica, come dimostra il fatto che il primo lavoro pubblicato di
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Satake sui V-manifold [Sa] propone una definizione di morfismo di orbifold non più

utilizzata.

Nel lavoro [DHVW] si studia un orbifold quoziente globale di dimensione reale

6 compatta. Gli autori osservano inizialmente che un teorema dell’indice (una ver-

sione orbifold della formula della traccia di Lefschetz ([B], [GH] 3.4)) porta ad un

legame fra la caratteristica di Eulero topologica della varietà e la traccia di un certo

operatore di interesse fisico che rispetta certe condizioni al contorno di periodicità.

Per studiare il caso dell’orbifold, si introducono condizioni al contorno “twistate”,

che tengano cioè conto delle identificazioni date dall’azione del gruppo. Portando

avanti i conti per la traccia dell’operatore con le nuove condizioni adattate al caso

dell’orbifold, al fine di preservare la precedente uguaglianza anche sull’orbifold, gli au-

tori suggeriscono una nuova definizione per la caratteristica di Eulero dell’orbifold,

che tenga conto dell’azione del gruppo e non solo della sua struttura topologica.

Questa caratteristica di Eulero per orbifold soddisfa la proprietà di essere uguale

alla caratteristica di Eulero usuale di una sua “buona” risoluzione di singolarità

(risoluzione crepante). Successivamente sono stati studiati altri invarianti coomo-

logici come i numeri di Hodge per orbifold, sempre con l’idea che questi dovessero

coincidere con una risoluzione crepante delle singolarità dell’orbifold (questo fatto è

stato dimostrato nel 1996 in un lavoro di Batyrev-Borisov [BB]).

Seguendo il fondamentale impulso dato da questo lavoro fisico, Chen e Ruan

danno una definizione in [CR1], [CR2] e [CR3] di tutta la coomologia per il caso

degli orbifold, con l’idea che questo possa introdurre una nuova geometria e una

nuova topologia per gli orbifold, il cui centro risieda nel concetto di settore twistato.

In questa definizione la caratteristica di Eulero e i numeri di Hodge coincidono con le

quantità predette sulla base di considerazioni di carattere fisico. Questa definizione

nasce pertanto insieme ad una “congettura crepante”, secondo la quale la (strut-

tura additiva della) coomologia orbifold è isomorfa alla coomologia standard di una

sua risoluzione “minimale” (crepante). Ancora oggi per riferirsi a questo tipo di

coomologia, la letteratura utilizza il termine “stringy cohomology”. Questa conget-

tura è stata verificata nel nuovo contesto della definizione di Chen e Ruan, e nel

caso dei numeri di Hodge contemporaneamente nei lavori di Lupercio-Poddar [LP] e

Yasuda [Y] del 2003.

Si osserva poi che, come nel caso delle manifold, la coomologia è naturalmente

dotata del prodotto cup, alla struttura additiva della coomologia orbifold si può

associare in modo naturale un prodotto, questi risultano essere la parte di grado 0
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della small quantum cohomology.

Successivamente nel lavoro [AGV] gli autori propongono una nuova definizione

nel contesto della definizione di orbifold come stack algebrico liscio di Deligne e

Mumford.

La definizione è stata poi estesa nel 2001 contemporaneamente in un lavoro di

Fantechi-Göttsche [FG] e, (nel caso degli stacks che sono prodotti simmetrici) in un

lavoro di Uribe, al caso non commutativo, per le orbifold che sono quozienti globali.

Cito ora di seguito i lavori apparsi a seguito della definizione di Chen e Ruan in

cui viene calcolata la orbifold (stringy) cohomology. Per gli orbifold abeliani, e più

in generale per i quozienti arbitrari di un toro, i lavori di [CH] [GHK]. Per gli stack

torici, il lavoro di Yunfeng Jiang [J]. Nel lavoro di Bryan-Graber-Pandharipande

[BGP] si calcola l’intera quantum cohomology per il caso C2/Z3. Perroni [Pe] calcola

per intero la coomologia orbifold per le orbifold con singolarità di tipo An, i settori

twistati e l’età per le singolarità di tipo D ed E. Infine per gli spazi proiettivi

pesati i lavori di Mann [M] e quello molto recente di Coates-Corti-Lee-Tseng [CCLT].

Questi ultimi ne hanno calcolato l’intera quantum cohomology. Infine nel lavoro

[GH] si calcola la coomologia orbifold per le varietà ipertoriche. I lavori [BCS] e

[JT] calcolano l’anello di Chow (classi di coomologia algebriche) per stacks torici e

ipertorici.

3 Contenuto della tesi

La coomologia orbifold è definita dal 2000 ma fino ad ora è stata calcolata su relativa-

mente pochi esempi. L’idea da cui prende le mosse questa tesi è appunto calcolarla sui

primi stack algebrici: gli spazi di moduli di curve di genere fissato con punti marcati.

Il caso di genere 0, non presenta problematiche legate ad automorfismi non banali,

come vedremo meglio in seguito. Lo spazio dei moduli delle curve lisce di genere

0 con n punti marcati risulta essere una varietà quasiproiettiva, la sua compattifi-

cazione (le curve di genere 0 nodali) è una varietà proiettiva, pertanto la coomologia

orbifold coincide con la usuale coomologia singolare, che a sua volta coincide con

l’anello di Chow, calcolato in [K] da Sean Keel nel 1992. Il primo caso non banale

risulta pertanto quello delle curve di genere 1. La coomologia usuale dello spazio dei

moduli delle curve ellittiche lisce e di quelle nodali stabili è stata molto studiata già

dai lavori di Harer del 1982. Negli anni ’90 il problema è stato affrontato seguendo



10 INTRODUZIONE

tecniche molto differenti, ma senza riuscire a produrre un risultato definitivo.

In questo lavoro, dopo aver osservato che la coomologia orbifold dello spazio dei

moduli delle curve lisce e nodali ellittiche (stabili) dipende dalla sua coomologia

usuale, daremo una descrizione completa dei settori twistati dello stack d’inerzia di

questi due spazi dei moduli, e ridurremo lo studio della coomologia orbifold allo

studio della coomologia usuale. Della coomologia usuale è completamente nota la

struttura di spazio vettoriale, mentre il prodotto è stato molto studiato negli ultimi

quindici anni, con risultati definitivi soltanto per i casi fino a 4 punti marcati.

Il risultato principale di questo lavoro pertanto è la descrizione dei settori twistati

dello stack d’inerzia dello spazio dei moduli delle curve ellittiche lisce e nodali al

variare dei punti marcati. Questo, grazie ai risultati di Keel e alla formula di Kunneth

fornisce la dimensione della coomologia dei settori twistati.

Rimangono ancora da studiare la graduazione della coomologia, che nella no-

tazione introdotta da Miles Reid, prende il nome di età, e che viene anche detta shift

fermionico, e infine il prodotto. Per l’età forniamo risultati parziali, che compren-

dono la descrizione completa del risultato liscio e la descrizione dell’età per il settore

twistato nel caso stabile relativo all’automorfismo (-1).

4 Descrizione delle singole sezioni

Nell’appendice A si introducono gli stacks e gli stacks algebrici, attraverso il lin-

guaggio degli pseudofuntori. Alla fine del primo capitolo viene svolto nel dettaglio

l’esempio degli stack algebrici che sono quozienti globali.

Nell’appendice B restringiamo la generalità del discorso agli stack algebrici lisci,

che sono una nozione equivalente ad una già diffusa in geometria differenziale negli

anni ’50: quella di orbifold (anche detti V-manifold), nel nostro caso gli orbifolds

saranno non necessariamente ridotti. Si mostrerà un cenno della dimostrazione

dell’equivalenza delle due nozioni. Nello stesso capitolo introduciamo la coomolo-

gia e la coomologia orbifold di uno stack nella definizione data da Chen e Ruan,

con qualche semplificazione legata al fatto che tutti i gruppi di automorfismi che

compaiono in questo lavoro sono gruppi commutativi.

Nell’appendice C si presenta una review di curve, si focalizza l’attenzione sulle

curve di genere 1 e si introducono le nozioni fondamentali di famiglia di curve e

famiglia universale, per arrivare fino a dotare gli spazi di moduli di curve di genere
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fissato e con punti marcati della struttura di stack algebrico. L’ultima sezione pre-

senta una descrizione informale del teorema di Knudsen sulla curva universale.

L’ultima appendice presenta i risultati originali di questa tesi: la descrizione

esplicita dei settori twistati nel caso non compatto (più semplice) e nel caso compatto.

Infine si danno risultati parziali sul calcolo dello shift fermionico (età).

5 Notazioni

Gli schemi di cui si parla in questo lavoro sono tutti di tipo finito sopra un campo K

algebricamente chiuso e di caratteristica 0. I risultati ottenuti sono tutti sul campo

dei numeri complessi, tuttavia in alcune sezioni precedenti ho volutamente omesso

la sostituzione K := C per mantenere la stessa notazione dei testi cui mi riferivo. I

punti s di uno schema S sono identificati con i morfismi i :Spec(K(s)) // S dove

K(s) è il campo residuo dell’anello locale in s di S.
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La coomologia orbifold di M1,n e

M1,n

Rimandiamo all’appendice per tutti i dettagli, e in questo paragrafo forniamo una

concisa presentazione del risultato ottenuto.

La nozione di stack algebrico è presentata nell’appendice A, nell’appendice B

si introduce la nozione di coomologia orbifold per uno stack algebrico liscio, come

coomologia singolare del suo stack d’inerzia. Nell’appendice C si mostra come M1,n e

M1,n siano in modo naturale stack algebrici. Per le notazioni sugli spazi rimandiamo

all’appendice D. I risultati principali ottenuti in questo lavoro, sono i seguenti:

Teorema 1. (Appendix D; 1.19, 1.20, 1.21, 1.22, [Co3]) La struttura additiva della

coomologia orbifold a coefficienti razionali di M1,n e di M1,n è nota.

Teorema 2. I settori twistati dello stack d’inerzia di M1,n sono unione disgiunta di

stacks i cui spazi coarse soggiacenti sono punti, la retta proiettiva meno un numero

finito di punti, e rivestimenti ramificati su quest’ultima (i.e. ancora la retta proiettiva

senza un numero finito di punti). Più precisamente, vale la seguente descrizione caso

per caso:

• (Lo stack d’inerzia di M1,2)

I(M1,2) = (M1,2, 1)
∐

(A1,−1)
∐

(C4, i/− i)
∐

(C6, ǫ
2/ǫ4)

• (Lo stack d’inerzia di M1,3)

I(M1,3) = (M1,3, 1)
∐

(A2,−1)
∐

(C6, ǫ
2/ǫ4)
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16 LA COOMOLOGIA ORBIFOLD DI M1,n E M1,n

• (Lo stack d’inerzia di M1,4)

I(M1,4) = (M1,4, 1)
∐

(A3,−1)

• Lo stack d’inerzia di M1,n, quando n > 4, è isomorfo a M1,n.

Nel seguito, per semplicità di notazione, assumiamo che M0,1 e M0,2 siano un

punto (mentre secondo la definizione standard dovrebbero essere l’insieme vuoto) e

che (0, 0)! sia 0 invece che 1.

Teorema 3. Gli spazi coarse dei settori twistati dello stack d’inerzia di M1,n sono,

a meno di isomorfismo, unione disgiunta di prodotti di M0,k. Più precisamente vale

la seguente descrizione dei settori twistati dello stack d’inerzia:

1.

I(M1,2) = (M1,2, 1)
∐

(M1,1,−1)
∐

(A1,−1)
∐

2 (C4, i/−i)
∐

(C6, ǫ/ǫ
2/ǫ4/ǫ5)

∐

∐

(C6, ǫ
2/ǫ4)

2.

I(M1,3) = (M1,3, 1)
∐

(M1,1 ×M0,4,−1)
∐

3 (A1,−1)
∐

(A2,−1)
∐

∐

2(C4, i/− i)
∐

(C4 ×M0,4, i/− i)
∐

(C6 ×M0,4, ǫ/ǫ
2/ǫ4/ǫ5)

∐

4(C6, ǫ
2/ǫ4)

3.

I(M1,n) = M1,n

∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! A1 ×M0,α1+2 ×M0,α2+2

∐

α1+α2=n−3, αi≥0

((α1, α2)! + (α1 + 1, α2))! A2 ×M0,α1+2 ×M0,α2+2

∐

α1+α2=n−4, αi≥0

(2(α1, α2)!+(α1+1, α2)!) A3×M0,α1+2×M0,α2+2

∐

M1,1×M0,n+1

∐

∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! M0,α1+2 ×M0,α2+2

∐

M0,n+1

∐
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∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! M0,α1+2 ×M0,α2+2

∐

M0,n+1

∐

n−2
∐

α1=0

(n− 1 − α1, α1)! M0,α1+2 ×

×

(

∐

β1+β2=n−1−α1, βi≥0, β1>β2

(n− 1 − α1 − β1, β1)! M0,β1+1 ×M0,β2+1

∐

∐

2β1=n−1−α1

1

2
(β1, β1)! M0,β1+1 ×M0,β1+1

)

∐

M0,n+1

∐

n−2
∐

α1=0

(n− 1 − α1, α1)! M0,α1+2 ×

×

(

∐

β1+β2=n−1−α1, βi≥0, β1>β2

(n− 1 − α1 − β1, β1)! M0,β1+1 ×M0,β2+1

∐

∐

2β1=n−1−α1

1

2
(β1, β1)! M0,β1+1 ×M0,β1+1

)

∐

M0,n+1

∐

M0,n+1

∐

M0,n+1

Teorema 4. (Appendix D; Section 2) La struttura di spazio vettoriale graduato sui

razionali della coomologia orbifold razionale di M1,n è nota.

Infine forniamo risultati parziali per la graduazione della coomologia orbifold

razionale di M1,n.



18 LA COOMOLOGIA ORBIFOLD DI M1,n E M1,n



Appendix A

Stacks and Algebraic Stacks

References for this section are [G], [Vi1], [Vi2]. There are at least three ways to define

stacks: as the datum of a 2-functor, of a pseudofunctor in groupoids, or of a fibered

category in groupoids. In each cases you need a notion of topology for a category,

namely a Grothendieck topology. The third construction is equivalent to the first

two once you assumes a form of the axiom of choice, which allows you to have a well-

defined, unique pull-back. The first two definitions are equivalent once you write

down all the axioms for a general 2-category and for a general 2-functor and finally

observing that a 1-category is in a canonical way a 2-category (with only identities

as 2-morphisms). This is observed with much more detail for example in [G]. The

definition of stack as a 2-functor needs some acquaintance with 2-categories, while

the definition which uses pseudofunctors in groupoids requires only to understand the

structure of the 2-category of groupoids, and so makes possible to write a definition

ad hoc if one wants to develop the theory just to give a definition of stack.

1 Pseudofunctors

In this section C is a fixed category, while GPD is the category of groupoids, whose

objects are groupoids and whose morphisms are homomorphism between groupoids.

Definition 1.1. A groupoid is a small category whose morphisms are all isomor-

phisms.

Hence the category of all groupoids has an additional structure. In fact the set

Hom(A,B) where A,B are two groupoids, is actually a category, whose morphisms

19



20 APPENDIX A. STACKS AND ALGEBRAIC STACKS

are natural equivalence between functors from A to B. This gives the category

of groupoids a structure of 2-category. Anyway, we won’t enter the details of 2-

categories. For a reference, see [G] [Bo]. We stress that our definition is equivalent

to the algebraic one:

Remark 1.2. A groupoid with base B is a set G with mappings α and β from G

onto B and a partially defined binary operation (g, h) //gh, satisfying the following

four conditions:

• gh is defined whenever β(g) = α(h) and in this case α(gh) = α(g) and β(gh) =

β(h).

• if either of (gh)k and g(hk) are defined so is the other and they are equal.

• for each g ∈ G there are two identity elements λg and ρg satisfying λgg = g =

gρg.

• for each g ∈ G there is an inverse element g−1 satisfying gg−1 = λg and

g−1g = ρg.

If G is a groupoid from this last viewpoint, it is a category whose objects are

the elements of B, and whose morphisms are all the products in the groupoid of

the form mg, where g ∈ G. If mg is a morphism: g′ // g′′, since G is a groupoid,

mg−1 : g′′ // g′ is its inverse. Following this viewpoint, an homomorphism between

two groupoids G and G′ is exactly a functor between the data of the two groupoids

seen as categories.

Since all morphisms are isomorphisms, all natural transformations between func-

tors (i.e. groupoids’ homomorphisms) give a natural isomorphism between the two

functors.

Definition 1.3 (cf. [Vi2] pag.50). A contravariant pseudofunctor F in groupoids:

F : C // GPD

consists of the following data:

• For each C object of C, a groupoid F (C);

• For each arrow φ : C //D, a morphism of groupoids F (φ) : F (D) //F (C);
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• For each object C of C, an isomorphism ǫC : F (IdC) // IdF (C);

• For each S
φ
−→ T

ψ
−→ U an isomorphism between functors αφ,ψ : F (φ) ◦ F (ψ) ⇒

F (ψ ◦ φ)

satisfying the following conditions:

1. If φ : C //D is an arrow in C, these two equalities hold:

αIdC ,φ = ǫC ◦ ηF (φ)

αφ,IdV
= ηF (φ) ◦ ǫD

where ηF (φ) is the natural transformation associated to the funtor F (φ).

2. Whenever there are arrows S
φ
−→ T

ψ
−→ U

λ
−→ V in C, the following diagram of

functors and natural transformations commutes:

F (φ) ◦ F (ψ) ◦ F (λ)
αφ,ψ × Id

+3

Id× αψ,λ
��

F (ψ ◦ φ) ◦ F (λ)

αψ◦φ,λ
��

F (φ) ◦ F (λ ◦ ψ)
αφ,λ◦ψ +3 F (λ ◦ ψ ◦ φ)

Remark 1.4. In the article [Vi2] pag.49, the author points out that there is no real

lack of information asking, instead of the third condition, directly that F (IdC) =

IdF (C). In [G] (pag.29-30), the given definition of pseudofunctor takes in account

this kind of simplification.

Example 1.5. First of all, observe that there is an obvious fully faithful functor

O : SET // GPD (remember the latter category is the category of all groupoids).

If S is a set, O(S) is the groupoid whose elements are the elements of the set, and

whose morphisms are just the identities. Let C be an object in C. The Yoneda

functor:

hC : Cop // SET

defined as hC(X) = Hom(X,C), hC(f) = Hom(f, C) is a functor from C to SET .

So, O◦hX gives a (contravariant) functor from C to groupoids. A functor in groupoids

is a very special case of a pseudofunctor in groupoids, where all the natural trans-

formations are just the identities. This construction is very useful because it gives
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an embedding of our category in the larger category Hom(Cop,SET ), where objects

are functors and morphisms are natural trasformation of functors. Composing with

the obvious O functor, it embeds the category C in the category of pseudofunctors

in groupoids (in fact, in the 2-category of pseudofunctors). Yoneda’s lemma tells

exactly that the functor h is fully faithful.

Lemma 1.6 (Yoneda). In the previous notations, if F : C // SET is a functor,

there is a canonical bijection:

Hom(hX , F ) ∼= F (X)

In the particular case where F = hY , you get exactly that the functor h is fully

faithful.

Proof. Given a natural transformation τ : hX // F , one gets an element ξ ∈

F (X), defined as the image of the identity map IdX ∈ hX(X) via the function

τX : hX(X) // F (X). Conversely, given an element ξ ∈ F (X), one can define a

morphism τ : hX //F as follows. Given an object U of C, an element of hX(U) is an

arrow f : U //X. This arrow induces a function F (f) : F (X) //F (U). Then one

defines a function τU : hX(U) // F (U) by sending F ∈ hX(U) to F (f(ξ)) ∈ F (U).

It is straightforward to check that the τ defined is in fact a morphism. The two maps

τ // ξ and ξ // τ are clearly inverse each to the other.

Definition 1.7. A representable functor on the category C is a functor

F : Cop // SET

which is isomorphic to a functor of the form hX for some object X of C. We will say

that X represents F .

The Yoneda lemma guarantees that two objects representing the same functor

are canonically isomorphic. The Yoneda embedding allows us to denote by X the

functor hX . Since no possible confusion arises, this substitution will be sometimes

done.

Definition 1.8. A universal object for F is a pair (X, ξ) consisting of an object X

of C, and an element ξ ∈ F (X) s.t. for each object U in C and each σ ∈ F (U), there

is an unique arrow f : U //X such that F (f(ξ)) = σ ∈ F (U).



1. PSEUDOFUNCTORS 23

The pair (X, ξ) is a universal object if the morphism hX // F defined by ξ is

an isomorphism. Since every natural transformation hX // F is defined by some

object ξ ∈ F (X) we get that F is representable if and only if it has a universal

object.

Definition 1.9. A morphism of pseudofunctors in groupoids consists of the following

data:

• For every object A ∈ C, a groupoid homomorphism PA : F (A) //G(A).

• For every morphism f : B // A, a morphism of functors between groupoids

φf : PA ◦ F (f) //G(f) ◦ PB:

F (A)
F (f)

//

PA
��

F (B)

PB
��

G(A)
G(f)

// G(B)

Such that φf ◦ φg = φg◦f for every pair of composable morphisms f, g in C. An

isomorphism of pseudofunctors in groupoids is a morphism P : F // G such that

there exists one other morphism Q : G // F such that PQ ∼=IdG and QP ∼= IdF .

Equivalently, a morphism is an isomorphism if for every object A of C, PA is an

equivalence of groupoids (i.e. a fully faithful functor which is essentially surjective).

Remark 1.10. The standard literature defines a stack as a fibered category in

groupoids. In such a language, the definition of morphism is much simpler [[Vi2]

Def.3.6]. For a proof of the equivalence between the two approaches, once one assume

the axiom of choice, see [[Vi2] 3.1.2,3.1.3].

Lemma 1.11 (Weak 2-Yoneda lemma, [Vi2] 3.6.1). The function that sends each

arrow f : X //Y to the corresponding morphism of pseudofunctors hf : hX //hY
is a natural isomorphism of groupoids.

Definition 1.12. A pseudofunctor is said representable if it is isomorphic to a pseud-

ofunctor of the form hX for some X ∈ C.
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Remark 1.13. As in the case of functors, there is a stronger version of the 2-

categorical Yoneda lemma. There is an isomorphism of groupoids:

Hom(hX ,F) ∼= F(X)

which is defined sending a morphism of pseudofunctors α : hX // F to α(IdX),

where IdX ∈ hX(X).

Till now, we have embedded our category in the category of pseudofunctors (which

can be seen also as presheaves in groupoids, since a presheaf of sets is nothing but a

contravariant functor in SET ). Stacks are more than just presheaves, actually they

are sheaves.

2 Grothendieck topology

Recall, that if X is a topological space, a sheaf of sets on it is a contravariant

functor on T OPX , the category whose objects are the open subsets of X and whose

morphisms are just inclusions (presheaf), satisfying the exactness of the following

diagram:

F (U) //
∏

α

F (Uα) ⇉
∏

α,β

F (Uα ×U Uβ)

for every U object in T OPX and for every covering (Uα //U) of U . In this context

the fiber product is just a fancy way to write down intersection. In a Grothendieck

topology the open sets of a space are maps into this space; instead of intersection we

have to look at fibered products.

Definition 2.1 ([Vi2], pg.28). Let C be a category. A Grothendieck topology on C

is the assignment to each object U of C of a collection of sets of arrows {Ui // U}

called coverings of U , so that the following conditions are satisfied:

1. If V // U is an isomorphism, then the set {V // U} is a covering.

2. If {Ui //U} is a covering and V //U is an arrow, then the fibered products

{Ui×UV } exist, and the collection of projections {Ui×UV //V } is a covering.

3. If {Ui //U} is a covering, and for each index i {Vij //U} is a covering (here

j varies in a set indexed on i), the collection of composites {Vij //Ui //U}

is a covering of U.
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Remark 2.2. Notice that if {Ui //U} and {Vj //U} are two coverings of the same

object, then {Ui×U Vj //U} also is a covering. In fact, this notion is weaker then

the one of a topology. This notion is what Groethendieck calls pretopology. There

is an equivalence relation between pretopologies which is described in [Vi2] (pg.29,

33-39). The sheaf theory depends only on the equivalence class of pretopologies.

In what follows, a set {Ui // U} of functions is called jointly surjective when

the set-theoretic union of their images equals U .

Example 2.3. Obviously, the set of open coverings in T OPX and in T OP gives a

Grothendieck topology for this two categories (here we just see that the new definition

includes the usual definition of topology).

Remark 2.4. Here we give a little review of base change of morphisms, and of

properties used in the following like flat, smooth, étale. Standard reference is [H],

together with [AM] and [Mi].

Definition 2.5. For a property of a morphism, to be invariant under base change,

means that for every f : X // Y having that property, and every g : Z // Y , the

induced morphism from the fiber product X ×Y Z to Z has the same property.

Definition 2.6. A morphism f : X // Y of schemes is flat if for all x ∈ X, OX,x

is a flat OY,f(x)-algebra.

Typical examples of flat morphisms are open embeddings and projections from a

product onto one factor.

Definition 2.7 ([Fu] B.2.5). A morphism f : X // Y has relative dimension

n if for all subvarieties V of Y , and all irreducible components V ′ of f−1(V ),

dim(V ′) =dim(V ) + n.

If f is flat, Y is irreducible, and X has pure dimension equal to dim(Y )+n, then

f has relative dimension n, and all base extensions X ×Y Y
′ // Y ′ have relative

dimension n [[H] 3.8.6].

If f : X // Y is a morphism, the sheaf of relative differentials is denoted Ω1
X|Y .

If g : Y // S is a morphism, there is an exact sequence of sheaves on X:

f ∗Ω1
Y |S // Ω1

X|S // Ω1
X|Y // 0

[cfr. [H] 2.8.11].
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Definition 2.8. A morphism f : X // Y is smooth if f is flat of some relative

dimension n, and Ω1
X|Y is a locally free sheaf of rank n.

It follows that for any Y // Y ′, the base change is also smooth of relative

dimension n.

A morphism is smooth of relative dimension n if it is flat and ΩX|Y is locally free

of rank n.

Definition 2.9. A morphism f : X //Y is étale if it is smooth of relative dimension

0. It is unramified if for all x ∈ X, y = f(x), myOX = mx.

Proposition 2.10 ([H] ex. 3.10.3). The following are equivalent:

• f is étale;

• f is flat, and ΩX|Y = 0;

• f is flat and unramified.

Remark 2.11. Recall that if X and Y are smooth, then f is smooth iff it is sub-

mersive, f is étale iff df(x) is an isomorphism for all x ∈ X. We will also need later

that flat, smooth and étale are invariant under base change.

Proposition 2.12 ([Mi] prop. 2.11, prop. 2.12). Let φ : X // Y be an étale

morphism, then:

1. For all x ∈ X, Ox,X and Oφ(x),Y have the same Krull dimension.

2. The morphism φ is quasifinite.

3. The morphism φ is open.

4. If Y is respectively normal, regular, reduced, then the same property holds for

X.

Furthermore, the following properties hold:

• Any open embedding is étale.

• The composite of two étale morphisms is étale.
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• If φ ◦ ψ and φ are étale then ψ is étale too.

Example 2.13. (The global étale topology) This is a Grothendieck topology on

SCHK. A covering {Ui // U} is a jointly surjective collection of étale morphisms.

In a similar way there is a smooth and also a flat Grothendieck topology on SCHK.

Definition 2.14. A contravariant functor: C // SET is a sheaf for a given

Grothendieck topology on C when the following diagram is exact:

F (U) //
∏

α

F (Uα) ⇉
∏

α,β

F (Uα ×U Uβ)

for every U object in C and for every covering (Uα // U) of U .

We will see soon that stacks are a generalization of sheaves of sets. In order to

have that stacks are somehow an extension of the given category, we need to recover

all the original objects as sheaves of sets, i.e. we need the Yoneda functor to be a

sheaf.

Definition 2.15. A Grothendieck topology T on a category C is called subcanonical

if every representable functor is a sheaf with respect to T .

Remark 2.16. The natural topologies on the categories of Topological spaces, Man-

ifolds, schemes, Vector Bundles, Principal bundles are all subcanonical. This is de-

scribed in [Vi2] (pg.40), we will work out schemes. To get an example of a non

subcanonical site, take topological spaces, and as a Grothendieck topology, take the

collection of all jointly surjective continuous morphisms. Let X the topological space

with two points and the discrete topology and let Y be the two point space with the

indiscrete topology. Now let {Y1, Y2} be the covering of Y with its two points. There

are two noncostant (hence noncontinuous) functions from Y to X, each belonging

to hX(Y1)
∐

hX(Y2). Conditions on double intersections are trivially satisfied since

there are no double intersections, but these functions clearly don’t glue to form a

continuous function in hX(Y ).

Theorem 2.17. Let Y be a scheme. Then hY is a sheaf for the Zariski topology.
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Proof. Let X be a scheme and {Ui} be an open covering, where each Ui has the

subscheme structure. We will call arrows in the following way:

Uij

πj
��

πi // Ui

pi
��

Uj
pj // X

where all arrows are open embedding. We have to show the exactness of the following

diagram:

hY (X) //
∏

i

hY (Ui) ⇉
∏

i,j

hY (Uij)

where arrows are obtained applying hY to pi and πi. Since morphisms of schemes

can be defined locally and then glued, we have to wonder only about unicity. Let’s

suppose there are two different morphisms α and ᾱ between X and Y such that,

once restricted to the Ui’s are equal. As maps between the underlying topological

spaces they are equal. Let’s look at the induced maps on structure sheaves:

α♯ : OY
// α∗OX

ᾱ♯ : OY
// α∗OX

Let f ∈ OY (U), then for all i, α♯(f) and ᾱ♯(f) are equal once restricted to α−1(U)∩Ui.

Since α∗(OX) is a sheaf, α♯(f) = ᾱ♯(f). This proves unicity, hence exactness.

The following theorem is due to Grothendieck:

Theorem 2.18 (cf. [Vi2] pg.40). Let Y be a scheme. Then hY is a sheaf in the étale

topology.

3 Stacks

A stack is a sheaf of groupoids. In the following definition, to simplify notation we

denote f ∗ (as usual) for F (f) (F a pseudofunctor and f a morphism in C).

Definition 3.1. Let F : C //GPD be a pseudofunctor in groupoids from a category

with a Grothendieck topology, C be an object of the category and {Ui
fi
−→ U} be a

covering. An object with descent data ({ξi}, {φij}) on U , is a collection of objects
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ξi ∈ F (Ui), together with isomorphisms φij : pr∗2ξj ≃ pr∗1ξi in F (Ui×U Uj), such that

the following cocycle condition is satisfied.

For any triple of indices i, j and k, we have the equality

pr∗13φik = pr∗12φij ◦ pr∗23φjk : pr∗3ξk // pr∗1ξi

where prab and pra are projections on the ath and bth factor, or the ath factor respec-

tively.

The isomorphisms φij are called transition isomorphisms of the object with de-

scent data.

An arrow between objects with descent data

{αi} : ({ξi}, {φij}) // ({ηi}, {ψij})

is a collection of arrows αi : ξi // ηi in F (Ui), with the property that for each pair

of indices i, j, the diagram

pr∗2ξj
pr∗2αj //

φij
��

pr∗2ηj

ψij
��

pr∗1ξi
pr∗1αi // pr∗1ηi

commutes.

In understanding the definition above it may be useful to contemplate the follow-

ing cartesian cube (every face is cartesian):

Uijk
pr23 //

pr13

��

pr12

}}{{
{{

{{
{{

Ujk

~~}}
}}

}}
}}

��

Uij //

��

Uj

��

Uik

||zz
zz

zz
zz

// Uk

}}||
||

||
||

Ui // U

in which all arrows are given by projections.
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There is an obvious way of composing morphisms, which makes objects with

descent data the objects of a category, denoted by F (U) = F ({Ui // U}). For

each object ξ of F (U) we can construct an object with descent data on a covering

{σi : Ui // U} as follows. The objects are the pullbacks σ∗
i ξ; the isomorphisms

φij : pr∗2σ
∗
j ξ ≃ pr∗1σ

∗
i ξ are the isomorphisms that come from the fact that both

pr∗2σ
∗
j ξ and pr∗1σ

∗
i ξ are pullbacks of ξ to Uij. If we identify pr∗2σ

∗
j ξ with pr∗1σ

∗
i ξ, as it

is commonly done, then the φij are identities.

Given an arrow α : ξ // η in F (U), we get arrows σ∗
i : σ∗

i ξ // σ∗
i η, yielding an

arrow from the object with descent associated with ξ to the one associated with η.

This defines a functor A : F (U) // F ({Ui // U}).

Definition 3.2 ([Vi2] (pg.82)). Let C be a category with a Grothendieck topology.

A pseudofunctor (presheaf), is said respectively:

1. separated prestack if the functor A is fully faithful.

2. stack if the functor A is an equivalence of categories.

A stack is a sheaf of groupoids, i.e. a pseudofunctor in groupoids (presheaf) which

satisfies the sheaf axioms.

Remark 3.3. Letus give now a definition a little less precise but a little more concise.

The main problem here is that (Ui,j ×Ui
Ui,k) is not equal to (Ui,k ×Uk

Uj,k): they are

only canonically isomorphic. This is taken from [G]:

Let {Ui
fi
−→ U} be a covering of U . Then (we write down the two conditions in a

simpler way):

1. (glueing of (iso)morphisms and unicity-the functor A is fully faithful) if X and

Y are two objects of F (U), and φi : f ∗
i (X) // f ∗

i (Y ) are (iso)morphisms such

that f ∗
ij(φi) = f ∗

ij(φj), then there exists a unique morphism η : X // Y such

that f ∗
i (η) = φi. This exactly means that the functor:

IsoU(X,Y ) : C // SET

which associates to a morphism f : Ui //U the set of isomorphisms in F (Ui)

between f ∗X and f ∗Y is a sheaf for the given topology.



3. STACKS 31

2. (glueing of objects: the functor A is essentially surjective, every descent da-

tum is effective) If Xi are objects of F (Ui), and φij : f ∗
ij(Xj) // f ∗

ij(Xi)

are morphisms satisfying the cocycle condition f ∗
ijk(φij) ◦ f

∗
ijk(φjk) = f ∗

ijk(φik),

then there exists an object X ∈ F (U) and φi : f ∗
i (X)

∼=
−→ Xi such that

φji ◦ f
∗
ij(φi) = f ∗

ij(φj).

Remark 3.4. Now, in order to have a notation which extends the existing one, we

need to check the following: if the pseudofunctor in groupoids factors via SET , then

it is a stack if and only if it is a sheaf of sets. It is a separated presheaf if and only

if it is a separated prestack. [[LM], 3.4.1]

Proof. First, let F be a stack. Let’s consider an object X and a covering {Xi
pi
−→ X}

in the given Grothendieck topology. We have to check that the following diagram is

exact:

F (X) //
∏

i

F (Xi) ⇉
∏

i,j

F (Ui ×U Uj)

let {ξi} be an element of
∏

F (Xi) such that ξi|Xi×XXj
= ξj|Xi×XXj

. Equality is

trivially an isomorphism satisfying the cocycle condition, so there exists (thanks

to the second point in the definition of stack) ξ ∈ F (X) and isomorphisms ψi :

ξ|Xi
// ξi in F (Xi). F factors via SET , so isomorphisms ψi are identities, and so

ξ|Xi
= ξi for all i. Let now ξ̄ be one other element in F (X) with the same property

as ξ. So ξ̄|Xi
and ξ|Xi

are equal, and so isomorphic with the identity (which clearly

satisfies the conditions in 1). So by the first point, there exists an isomorphism

globally between ξ̄ and ξ. It is a morphism between sets, and locally it is the

identity, therefore it is the identity globally and ξ̄ = ξ. Now let’s see that a sheaf

is a stack. Conversely, let F be a sheaf. Isomorphisms are a sheaf just because the

pseudofunctor factorizes through SET : the sheaf condition is not needed here. It is

possible to define a global isomorphism just defining it on any single element of the

set thanks to the local isomorphisms. The condition on the intersections tells that

the global map defined is well defined. The uniqueness is clear (the global map has

to be equal to the local maps once restricted). Every descent datum is effective. In

fact, fix a descent datum Xi, φi,j. The equality condition on the triple intersections

tells that the isomorphisms on the double intersections are actually equalities. But

the sheaf condition for a contravariant functor in SET tells now what is needed:

equality on the double intersection is the right condition to glue.
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Definition 3.5. A morphism of stacks is simply a morphism of pseudofunctors in

groupoids. The same holds for isomorphisms.

Remark 3.6. If the two pseudofunctors factorize via SET , then f is a morphism of

stacks if and only if it is a morphism of sheaves.

Example 3.7. (V ectn) Here the category C could be the category of topological

spaces, of schemes, of manifolds,... Let X be an object of the category. V ectn(X)

is the groupoid of rank-n vector bundles over the base X. Let f : X ′ // X be a

morphism. V ectn(f) is the functor pull-back of vector spaces, i.e. if π : E //X is

a vector bundle, V ectn(f) is what is usually called f ∗:

f ∗E //

��

E

��
X ′ // X

Let’s check it is a stack. This turns out to be quite trivial:

1. If E and E ′ are vector bundles over X, and {Ui} is a covering of X, then a

set of (iso)morphisms fi : E ↾Ui
// E ′ ↾Ui

which are equal on the double

intersections glues to an isomorphism between E and E ′

2. By definition, a vector bundle is exactly a local trivial bundle with isomor-

phisms satisfying the cocycle condition.

For the following example, recall the (here Grp is the category of groups):

Definition 3.8. A group object of C is an object G of C, together with a functor

Cop //Grp, whose composite with the forgetful functor in SET equals hG.

To get the usual form of a group object inside a category, one has just to apply

Yoneda’s lemma. This is worked out in [[Vi2] prop. 2.12]. For schemes, this is the

same given in [[H] pg.324]. For varieties, this is the same given in [[H] I, Ex. 3.21].

Example 3.9. BG This is also known in the literature as trivial gerbe. Take the

same category as in the previous example. With the same notations, BG(X) is the

groupoid of principal G-bundles over X, and BG(f) is the pull-back morphism for

principal bundles. To prove that this is a stack is exactly the same as in the previous
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example. If G is taken to be GL(n), we can show that BG and V ectn are isomorphic

as stacks. There are two morphisms of pseudofunctors: f : BGL(n) // V ectn
and g : V ectn // BGL(n). Let’s describe them and see they give an isomorphism

of pseudofunctors. f(P // M) by definition is P × V/ ∼= where (p, v) ∼= (p′, v′)

whenever exists g ∈ G and p = gp, v = g(v). This is a vector bundle with the same

transition functions of the principal bundle associated. Conversely, if E //M is a

vector bundle, we build-up a principal GL(n)-bundle as

P :=
∐

α

Uα ×G/ ∼

with

(xα, gα) ∼ (xβ, gβ) ⇐⇒ xα = xβ ∈ Uα ∩ Uβ and gβ = φβα(x)gα

where (Uα) is a local trivialization of E with transition functions φβα. We now let

g(E // M) = (P // M). This gives an isomorphism between the two pseudo-

functors. In a similar way, for a given group G, a representation ρ in Aut(V ) gives

a morphism BG // V ectn, where n = dim(V ).

If H is a normal subgroup of G and Γ = G/H, there is a morphism of pseudo-

functors BG //BΓ which sends a principal G− bundle E //X to the principal

Γ-bundle E/H // X. If C is an object of the category, there is a morphism of

pseudofunctors C //BG, sending X //C to the trivial G-bundle X×CG //X.

Example 3.10. Quotient stacks. This example generalizes the previous one. As

usual X is an object of C and G is a group object of the category, acting on the

right on X. We define the stack [X/G]. On objects, [X/G](Y ) is, by definition the

groupoid given by:

E

π
��

α
// X

Y

where π gives a principal G−bundle, and α is a G−equivariant morphism. This

datum will be written down in the more compact form: (Y, π, E, α). If f : Y // Y ′

is a morphism, [X/G](f) is the homomorphism of groupoids given by what is usually
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called f ∗:

f ∗(E ′) //

##F
FF

FF
FF

FF

��

E ′

��

~~~~
~~

~~
~~

X

Y // Y ′

This pseudofunctor gives rise to a stack. If X turns out to be the terminal object of

the category, this example reduces to the previous one.

Definition 3.11. A diagram of morphism of stacks:

F
f //

h   @
@@

@@
@@

G

g
��
H

2-commutes if it is given an isomorphism of functors h ∼= g ◦ f .

Example 3.12. The morphism C //BG sending X //C to the trivial G-bundle

X ×C G //X

S //

!!C
CC

CC
CC

C BG

��
BΓ

where f, g, h were defined while BG was defined. The diagram 2-commutes, because

X ×C Γ //X is canonically isomorphic to (X ×C F )/H but h is not equal to g ◦ f .

Definition 3.13. Let f1 : F1
// G, f2 : F2

// G be morphisms of stacks. The

fiber product F1 ×G F2 is the stack defined as follows: on a scheme X its objects

are triples (ξ1, ξ2, α), where ξi is an object of Fi(X) and α : f1(ξ1) // f2(ξ2) is an

isomorphism. Arrows from (ξ1, ξ2, α) to (η1, η2, β) are pairs (φ1, φ2), φi : ξi // ηi an

arrow in Fi(X), and β ◦ f1(φ1) = f2(φ2) ◦ α.

Remark 3.14. A 2-commutative diagram of stacks,

H //

��

F2

��
F1

// G
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induces a morphism g : H // F1 ×G F2, unique up to canonical isomorphism. If g

is an isomorphism, we say that the diagram is 2-cartesian, and we also call H the

fiber product.

Remark 3.15. If F,G,H : C //SET are sheaves on a category with a Grothendieck

topology, then for all α : F //G, β : H //G morphisms, F ×GH is again a sheaf.

Lemma 3.16. [Vi2] Let F,G,H : C // GPD be stacks. Then for all α : F //G,

β : H //G, F ×G H is again a stack.

Remark 3.17. Let U be an object of the category C. Consider the diagonal ∆U :

U // U × U . If V is another object and a morphism V // U × U is given, this

corresponds to two objects X and Y in hU(V ). Then the fiber product U ×U×U V is

equivalent to the sheaf IsoV (X,Y ). In fact, by P the fiber product, one has for any

object B:

P (B) = {(f1, f2, α) f1 ∈ hU(B), f2 ∈ hV (B), α : (f2, f2) // (x1 ◦ f1, x2 ◦ f1)}

and this is equivalent to:

IsoU(x1, x2)(B) = {g ∈ hU(B), β : g∗x1
// g∗x2}

Definition 3.18. Let f : F // G be a morphism of stacks. It is said to be

representable if for any object Y ∈ C and any morphism Y //G, the fiber product

F ×G Y is representable.

Proposition 3.19 ([Vi1] prop. 7.13). Let F be a stack. ∆F is representable if and

only if for every C object of C, hC // F is representable.

Proof. Assume that ∆F is representable. If f : X // F and g : Y // F are

morphisms whereX and Y are objects of the category C, we have a cartesian diagram:

hX ×F hY //

��

hX × hY

��
F

∆F // F × F

Hence hX ×F hY is representable. Suppose that every morphism from a scheme to

F is representable. Let f : hX // F × F be a morphism, corresponding o two
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morphisms f1 : X // F, f2 : X // F . Then f = (f1 × f2) ◦ ∆X . The following

diagram is cartesian:

F ×F×F hX //

��

hX

��
hX ×F hX //

��

hX × hX

��
F

∆F // F × F

Then hX ×F hX is a scheme, and therefore also F ×F×F hX = (hX ×F hX) ×X×X X

is representable.

Definition 3.20. If P is a property which is stable under base change, we say that a

representable morphism f : F //G of stacks has P if for any object in the category

and every stack morphism X //G, the induced morphism X ×G F //X has P.

What follows (Grothendieck representability theorem) could be used to give a

new definition of scheme, given in this setting:

Theorem 3.21. A sheaf F : SCHK
// SET is representable if and only if there

exist Fi representable functors and φi : Fi //F representable morphisms such that:

1. Fi is represented by an affine scheme.

2. φi is an open embedding.

3.
∐

Fi // F is a jointly surjective covering, i.e. for all S scheme, for all

α ∈ F (S), Si defined by hSi
∼= Fi ×F hS,

∐

fi(Si) = S.

Proof. Without loss of generality, let’s assume Fi = hXi
for Xi scheme (without such

assumption notation becomes a little more complicated).

Fij := Fi ×F Fj
pi //

pj
��

Fi

αi
��

Fj
αj // F

The pi’s correspond to open embeddings of schemes Ui ∩ Uj // Ui. Let’s call

Uij := Ui ∩ Uj. Clearly Uij = Uji, hence we can glue the schemes Ui along Uij’s to



4. ALGEBRAIC STACKS 37

construct a new scheme X, which corresponds to the functor hX . We now show that

hX and F are isomorphic. We have injective natural transformations : αi : Fi //F .

αi ↾Uij
: hUi

↾Uij
//F is equal to αj ↾Uij

: hUj
↾Uij

//F . By Yoneda’s Lemma, {αi}

corresponds to {bi} ∈
∏

F (Ui) such that bi ↾F (Uij)= bj ↾F (Uij). F is a sheaf, hence

there exists a unique b ∈ F (X) such that b ↾F (Ui)= bi for all i, i.e. is defined the

natural transformation β : hX // F glueing the isomorphisms βi with hUij
along

intersections. For each scheme T , βi(T ) and βij(T ) are isomorphisms, hence also

β(T ) is an isomorphism.

This proposition tells us that among sheaves of sets (spaces), schemes are exactly

the one with a Zariski open affine covering. One doesn’t enlarge the category of

schemes by gluing, if the Zariski topology is used. In fact, if one uses the étale

topology, then a similar construction leads to the notion of an algebraic space.

Theorem 3.22. The same proposition holds for Algebraic Spaces with the étale topol-

ogy instead of the Zariski topology. [LM].

As a standard reference for algebraic spaces we take [Kt].

4 Algebraic Stacks

This section is taken essentially from [G] and [Vi1]. Here the category C will be

Sch/S.

Algebraic Stacks // Stacks // Presheaves of groupoids

Sch/S

77nnnnnnnnnnnn
// Algebraic spaces

OO

// Spaces

OO

// Presheaves of sets

OO

Where every arrow means that the left hand side is a full subcategory (or full sub

2-category) of the right hand side.

Definition 4.1. A space is just a sheaf of sets. The remark 3.4 tells exactly that

spaces are stacks factorizing via SET .

Definition 4.2. An algebraic space is a space S such that:

1. the diagonal ∆S is quasicompact and separated;
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2. there is a scheme U and an étale surjective morphism hU // S.

Definition 4.3. An algebraic stack, or Deligne-Mumford stack is a stack F such

that:

1. the diagonal ∆F is representable, quasicompact and separated;

2. there is a scheme U and an étale surjective morphism hU // F .

such a surjective morphism hS // F is called an étale atlas for F .

These are the official definitions of algebraic spaces and algebraic stacks, in this

work we will always start from the category SCHK of schemes of finite type over an

algebraic closed field K, hence the hypothesis of quasicompactness of the diagonal

will be always satisfied.

Definition 4.4. A morphism of algebraic stacks is simply a morphism of stacks,

hence a morphism between the pseudofunctors.

The following proposition gives an simpler criterium to determine whether or not

an algebraic stacks has a given property which is local in the base.

Proposition 4.5. Let φ : F //G be a representable morphism of algebraic stacks,

and let hX // G be an étale atlas, P a property which is local in the base (in

particular invariant under base change). Then the following are equivalent:

1. φ has the property P ;

2. hX ×G F has the property P .

Proof. We have only to prove that (2) ⇒ (1). Following the definition of having

a property P for a representable morphism, we take a scheme A and a morphism

hA // G. Since hX // G is representable, we can define hB := hA ×G hX , so we

have the following cartesian diagram:

hB = hA ×G hX

f̃
��

// hX

��
hA // G
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hX //G is surjective and étale, so the morphism hB // hA is étale too. Now we

have the following diagram, whose big and right squares are cartesian by definition:

hB ×G F //

f̃
��

hX ×G F

f
��

// F

��
hB // hX // G

It follows that the left square too is cartesian. f̃ has the property P, since f is

invariant under base change. It follows that the left square is cartesian, and we have

proven the statement. Now the following cartesian diagram, proves that g has P:

hB ×G F //

f̃
��

hA ×G F //

g
��

F

��
hB // hA // G

g has P because f̃ has P and hB // hA is étale and surjective.

The following is taken from [Vi1]:

Proposition 4.6. The diagonal of an algebraic stack is unramified.

Proof. Let F be an algebraic stack with atlas U . Then U ×U //F ×F is an atlas

for F ×F . If Y is a scheme and Y //F ×F a morphism, set X = F ×F×F Y . The

following diagram is commutative:

X ×F U //

��

##H
HH

HH
HH

HH
H

Y ×F×F (U × U)

vvmmmmmmmmmmmm

��

U

��

∆U// U × U

��
F

∆F// F × F

X //

::uuuuuuuuuu

Y

hhQQQQQQQQQQQQQQQ

Of the four external squares, all are cartesian by definition, except for the upper one.

It follows that the top square is also cartesian. Hence the top row is an embedding,

the left and right columns are étale, and therefore X // Y is unramified.
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Also a sort of converse holds, but it is considerably more difficult.

Theorem 4.7 ([LM] Thm 8.1, [DM] Thm 4.21). Let F be a stack such that:

1. The diagonal ∆F is representable.

2. There is a scheme U and a smooth surjective morphism hU // F .

Then F is an algebraic stack of Deligne Mumford if and only if the diagonal ∆F is

unramified.

Remark 4.8. If ξ ∈ F (X), the sheaf of groups IsoX(ξ, ξ) is a separated group

scheme on X, which is unramified. AutX(ξ) can have only finitely many sections,

and therefore ξ has only finitely many automorphisms in F (X). The presence of

nontrivial automorphisms in some F (X) implies that the diagonal F // F × F is

not an embedding, i.e. the algebraic stack turns out not to be a scheme.

Definition 4.9 ([Vi1]). [separated morphism] A morphism of stacks f : F //G is

separated if for any complete discrete valuation ring R and any commutative diagram:

F

f
��

Spec(R)

g1

;;vvvvvvvvv g2

;;vvvvvvvvv // G

any isomorphism between the restrictions of g1 and g2 to the generic point of Spec(R)

can be extended to an isomorphism between g1 and g2.

Definition 4.10 ([Vi1]). [proper morphism] A morphism of stacks f : F // G is

proper if it is separated, and for any complete valuation ring R with field of fractions

K and any commutative diagram:

Spec(K)
g //

��

F

��
Spec(R) // G

there exists a finite extension K ′ of K such that the morphism Spec(K ′) // F

induced by g extends to Spec(R′), where R′ is the integral closure of R in K ′.



5. GLOBAL QUOTIENTS 41

Lemma 4.11 ([Vi1]). Composite of separated, composite of proper, composite of

representable is still separated, proper, representable. A morphism of stacks F //G

is separated if and only if the diagonal F // F ×G F is proper.

Lemma 4.12 ([Vi1]). Separated, proper and representable are invariant under base

change.

Lemma 4.13 ([Vi1]). If a morphism of stacks is representable, then it is separated

or proper if and only if it is represented by separated or proper morphisms of schemes

Remark 4.14. Our definition of separated and proper morphisms works for all

morphisms of stacks, even if they are not representable.

Definition 4.15. A substack of a stack F is a representable morphism of stacks

F ′ // F which is represented by embeddings of schemes. A substack is open or

closed whether the representing embeddings of schemes are open or closed.

Definition 4.16. A stack is called connected if it is not the disjoint union of two

proper open substacks. It is called irreducible if it is not the union of two proper

closed substacks. Is called integral if it is both reduced and irreducible.

Recall that étale morphisms preserve dimension.

Definition 4.17. The dimension of an algebraic stack is just the dimension of an

étale atlas.

5 Global quotients

In the following, we work out the notion of algebraic stack for the example of a

global quotient [X/G]. The description of the pseudofunctor (hence stack) [X/G]

was given in a previous remark. Here we look at its algebraic structure, proving

it is an algebraic Deligne Mumford stack. We want to show that an étale atlas is

triv: X // [X/G], where the morphism triv is given, via 2-Yoneda’s Lemma, by

the object of [X/G]:

X ×G
act //

pr1
��

X

X
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where act is the action of the algebraic group onto X and pr1 is the projection onto

the first factor. We need to prove at first that this morphism is representable. We

denote, using a standard convention, by f̄ the lifting morphism of f via a fixed

pullback.

Lemma 5.1. Let B be a scheme. A morphism B // [X/G] is given (via 2-Yoneda’s

lemma) by an object of [X/G](B), i.e. a principal G−bundle E with a G− equivariant

morphism to X:

E
a //

π
��

X

B

then the following diagram is 2-cartesian:

E

π
��

a // X

triv
��

B
b // [X/G]

Proof. We will show that the stack E satisfies the universal property of the fiber

product. First we will prove that the diagram of the lemma is 2-commutative. We

will only check it on the objects of E(Z). Let f : Z // E be an object of E(Z)

This object is sent by:

b ◦ π(f) := (E ×B Z,Z, a ◦ π ◦ f)

triv ◦ a(f) := (Z ×G,Z, act ◦ (a ◦ f, Id))

To show that this diagram is 2-commutative, we have to show that there exists an

isomorphism, denoted α(f), between these two objects that is:

• α(f) is an isomorphism of G−bundle over Z;

• the equality a ◦ π ◦ f ◦ α(f) = act ◦ (a ◦ f, Id) holds.
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Let’s collect all these maps in a unique diagram:

Z ×B E
π ◦ f

((RRRRRRRRRRRRRRR

��
Z ×G

α(f) 99

//

��;
;;

;;
;;

;;
;;

;;
;;

;;
Z

f

$$I
IIIIIIIII E

π
��

a // X

E
π //

b
��

B

X ×G
pr1 //

act
��

X

X

In order to define α(f), we can use the universal property of Z ×B E, namely there

exists a unique morphism, denoted α(f) such that the following diagram is commu-

tative:

Z ×G actE ◦ (f, Id)

((

pr1

""

%%LLLLLLLLLL

Z ×B E
π ◦ f

//

pr1
��

E

π
��

Z
π ◦ f // B

where actE is the action of G onto E. actE ◦ (f, Id) and π ◦ f are G− equivariant.

Hence α(f) is G− equivariant, and so a morphism of G-bundles over Z that is

an isomorphism. Let now show the equality a ◦ π ◦ f ◦ α(f) = act ◦ (a ◦ f, Id).

The last diagram implies that actE ◦ (f, Id) = π ◦ f ◦ α(f). We compose by the

morphism a both sides and use that b is G− equivariant. Then we get the equality

a◦π ◦f ◦α(f) = act◦ (a◦f, Id), and so the diagram of our lemma is 2-commutative.

Now we will prove that this diagram is cartesian. There will be some simplification

since we will prove it only on objects. Let Z be a stack, and let’s consider the

following 2-commutative diagram:

Z
g //

f
��

X

triv
��

B
b // [X/G]



44 APPENDIX A. STACKS AND ALGEBRAIC STACKS

This means that for any z ∈ Z(Z), there exists an isomorphism α(z) between the

objects:

triv ◦ g(z) = (Z ×G,Z, act ◦ f(z))

b ◦ f(z) = (Z ×B E,Z, a ◦ f(z))

Summing up all the datas in the following commutative diagram:

Z

s
��

Z ×G
α(z)
≡

//

g(z)

yyssssssssss

yyssssssssss

##F
FF

FF
FF

FF
Z ×B E

{{vvvvvvvvv f(z)

##H
HHHHHHHH

X ×G
act

{{ww
ww

ww
ww

w pr1

%%LLLLLLLLLL Z
g(z)

{{wwwwwwwww f(z)

$$H
HHHHHHHHH E

π

zzvvvvvvvvvv
a

  @
@@

@@
@@

@

X X B X

here s : Z // Z × G sends x to (x, e) turns out to be useful later. Here α(f) is

chosen to satisfy the following equality:

act ◦ g(z) = a ◦ f(z) ◦ α(z)

Now we define the following morphism on objects:

H : Z // E

z // f(z) ◦ α(z) ◦ s : Z // E

(φ : z // z′) // (Z(φ) : Z // Z ′)

where s : Z //Z×G sends t //(t, e). A look at the previous big commutative

diagram let’s understand that f = π ◦ H, while the equality g = a ◦ H holds thanks

to the previous equation (look always at the big commutative diagram). Then the

stack E satisfies the universal property of the fiber product, hence the lemma.

Lemma 5.2. Let (B ×G, π,B, a) be an object in [X/G]. Then the stack morphism

induced from B to [X/G] via 2-Yoneda lemma factors through the stack morphism

triv defined before.
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Proof. We consider the section s : B // B × G sending x // (x, e). Then we

get a scheme morphism a ◦ s : B //X. Let’s prove that the following diagram is

2-commutative:

X

triv
��

B
b //

a ◦ s
<<xxxxxxxxx

[X/G]

Let f : Z //B be a scheme morphism, i.e. an object of B. Then we have:

b(f) = (Z ×G,Z, a ◦ (g, Id))

and

triv ◦ a ◦ s(f) = (Z ×G,Z, act ◦ (a ◦ s ◦ f, Id))

We will prove the following equality:

act ◦ (a ◦ s ◦ f, Id) = a ◦ (f, Id)

We have that, as a is G−equivariant:

act ◦ (a, Id) = a ◦ actB×G

where

actB×G : (B ×G) ×G //B ×G

(x, λ, µ) // (x, λµ)

The scheme morphism s defines a morphism (s, Id) : B ×G // (B ×G) ×G. We

have that:

actB×G ◦ (s, Id) = IdB×G

Then the equality stated before implies the equality desired. We deduce that the

functors triv ◦ (a ◦ s) and b are the same on the objects of B. In the same way, it is

possible to show the equality on the morphisms of X.

Theorem 5.3. Let G be a group scheme acting on X with finite and reduced sta-

bilizers, where X is a separated scheme (of finite type over an algebraically closed

field) then the stack [X/G] is an algebraic stack.
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Proof. Using simultaneously last two lemmas, one gets the following cartesian dia-

gram:

X ×G
pr1 //

act
��

X

triv
��

X
triv // [X/G]

A standard argument in category theory guarantees that the following is cartesian:

X ×G
pr1, act //

��

X ×X

��
[X/G]

∆[X/G] // [X/G] × [X/G]

here ∆ as usual denotes the diagonal morphism. By definition, the morphism of

stack triv : X // [X/G] (which we have just seen is representable) is surjective

and smooth iff the scheme morphism π : E // B is surjective and smooth. As

P is a G−bundle over B, the projection is smooth and surjective. Up to now we

have just checked that our stack is Artin , we haven’t used the condition on the

finiteness of the stabilizers. Now we proceed in two directions: for the general case,

we use the proposition 8.1 of [LM], and then we work out explicitly a subexample,

i.e. weighted projective spaces.

There is a natural bijective correspondence between isomorphism classes of

morphisms Spec(K) // [X/G] with orbits of geometric points Y // X. ih x1

and x2 are in [X/G](Spec(K)), then IsomSpec(K)(x1, x2) is empty unless x1 and x2

correspond to the same orbit, in which case it is isomorphic to the scheme-theoretic

stabilizer of a point in the orbit. This implies that the diagonal is unramified. Then

[X/G] is an algebraic Deligne Mumford stack, according to the Proposition 8.1

[LM].

Example 5.4 (weighted projective space: check explicitly it is DM stack). In this

section [X/G] = P(w). Now it is enough to show that there exists a scheme U and an

étale surjective morphism u : U // [X/G]. Let Ui be the usual finite open covering
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with affine charts of X . Let’s consider the following object of [X/G]:

Ui ×G
acti //

πi
��

X

Ui

By 2-Yoneda’s lemma, this object defines a morphism of stack ui : Ui // [X/G].

We will show that this map ui is in fact étale. Let (E, π,B, a) be an object of [X/G].

The lemma 5.2 implies that ui factors through triv. The lemma 5.1 implies that the

three square diagrams below are cartesian:

a−1(Ui)
incl //

a ↾a−1(Ui)
��

P

a
��

π // B

b
��

Ui
incl // X

triv// [X/G]

where ui = triv ◦ incl. To show that the morphism of stacks ui is étale, we will show

that the morphism of schemes π ◦ incl : a−1(Ui) // B is étale. To be étale is a

local condition on B in the Zariski topology, so we can assume that the principal

bundle π : P //B is trivial P = X ×G and π is the projection on B. We have the

following cartesian diagram:

a−1(Ui) = X × µwi
//

a|X × µwi
��

X ×G

��
Ui // X

where µwi
is the stabilizer. To finish the proof, we have just to show that the covering

u given by the disjoint union of the ui’s is (étale) and surjective. This last condition,

which can be checked on the associated reduced scheme Xred is trivial.

To end the section, we give the following lemma, which turns out to be founda-

mental in the last section:

Lemma 5.5. Let G be a group scheme, acting on both S
f // T with finite stabi-

lizers. Let f be G−equivariant. Then the induced morphism [S/G]
f̃ // [T/G] is

representable.
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Proof. We want to complete the diagram in order to make it cartesian:

? //

��

[S/G]

��
X // [T/G]

The morphism X // [T/G] is given by an object:

P
π //

��

T

X

P //X is a G−principal bundle and π is G−equivariant. The morphism between

the two quotient stacks is induced by the morphism S
f // T (the upper cartesian

diagram is the definition of Q):

Q //

��

S

f
��

P
π //

��

T

X

G acts over P without fixed points, hence it acts over Q without fixed points too:

g(p, s) 6= (p, s)

because g(p) 6= p. Hence we define the stack Y = [Q/G]. Let’s see Y is a scheme.

Taking a trivialization
⋃

Xi = X for P //X, such that all Xi’s are affine sets, one

finds out the following diagram:

(G×Xi) ×T S //

��

S

��
G×Xi

��

// T

Xi
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One now has to pass to the quotient of (G×Xi)×T S by the action of G. G only acts

on the first and on the third variable, hence all can be done passing to the quotient

in affine charts and then gluing. Now we have to prove that the diagram:

Y //

��

[S/G]

��
X // [T/G]

is 2-cartesian. As usual, we check it only on objects, and we start proving it com-

mutes. An object U // Y is sent passing from the way up, to:

Q×Y U //

��

T

U

Recall that Q = P ×X Y . From the way above, one finds the following object:

U ×X P //

��

T

U

which is canonically isomorphic to U ×Y Y ×X P . Hence the diagram commutes.

Now, to see the diagram is 2-cartesian, take two morphisms from a scheme U to

[S/G] and to X respectively:

U

β

��

α

$$
Y

��

// [S/G]

��
X // [T/G]

Asking this diagram to be commutative means that the two principal bundles with

G−equivariant morphism given by:

E //

��

T P ×X U //

��

T

U U
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are equivalent. We find out the following commutative diagram:

E //

∼
��

Q //

��

S

��
P ×X U //

��

P //

��

T

U // X

The upper right square is cartesian, hence we find out the dotted morphism. Now

composing the dotted morphism with Q // Y (the projection), we find the desired

map, proving that our diagram was 2-commutative. In fact all the commuting rules

follow, because the morphism factors through Q. Now Q // Y is a G−principal

bundle



Appendix B

Orbifolds and orbifold cohomology

1 Orbifolds

The notion of orbifold was first introduced by Satake in [Sa] under the name of

V -manifold.

Definition 1.1 (1-ORB). An orbifold is a smooth Deligne-Mumford Stack. A mor-

phism of orbifolds is simply a morphism as algebraic stacks (and so a morphism as

stacks).

For the differential definition of orbifold, we follow the description given in [Pe].

The standard reference is [MP], although it gives only the notion of reduced orbifold.

Let Y be a paracompact Hausdorff topological space. A uniformizing system for

an open subset U ⊂ Y is a collection of the following objects:

Ũ a connected open subset of Rd;

G a finite group of C∞-automorphisms of Ũ such that: the fixed-point set of each

element of the group is either the whole space or of codimension at least 2, the

multiplication in G is given by g1 · g2 = g1 ◦ g2 where ◦ is the composition;

χ a continuous map Ũ → U that induces an homeomorphism from Ũ/G to U ,

where Ũ/G is the quotient space with the quotient topology. Here G acts on

Ũ on the left.

We will call the subgroup of G which consists of elements fixing the whole space the

kernel of the action, and it will be denoted by Ker(G).

51
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Given an open subset U of Y , a uniformizing system for U will be denoted by

(Ũ , GU , χU). If the dependence on U is clear from the context, it will also be denoted

by (Ũ , G, χ).

Definition 1.2. The dimension of an uniformizing system (Ũ , G, χ) is the dimension

of Ũ as a real manifold.

Let (Ũ , G, χ) and (Ũ ′, G′, χ′) be uniformizing systems for U and U ′ respectively,

and let U ⊂ U ′. An embedding between such uniformizing systems is a pair (ϕ, λ),

where ϕ : Ũ → Ũ ′ is a smooth embedding such that χ′ ◦ ϕ = χ and λ : G → G′ is

a group homomorphism such that ϕ ◦ g = λ(g) ◦ ϕ for all g ∈ G. Furthermore, λ

induces an isomorphism from Ker(G) to Ker(G′).

Definition 1.3 (2-ORB). An orbifold atlas on Y is a family U of uniformizing

systems for open sets in Y satisfying the following conditions:

1. The family χ(Ũ) is an open covering of Y , for (Ũ , G, χ) ∈ U .

2. Let (Ũ , G, χ), (Ũ ′, G′, χ′) ∈ U be uniformizing systems for U and U ′ respec-

tively, and let U ⊂ U ′. Then there exists an embedding (ϕ, λ) : (Ũ , G, χ) →

(Ũ ′, G′, χ′).

3. Let (Ũ , G, χ), (Ũ ′, G′, χ′) ∈ U be uniformizing systems for U and U ′ respec-

tively. Then, for any point y ∈ U ∩ U ′, there exists an open neighbourhood

U ′′ ⊂ U ∩ U ′ of y and a uniformizing system (Ũ ′′, G′′, χ′′) for U ′′ which belong

to the family U .

Two such atlases are said to be equivalent if they have a common refinement,

where an atlas U is said to refine V if for every chart in U there exists an embedding

into some chart in V .

A smooth orbifold structure on a paracompact Hausdorff topological space Y is

an equivalence class of orbifold atlases on Y .

We denote by [Y ] the smooth orbifold structure on the topological space Y . We

will call this simply an orbifold.

Definition 1.4. The orbifold [Y ] is said of real dimension d if all the uniformizing

systems of an atlas have dimension d. The real dimension of [Y ] will be denoted by

dimR[Y] or, by abuse of notation by dim[Y] .
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Remark 1.5. Every orbifold atlas for Y is contained in a unique maximal one, and

two orbifold atlases are equivalent if and only if they are contained in the same

maximal one. Therefore we shall often tacitly work with a maximal atlas.

Proposition 1.6. Let (ϕ, λ) and (ψ, µ) be two embeddings from (Ũ , G, χ) to

(Ũ ′, G′, χ′). Then, there exists g′ ∈ G such that

ψ = g′ ◦ ϕ and µ = g′ · λ · g′−1
.

Moreover, this g′ is unique up to composition by an element of Ker(G′).

Remark 1.7. Notice that, for any uniformizing system (Ũ , G, χ) and g ∈ G, there

exists g′ ∈ G′ such that ϕ ◦ g = g′ ◦ ϕ. Moreover this g′ is unique up to an element

in Ker(G′). Thus, in the definition of an embedding (ϕ, λ), the existence of λ is

required to guarantee a continuity for the kernels of the actions.

Remark 1.8. The previous remark implies that, for any embedding (ϕ, λ), the group

homomorphism λ is injective.

Lemma 1.9. Let (ϕ, λ) : (Ũ , G, χ) → (Ũ ′, G′, χ′) be an embedding. If g′ ∈ G′ is such

that ϕ(Ũ) ∩ (g′ ◦ ϕ)(Ũ) 6= ∅, then g′ belongs to the image of λ.

Remark 1.10. Let (Ũ , G, χ) be a uniformizing system for the open subset U of

Y . Let U ′ ⊂ U be an open subset. Then we have an induced uniformizing system

(Ũ ′, G′, χ′) for U ′, where Ũ ′ is a connected component of χ−1(U ′) and G′ is the

maximal subgroup of G that acts on Ũ ′. Clearly there is an embedding of (Ũ ′, G′, χ′)

in (Ũ , G, χ).

It follows that, for a given orbifold [Y ], we can choose an orbifold atlas U arbi-

trarily fine.

Remark 1.11. Let [Y ] be an orbifold and let (Ũ1, G1, χ1), (Ũ2, G2, χ2) be uniformiz-

ing systems for open subsets U1, U2 of Y in the same orbifold structure [Y ]. For any

point y ∈ U1 ∩U2, there is an open neighbourhood U12 of y such that U12 ⊂ U1 ∩U2,

a uniformizing system (Ũ12, G12, χ12) for U12, compatible with [Y ], and embeddings

(ϕi, λi) : (Ũ12, G12, χ12) → (Ũi, Gi, χi) for i ∈ {1, 2}. So, we get the isomorphism:

ϕ12 := ϕ2 ◦ ϕ
−1
1 : ϕ1(Ũ12) → ϕ2(Ũ12).



54 APPENDIX B. ORBIFOLDS AND ORBIFOLD COHOMOLOGY

Let now U1, U2 and U3 be open subsets of Y such that U1 ∩ U2 ∩ U3 6= ∅, and

assume that there are uniformizing systems (Ũ1, G1, χ1), (Ũ2, G2, χ2) and (Ũ3, G3, χ3)

for U1, U2 and U3 respectively. Then, from Proposition 1.6, there exists g ∈ G3 such

that

ϕ23 ◦ ϕ12 = g ◦ ϕ13,

where the equation holds if we restrict the functions to some open subsets of the

domains.

Definition 1.12. A reduced orbifold is an orbifold structure [Y ] on Y such that there

exists an orbifold atlas U for [Y ] with the following property: for any uniformizing

system (Ũ , G, χ) ∈ U , Ker(G) is the trivial group.

Definition 1.13. Let [Y ] be a smooth orbifold and y ∈ Y be a point. A uniformizing

system for [Y ] at y is given by an open neighbourhood Uy of y in Y and a uniformizing

system (Ũ , G, χ) for Uy in the orbifold structure [Y ] such that, Ũ ⊂ Rd is a ball

centered in the origin 0 ∈ Rn, G acts trivially on 0 and χ−1(y) = 0.

For a given orbifold [Y ] and a point y ∈ Y , a uniformizing system at y will be

denoted by (Ũy, Gy, χy) and χ(Ũy) by Uy. The group Gy will be also called the local

group at y.

We now define a complex orbifold. We will use the same notation as in the smooth

case.

Let Y be a paracompact Hausdorff topological space. A complex uniformizing

system for an open subset U of Y is a triple (Ũ , G, χ), where Ũ ⊂ Cd is a connected

open subset, G is a finite group of holomorphic automorphisms of Ũ and χ is a

continuous map satisfying the same properties required in the smooth case.

Definition 1.14. The complex dimension of a complex uniformizing system

(Ũ , G, χ) is the dimension of Ũ as a complex manifold.

Let (Ũ , G, χ) and (Ũ ′, G′, χ′) be complex uniformizing systems for U and U ′

respectively, and let U ⊂ U ′. A complex embedding between such uniformizing

systems is a pair (ϕ, λ) satisfying the same properties stated in the smooth case but

where ϕ : Ũ → Ũ ′ is holomorphic.
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Definition 1.15. A complex orbifold atlas on Y is a family U of complex uniformizing

systems for open sets in Y satisfying the conditions 1., 2. and 3. of Definition 1.3

where we replace embeddings with complex embeddings.

Two such atlases are said to be equivalent if they have a common refinement,

where an atlas U is said to refine V if for every chart in U there exists a complex

embedding into some chart in V .

A complex orbifold structure on a paracompact Hausdorff topological space Y is

an equivalence class of complex orbifold atlases on Y .

Definition 1.16. The complex orbifold [Y ] is said of complex dimension d if all the

uniformizing systems of a complex atlas have complex dimension d. The complex

dimension of [Y ] will be denoted by dimC[Y] or, by abuse of notation by dim[Y] .

Remark 1.17. All the results given for the smooth case, holds in the complex case

too. The notions of reduced complex orbifold and of uniformizing systems at a point

are defined for complex orbifolds in the same way of the smooth case.

Lemma 1.18 (Linearization lemma,[Ca] Theorem 4.). Let [Y ] be a complex orbifold

and let y ∈ Y be a point. Then we can choose a local uniformizing system (Ũy, Gy, χy)

at y such that Gy acts linearly on Ũy.

We would like to give an idea of the equivalence of the two definitions, if one

works over C.

Theorem 1.19. Let [Y ] be an orbifold. Any atlas U of [Y ] determines a groupoid

which represents [Y ]

We now make a little digression on groupoids inside categories. The following is

taken from [G] and [Vi1].

Remark 1.20. Let C be a (small) category. The axioms of the category give us four

maps of sets:

MOR ⇉ OBJ e //MOR

MOR×U MOR m //MOR

where the two parallel arrows give the source and target for each morphism and will

be called s and t, e gives the identity morphism, and m is composition of morphisms.

In the following, we will denote by U the set of objects and by R the set of morphisms.



56 APPENDIX B. ORBIFOLDS AND ORBIFOLD COHOMOLOGY

If the category turns out to be a groupoid, then there is a fifth morphism:

R i //R

that gives the inverse. These maps satisfy the following (trivial) four properties:

1. s ◦ e = t ◦ e = IdR, s ◦ i = t, t ◦ i = s, s ◦m = s ◦ p2, t ◦m = t ◦ p1 where p1

and p2 are respectively the first and the second projection.

2. m ◦ (m× IdR) = m ◦ (IdR ×m)

3. both compositions:

R = R×s,U U = U ×U,t R
IdR × e

e× IdR
//R×s,U,t R

m //R

are equal to the identity map on R

4. m ◦ (i× IdR) = e ◦ s and m ◦ (IdR × i) = e ◦ t.

This definition will be useful later:

Definition 1.21. Let C be a category with fiber products. A groupoid G inside C

is the datum of:

• Two objects, U and R of C.

• Five morphisms (s, t, i,m, e) satisfying the previous four prescriptions.

Definition 1.22. A groupoid space is a pair of spaces (sheaves of sets) U,R together

with five morphisms s, t, i,m, e with the same properties as above once computed

over an open set.

Lemma 1.23. Let F be an algebraic stack with an atlas U // F , and set R =

U ×S U . Then R ⇉ U has a natural groupoid structure in which the structure

morphisms are étale, and the diagonal R //U ×S U is quasicompact and separated.

Proof. The unit morphism U // R is the diagonal, the inverse R // R switches

the two factors and the composition:

R×U R = U ×F U ×F U // U ×F U = R

is the projection onto the first and third factor.
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This groupoid is usually called a presentation of F . Choosing different atlases

means choosing different presentations. Conversely, you can easily prove the following

Lemma 1.24. Given a groupoid space, there is a pseudofunctor F whose objects are

elements of the set U(B) and whose morphisms over B are elements of the set R(B).

Given f : B // B′ the functor F (f) is defined using the maps (U(B) // U(B′)

and R(B) //R(B′).

This procedure turns out to give a pseudofunctor which satisfies only the first

stack condition but not the second (it is usually called a prestack). There is a general

procedure to associate to a prestack a stack, which can be found in [LMB00] [2.4.3].

This is quite similar to the sheafification of a presheaf.

What follows is an adapted version of this, taken from [Vi1] (there are lot of

misprintings pp 668-669).

Theorem 1.25. Let there be given an étale groupoid R ⇉ U in SCH/C in which

the diagonal is quasicompact and separated. We can define a quotient stack F with

an étale surjective map U // F such that R = U ×F U . Hence F turns out to be

an algebraic stack with R ⇉ U as a presentation.

Remark 1.26. If F ′ // F is a substack of a stack F , R ⇉ U a presentation of F

given by p1 and p2, and U ′ := F ′ ×F U , then p−1
1 (U ′) = p−1

2 (U ′). Conversely, given a

subscheme U ′ of U , such that p−1
1 (U ′) = p−1

2 (U ′), setting R′ = p−1
1 (U ′), R′ ⇉ U ′ has

a groupoid structure induced by the groupoid structure on R ⇉ U , and it defines a

substack F ′ of F which is open or closed if U ′ is open or closed in U .

Lemma 1.27 ([Kt]). Let f : X // Y be a map of algebraic spaces which is locally

quasifinite, locally of finite presentation and separated. Suppose Y is a scheme, then

X is a scheme.

Conversely if R ⇉ U is a presentation of an algebraic stack, then by the procedure

above we get a stack which is canonically isomorphic to F .

Theorem 1.28 ([EV] Corollary 2.16, Theorem 2.18, Corollary 2.19). Each orbifold

(DM smooth stack over SCHC) is a global quotient [X/G].

This justifies all the computations made at the end of chapter 3.

We conclude the section with a theorem which is somehow part of the folklore.

For this there is no standard reference, the only work where we found it is [Pe].
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Moreover, we didn’t gave the notion of morphism and natural equivalence in the

differential definition of orbifold. This can be found in [Sa], [CR1], or [Pe].

Theorem 1.29. ([Pe]) Over C, the 2-category of (1-ORB) is equivalent to the 2-

category of (2-ORB).

2 Cohomology

This is taken from [B], which gives a much more complete description of cohomol-

ogy, De Rham cohomology, homology and equivariant homology and cohomology

for groupoids in some categories (topological spaces or differentiable manifolds, we

will use it w.r.t. stacks on schemes with the et́ale topology). Here we study stacks

via presenting groupoids. In this section we won’t need more than just topolog-

ical stacks. So all stacks in this section arise from pseudofunctors from T OP in

groupoids. Although this construction can be performed in general, what we have

in mind is the underlying topological site of an algebraic scheme, or the site étale

of a topological scheme, or, in case of smooth schemes over the complex numbers,

its complex topological site. Recall that the singular chain complex of a topological

space X, denoted by C•(X), is the abelian group of formal integer linear combi-

nations of continuous maps ∆q
// X, where ∆q is the standard q−simplex. The

boundary map di : ∆q−1
//∆q induces maps di : Hom(∆q, X) //Hom(∆q−1, X),

and d : Cq(X) // Cq−1(X) defined by d(σ) =
∑q

j=0 dj(σ). The functor C from

topological spaces to complexes is covariant, furthermore, since d2 = 0, it is possible

to define the homology functor, and to check that it is a covariant functor too. Any-

way, we want to construct cohomology, and so we have to work somehow dually and

reverse arrows. As far as we have the d operator in homology, we also have a d opera-

tor in cohomology taken dualizing all, i.e. taking Hom(C•,Z) and Hom(δ, IdZ). Let

now F be a stack in the category (for example) of topological spaces. Let X1 ⇉ X0

be a presentation groupoid for the stack. It is now possible to build the double

intersection space, defined as the fiber product of the following diagram:

X1

��
X1

// X0
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Again, it is possible to define X3 = X1 ×X0 X1 ×X0 X1,... and so on, defining Xp.

There are p+ 1 differentiable maps ∂i : Xp
//Xp−1, given by leaving out the i− th

object. More precisely, ∂i maps the element:

x0
φ0 // x1

φ1 // ...
φp // xp

to

x0
φ0 // x1

φ1 // ... // xi−1
φi ◦ φi+1// xi // ...

φp // xp

This data will be summarized by the following diagram of topological spaces:

X3 X2

//
X3 X2

//X3 X2//X3 X2// X2 X1
//

X2 X1
//X2 X1// X1 X0

//X1 X0//

It is now possible to form two complexes: C•(X) and its dual complex C•(X).

Thus we have

Cn(X) = Hom(Cn(X),Z)

We get a diagram:

C•(X3) C•(X2)
oo

C•(X3) C•(X2)
ooC•(X3) C•(X2)ooC•(X3) C•(X2)oo C•(X2) C•(X1)

oo
C•(X2) C•(X1)ooC•(X2) C•(X1)oo C•(X1) C•(X0)

ooC•(X1) C•(X0)oo

By defining ∂ =
∑p

i=0(−1)i∂i we get a morphism of complexes ∂ : C•(Xp) //C•(Xp−1).

Thus there is defined a double complex:

... C0(X2)
∂oo

d
��

C0(X1)
∂oo

d
��

C0(X0)
∂oo

d
��

... C1(X2)
∂oo

d
��

C1(X1)
∂oo

d
��

C1(X0)
∂oo

d
��

... C2(X2)
∂oo

d
��

C2(X1)
∂oo

d
��

C2(X0)
∂oo

d
��... ... ...

The associated total complex C•(X) is then defined as:

Cn(X) =
⊕

p+q=n

Cq(Xp)



60 APPENDIX B. ORBIFOLDS AND ORBIFOLD COHOMOLOGY

with the differential δ : Cn(X) // Cn−1(X) given by:

δ(σ) = (−1)p+q∂(σ) + (−1)qd(σ)

It is possible to check that δ2 = 0.

Definition 2.1. The complex (C•(X), δ) is called the singular cochain complex of

the topological groupoid X = [X1 ⇉ X0]. Its cohomology groups, denoted Hn(X; Z)

are called the singular cohomology groups of X1 ⇉ X0.

Theorem 2.2. [B] If the space X is contractible, and the groupoid is given by G ⇉

X, then the cohomology is just the group cohomology of the group G, taken with Z

coefficients.

Theorem 2.3. [B] If you change the representing groupoid, cohomology doesn’t

change.

This is proved thanks to invariance of cohomology under Morita Equivalence, at

least in the smooth case.

We work always on Deligne-Mumford stacks considering them just from their

topological viewpoint.

Proposition 2.4. ([B], Exercise 34) Let X1 ⇉ X0 be two topological groupoids

representing a topological DM stack F . Then X0 can be covered by open subsets Ui,

such that the restriction of the groupoid X1 ⇉ X0 to Ui is a transformation groupoid

Gi × Ui ⇉ Ui for a finite group Gi acting on Ui for all i. We say that a topological

DM stack is locally a finite group quotient.

Recall that the image of the diagonal X1
//X0 ×X0 is an equivalence relation

on X0. In fact, the assumption onto properness of the diagonal, guarantees that this

equivalence relation is closed, and hence admits a Hausdorff quotient space X.

Proposition 2.5. The space X depends only on the Morita equivalence and hence

is an invariant of the associated topological stack F . This is called the coarse space

of F .

Theorem 2.6. (Deligne-Mumford stacks have coarse moduli spaces) [[KM] Deligne-

Mumford algebraic stacks have coarse moduli spaces, whose support set is just the

geometric quotient of the space by the groupoid.
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Keel and Mori proved that the topological quotient which is coarse moduli space

for the considered stack, is a scheme which is an algebro-geometric quotient.

For example, the coarse space of the stack BG, for a finite group G, is the point

{∗}. The singular cohomology of a stack and its coarse space can be really different:

the cohomology of BG is group cohomology, whereas the cohomology of the point is

trivial.

The difference between the cohomology of the DM stack and its coarse space is

entirely due to torsion phenomena:

Theorem 2.7. Let F be a topological DM stack with coarse space F̄ . Then the

canonical morphism F // F̄ induces isomorphisms on Q-valued cohomology groups:

Hk(F̄ ,Q)
∼= // Hk(F,Q) .

3 The Inertia Stack

This is a natural stack associated to a stack F , which in a way points to where F

fails to be a space.

Definition 3.1. Let F be a stack. The Inertia Stack IF of F is defined as follows.

If T is a scheme over S, an object of IF (T ) consists of an object τ of F (T ) and an

automorphism of τ in F (T ). The arrows in IF are arrows in F compatible with the

automorphisms.

Remark 3.2. [Vi1] An alternate description of IF is as the fiber product F ×F×SF F

where both morphisms F //F×SF are the diagonal. To simplify the notations, we

assume that S = SpecK (this is the case we are really interested in). Our realization

of the fiber product in 3.13 prescribes that we have as objects triples (X,Y, α),

where X and Y are objects in F (A) and α = (α1, α2) : (X,X) // (Y, Y ) and

α : (X,X) // (Y, Y ) is an automorphism which lies in F × F (IdA). We now have

two possible choices: to take (X,α−1
1 ◦ α2) or to take (Y, α−1

2 ◦ α1). This two choices

give rise to two isomorphic results, in fact switching from one description to the other

is the inertia stack involution. Conversely, given a couple (X,α) one gets an element

of the fiber product taking (X,X, ᾱ), where ᾱ = (α, Id) or, equivalently, ᾱ = (Id, α).

We have shown how the functor acts on objects, and leave the reader to check it on

morphisms.
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To conclude the remark, observe that from this second description it turns out

easily that the inertia stack of a Deligne-Mumford algebraic stack is itself in a natural

way a Deligne-Mumford algebraic stack.

Remark 3.3. IF is a group stack over F as follows. Consider the functor IF //F

obtained by forgetting the automorphisms. There is a product IF ×F IF // IF
resulting from composing the automorphisms.

Lemma 3.4 ([Vi1]). 1. The category IF is an algebraic stack, and the morphism

IF // F is representable, separated, quasifinite and unramified.

2. If there exists a scheme M and a separated morphism of finite type from F to

M , then IF // F is finite.

Remark 3.5. When considering schemes of finite type over K, the second condition

is always satisfied (with Spec(K) as M).

Proposition 3.6. Let F be a Deligne-Mumford stack. Then the inertia stack IF has

a connected component which is isomorphic to F . This is usually called untwisted

sector, and all other connected components are usually called twisted sectors.

Let’s now consider the case of a global quotient [X/G]. We want to prove the

following formula for the inertia stack of [X/G] (this is well known, but we weren’t

able to find such a result anywhere):

Proposition 3.7.

I([X/G]) =
∐

(g)∈T
[X(g)/C(g)] = [G×X/G]

where we denote by T a set of one representative element for each conjugacy class

in the group (arbitrarily chosen), (g) is one element in it and C(g) is the centralizer

of the element g inside the finite group G.

Here in [G×X/G], G acts on G by conjugation and on X with the usual action.

Proof. We start from the particular case of the quotient of a point by the (trivial)

action of a finite group on it. Second simplification: we show that the two pseudo-

functors of the proposition give equivalent categories when applied to a closed point.
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Now, the objects of the first category are couples (P, α): an homogeneous

G−spaces (G−torsor) together with an automorphism.

Take an element y ∈ P , α(y) = g1y for some g1 ∈ G (transitivity of the action).

If x = gy, then observe that:

g1g
−1x = g1y = α(g−1x) = g−1α(x)

Now take P (g) := {gy| g ∈ C(g1)} = Cg1y. This is clearly a C(g1)−torsor, since the

action of α on P (g) is:

α(gy) = gα(y) = gg1α(y) = g1gy

(α acts as automorphism exactly as the left multiplication by the element g1). This

gives us a C(g1)− torsor. This functor Fy (we stress it depends on y) is fully faithful,

in fact the automorphisms of (P, α) are morphisms of the G−torsor P commuting

with the action of α, hence β //Fy(β) is a generic element of the groupG commuting

with g1, hence an element of C(g1).

Let’s show an inverse of such a functor. An element of

∐

(g)∈T
BX(g)(Spec(K))

is a C(g)−torsor Q. Take Q×G and then take the quotient via the action of C(g):

(q, h) // (aq, a−1h)

We have a natural G action on this quotient: (q, h) // (q, hG). This action clearly

passes to the quotient. As automorphism, we take the multiplication by the chosen

element g. The centralizer of a generic point y ∈ C(g) × Q/ ∼, y // α(y) = gy is

C(g).

This gives the desired correspondence Fy when one computes pseudofunctors on

points. In a similar way one gets the same result when computing it on a generic

scheme S. In fact, if s ∈ S is a geometric point, one takes y in the fiber of the

given G−principal bundle P (in fact, a Galois covering) and then repeats the same

argument choosing a local section of the bundle s // y(s) and then noticing that

the association y(s) // Fy(α) gives a morphism of a neighbourood of s into the

group G which is discrete. Hence the association is locally constant, and so it is
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constant on connected components of S. Finally, one has to repeat the argument for

any connected component of S.

Now, for the case of the stack [X/G] one has to do the same taking also in account

the equivariant morphism to X. Taking in account our simplification, we compute

all on a geometric point. So one has to send a trivial G torsor with G−equivariant

morphism π to a C(g)−torsor with a C(g)−equivariant morphism πg which takes

values in X(g), and conversely. Now the automorphism α is an automorphism of

the G−torsor together with the G−equivariant map π, hence it satisfies πα = π.

So on y′ ∈ C(g1)y π(y′) = π(gy′) = gπ(y′), hence the image of C(g1) via π is

G−equivariant. So we simply send the map π to its restriction to C(g1)y, to get a

C(g1)-equivariant map to X(g). Conversely, given the C(g) torsor with πg a C(g)−

equivariant morphism, one gets a G−equivariant morphism from (Q×G)/ ∼ //X

which extends this one, taking as π:

[(q, h)] // πg(q)h

4 Orbifold Cohomology as graded vector space

Definition 4.1. (Orbifold Cohomology as vector space)

For this section we refer to [CR1] for the differential definition. For the definition

in the algebraic context, see [A], [AGV] and [AV].

Let A be a commutative ring. We define:

H∗
orb(M,A) := H∗(I(M), A)

as A−module. Althought it is in general interesting to compute it for A = Z, in

the following we will choose the coefficients in Q, to have that the cohomology of a

twisted sector is just its coarse space’s singular cohomology.

We review now the definition of degree shifting. Let y ∈ Y be any point and let

(Ũy, Gy, χy) be a uniformizing system at y. The origin 0 of Ũy is fixed by the action

of Gy, so we have an action of Gy on the tangent space of Ũy at 0. We represent

this action by a group homomorphism Ry : Gy → GL(d,C), where d = dimCY. For

every g ∈ Gy, Ry(g) can be written as a diagonal matrix:

Ry(g) = diag (exp(2πim1,g/mg), ..., exp(2πimd,g/mg))
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where mg is the order of Ry(g), and 0 ≤ mi,g < mg is an integer. Since this

matrix depends only on the conjugacy class (g)y of g ∈ Gy, we define a function

a : Y1 → Q by

a(y, (g)y) =
d
∑

i=1

mi,g

mg

For the proof of the following lemma the notion of tangent sheaf (or tangent

bundle) to an algebraic stack (or respectively, to an orbifold) is needed. We do not

enter these details, since we just need the assertion:

Lemma 4.2. ([CR1] Lemma 3.2.1) For any (g) ∈ T the function a : Y(g) → Q

is constant on each connected component. Let n be the (complex) dimension of X.

Then one has, for x ∈ X(g):

a(g, x) + a(g−1, x) = n− dim(X(g))

Definition 4.3. For any (g) ∈ T , the degree shifting number of (g) is the locally

constant function

a(y, (g)y) : Y(g) → Q.

If Y(g) is connected, we identify a(y, (g)y) with its value, and we will denote it by a(g)

too.

Remark 4.4. In the literature, the degree shifting number is also known as age.

Definition 4.5. For any integer p, the degree p orbifold cohomology group of [Y ],

Hp
orb([Y ]), is defined as follows

Hp
orb([Y ]) = ⊕(g)∈TH

p−2a(g)(Y(g))

where H∗(Y(g)) is the singular cohomology of Y(g) with complex coefficients. The

total orbifold cohomology group of [Y ] is

H∗
orb([Y ]) = ⊕pH

p
orb([Y ]).

Remark 4.6. Note thatH∗
orb([Y ]) is a priori rationally graded. It is integrally graded

if and only if all the degree shifting numbers are half-integers.
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We now give some example of simple orbifold cohomology with integer coefficients.

Example 4.7. Since the integer coefficients case depends on group cohomology of

all centralizers, we give the example of:

H∗
orb(BG,Z)

With G an abelian group. The inertia stack is:

∐

g∈G
BGg

(a number of copy of BG equal to #G). The structure theorem for abelian groups

allows us to reduce to the case where G = µr. Since the group cohomology of µr is

Z[t]/(rt), and there is no age (we are in dimension 0), we can write the cohomology

(as Z-module):

H∗
orb(Bµr,Z) = Z[s, t]/(sr − 1, rt)

where the grading is given only by t.

Example 4.8. The twisted affine line.

Consider the global quotient: [A1/µr], where the group act in the standard way.

We can explicitly write:

I([A1/µr]) = [A1/µr]
r−1
∐

k=1

Bµr

An easy calculation shows that the age of Xi is i/r.



Appendix C

Smooth and stable curves

1 Definition and first properties

All schemes will be of finite type over K, with char(K) = 0.

Definition 1.1. A curve, is a reduced scheme C of dimension 1. If not otherwise

stated, every curve is supposed to be connected. The curve is smooth (regular)

whenever Ox,C is a regular local ring.

Recall that for curves (and if Cohen Macaulay more generally in codimension 1)

regular and normal is the same:

Lemma 1.2 (cf. [AM] proposition 9.2). Let A be a Noetherian local domain of

dimension one, m its maximal ideal, K = A/m its residue field. Then the following

are equivalent:

1. A is integrally closed;

2. m is a principal ideal;

3. dimK(m/m2) = 1;

4. every non-zero ideal is a power of m;

5. there exists x ∈ A such that every non-zero ideal is of the form (xk), k ≥ 0.

67
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Definition 1.3. (Genus) Let C be a projective curve. Its arithmetic genus is

dimK(H1(C,OC)). If the curve is smooth, its geometric genus is dimK(H0(C, ωC)).

Moreover, if K = C, the topological genus is 1
2
dimC(H1(C,C)), where this last

cohomology group is taken with the strong (analytic) topology on C.

Theorem 1.4 (cfr. [H] chap. 3.7). (Serre Duality) Let X be a projective Cohen-

Macaulay scheme of equidimension n over K. Then for any locally free sheaf F on

X, there are natural isomorphisms:

H i(X,F) ∼= Hn−i(X,F∗ ⊗ ωcX)∗

where ωcX is the dualizing sheaf. If X is smooth, then ωcX = Ωn
X where the last is the

canonical sheaf.

Theorem 1.5. (Hodge Decomposition) [See [GH] chap. 0.6,0.7] Let X be a smooth

projective complex variety. Then:

Hn(X,C) =
⊕

p+q=n

Hp(X,Ωq
C)

Corollary 1.6. Let C be a projective curve. In case it is possible to define two

genera, they turn out to be the same number.

Proof. By Serre duality, pa = pg. By Hodge decomposition, H1(C,C) = H1(C,OC)⊕

H0(C,Ω1
C)

Definition 1.7 (cfr. [H] ex. 1.5.3). Let f be a polynomial, and let Y ⊂ A2 be a

curve defined by the equation f(x, y) = 0. Write f as a sum f = f0 + f1 + ... + fd
where fi is a homogeneous polynomial of degree i in x and y. The multiplicity of

0 on Y is the least r such that fr 6= 0. The linear factors of fr are called tangent

directions at 0.

Definition 1.8. A node (also called ordinary double point) is a double point (a point

of multiplicity 2) with distinct tangent directions.

Definition 1.9. A projective nodal curve is a projective curve whose points are either

smooth or nodes. A projective nodal curve with n marked points has in addition a

choice of n ordered, distinct regular points.
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Definition 1.10. Let F be a coherent sheaf on a projective scheme X. The Euler

characteristic of F is:

χ(F) =
∑

i

(−1)i dimKH
i(X,F)

Remark 1.11. χ is an additive function ([H] chap. 3.5 ex 5.1). By the vanishing

theorem of Serre [[H], Theorem 5.17], one has H i(X,OX(m)) = 0 for all i > 0 for

m >> 0.

Theorem 1.12 ([H] chap. 4.1 ex.1.9). (Riemann-Roch for projective nodal curves)

Let C be a (possibly singular) projective curve, and let D be a divisor supported in

the set of regular points of C. Denoting by L(D) its associated invertible sheaf, the

following formula holds:

χ(L(D)) = deg(D) + 1 − pa

Remark 1.13. If the curve is nodal, then the dualizing sheaf is an invertible sheaf

(cfr. [H] chap 3, 7.11). Hence one can define the canonical divisor K to be a

divisor with support in the set of regular points of C, corresponding to ωC . Calling

l(D) :=dim(H0(C,L(D))), the previous formula (also by Serre duality) becomes:

l(D) − l(K −D) = deg(D) + 1 − pa

If the curve is smooth, one finds out the usual formulas l(K) = g, hence deg(K) =

2g − 2, furthermore if deg(D) > 2g − 2, then deg(K −D) < 0 and so l(K −D) = 0

(one says that D is nonspecial).

To the divisorD, one can associate the complete linear system |D|, all the effective

divisors linearly equivalent to D. |D| is naturally identified with P(L(D)).

If a divisor D on C is given, a necessary and sufficient condition for |D| for being

basepoint free is that l(D−P ) = l(D)−1 for all points P ∈ C (cfr. [H] chap. 4 prop.

3.1). if |D| is basepoint free, a base of L(D) defines a morphism φD : C // Pn,

where n = l(D) − 1. A different base of L(D) gives a morphism which differs from

the previous one by a projectivity.

Proposition 1.14 (cfr. [H] chap. 2, 7.3). Let D be a divisor on the smooth curve

C, with |D| base point free and φD a morphism associated to L(D). Then φD is an

isomorphism onto its image iff it separates points and tangent vectors, i.e. for all
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P ∈ C, φD and dpφD : TP (C) // TφD(P )(φD(C)) are injective. This condition is

equivalent to the following: for all P,Q ∈ C, possibly P = Q:

l(D − P −Q) = l(D) − 2

(a divisor with this last property is usually called very ample)

If the divisorD had degree greater than 2g, its complete linear system is basepoint

free. In particular, if g = 1, each divisor of degree ≥ 3 is very ample.

Lemma 1.15. Let C be the disjoint union of n connected components Ci. One has:

gC =
n
∑

i=1

gCi
− n+ 1

Proof. χ(OC) = 1 − g. By RR for OC(m):

χ(OC(m)) = m deg(OC(1)) + 1 − g

Is C is the disjoint union: C1

∐

C2:

H0(C,OC(m)) = H0(C1,OC1(m)) ⊕H0(C2,OC2(m))

if m is great enough, these are the Euler characteristic:

χ(OC(m)) = χ(OC1(m)) + χ(OC2(m))

It turns out that gC = gC1 + gC2 − 1, the formula now follows by induction.

Proposition 1.16. Let ν : (C̃) // C be the normalization of an irreducible nodal

curve. Then:

gC = gC̃ + n

where n is the number of nodes of C.

Proof. Recall ν is a finite, surjective, birational morphism. Hence ν∗(OC̃) is a coher-

ent sheaf. We have the following exact sequence of sheaves, defining Q

0 //OC
// ν∗OC̃

//Q // 0



1. DEFINITION AND FIRST PROPERTIES 71

The sheaf Q is supported on the singular locus of C, since where C is smooth the

morphism ν is an isomorphism. If p is a node and U is a neighbourood of p without

other singularities than p, then Q|U ∼= Op. Hence, being C a nodal curve:

Q ∼=
⊕

p node

Op

furthermore, since ν is finite, χ(OC̃) = χ(ν∗OC̃). So, following [H] ex. 2.3.8, 2.5.17,

3.4.1, it follows H i(C̃,OC̃) ∼= H i(C, ν∗OC̃), so one finds:

χ(OỸ ) = χ(OY ) +
∑

p node

χ(Op) = χ(OC) + n

where n is the number of nodes of C. Now the usual relation between Euler charac-

teristic and genus (for curves) gives the desired result.

Remark 1.17. It is a conventional notation to define the geometric genus as the

geometric genus of the normalization (it is smooth). For a nodal curve, geometric

genus and arithmetic genus differ by the number of nodes. Remember that g =

0 =⇒ birational to P1.

Corollary 1.18. If C is a connected non irreducible curve with n nodes, and r

irreducible components, and if C̃ is its normalization, it has r distinct connected

components. Then:

gC =
∑

gC̃ + n− r + 1

Since the curve is connected, n ≥ r − 1, hence

gC ≥
∑

gC̃i

in particular if C is a genus zero nodal curve, then n = r − 1.

Proposition 1.19. Let C be a nodal and arithmetic genus zero curve. Then every

irreducible component of C is smooth.

Proof. Normalizing only intersection points, one finds a scheme Y and a canonical

projection onto C:

gC =
∑

gCi
+ n− r + 1

normalizing each Ci, we find:

gCi
= gC̃i

+mi

where mi is the number of nodes on Ci. But gC = 0, hence gCi
= 0, and so all mi’s

are 0.
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Definition 1.20. An automorphism of a scheme is an invertible morphism whose

inverse is again a morphism. If (C, x1, ..., xn) is a projective nodal curve with n

marked points, an automorphism of it is just an automorphism which fixes all the

marked points.

Definition 1.21. A projective nodal curve C with n marked points is said to be

stable if the group Aut(C, xi) of automorphisms of (C, x1, ..., xn) is finite.

Theorem 1.22. The following are equivalent:

• (C, x1, ..., xn) is stable;

• Denoting by TC the tangent sheaf of C, H0(C, TC(−
∑

xi)) = 0;

• every irreducible component of C of arithmetic genus g has at least 3 − 2g

special points, i.e. intersection points or marked points.

Proof. (sketch) Aut(C, xi) is a group scheme, hence smooth. Aut(C, xi) is finite if

and only if it is a zero dimensional scheme. Being smooth, every tangent space

has dimension zero. The tangent space to Aut(C, xi) at the identity element is

H0(C, TC(−
∑

xi)).

Remark 1.23. If C is a smooth, connected, genus g curve, then:

1. if g ≥ 2 then Aut(C) < ∞. Actually also |Aut(C)| ≤ 84(g − 1) holds as a

consequence of the Riemann-Hurwitz formula ([H], Chap 4, Ex. 2.5);

2. if g = 1 then the minimal number i of fixed points to have that

Aut(C, p1, ..., pi) <∞ is one;

3. if g = 0 then the minimal number i of fixed points to have that

Aut(C, p1, ..., pi) <∞ is three.

Let now C be an irreducible, genus g nodal curve. By C̃ we will denote its

normalization.

Corollary 1.24. A nodal curve C (without marked points) is stable if and only if

the following hold:

• every irreducible component of arithmetic genus 1 of C meets at least one other

component of C;
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• every smooth irreducible rational component meets the other components in at

least three points.

Remark 1.25. A stable curve of genus zero with n marked points, has at most n−2

irreducible components.

2 Curves of genus 1

Definition 2.1. An elliptic curve is a pair (E, 0), with E smooth connected projec-

tive curve of genus 1, and 0 ∈ E a point.

Remark 2.2. Every smooth planar cubic projective curve is elliptic. If it has a

node, it is rational.

Theorem 2.3. (Weierstrass embedding theorem) Every elliptic curve (smooth irre-

ducible genus 1 curve with one marked point) (C,P ) can be embedded in P2
K

as a

smooth cubic. There is a coordinate change which puts it in the affine form:

y2 = (x− α1)(x− α2)(x− α3)

where the αi’s are distinct elements of K. The marked point is the (unique) point at

infinity.

Proof. Let’s study meromorphic functions with a pole in the marked point P , i.e.

the linear spaces L(nP ). By RR dim(L(nP )) = n =deg(nP ) L(P ) is generated only

by constant functions.

L(2P ) is spanned by (say) 〈1, x〉. ordp(x) = −2.

L(3P ) is spanned by (say) 〈1, x, y〉. ordp(y) = −3.

L(3P ) gives a closed embedding in P2, because it is very ample. To find out the

relation between the generators, one looks at L(4P ) has dimension 4 and contains

〈1, x, x2, y〉

L(5P ) has dimension 5 and contains 〈1, x, x2, y, xy〉

L(6P ) has dimension 6 and contains 〈1, x, x2, x3, y, xy, y2〉, hence they are linearly

dependent:

A6y
2 + A5xy + A3y = A7x

3 + A4x
2 + A2x+ A1 (2.4)

observe that A6A7 is different from zero, otherwise one has the sum of rational

functions of different orders being zero (clearly impossible).
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Now let’s rescale the variables, substitute respectively x, y with −A6A7x and A6A
2
7y,

and divide by A3
6A

4
7 obtaining:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.5)

These x and y are called Weierstrass coordinates. Now an affine transformation:

x = x′y = y′ −
a1

2
x′ −

a3

2

gives an expression without the xy, y terms. This is a cubic in the form given in the

statement (since the field is algebraically closed). They are distinct since otherwise

the curve would be singular. The point P is sent to [0 : 1 : 0] since the order of y in

P is strictly greater than the order of x.

A simple translation on the x axis, permits us to write the elliptic curve in the

form (which will always be used in the last chapter):

y2 = x3 + ax+ b

Remark 2.6. α1, α2, α3 are distinct, in fact the curve is singular if and only if the

following three equations are satisfied:











y2 − (x− α1)(x− α2)(x− α3) = 0
d
dx

(y2 − (x− α1)(x− α2)(x− α3) = 0
d
dy

(y2 − (x− α1)(x− α2)(x− α3) = 2y = 0

i.e. the three roots are different. Moreover, there is only one point at infinity,

which turns out to be a flex point (the intersection with the infinity line z = 0 has

multiplicity 3).

From now on, whenever no confusion arises, we will denote the elliptic curve with

its Weierstrass representation.

Lemma 2.7. (automorphisms) Let C, 0 be an elliptic curve with an associated Weier-

strass equation. Then each automorphism φ of (C, 0) is a coordinate change in P2 of

the kind:
{

x = u2x′ + r

y = u3y′ + u2sx′ + t

with u 6= 0.
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Proof. The automorphism φ induces isomorphism on L(2P ), L(3P ) which map re-

spectively {1, x} in {1, x′} and {1, x, y} in {1, x′, y′}. Being {x, y} and {x′, y′} Weier-

strass coordinates, the following hold:

x = u1x
′ + r

y = u2y
′ + s2x

′ + t

for suitably chosen u1, u2, r, s2, t with u1u2 6= 0. Since in the Weierstrass equation

the coefficients of Y 2 and of X3 are both 1, u3
1 = u2

2. Now letting u := u2/u1 and

s = s2/u1 we have the equations of the statement.

Remark 2.8. (the Cross-Ratio) Let’s recall some generalities about the cross-ratio.

Given four points P1, P2, P3, P4 on P1 the cross ratio is the affine coordinate for P4

in the projective frame given by P1, P2, P3. Its (famous) formula is given by:

β([a1 : b1], [a2 : b2], [a3 : b3], [a4 : b4]) :=
(a1b4 − a4b1)(a2b3 − b3b2)

(a2b4 − a4b2)(a1b3 − a3b1)

It depends on the order of the four points considered. The permutation of 4 points

are 24, but there are only six different cross-ratios:

β,
1

β
, 1 − β,

1

β − 1
,

β

β − 1
,
β − 1

β

since each of them is related to four distinct permutations (the stabilizer of the action

of S4 is the Klein V4 group). We stress till now that for two particular values of β

there are less different cross-ratios, i.e.:

β = −1, 1/2, 2 β = −e
2πi
3 ,−e

4πi
3

Definition 2.9. The j-invariant of the cross-ratio β is:

j(β) = 28 (β2 − β + 1)3

β2(β − 1)2

Theorem 2.10. j(β) = j(β′) ⇐⇒ β, β′ are cross-ratios of the same 4 points on a

projective line.
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Theorem 2.11. (The Legendre form) There is a coordinate change for the elliptic

curve in the projective plane such that it assumes the form:

y2 = x(x− 1)(x− λ)

with λ = α3−α1

α2−α1
6= 0, 1. In this form, the three tangent lines to the curve, passing

through infinity are x = 0, x = 1, x = λ. Moreover, as in the previous case, the

fourth tangent line passing through the point at infinity is the line at infinity, which

intersects the elliptic curve with multiplicity 3.

Proof. This is given by the coordinate change:

{

x = (α2 − α1)x
′ + α1

y =
√

(α2 − α1)3y′

We now want to prove the following result:

Theorem 2.12 (Salmon-1851). The j invariant depends only on C and not on the

chosen marked point.

Lemma 2.13. Let H1, H2, H3 and L1, L2, L3 triples of alligned points over a cubic.

Then the three lines H1L1, H2L2, H3L3 cross C in three distinct points K1, K2, K3,

which belong to a same line

Proof. Follows as a direct application of the Bézout theorem.

Proof. (Theorem)

Let R = [0 : 1 : 0] and H ∈ C. The line RH meets C in a point L. The tangent

line in L to C meets C in a further point L2. Take the line RAB meeting C exactly

at A and B. The lines L2A,L2B meet C (say) in H2, H3. By the lemma just stated,

H,H2, H3 belong all to the same line. Hence we have a bijection ω between lines

through R and lines through H, which turns out to be a projectivity. With ω the four

tangent lines to C passing through R and H correspond each other. Hence, being

j invariant under projectivity, this two four tangent lines has the same j invariant.

So we changed the marked point R with an arbitrarily chosen H without changing

j.
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Corollary 2.14. Two elliptic curves are isomorphic if and only if they have the

same j invariant.

Proof. If two elliptic curves C, C ′ are isomorphic, we can write them in their Legendre

form to find that they have the same j invariant.

Conversely, let j(C) = j(C ′), and let C has equation:

y2 = x(x− 1)(x− λ)

and C ′ has equation:

y2 = x(x− 1)(x− µ)

with µ 6= λ. µ varies in the set { 1
λ
, 1 − λ, 1

1−λ ,
λ
λ−1

, λ−1
λ
} Now:

• if µ = λ−1 the projectivity φ : x // λx, y // λ
3
2y sends C to C ′;

• if µ = 1 − λ the projectivity ψ : x // − x+ 1, y // iy sends C to C ′;

• if µ = (1 − λ)−1 the projectivity is φ ◦ ψ;

• if µ = (λ− 1)λ−1 the projectivity is ψ ◦ φ;

• if µ = λ(λ− 1)−1 the projectivity is φ ◦ ψ ◦ φ.

Theorem 2.15. There is a bijection between K and the set of isomorphism classes

of elliptic curves.

Proof. The bijection is given associating to each isomorphism class its j module.

Conversely:

• to j = 0 one associates the (class of isomorphism of) the curve y2 = x3 + 1;

• to j = 1728 one associates the (class of isomorphism of) the curve y2 = x3 −x;

• to each other j one associates the curve y2 + xy = x3 − 36
j−1728

x− 1
j−1728

.

To check the assertion and all the computations, we refer to [Si] or to [Po].
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Remark 2.16. (extension at infinity-compactification) What we have just con-

structed is a family of elliptic curves parametrized by the affine line A1 − {0, 1728},

with coordinate j. Let’s try to extend this family with a nodal curve lying “onto”

the point at infinity, hence take somehow the “limit” for j //∞. We find out the

following expression:

y2 + xy = x3

which represents a nodal cubic.

Observe that the only possible change of coordinates are of the form:
{

x = u2x′

y = u3y′

with u 6= 0. In fact s = t = r = 0 because the coefficient of x2 is 0.

Theorem 2.17. Let C be an elliptic curve. Then its group of automorphisms is:

• µ2 if j(C) 6= 0, 1728;

• µ4 if j(C) = 1728;

• µ6 if j(C) = 0.

Proof. The curve C in the reduced Weierstrass form y2 = x3 + ax + b. Each auto-

morphism σ ∈Aut(C) has the form:
{

x = u2x′

y = u3y′

Applying the map σ it turns out:

u6(y′)2 = u6(x′)3 + u2Ax′ +B

and dividing by u6:

y′2 = x′3 + u−4Ax′ + u−6B

σ is an automorphism if and only if this is of the same form of the starting equation,

i.e.:
{

u−4A = A

u−6B = B

If AB 6= 0 then j(C) 6= 0, 1728 and Aut(C) ∼= µ2, if A = 0 then j = 0 and

Aut(C) ∼= µ6, finally if B = 0, then j = 1728 and Aut(C) ∼= µ4.
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The following is on the field of the complex numbers. One other way to construct

a genus 1 curve is to take the quotient of C by a lattice. Recall that a lattice in a

finite dimensional real vector space V is a finitely generated subgroup Λ of V with

the property that a basis of Λ as an abelian group is also a basis of V as a real vector

space. A lattice in C is thus a subgroup Λ of C that is isomorphic to Z2 and is

generated by two complex numbers that are not real multiples of each other. in this

case, the quotient group C/Λ is a compact Riemann surface which is diffeomorphic

to the product of two circles, and so of genus 1 (recall the equality between the

three genera). Take now an elliptic curve of genus 1, our task now is to find the

corresponding lattice.

Proposition 2.18. Let C be a curve of genus 1. Then a non-zero holomorphic

differential on C has no zeros.

Proof. It is an application of the theorem of Riemann-Roch. One can also check it

by hands, as done in [Du].

Fix now a non-zero holomorphic differential ω on C. Every other holomorphic

differential is a multiple of ω since the dimension of holomorphic differentials is 1.

The period lattice of C is defined to be:

Λ = {

∫

c

ω | c ∈ H1(C,Z)}

This is easily seen to be a subgroup of C. This in fact is a lattice, if
∫

a
ω and

∫

b
ω

are linearly dependent over R this would contradict the Hodge decomposition of

H1(C,C).

Proposition 2.19. Fix a base point x0 ∈ C. Define a map ν : C // C/Λ by:

ν(x) =

∫

γ

ω

where γ is any smooth path in C that goes from x0 to x. Then:

1. ν is well defined

2. ν is holomorphic

3. ν has nowhere vanishing differential, and is therefore a covering map
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4. the homomorphism ν∗ : π1(C, x0) // π1(C/Λ, 0) is surjective, and therefore

an isomorphism

Hence ν is a biholomorphism.

Remark 2.20. If C is an algebraic curve of genus 1, then the automorphism group

of C acts transitively on C. Consequently, the natural mapping that takes [C;x] to

[C] is a bijection.

Proof. This follows as every genus 1 riemann surface is isomorphic to one of the form

C/Λ. For such Riemann surfaces, we have the homomorphism:

C/Λ // Aut(C/Λ)

that takes the coset a+ Λ to the translation z + Λ 7→ z + a+ Λ.

Lemma 2.21. Let C/Λ and C/Λ′ be two complex tori, and let ω1, ω2, ω
′
1, ω

′
2 be

respectively basis for the two lattices. Each map between the two tori satisfies:

{

f(z + 2ω1) = f(z) + 2m11ω
′
1 + 2m12ω

′
2

f(z + 2ω2) = f(z) + 2m21ω
′
1 + 2m22ω

′
2

In particular, if the map has to be holomorphic, it is of the form:

z 7→ az + b

Finally, two such complex tori are biholomorphically equivalent if and only if τ :=

ω2/ω1 and τ ′ = ω′
2/ω

′
1 satisfy:

τ ′ =
aτ + b

cτ + d
,

(

a b

c d

)

∈ SL(2,Z)

Theorem 2.22. Fix K = C. Then there is a bijection:

{Elliptic Curves/ ∼=} // {Complex Tori/ ∼=}

Proof. (sketch) Up to now we have only checked that to any elliptic curve, corre-

sponds a complex torus. To get the inverse morphism, one has to use the Weierstrass

P function related to the lattice Λ. This construction is given in [Ca2]. The following:

z // (P(z),P ′(z))
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gives a well defined map from C/Λ in A2. Furthermore, one can check that the image

of such map satisfies:

P ′(z)2 = 4P(z)3 + aP(z) + b

where a, b depend on the lattice ([Ca2] and [Du] for details). One can check that

such a map is an isomorphism between complex varieties.

Now fix an elliptic curve modulo isomorphism. Forgetting the marked point gives

a bijection with genus 1 curves. Then the previous construction associates to such

genus 1 curve a complex torus, whose associated elliptic curve is the starting one.

Conversely, starting from a complex torus, one finds out an elliptic curve. The

complex torus associated to such elliptic curve could be different, because of the

choice of the basis of the homology on the elliptic curve. One can easly check that

the new basis for the lattice ω′
1, ω

′
2 satisfies:

{

ω′
2 = aω2 + bω1

ω′
1 = cω2 + dω1

where

(

a b

c d

)

∈ SL(2,Z). The ratio τ = ω2/ω1 transforms as in the previous

lemma. Hence, by the last lemma, the isomorphism class of the new complex torus

is the same.

Remark 2.23. A fundamental domain for the action of SL(2,Z) on H is the region:

{τ ∈ H| |Re(τ)| ≤ 1/2, |τ | ≥ 1}

Observe that τ = i corresponds to the elliptic curve y2 = x3 + x (j=1728) and

the point τ = 1+
√

3
2

to the elliptic curve y2 = x3 + 1 (j=0).

Remark 2.24. The quotient H/SL2(Z) is isomorphic, as complex 1-dimensional

variety (not compact, of course) to C. The isomorphism is given by the exponential

map.

3 Moduli stacks of smooth and stable curves

The moduli space of smooth n− pointed genus g curves, denoted Mg,n, parametrizes

isomorphism classes of objects of the form (C; p1, ..., pn) where C is a smooth genus g
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curve, and p1, ..., pn are distinct points of C, provided that 2g−2+n > 0. The points

of Mg,n correspond to isomorphism classes of stable n−pointed genus g curves. We

review now the notion of dual graph of a stable curve, since it turns out to be a

useful featur to think of such a curve.

Definition 3.1. The dual graph Γ associated to a stable curve, is a set V = V (Γ)

of vertices and a set L = L(Γ) of half-edges. The set V is just the set of components

of the normalization N of C, while L is the set of all points of N mapping to a node

or to one of the pi. The elements of L mapping to nodes come inpairs, the edges of

the graph, while the remaining ones are called legs. For any v ∈ V ,we let gv be the

genus of the corresponding component of N , Lv the set of half-edges incident to v

and lv its cardinality. In addition, the numbering of the pi yields a numbering of the

legs.

Hence the (arithmetic) genus of C, according to 1.18 can be read off from its

graph, and is nothing but the sum of the gv plus the number of edges minus the

number of vertices plus one, or, more compactly:

gc =
∑

gv + #edges − #vertices + 1

The graph is said to be stable if 2gv − 2 + lv > 0 for any vertex v. It is immediate to

see that a curve is stable if and only if its dual graph is stable.

Hence, from now on, in this subsection, we fix a scheme S of finite type over K

and two non negative integers g, n, such that 2g − 2 + n > 0.

Definition 3.2. A family of curves parametrized by S is a morphism of schemes

π : C // S such that each geometric fiber is a curve.

Definition 3.3. If π : C //S is a family of curves and f : S ′ //S is a morphism

of schemes, there is the pullback family induced over S ′ by f . The fiber is canonically

isomorphic.

Definition 3.4. Given two families of curves π1 : C1
// S1 and π2 : C2

// S2

a morphism F from the family π1 to the family π2 is a couple of morphisms f :

C1
// C2 and g : S1

// S2 such that the following diagram is cartesian:

C1

f //

π1
��

C2

π2
��

S1

g // S2
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Remark 3.5. If the map downstairs is an iso, then also the other is an iso.

Without any property for the morphism defining the family, the families could

vary too much. For projective curves one invariant which is useful not to modify in

such variations is the Hilbert polynomial. The Hilbert polynomial carries geometrical

informations such as the genus, the dimension and the degree, all the coefficients have

a precise geometrical meaning. There is the following theorem:

Theorem 3.6 ([H] thm. 9.9 chap.3). A family of closed subscheme of a projec-

tive space over a reduced base is flat if and only if all fibers have the same Hilbert

polynomial.

In particular, for curves, flat is the same as asking that the genus and the degree

are constant.

Definition 3.7. An n-pointed smooth curve of genus g over S is a flat and proper

morphism π : C //S together with n distinct sections si : S //C such that each

geometric fiber is a smooth, genus g curve. Furthermore the sections are different

si(x) 6= sj(x) for all x geometric point of S, provided i 6= j. Mg,n : SCHop //SET

is the functor which sends each scheme T in the set of flat proper families over T of

smooth curves of genus g with n marked points, up to isomorphism.

Definition 3.8. An n-pointed stable curve of genus g over S is a flat and proper

morphism π : C //S together with n distinct sections si : S //C such that each

geometric fiber is a stable, arithmetic genus g curve. Furthermore the sections are

different si(x) 6= sj(x) for all x geometric point of S, provided i 6= j, and si(x) has

to be a smooth point of the overlying curve. Mg,n : SCHop // SET is the functor

which sends each scheme T in the set of flat proper families over T of stable curves

of genus g with n marked points, up to isomorphism.

Remark 3.9. It is usual to denote by M
0

g,n the contravariant functor associating the

set of isomorphism classes of flat families over T with automorphism group trivial.

Definition 3.10. If the functor Mg,n happens to be representable, the universal

object (Mg,n, ψ) representing it is said to be the fine moduli space for the moduli

problem. The same for Mg,n.
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Remark 3.11. By Yoneda’s lemma, if it exists, it is unique. There is an isomor-

phism:

ψK : Mg,n(SpecK) // hMg,n
(SpecK) ∼= Mg,n

This tells us that the geometric points are naturally in bijection with the set of

isomorphism classes of curves of the type considered.

Definition 3.12. (Mg,n, ψ) with the first a scheme and the second a natural trans-

formation from Mg,n to hMg,n
is a coarse moduli space for the moduli problem iff:

1. the map ψK : Mg,n(SpecK) // hMg,n
(SpecK) is a bijection

2. for every scheme N and every natural transformation φ : Mg,n ⇒ hN , there is a

unique morphism of functor ψ such that the following diagram is commutative:

Mg,n

�'GGGGGGGG

GGGGGGGG

+3 hN

hMg,n

OO�
�

�

Remark 3.13. The two conditions give the two conditions of the previous remark.

A fine moduli space is coarse, but the converse is not true.

Example 3.14. A1
K

is a coarse moduli space for M1,1. Let’ s define a natural

transformation ψ : M1,1
// hA1 as follows: to each scheme T we associate to the

isomorphism class of a family f : X // T in M1,1(T ) the map T // A1 which

sends each closed point t ∈ T in the j coordinate of A1 corresponding to the module

of the fiber Ct over t. This gives a morphism of schemes. If f ′ : X ′ //T is a family

isomorphic to f , then X ′ ∼= X, hence the fibres on same points are isomorphic, and

it follows that our natural transformation ψ is well defined. Now we check that the

two conditions for a coarse moduli space are satisfied:

1. We have seen in the chapter on curves of genus 1 exactly that ψK :

M1,1(Spec(K)) // hA1(Spec(K)) is a bijection.

2. Let N and φ be given as in the definition of coarse moduli space. The fibers

of the family y2 = x3 + ax+ b on K2 r (0, 0) are all the elliptic curves modulo

isomorphism. The natural transformation φ maps such family in a morphism

f : K2 r (0, 0) //N which is determined by its values on points since the first
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space is reduced. If (a, b) = (λ4, λ6) for a given λ, then f(a, b) = f(λ4a, λ6b).

Now we are in the following situation:

K2 r (0, 0)
f //

j
��

N

A1

p

99

and we look for a morphism p making the diagram commute. On the closed

points p sends a point j ∈ A1 into the image f(a, b), where (a, b) are a fiber

of the given family with j-invariant j. If j(a, b) = j(a′, b′), then (a′, b′) =

(λ4a, λ6b), hence f(a, b) = f(a′, b′) and p is well defined. From descent theory

it follows that this is a morphism of schemes. This p determines the natural

trasformation π : hA1 // hn

The moduli space A1 is not a fine moduli space. A quick way to prove this fact

follows considering the family of elliptic curves given by:

λy2 = x3 + x+ 1

is a family of elliptic curves which are all isomorphic to say E : y2 = x3 + x + 1,

but they have only finitely many sections. In fact, a section corresponds to a map

g : A1r0 //E satisfying g(−λ) = −g(λ), so sections correspond to 2−torsion points

of E which are four. But if the family were trivial, it would have infinitely many

sections (obviously). Let’s now check explicitly that our coarse moduli space is not a

fine moduli space. We consider the family f : C // A1 r 0 with C ⊂ P2 × (A1 r 0)

whose fibers Ct have equation y2 −x3 − t = 0. All curves Ct has the same j-invariant

j = 0, but the family is not trivial. If the family were trivial, there would exist an

isomorphism φt : Ct //C1. Such φt has to be of the form φt(x) = u2
tx, φt(y) = u3

ty,

where u6
t = t. But a regular morphism u : A1 r 0 // A1 such that u6(t) = t cannot

exist. In an analogous way, one can check that P1
K

is a coarse moduli space for M1,1

which is not a fine moduli space.

Example 3.15. The coarse moduli space doesn’t always exist. Let F be the functor

associating to each scheme T the set of isomorphism classes of flat family of reduced

plane conic over K. F (SpecK) contains two elements: the smooth irreducible conic

and the couple of distinct lines. We have seen that the second condition of being a
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coarse moduli space determines it up to isomorphism. There exists a simple natural

transformation ψ : F // hpt which is given by the constant morphism T // pt.

The couple (pt, ψ) satisfies the second condition of the definition of coarse moduli

space, without satisfying the first (|F (pt)| = 2, on the contrary |hpt(pt)| = 1). So F

can’t have a coarse moduli space.

Here there is a simple example.

Theorem 3.16. ([Kd]) For n ≥ 3, M0,n and M0,n are representable functors. Their

respectively representing schemes are quasiprojective (projective) smooth irreducible

varieties of dimension n− 3.

Theorem 3.17. ([DM] M0 are sheaves in the Zariski topology, so they are repre-

sentable.

Here we give a particular example, which turns out to be really useful in the last

chapter:

Theorem 3.18. M1,n is a representable functor if n ≥ 5.

Proof. Follows from the fact that a smooth elliptic curve with 5 marked points has

no automorphisms.

Remark 3.19. From now on our moduli functors, will be seen as pseudofunctors in

groupoids.

Theorem 3.20. [DM] Mg,n is a stack in the étale topology, and hence in the Zariski

topology and so is Mg,n.

Remark 3.21. Up to now we have two notions of coarse: the coarse space associated

to a stack, and the coarse moduli space of a moduli problem. When the given stack

arises from a moduli problem, the two notions coincide.

Theorem 3.22 ([DM]). Mg,n and Mg,n are Deligne-Mumford algebraic stacks,

smooth irreducible of dimension 3g − 3 + n. The first is proper and the second

is open dense in the first.

Remark 3.23. The whole construction of our new spaces: algebraic stacks as pseud-

ofunctor in groupoids, has as pourpose to find a fine moduli space instead of just a

coarse one. One in fact has, tautologically, that Mg,n and Mg,n as algebraic stacks

are fine moduli spaces.
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Now, according to [Co1], there are basically four algebraic proofs of the projec-

tivity of the moduli spaces of stable curves: the original one by Knudsen [Kd], the

proof by Mumford-Giesker and a more recent by Viehweg and Kollár. The last one

is given in the short Cornalba’s paper [Co1]:

Theorem 3.24. The coarse moduli space associated to Mg,n is a reduced algebraic

space which is proper and separated. Actually, it is a projective scheme. Moreover,

the coarse moduli space associated to Mg,n is a reduced algebraic space which is

separated, and it is a quasiprojective scheme.

Theorem 3.25. (Cohomology and Base Change) [[H] chap.3, Thm 12.11] Let f :

X // Y be a projective morphism of schemes, and let F be a coherent sheaf on X,

flat over Y . Let y be a point of Y . Then

1. if the natural map:

φi(y) : Rif∗(F) ⊗ K(y) //H i(Xy,Fy)

is surjective, then it is an isomorphism, and the same is true for all y′ in a

suitable neighbourood of y.

2. Assume that φi(y) is surjective. Then the following conditions are equivalent:

• φi−1(y) is also surjective.

• Rif∗(F) is locally free in a neighbourood of y.

Theorem 3.26. M1,1 is a stack. It is isomorphic to the global quotient stack: [C2 r

(0, 0)/C∗] where C∗ acts (as usual) as:

λ(x) := λ4x λ(y) := λ6y

Proof. We have a natural morphism from [C2 r (0, 0)/C∗] onto M1,1, since onto the

first space we have a tautological family of elliptic curves (with parameters (a, b)).

We first observe that the results of the section about elliptic curves guarantees that

the natural morphism is an isomorphism when we compute all (stacks and morphism)

on a geometric point. In fact, every elliptic curve is, up to isomorphism, a curve of

the form y2 = x3 + ax + b (essential surjectivity). Moreover, since we proved that

every automorphism of an elliptic curve is of the form λ, where λ acts as usual on

(x, y, z, a, b), the functor between the two groupoids is fully faithful.
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Now we have to prove a similar result when all is computed onto a generic scheme

S. In the case with one point, we took for the Weierstrass embedding theorem

L = O(p), then we had χ(L)⊗n = n thanks to RR. Furthermore, since the curve

is elliptic, we had H1(L⊗n)v = H0(L⊗−n) = 0, and so the dimension of the global

sections of the nth-power of L is exactly n. From this we found out the equations.

In the case when all is computed over a generic scheme S, one has a family:

ES

f
��
S

s
II

One than takes as L := OES
(sS), observing that L restricted to a geometric

point of S is the same L as before. Now we apply 3.25 with X = ES, Y = S

and F = L⊗n. The first point with i = 1 tells that, being H1(Ey,F|Ey
) = 0,

R1f∗F ⊗K(y′) = 0∀ y′ ∈ U(y), where U(y) is a suitably chosen Zariski neighbourood

of y. Nakayama applied to the left hand side of the tensor product guarantees that

R1f∗F = 0. Now using the second point, we have that φ0(y) is surjective, hence

again by the first point an isomorphism. Now R0f∗F is just f∗F . Using the second

point once again, one finds out that, restricting the neighbourood the sheaf f∗F is

locally free.

Now one can argue as in the Weierestrass embedding theorem, covering the

scheme S with open subsets trivializing the fiber bundle, and then embedding families

of elliptic curves in the projective space instead of single elliptic curves.

4 Mg,n as universal curve over Mg,n−1

The standard reference for this section is [Kd]. For a more informal descripion, see

[L] and [Co2].

Definition 4.1. (contraction) The following functor:

Mg,n+1
//Mg,n

Definition 4.2. (clutching) The following two functors:

Mg,n+2
//Mg+1,n

Mg,n1+1 ×Mg,n2+1
//Mg1+g2,n1+n2
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Theorem 4.3 (Knudsen). The contraction functor is representable and moreover it

is isomorphic to the universal curve over the underlying space.

Proof. (sketch) Let (C;x1, ..., xn) be a stable curve of type (g, n). Let’s show that

any x ∈ C determines a stable curve (C̃; x̃1, ..., x̃n+1) of type (g, n+ 1):

• If x is a regular point of C and it is not one of the xi’s, then take

(C̃; x̃1, ..., x̃n+1) = (C;x1, ..., xn, x).

• If x = xi for some i, we let C̃ be the disjoint union of C and P1 with the

points xi and ∞ identified. We let x̃i = 1 ∈ P1 and x̃n+1 = 0 ∈ P1 whereas for

j 6= i, n + 1, x̃j = xj, viewed as a point of C̃ in the obvious way. We denote

this (n+ 1)-pointed curve by σi(C;x1, ..., xn).

• If x is a singular point of C, then C̃ is obtained normalizing C in this point

only and by putting back a copy of P1 with {0,∞} identified with the preimage

of x. Then x̃n+1 = 1 ∈ P1 and for i ≤ n, x̃i = xi, viewed as a point of C̃ in the

obvious way. We thus have defined a map C //Mg,n+1 that maps xi to σi.

The converse construction associates to a (n+ 1) pointed stable curve the stable

curve n pointed given basically forgetting the last marked point. This yields a stable

pointed curve unless this last point lies on a smooth rational component which has

only two other special points. Let C̃ be obtained by contracting this component and

let xi be the image of x̃i, i ≤ n. Notice that the map C //Mg,n+1 defined above

parametrizes the fiber of π over the point defined by (C;x1, ..., xn). One now has to

check that the given map π is a morphism and so are its sections σi. Moreover the

fiber of π over the point defined by (C, x1, ..., xn) can be identified with the quotient

of C by the automorphisms of the pointed curve. [Kd].

Theorem 4.4. The functor neglecting last n− h points:

Mg,n
//Mg,h

is representable.

Proof. By induction on n − h, since the composite of representable morphisms is

representable, it is sufficient to work out the case n−h = 1. Representability is stable
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under base change and Mg,n ⊂ Mg,n is an open embedding, which is representable

by definition. So the functor neglecting the last marked point is representable also

when dealing with smooth curves, and the statement follows.

Definition 4.5. The tautological universal family of curves over Mg,n will be called

Cg,n, over Mg,n will be called Cg,n.

Theorem 4.6 (Lemma 4.4.3 [AV2], Lemma 3.3.2 [C]). Let g : G //F be a morphism

of Deligne Mumford stacks. The following conditions are equivalent:

• The morphism g : G // F is representable.

• For any ξ ∈ G(k), the natural group homomorphism Aut(ξ) // Aut(g(ξ)) is

injective.



Appendix D

Orbifold Cohomology for M1,n and

M1,n

1 The dimension: description of twisted sectors

If A is a commutative ring, we have definedH∗
orb(F,A) = H∗(IF , A) as A−modules. If

F1 and F2 are different connected components of F ,H∗(F1

∐

F2) andH∗(F1)
⊕

H∗F2

are isomorphic as A-modules. We will take rational coefficients, hence by 2.7 we are

only interested in the coarse moduli space associated to the inertia stack. So, since

we start our computation of H∗
orb(M1,n) by understanding it as a vector space, the

first step is to write down all their connected components.

To simplify the notation, we will not write any marked point when describing

the connected components of the inertia stack. Anyway, marked points will be clear

from the context or explicitly described in the proofs.

Proposition 1.1. I(M1,1) = (M1,1, 1)
∐

(M1,1,−1)
∐

(y2 = x3 + x, i)
∐

(y2 = x3 +

x,−i)
∐

(y2 = x3 + 1, ǫ)
∐

(y2 = x3 + 1, ǫ2)
∐

(y2 = x3 + 1, ǫ4)
∐

(y2 = x3 + 1, ǫ5)

Proposition 1.2. I(M1,1) = (M1,1, 1)
∐

(M1,1,−1)
∐

(y2 = x3 + x, i)
∐

(y2 = x3 +

x,−i)
∐

(y2 = x3 + 1, ǫ)
∐

(y2 = x3 + 1, ǫ2)
∐

(y2 = x3 + 1, ǫ4)
∐

(y2 = x3 + 1, ǫ5)

Proof. We have denoted in both statements a point inside the moduli space with

its equation as a projective curve (via Weierstrass representation). The statement

is then a consequence of 2.17. One checks that each component is open inside the

91
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inertia stack, and its complement is open too, moreover the given decomposition is

the decomposition connected components.

One first attempt (just looking at the definition of the inertia stack) is to go on

by induction on the number of marked points trying to prove that the following:

I(M1,1) //

��

M1,1

��

I(M1,2)

99sssssssss

//

��

M1,2

77nnnnnnnnnnnnnn

��

M1,1
//M1,1 ×M1,1

M1,2
//

99ssssssssss

M1,2 ×M1,2

77nnnnnnnnnnnn

is a 2-cartesian cube, i.e. a cube whose faces are all 2-cartesian. Unfortunately, only

the front and the back side of the cube are 2-cartesian. The right and left side of

the cube are not 2-cartesian, since the fiber product (X ×X) ×Y×Y Y is in general

X ×Y X which is different from X (in a general category).

A less categorical and more geometrically-illuminating observation, is that the

two remaining sides of the cube are not 2-cartesian since the automorphism group

of a 2-marked curve is, in general, strictly smaller than the automorphism group of

the corresponding 1-marked curve.

Taking into account this last consideration, we proceed for the computation of

the dimension for H∗
orb by induction on the number of marked points, using the fact

that M1,n+1
// M1,n is the universal curve, and using the representability of the

functor which forgets points. Every time there is an extra marked point given, every

twisted sector somehow “splits up”. From now on, the elliptic curve y2 = x3 +x will

be called C4 and y2 = x3 +1 will be called C6, in order to remember their peculiarity,

i.e. their nontrivial stabilizers being respectively µ4 and µ6. The inertia stack can

be written more compactly:

I(M1,1) = (M1,1, 1)
∐

(M1,1,−1)
∐

(C4, i/− i)
∐

(C6, ǫ/ǫ
2/ǫ4/ǫ5)

where “/” means that more than one automorphism is involved, and so there are

isomorphic copies of twisted sectors, up to a change of the automorphism. We start

with the simpler sector, the untwisted one:
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Remark 1.3. (See 3.6) The inertia stack of M1,n has a component (the untwisted

one) which is (M1,n, Id), as well as the inertia stack of M1,n has a component which

is (M1,n, Id).

As stated before, let’s study what happens to each twisted sector, when removing

a marked point: we saw that the morphism which forgets one marked point gives an

injection of the stabilizer groups, as we observed in 4.3 4.4 4.6.

1.a The case M1,n

Let’s look at first at the fibers of the isolated points of the inertia stack.

Lemma 1.4. I(M1,n) has no twisted sectors with automorphisms different from −1

if n > 3.

I(M1,2) contains the following twisted sectors:

(C4, i)
∐

(C4,−i)
∐

(C6, ǫ
2/ǫ4)

I(M1,3) contains the following twisted sectors:

(C6, ǫ
2/ǫ4)

No other twisted sector arise from the fiber of the isolated points.

Proof. Studying the fixed points for the action on the curves C4 and C6 of the two

groups µ4 and µ6, it turns out that

• i and −i act on C4 with (0, 0) as only fixed point different from infinity.

• ǫ, ǫ5 act on C6 with no fixed points different from infinity.

• ǫ2, ǫ4 act on C6 with two fixed points: (0, 1) and (0,−1). Recall that the

automorphisms i and −i exchange the two C6 curves with the two different

possible marked points. Hence in the moduli space, this component is to be

counted only once. These last remarks conclude the lemma.
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In the following, we study the fiber in the twisted sector (M1,n,−1) w.r.t. the

morphism which forgets the last marked point.

If S is a scheme, a morphism φ : S // M1,1 is the same as a family of smooth

genus 1 curves with a section s:

ES

��
S

s
UU

with a section s.

Definition 1.5. We define the following pseudofunctor in groupoids A1. If S is a

scheme, A1(S) is the following collection of data:

ES

��
S

s
UU

t

II

Such that for all u ∈ S(geometric point), t(u) 6= s(u), and

ES

��
S

s
UU

Is a map into M1,1. Moreover, we ask the section t to belong always to the set of

2−torsion points of the elliptic curve, once the identity element is fixed by s. In a

similar way, we define A2 as the pseudofunctor associating to a scheme S the previous

diagram but with three sections s, t1, t2 (different at all points and all belonging to

the two-torsion set). Finally, we define A3 as the pseudofunctor associating to a

scheme S the previous diagram with four sections s, t1, t2, t3 in the same way (now

all the two torsion points have been chosen).

In the following, we will call U the following subset of the affine plane:

U := {(a, b)| 4a3 − 27b2 6= 0} ⊂ A2

Lemma 1.6. The pseudofunctor A1 previously defined is isomorphic to [W/C∗],

where:

W = {(x, y, z, a, b)| zy2 = x3 + axz2 + bz3, y = 0} ⊂ P2 × U
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and C∗ acts as usual as:

x // λ2x y // λ3y z // z

a // λ4a b // λ6b

C∗ acts with finite stabilizers. Hence A1 is an algebraic stack which is a global

quotient.

Proof. We have a morphism from [W/C∗] to A1, since the first space has a tau-

tological family of elliptic curves (given by y2 = x3 + ax + b, the first marked

point is at infinity), with a second section, which, over a point (a, b, x) such that

(x − α1)(x − α2)(x − α3) = 0 is exactly the corresponding αi. Now the embedding

of Weierstrass again guarantees that, when computed onto geometric points, the re-

sulting groupoids are isomorphic via the given morphism. To get the same result for

families, apply an argument of Cohomology and Base Change (3.25) as in 3.26.

Let’s now call:

V = {y2 = x3 + axz2 + bz3} ⊂ U × P2

W2 := W ×U W r diagonal =

= {(a, b, xi, yi, zi)| ziy
2
i = x3

i + axiz
2
i + bz3

i yi = 0 i = 1, 2} r diagonal

and

W3 := W ×U W ×U W r big diagonal

Observe that W2 ∼ W3 canonically. We state also the following proposition, whose

proof we omit since it is analogous to the previous one mutatis mutandis.

Proposition 1.7. A2 is isomorphic to [W2/C
∗], and A3 is isomorphic to [W3/C

∗].

C∗ acts on both with finite stabilizers. Hence both are algebraic stacks and global

quotients. So since the action is the same and the starting schemes are canonically

isomorphic, the two stacks A2 and A3 are isomorphic. Moreover C1,1 is isomorphic

to [V/C∗].

Remark 1.8. Computing all such pseudofunctors on one geometric point Spec(K),

one finds out that the objects of A1 are:

{(E, 0, η) | (E, 0) ellpitic curve, η 6= 0 2-torsion point different from 0}.
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Henceforth, the objects of A2 are:

{(E, 0, η1, η2) | (E, 0) ellpitic curve, η1, η2, 0 different 2-torsion points}.

Finally, the objects of A3 are:

{(E, 0, η1, η2, η3) | (E, 0) ellpitic curve, η1, η2, η3, 0 different 2-torsion points}.

These are usually called level-2 structures of the moduli space of the elliptic curves

(see e.g. [Sc]).

Definition 1.9. Let X and Y be two orbifolds. A surjective morphism f : X //Y

will be called an orbifold covering when the morphism is representable, proper and

étale. This is the same thanks to 2.12 as asking the morphism to be representable,

finite and unramified.

Remark 1.10. This definition includes only finite coverings. Furthermore, repre-

sentability is not really needed, since properness can be defined for arbitrary mor-

phisms of algebraic stacks, and thanks to 2.12.

Here we will use the Lemma 5.5.

Lemma 1.11. The following is a diagram of finite coverings:

A3

1 : 1
��
A2

2 : 1
��
A1

3 : 1
��

M1,1

where A2
// M1,1 is a covering with group µ3, A1

// M1,1 is a covering with

group S3 (the group of permutation of a set with three elements).

Proof. Let’s work out the case of A1. We take U the smooth atlas:

U := {(a, b) ∈ C2 r (0, 0)| 4a3 − 27b2 6= 0}
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V = {y2 = x3 + axz2 + bz3} ⊂ U × P2

W = {(a, b, x, y, z) ∈ V | y = 0}

W //

��

A1

��
V //

��

// M1,2

��
U // M1,1

Now we use that M1,2 is representable over M1,1 (Thm. 4.4), so V is a scheme. The

first condition to get that A1
//M1,1 is a finite covering is the representability.

This is guaranteed by lemma 5.5, recall M1,1 = [U/C∗], C1,1 = [V/C∗] and

A1 = [W/C∗], by Proposition 1.6.

Now we have:

W
cl.emb.

// V
cl.emb.

// U × P2

��
U

The mapping onto U is proper by completeness of the projective space. Now the

scheme W is actually a smooth manifold, in fact dishomogeneizing w.r.t. the variable

z, one finds out (renaming x := x/z):

W = {(a, b, x)| x3 + ax+ b = 0, ∆ = 4a3 + 27b2 6= 0} ⊂ A3

Which is a smooth manifold, being an open subset of an hypersurface given by f = 0

where ∇f is never 0. The morphisms are checked to be étale: in fact, being the two

varieties involved smooth, this is the same as a local diffeomorphism. Now one checks

easily that the projections onto the first two factors have differential not injective if

and only if 3x2 + a = 0, and this, on our hypersurface, holds if and only if ∆ = 0,

hence out of our chosen open subset.

Corollary 1.12. Each stack of the previous diagram can be included in its compact-
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ification:

A3

1 : 1 ∼
��

incl // A3

∼
��

A2

2 : 1
��

incl // A2

��
A1

3 : 1
��

incl // A1

��
M1,1

incl // M1,1

The morphisms on the left extend to finite morphisms on the compactifications.

The atlases for A1, A2, A3 are respectively:

W = {y2 = x3 + axz2 + bz3} ⊂ C2 r (0, 0) × P2

W2 := W ×C2r(0,0) W r diagonal =

= {(a, b, xi, yi, zi)| ziy
2
i = x3

i + axiz
2
i + bz3

i yi = 0 i = 1, 2} r diagonal

and

W3 := W ×C2r(0,0) W ×C2r(0,0) W r big diagonal

They contain respectively 2, 3, 3 points in addiction to the points of their uncom-

pactified corrispondent. These are the points over (a, b) such that 4a3 + 27b2 = 0.

Since here we are interested in orbifold cohomology without torsion (the coef-

ficients are taken in the field of rational numbers), the cohomology of the twisted

sectors can be taken on their coarse moduli spaces.

Proposition 1.13. In the analytic category, the coarse moduli space for A2 is

H/Γ[2], the coarse moduli space for A1 is H/Γ0[2]

Proof. This is completely analogous to Theorem 2.22. As a reference also for this

statement, one can take [Sc].

Lemma 1.14 ([Sc], Chapter 4). The genus of the fundamental region for Γ[2] and

for Γ0[2] is zero, hence it is isomorphic to a P1 minus a finite number of points. Its

compactification is P1.



1. THE DIMENSION: DESCRIPTION OF TWISTED SECTORS 99

The following confirms our previous result (in the analytic category):

Lemma 1.15 ([Sc], chapter 4). The number of points added in the compactification

is 2 for H/Γ0[2] and 3 for H/Γ[2].

Proof. (sketch) This is geometrically quite clear. Calling x1, x2, x3 the three

2−torsion points (different from infinity), we see that on the nodal curve the two

points x2 and x3 become one single point (with a nodal singularity). Hence a choice

of the points of 2−torsion is a choice between two points, and a choice of a couple

of points of 2−torsion is a choice between (x1, x2), (x2, x1), (x2, x3).

Remark 1.16. Now let’s look at the morphism onto the coarse moduli spaces, and

check with the Riemann-Hurwitz formula that it is all right. The coarse moduli

spaces of A1, A2 and A3, are copies of P1. In the following table we compute the

cardinality of the fibers over the different points ∞ (the nodal curve), C4, C6 and a

generic point p (a point different from all the previous ones).

∞ C4 C6 p

A1 2 2 1 3

A2 3 3 2 6

The computation of Riemann-Hurwitz for the morphism of coarse moduli spaces

associated to A1
//M1,1 brings to:

0 − 2 = 3(0 − 2) +
∑

ramification

and one sees from the previous table that the degree of the ramification divisor is 4.

as for the morphism of coarse moduli space associated to A2
//M1,1 one finds out:

0 − 2 = 6(0 − 2) +
∑

ramification

and the degree of the ramificaton divisor is easily seen to be 10, according to the

previous table.

What we observed, leads naturally to the following result:

Theorem 1.17. The connected component of the inertia stack with the automor-

phism (−1) for M1,n is:
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1. A1 if n = 2.

2. A2 if n = 3.

3. A3 if n = 4.

4. empty if n > 4.

Let’s now summarize all in the following:

Corollary 1.18. The following are the coarse moduli spaces of the inertia stacks of

moduli spaces of smooth elliptic curves with marked points:

• (The inertia stack of M1,2)

I(M1,2) = (M1,2, 1)
∐

(A1,−1)
∐

(C4, i/− i)
∐

(C6, ǫ
2/ǫ4)

• (The inertia stack of M1,3)

I(M1,3) = (M1,3, 1)
∐

(A2,−1)
∐

(C6, ǫ
2/ǫ4)

• (The inertia stack of M1,4)

I(M1,4) = (M1,4, 1)
∐

(A3,−1)

• The inertia stack of M1,n for n > 4 has no twisted sectors, according to con-

siderations in this chapter and to 3.18.

Let’s now give the results on cohomology:

Theorem 1.19. The dimension of the orbifold cohomology of M1,n with rational

coefficients is:

• 1 if n = 1;

• dim(H∗(M1,2,Q)) + 6 if n = 2;

• dim(H∗(M1,3,Q)) + 5 if n = 3;

• dim(H∗(M1,4,Q)) + 3 if n = 4;

• dim(H∗(M1,n,Q)) if n ≥ 5.

To conclude the section, recall that H∗(M1,n,Q) is completely known [Co3].
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1.b The case M1,n

The following is a series of lemmas giving, one by one, the connected components of

the inertia stack. This will allow us to compute cohomology, at least as a vector space.

We proceed following the identical way of the previous chapter. As in the previous

chapter, we avoid writing down the marked points when we write the components

of the inertia stack, anyway they should be clear from the context, or described

explicitly in the proofs.

In the following we use the notation M0,n ∼ a point, for n ≤ 2. It is an abuse

of language, since by our previous definition it was the empty set. Nevertheless, this

will simplify the description of the twisted sectors for M1,n.

Moreover, in order to simplify the notation, if n is a natural number, S is an

algebraic stack, we will denote by nS, n isomorphic copies of S.

We will use the standard notation for the multinomial coefficients:

(n1, ..., nk)! =
(n1 + ...+ nk)!

n1!...nk!

is the number of distinct way of decomposing the set {1, ..., n1 + n2 + ... + nk} in k

distinct, ordered subsets (S1, ..., Sk) in such a way that n1 of them belong to S1,...,nk
of them belong to Sk.

Lemma 1.20 (A). The components of the inertia stack of M1,n endowed with the

automorphisms i and −i are, up to isomorphism:

∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! M0,α1+2 ×M0,α2+2

∐

M0,n+1

which lie in the fiber over C4 when considering the morphism to M1,1 which forgets

sections.

Proof. The first two components of this kind come from adding a marked point to

the twisted sector (C4, i/ − i). Let’s prove this fact, showing how to perform the

induction. A marked point has to be invariant under automorphisms, so, in order to

preserve the automorphisms (i,−i) the only two possibilities are to mark the point

(0, 0) and to mark the point at infinity. One arrow left-down means to add the

successive marked point onto the origin, one arrow right-down means to add the

successive marked point onto the point at infinity.
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C4
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C4
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>
C4

����
��
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��

$$I
IIIIIIIII C4 ×M0,4

wwppppppppppp

''NNNNNNNNNNN

wwppppppppppp

''NNNNNNNNNNN

C4 ×M0,4 C4 C4 ×M0,4 C4 ×M0,5

Each vertex of the tree has to be counted with multiplicity equal to the number

of paths to reach it from the upper vertex. Since C4 inside the moduli space is a

point, it is possible to omit it in the product up to isomorphism. In the following

graph with (a, b) is meant the product M0,a ×M0,b. Remember that here with the

moduli space of genus zero curves with less or equal than three marked points we

mean a point, according to our previous convention:
(1, 2)

{{xxxxxxxx

##F
FFFFFFF

(2, 2)

{{xxxxxxxx

##F
FFFFFFF

(1, 3)

{{xxxxxxxx

##F
FFFFFFF

(3, 2)

{{xxxxxxxx

##F
FFFFFFF

(2, 3)

{{xxxxxxxx

##F
FFFFFFF

(1, 4)

{{xxxxxxxx

##F
FFFFFFF

(4, 2)

{{xxxxxxxx

##F
FFFFFFF

(3, 3)

{{xxxxxxxx

##F
FFFFFFF

(2, 4)

{{xxxxxxxx

##F
FFFFFFF

(1, 5)

{{xxxxxxxx

##F
FFFFFFF

(5, 2) (4, 3) (3, 4) (2, 4) (1, 6)

The multiplicative coefficient arises from the number of way of decomposing

{2, ..., n} in two disjoint ordered subsets. The number of points marked onto 0

is α1 + 1, the number of points marked onto ∞ is α2 + 1.

Let’s now look at the two more components of the twisted sectors over C6.

Lemma 1.21 (B).

The components of the inertia stack of M1,n when n ≥ 2 endowed with the auto-



1. THE DIMENSION: DESCRIPTION OF TWISTED SECTORS 103

morphisms ǫ2 and ǫ4 are, up to isomorphism:

n−2
∐

α1=0

(n− 1 − α1, α1)! M0,α1+2 ×

×

(

∐

β1+β2=n−1−α1, βi≥0, β1>β2

(n− 1 − α1 − β1, β1)! M0,β1+1 ×M0,β2+1

∐

∐

2β1=n−1−α1

1

2
(β1, β1)! M0,β1+1 ×M0,β1+1

)

∐

M0,n+1

The two components of the inertia stack of M1,n when n ≥ 2 endowed with the

automorphisms ǫ and ǫ5, are isomorphic to:

M0,n+1

These components lie in the fiber of C6 w.r.t the morphism neglecting sections.

Proof. The idea is the same as in the previous one, just much more complicated.

The automorphisms are four instead of two. Let’s look at the fixed points of:

x // ǫ2nx

y // ǫ3ny

on the curve C6. when n = 2, 4 there are three fixed points: (0, 1), (0,−1) and the

infinity one. When n = 1, 5 there are no extra fixed points then infinity. So, the

case with automorphisms ǫ and ǫ5 is trivial: one just adds points over infinity. One

crucial observation is that both the automorphisms ǫ and ǫ5 exchange the two points

(0, 1) and (0,−1), hence, for instance, the elliptic curve with a single marked point

over (0, 1) and the elliptic curve with a single marked point over (0,−1) are the same

inside the moduli space. Let’s now show step by step how one finds out that formula.

• the case n = 2: M0,3

∐

M0,2 ×M0,2;

• the case n = 3: M0,4

∐

2M0,3

∐

M0,3;

• the case n = 4:

M0,5

∐

3M0,4

∐

3
(

M0,3

∐

M0,3 ×M0,3

)

∐

(

M0,4

∐

3M0,3

)

.
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• the case n = 5:

M0,6

∐

4M0,5

∐

6M0,4 ×
(

M0,3

∐

M0,2

)

∐

∐

4M0,3 ×
(

M0,4

∐

3M0,3

)

∐

∐

(

M0,5

∐

3M0,4

∐

3M0,3 ×M0,3

)

.

To perform the computations, one separates the marked points added to infinity

from marked points added to the remaining two points. Adding marked points to

(0, i) and (0,−i) one has to be aware that an elliptic curve with markings onto

the first of this two is indistinguishible from the same elliptic curve with the same

markings onto the second point. Hence if one has k marked points to put onto this

two special points, the number of possibilities with k1 onto the first is the binomial

(k−k1, k1)!. The two k1 and k−k1 gives rise to the same object in the moduli space

(one sees this using either the automorphism ǫ or ǫ5), and so one has to count this

two only once. When k is odd this is obtained simply imposing that k1 > k − k1.

When k is even, one has to divide by two the case when 2k1 = k.

These two lemmas allows the computation of the dimension of the cohomology

for the twisted sector lying over the points of M1,1 with non generic automorphism.

The following lemma explains what happens adding extra marked points over the

twisted sector (M1,1,−1).

Lemma 1.22 (C). The last component of I(M1,n), with the automorphism −1, ob-

tained adding points over the component (M1,1,−1) of the inertia stack of the moduli

space of elliptic curves with one marked point, is given by the following formula:

∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! A1 ×M0,α1+2 ×M0,α2+2

∐

α1+α2=n−3, αi≥0

((α1, α2)! + (α1 + 1, α2)!) A2 ×M0,α1+2 ×M0,α2+2

∐

α1+α2=n−4, αi≥0

(2(α1, α2)! + (α1 + 1, α2)!) A3 ×M0,α1+2 ×M0,α2+2

∐

M1,1 ×M0,n+1
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Proof. The proof is as usual given with a tree. We will use the following notation:

Mg,n will be denoted (g, n). A moduli space with an extra ∞ point marked is

indicated with a subscript ∞, while when a point different from ∞ is marked, it

will be denoted by an upper dot.

(1, 1) //

$$H
HHHHHHHH
(1, 1)∞ //

&&MMMMMMMMMM
(1, 1) × (0, 4) //

''OOOOOOOOOOO
(1, 1) × (0, 5) //

''OOOOOOOOOOO
(1, 1) × (0, 6) //

((QQQQQQQQQQQQ
(1, 1) × (0, 7)

A1
//

&&MMMMMMMMMMM

��*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A1∞
//

��

''OOOOOOOOOOOO
A1 × (0, 4) //

''OOOOOOOOOOO

��

A1 × (0, 5) //

��

((QQQQQQQQQQQQ
A1 × (0, 6)

A•

1
//

''OOOOOOOOOOOO

��

A•

1∞
//

''OOOOOOOOOOOO

��

A•

1
× (0, 4) //

((QQQQQQQQQQQQ

��

A•

1
× (0, 5)

A1 × (0, 4) //

''OOOOOOOOOOO

��

A1∞ × (0, 4) //

((QQQQQQQQQQQQ

��

A1 × (0, 4) × (0, 4)

A1 × (0, 5) //

((QQQQQQQQQQQQ

��

A1∞ × (0, 5)

A1 × (0, 6)

A2
//

''OOOOOOOOOOOOO

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

A2∞
//

''OOOOOOOOOOOO

��/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
A2 × (0, 4) //

((QQQQQQQQQQQQ

��1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A2 × (0, 5)

A•

2
//

''OOOOOOOOOOOO

��/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
A•

2∞
//

((QQQQQQQQQQQQQ

��1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A2 × (0, 5)

A2 × (0, 4) //

((QQQQQQQQQQQQ

��1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A2∞ × (0, 4)

A2 × (0, 5)

A3
//

''OOOOOOOOOOOOO A3∞
//

((QQQQQQQQQQQQQQ A3 × (0, 4)

A•

3
//

((QQQQQQQQQQQQQQ A•

3∞

A3 × (0, 4)

As usual, each vertex has to be counted with its proper multiplicity, i.e. the
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number of possible paths to reach it from the starting vertex on the left. Arrows

are of different kind just to help the reader.

Let’s now give some example, because the matter is a little cumbersome. To get

knowledge of the marked points we refer to the trees inside the proofs of lemmas A,B

and C.

Example 1.23. (The inertia stack of M1,2)

I(M1,2) = (M1,2, 1)
∐

(M1,1,−1)
∐

(A1,−1)
∐

2 (C4, i/−i)
∐

(C6, ǫ/ǫ
2/ǫ4/ǫ5)

∐

∐

(C6, ǫ
2/ǫ4)

Example 1.24. (The inertia stack of M1,3)

I(M1,3) = (M1,3, 1)
∐

(M1,1 ×M0,4,−1)
∐

3 (A1,−1)
∐

(A2,−1)
∐

∐

2(C4, i/− i)
∐

(C4 ×M0,4, i/− i)
∐

(C6 ×M0,4, ǫ/ǫ
2/ǫ4/ǫ5)

∐

4(C6, ǫ
2/ǫ4)

∐

3 (C4, i/− i)
∐

(C4 ×M0,4, i/− i)

∐

(C6 ×M0,4, ǫ/ǫ
2/ǫ4/ǫ5)

∐

(C6, ǫ
2/ǫ4)

∐

(C6, ǫ
2/ǫ4)

∐

(C6, ǫ
2/ǫ4)

Theorem 1.25. (Structure of the inertia stack: explicit description of the twisted

sectors) The twisted sectors of the inertia stack of M1,n when n > 3 are, up to

isomorphism and with the notations introduced in this chapter:

∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! A1 ×M0,α1+2 ×M0,α2+2

∐

α1+α2=n−3, αi≥0

((α1, α2)! + (α1 + 1, α2)!) A2 ×M0,α1+2 ×M0,α2+2

∐

α1+α2=n−4, αi≥0

(2(α1, α2)!+(α1+1, α2)!) A3×M0,α1+2×M0,α2+2

∐

M1,1×M0,n+1

∐
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∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! M0,α1+2 ×M0,α2+2

∐

M0,n+1

∐

∐

α1+α2=n−2, αi≥0

(α1 + 1, α2)! M0,α1+2 ×M0,α2+2

∐

M0,n+1

∐

n−2
∐

α1=0

(n− 1 − α1, α1)! M0,α1+2 ×

×

(

∐

β1+β2=n−1−α1, βi≥0, β1>β2

(n− 1 − α1 − β1, β1)! M0,β1+1 ×M0,β2+1

∐

∐

2β1=n−1−α1

1

2
(β1, β1)! M0,β1+1 ×M0,β1+1

)

∐

M0,n+1

∐

n−2
∐

α1=0

(n− 1 − α1, α1)! M0,α1+2 ×

×

(

∐

β1+β2=n−1−α1, βi≥0, β1>β2

(n− 1 − α1 − β1, β1)! M0,β1+1 ×M0,β2+1

∐

∐

2β1=n−1−α1

1

2
(β1, β1)! M0,β1+1 ×M0,β1+1

)

∐

M0,n+1

∐

M0,n+1

∐

M0,n+1

For a more detailed description of the twisted sectors, and to know the automor-

phisms acting on each sector, we refer to lemmas [A], [B] and [C].

Theorem 1.26 ([BT]). (Kunneth Formula) The singular cohomology with rational

coefficients satisfies the following formula. If X and Y are topological spaces,

Hn(X × Y ) ∼=
⊕

l+k=n

Hk(X) ⊗H l(Y )

Theorem 1.27. (Cohomology of M0,n) [See [K]]. The canonical map from the Chow

groups to homology (in characteristic zero):

A∗(M0,n)
cl //H∗(M0,n)
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is an isomorphism. Moreover, there is a recursive formula for the Betti num-

bers of M0,n. Finally, since we are interested in cohomology and all is taken

to be with rational coefficients, the following recursive formula holds, where

ak(n) :=dim(H2k(M0,n)):

ak(n+ 1) = ak(n) + ak−1(n) +
1

2

n−2
∑

j=2

(

n

k

) l=k−1
∑

l=0

al(j + 1)ak−1−l(n− j − 1)

ak(3) =

{

1 if k = 0

0 otherwise

Remark 1.28. (cohomology of M1,1). According to [AV] and to [B], one can

compute the cohomology of M1,1 also with integer coefficients. It turns out to be

Z[t]/(24t2) (this takes into account also the product structure). Tensoring with Q,

one finds out the usual graded vector space structure of the cohomology of P1, which

is Q in degree 0 and 2, and zero in all other degrees.

Putting all together, we get our final result for the cohomology of M1,n. Since

the additive structure of H∗(M1,n,Q) is completely known [Co3], this result giving

the dimension for the twisted sectors, determines the dimension of the whole orbifold

cohomology too.

2 Age

Let’s compute first the age for M1,1 and M1,1. Observe first that the nontwisted

sector has no shift. Moreover, since the formula:

a(g, x) + a(g−1, x) = codimension of X(g)

holds, the age of the twisted sector corresponding to the automorphism (−1) is 1
2

the codimension. The components with the automorphism −1 are finite coverings

of M1,1, they have dimension 1. Hence the age of the previous components is easily

computed as one half the codimension of the sector involved.

Moreover, the age for weighted projective spaces is known ([M], [AV]).

a(C4, i) = 1 − a(C4,−i) =
1

2
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a(C6, ǫ) = 1 − a(C6, ǫ
5) =

1

3
= a(C6, ǫ

4) = 1 − a(C6, ǫ
2)

This completes the computation of the shift for the smooth and stable case with one

marked point.

Proposition 2.1. (Age in the smooth case) In the following, we describe the age for

the remaining components of the inertia stack of the moduli space of smooth elliptic

curves M1,n:

• when n = 2:

a(C4, i) =
5

4
= 2 − a(C4,−i)

a(C6, ǫ
2) =

4

3
= 2 − a(C6, ǫ

4);

• when n = 3:

a(C6, ǫ
2) = 2 = 3 − a(C6, ǫ

4).

Proof. We use the universal curve. The functor neglecting the last point is a smooth

morphism between the algebraic stacks M1,2 and M1,1. Take the two étale atlases

X and Y respectively for the two spaces M1,2 and M1,1. The morphism now is a

smooth morphism between smooth algebraic varieties. Then the following sequence

of vector spaces is exact:

0 // Tpf
−1(f(p)) // Tp(X) // Tf(p)Y // 0

The action of the two elements of the group i,−i ∈ µ4 onto Tp(X) splits up into an

action over the two sides. Therefore the age is the sum of the two ages. i acts over

C4:

x // − x

y // − iy

Then tangent point at the fixed locus of the curve (0, 0) is given by the equation

x = 0, and the action of i on it is given by −i. Conversely, one checks easily that the

action of −i on it is given by i. As regards the points C6, the fixed points are (0, 1)

and (0,−1) as we have already stressed in the previous section. The tangent space

embedded in A2 are given by the parametrizations (t, 1) and (t,−1) respectively. The

actions of ǫ2, ǫ4 are given by the multiplication by ǫ4 and ǫ2 respectively.
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Thanks to the proposition and to all previous considerations, age is completely

known in the smooth case. In the stable case, we do not know age for twisted sectors

over the isolated points C4 and C6.

Theorem 2.2. (Local-Global exact sequence of Ext) The following is exact:

0 //H1(X,Hom(F ,G)) // Ext1(F ,G) //H0(Ext1(F ,G)) //

//H2(X,Hom(F ,G)) // Ext2(F ,G)
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