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Program of the course:

(1) Enumeration of rational curves in P2;
(2) Stable maps and GW-theory;
(3) Quantum Cohomology;
(4) Virtual fundamental class;
(5) Orbifold cohomology (Chen–Ruan cohomology).

This is a series of lectures, devoted to a smooth introduction into the world of Gromov–
Witten theory and Quantum Cohomology, from the point of view of algebraic geometry.
We will be focusing on the enumerative questions, and on their respective intersection-
theoretic answers.

The generality we adopt is: we always build on the category of schemes of finite type over
C. Almost all of the time we will be focusing in particular on smooth, projective varieties.
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We will always take singular cohomology and Chow groups with rational coefficients. For
many of the varieties that will be object of study, we shall moreover make the assumption
that the cycle map is an isomorphism, that the variety is convex (to be explained).

The first lecture is addressed to a general audience, so we work somewhat intuitively.
The first lecture provides motivation for the following ones. Moreover some key proofs
in the following lectures will borrow ideas from the main construction/result of the first
lecture.

References for the course (books):

(1) The book of Kock-Vaisencher: [KV07]. This is a gentle invitation to quantum
cohomology. It mainly works out the case of the projective space Pr.

(2) The fourth chapter in the bible-type book edited by Vafa: [HKKPTVVZ03].
(3) A nice introduction to moduli of curves and Gromov–Witten theory from the point

of view of undergraduate algebraic geometry can be found in [V08].
(4) A series of lectures on Quantum Cohomology and related topics were given by a

series of top experts at the Mittag–Leffler institut, Stockholm, in 1996. Paolo Aluffi
recollected them all in [A96].

(5) Some notes written by Fulton and Pandharipande settled down the fundations of
the moduli spaces of stable maps from the point of view of algebraic geometry:
[FP97].

(6) The book of Cox and Katz on Mirror Symmetry, has a chapter devoted to Gromov–
Witten theory [CK99].

(7) A more specific book on Frobenius Manifolds and Quantum Cohomology, written
by Manin [M99]. We will follow this book to describe equivalent formulations of
the theory of quantum cohomology.

Some research articles (mainly for the last lecture):

(1) [KM94]
(2) [K92], [K95]
(3) [W91]
(4) [B97], [B99], [BF97], [BM96]
(5) [CR01],[CR04], [R02], [A08], [AV02], [AGV02], [AGV08], [JKK05], [JKK07],

[JK01], [K08], [FG03].

In this note we recollect the results discussed in the lectures. For the results, we try to
cite the precise original reference with detailed proofs, and (if available), the more intuitive
and sketchy explanations available in the literature.

1. Enumeration of rational curves in P2

In this section we work somewhat informally. Our presentation owes a lot to [KV07].
The main result we explain here appeared first in [KM94], and is due to Kontsevich.
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We want to give an answer to:

Qd : “How many rational curves of degree d pass through 3d-1 points in general position in the plane?”

We call Nd ∈ N the answer to such question.
With a rational curve of degree d, we mean the image of a degree d map P1

C → P2
C (in

the following, we will always work on C, and omit the subscript).

Exercise 1.1. The space of such maps of degree d has dimension 3d + 2. Deduce that
the space of rational curves of degree d in P2 has dimension 3d − 1 from the fact that
dim(Aut(P1)) = 3.

A degree d curve in the projective plane is given as the zero locus of an homogeneous,
degree d polynomial in 3 variables. The space of such hypersurfaces is projective of dimen-
sion (d+2)(d+1)

2 −1. Inside this space, there is a Zariski open subset U sm where the resulting
curve will be smooth and have genus (d−1)(d−2)

2 . Another Zariski open subset Unod, is made
of those hypersurfaces that correspond to curves with at worst nodal singularities. This
last space can be stratified by the number of nodes that occur (0 nodes corresponds to
U sm). The formula for the genus of one such curve will then be (d−1)(d−2)

2 − n, where n
is the number of nodes. Note that the locus of such hypersurfaces that have k nodes will
have codimension k.

Exercise 1.2. Let us consider the space of hypersurfaces of degree d in P2. To pass through
a given point P corresponds to a linear condition on such space.

If d = 1, 2, the numbers (d+2)(d+1)
2 − 1 and 3d− 1 coincide, and moreover each degree d

curve in this range is rational. Thus we find that N1 = N2 = 1. This numbers were known
to Euclid (∼ 300 B.C.) and Apollonious (∼ 200 B.C.).

We sketch now the computation of N3. A general degree 3 plane curve is a smooth
elliptic curve (genus 1). There is an hypersurface in the space of degree 3 hypersurfaces,
made of curves with 1 node and genus 0. We want to understand the degree of such an
hypersurface, so we call k the degree. Then, since we have that the space of hypersurfaces
has dimension 9, we are imposing 8 linear condition, and a condition of degree k, we will
have that the number N3 equals k. So let us consider a line in the space of degree 3 curves
in P2: let F and G be two homogeneous, degree 3 polynomials, and consider the line in the
space of homogeneous degree 3 polynomials: F + tG. The zero locus of F + tG in P1×P2 is
a surface S, with two projections p1 : S → P1 and p2 : S → P2. The first map p1 exhibits
S as a surface fibered in tori over P1. Note that k such tori are in fact rational curves with
one node. Using the multiplicativity of the Euler characteristic, we have that χ(S) = k

(remember that each torus have Euler characteristic 0 and each rational curve with one
node has Euler characteristic 1). On the other hand, the map p2 exhibits S as the blow-up
of P2 in 9 points (the points where both F and G vanish). So using the additivity of the



4 NICOLA PAGANI

Euler characteristic, we have that χ(S) = χ(P2)− 9χ(point) + 9χ(P1) = 12. Therefore we
obtain that k = 12, and so that N3 = 12 as well.

The number N3 was computed by Chasles/Steiner in the early XIX century, while N4 =
620 was computed in the late XIX century by Schubert/Zeuthen. The number N5 = 87304
was also computed in the mid XX century.

In 1993, Kontsevich found the following beautiful recursive formula for Nd:

(1.3) Nd =
∑

d1+d2=d,di>0

Nd1Nd2

(
d2

1d
2
2

(
3d− 4
3d1 − 2

)
− d3

1d2

(
3d− 4
3d1 − 1

))
Note that, once one proves the formula, it is enough to compute Nd for d = 1 to

derive all the other numbers! From now on, this section will be devoted to explaining
how one derives this formula. Let us start in translating our enumerative problem, in an
intersection-theoretic problem on a moduli space.

Definition 1.4. Let us define the moduli space of maps of degree d from a genus 0 curve:

M0,n(P2, d) := {(C, x1, . . . , xn, φ)}

where C is a smooth genus 0 curve, xi ∈ C are pairwise distinct points of it, and φ : C → P2

is a degree d map.

Exercise 1.5. Understand why the dimension of such space is 3d− 1 + n.

Exercise 1.6. Let P ∈ P2 be a point. Figure out why the condition that φ(xi) = P defines
a codimension 2 condition on M0,n(P2, d).

There are well-defined evaluation maps evi :M0,n(P2, d)→ P2:

evi(C, x1, . . . , xn, φ) := φ(xi)

Our enumerative question Qd is then translated into the following problem. Let
P1, . . . , P3d−1 be general points in P2. Then we want to compute the number of points:

Nd := #{ev−1
1 (P1) ∩ . . . ∩ ev−1

3d−1(P3d−1)}

As a matter of fact, intersection theory works much better for compact spaces, and our
moduli spaces are not. Thus we aim at compactifying them:

Definition 1.7. A prestable n−pointed rational curve is (C, x1, . . . , xn) where C is a nodal
curve of arithmetic genus 0, and xi are distinct points in the smooth locus of C.

A special point of a prestable n-pointed rational curve is a node, or one of the points xi.
A prestable curve is stable, if every irreducible component of it contains hat least 3

special points.

Exercise 1.8. Figure out why stable is equivalent to the fact that the automorphism group
of the curve is trivial.
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Definition 1.9. We define the moduli space of genus 0 pointed stable curves:

M0,n := {(C, x1, . . . , xn)}

It is a fact that we will assume that this is a smooth, compact (in fact, projective)
variety.

Exercise 1.10. The moduli space M0,4. Understand that:

M0,4
∼= P1 \ {0, 1,∞}

In the compactification M0,4 we are adding three points, corresponding to the rational
curves made of two irreducible components, and the four points {1, 2, 3, 4} distributed on
them two–by–two. Identify this 3 points as the limit points 0, 1,∞ in the isomorphism
M0,4

∼= P1 \ {0, 1,∞}.

From this point on, we shall use the singular cohomology theory. Let l ∈ H2(P2) be the
class of a line.

Definition 1.11. A rational n−pointed prestable map of degree d is the datum of
(C, x1, . . . , xn, φ), where (C, x1, . . . , xn) is a prestable n-pointed curve, and φ : C → P2 is
a morphism such that φ∗([C]) = dl. The map is stable if all the irreducible components of
C that φ contract have at least 3 special points.

Definition 1.12. We define the moduli space of rational stable n−pointed degree d maps
as:

M0,n(P2, d) := {(C, x1, . . . , xn, φ)}

where (C, x1, . . . , xn, φ) is a rational n−pointed stable map of degree d.

We have the following result (which shall be discussed in later sections with some more
detail):

Theorem 1.13. The space M0,n(P2, d) is a smooth compactification of M0,n(P2, d).

We also have some natural maps:

(1) An evaluation map: evi :M0,n(P2, d)→ P2: evi(C, xi, φ) := φ(xi).
(2) A forgetful map that forgets the point xi (and if stability is lost, contracts the

unstable component): forgi :M0,n(P2, d)→M0,n−1(P2, d).
(3) An other forgetful map that remembers only the prestable rational curve (C, xi)

(and if necessary, stabilizes it): f :M0,n(P2, d)→M0,n.

We want to have some grasp on the boundary components of ∂M0,n(P2, d) for the
derivation of Formula 1.3.



6 NICOLA PAGANI

Definition 1.14. We define the codimension 1 boundary component D(N1, d1|N2, d2) for
every decomposition [n] = N1 tN2 and d = d1 + d2:

D(N1, d1|N2, d2) := {(C, φ, x1, . . . xn)| C has two irred. comp. C1 and C2, Ni ⊂ Ci, f∗([Ci]) = dil}

and D(N1, d1|N2, d2) the closure of it (the curves C1 and C2 can degenerate further).

Observe that, with this position, we have that:

∂M0,n(P2, d) =
⋃

[n]=N1tN2,d1+d2=d

D(N1, d1|N2, d2)

Moreover, we can describe the spaces D(N1, d1|N2, d2) in a nice way in terms of other
moduli spaces of stable maps. Let ∗ and • be two symbols. Then we have the evaluation
map:

evN1,d1
∗ × evN2,d2

• :M0,N1t•(P2, d1)×M0,N2t∗(P2, d2)→ P2 × P2

and if ∆ ⊂ P2 × P2 is the class of the diagonal, we have:

(1.15) D(N1, d1|N2, d2) = (evN1,d1
∗ × evN2,d2

• )−1(∆)

Exercise 1.16. Figure out this last equality.

Let now P ∈ H4(P2) be the class of a point, and 1 ∈ H0(P2) be the fundamental class.

Exercise 1.17. Understand that the class [∆] ∈ H4(P2×P2) is equivalent (under Künneth
decomposition) to P ⊗ 1 + l ⊗ l + 1⊗ P .

Let now introduce the following notation, for α1, . . . , αn ∈ H∗(P2):

〈α1, . . . , αn〉d :=
(∏

ev∗i (αi)
)
∩ [M0,n(P2, d)] =

∫
[M0,n(P2,d)]

∏
ev∗i (αi)

With this position, our number Nd is simply equal1 to:

Nd = 〈P, . . . , P 〉d

(where the class of P appears 3d− 1 times).
The symbol just introduced 〈〉d has some nice properties, that can be easily explained

geometrically:

A) Fundamental class insertion:

〈α1, . . . , αn−1, 1〉d = 0

unless n = 3, d = 0: in this case 〈α1, α2, 1〉0 = α1 ∪ α2.

1This fact, despite being intuitive, must be checked. We will prove the enumerativity in a later section
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B) Degree 0 class:

〈α1, . . . , αn, 1〉0 = 0

unless n = 3: in this case 〈α1, α2, α3〉0 = α1 ∪ α2 ∪ α3.
C) Divisor insertion. Let D ∈ H2(P2) be equal to el, for e ∈ N. Then:

〈α1, . . . , αn−1, D〉d = de〈α1, . . . , αn−1〉d

Exercise 1.18. Translate each of the last properties into its geometric meaning, and figure
out why it should be true.

Now, if one believes all the results explained in this chapter, it is easily possible to prove
Kontsevich’s recursion formula.

Proof. (of Formula 1.3) Let us consider M0,3d(P2, d), and then:

C := ev∗1(l) ∪ ev∗2(l) ∪ ev∗3(P ) ∪ . . . ∪ ev∗3d−1(P )

Exercise 1.19. The dimension of C is 1: it is the class of a curve in M0,3d(P2, d).

Let F :M0,3d(P2, d)→M0,4
∼= P1 be the map that forgets everything but the first four

points:

F (C, xi, φ) := (C, x1, x2, x3, x4)

If Q is the class of a point in M0,4 the idea is now to compute:

(1.20) C ∪ F ∗(Q)

in two different ways. Since all the points on P1 are homologically equivalent, we can
compute 1.20 in two different ways. We can take F ∗(Q) as class of F−1(Q1), where Q1

is the point of M0,4 that corresponds to the rational nodal curve with two irreducible
components and the points 1, 2 on one, and the points 3, 4 on the other. This is equivalent
to taking the class of F−1(Q2), where Q2 is the point corresponding to the rational nodal
curve with two twigs and the points 1, 3 on one, and the points 2, 4 on the other. Using
1.15 we obtain:

F−1(Q1) =
⋃

N1tN2=[n],
{1,2}∈N1,{3,4}∈N2,

d1+d2=d

(evN1,d1
∗ × evN2,d2

• )−1(∆P2×P2)

F−1(Q2) =
⋃

N1tN2=[n],
{1,3}∈N1,{2,4}∈N2,

d1+d2=d

(evN1,d1
∗ × evN2,d2

• )−1(∆P2×P2)
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Using the fact that the two classes [F−1(Qi)] are cohomologically equivalent, and the
formula derived in 1.17 for the diagonal, we obtain C ∩F ∗(Q) in two different ways, which
produce the same result:∑

N1tN2=[n],
{1,2}∈N1,{3,4}∈N2,

d1+d2=d

〈l, l, . . . , P 〉d1〈P, P, . . . , 1〉d2+〈l, l, . . . , l〉d1〈P, P . . . , l〉d2+〈l, l . . . , 1〉d1〈P, P . . . , P 〉d2 =

∑
N1tN2=[n],

{1,3}∈N1,{2,4}∈N2,
d1+d2=d

〈l, P, . . . , P 〉d1〈l, P, . . . , 1〉d2+〈l, P, . . . , l〉d1〈l, P . . . , l〉d2+〈l, P . . . , 1〉d1〈l, P . . . , P 〉d2

Note that the dots all correspond to classes of points P , and that the 3d − 4 classes of
points P ought to be distributed according to the subdivision N1 t N2 = [n] for all the
possible partitions of [n].

Let us now use the properties A,B,C to simplify the LHS of the equality. The first
summand vanishes by the property A. Again using the same property, the third summand
reduces to the number Nd. For the second summand we can use the property B and C,
and paying attention to how many of the classes P can be plugged in the 〈〉 in such a way
that it becomes a term of the right dimension. So it becomes:∑

d1+d2=d,d1>0,d2>0

d3
1d2Nd1Nd2

(
d− 4
d1 − 3

)
Analogously, on the RHS the first and the third term vainsh by the property A, and the

second term reduces to: ∑
d1+d2=d,d1>0,d2>0

d2
1d

2
2Nd1Nd2

(
d− 4
d1 − 2

)
and from the equality LHS=RHS, we obtain Formula 1.3. �

Exercise 1.21. Work out the computation in detail.

Exercise 1.22. Repeat the same argument and find a “Kontsevich’s formula” to enumerate
the rational curves in P1 × P1 (instead of P2).

Exercise 1.23. What are the actual hypothesis on the space X = P2 that we used to derive
Kontsevich formula?

2. Introduction to the course

The topic of this course is the study of curves in smooth projective varieties X, using the
techniques of algebraic geometry and in particular intersection theory, with the enumerative
geometric meaning in mind.
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We want to study a moduli space whose points parametrize embeddings of Riemann
surfaces into some target space X. We will want to be able to speak about how many
curves in X hit certain subvarieties. For this we need to introduce in the moduli space
marked points on each Riemann surface.

Guiding examples for X will be smooth algebraic varieties such as a point, P1, P2, a
Calabi–Yau threefold, . . .

The moduli space, if exists, has different components that are distinguished by discrete
invariants such as the genus of the curve, the number of marked points, and the class
β ∈ H2(X,Z) that the curve C realizes as a cycle in X once it is embedded. Once these
three parameters are fixed, we can ideally construct a moduli space Mg,n(X,β).

Nice things we we will be able to obtain from this moduli spaces:

(1) The datum of a family over a space S of embeddings of such curves into X corre-
sponds exactly to a map from S to the moduli space,

(2) The moduli spaces Mg,n(X,β) are connected by natural maps with each other,
(3) There are evaluation maps evi :Mg,n(X,β)→ X defined by the following prescrip-

tion: given an embedding f : (C, x1, . . . , xn)→ X, evi(f) := f(xi).
(4) Given cycles α1, . . . , αn ∈ Z∗(X)n we can get cycles in H∗(Mg,n(X,β)) by taking:

ev∗1(α1) ∪ . . . ∪ ev∗n(αn)

if the class thus obtained is a top degree class, using Poincaré duality we can obtain
a number: the number of genus g curves whose associated cycle realize a given class
β in X, and that pass through α1, . . . , αn. Ideally, this number should be a natural
number,

(5) These numbers can be organized in certain ways in generating functions (Gromov–
Witten potentials). They satisfy integrable hyerarchies. For example even the
trivial case where X is just a point corresponds to the integrable hyerarchy of
the KDV equation, a differential equation that describes the diffusion of waves in
shallow water.

(6) These numbers are also relevant in string theory, as they are a realization of a
particular case of Feynmann integral. Instead of integrating over the space of all
possible paths here we restrict to the space of all possible holomorphic (algebraic)
maps.

(7) The intersection of two subvarieties of X can be rewritten fixing the moduli space
M0,3(X,β = 0), and observing that:

α1 ∪ α2 = ev3∗(ev∗1(α1) ∪ ev∗2(α2) ∪ 1)

By taking a general β this will allow us to generalize intersection theory on X.

Problems:
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(1) These moduli spaces are not compact. As we will want to do intersection theory
on them, we we will introduce a compactification (Kontsevich’ compactification),

(2) They are not fine moduli spaces: for this we will be using the language of stacks,
(3) They are not smooth, and when they are they are often not of the expected di-

mension. This is probably the biggest issue, and we will address it in two ways:
by introducing the theory first in the case when it is smooth, generalizing it ax-
iomatically to the general case by means of some desired properties. We will finally
solve the problems by means of the construction of a virtual fundamental class: a
class in the homology of the moduli spaces that loosely speaking will allow us to
do intersection theory on the moduli spaces as if they were smooth.

3. Moduli of Stable Maps

The purpose of this section is to give the definition of the Kontsevich compactification
of Mg,n(X,β) for a fixed X, and to study its first properties. We start by recalling the
Deligne–Mumford–Knudsen compactification of Mg,n.

Definition 3.1. Let (C, x1, . . . , xn) be a nodal curve, with points on it.

(1) The curve C is prestable if the points xi are distinct and in the smooth locus of C,
the genus of the prestable curve is its arithmetic genus h1(C,OC),

(2) A special point on (C, x1, . . . , xn) is one of the xi or a node. We make the convention
that a node of an irreducible component of C accounts for 2 special points,

(3) The prestable curve (C, x1, . . . , xn) is stable if every geometric genus 0 irreducible
component has at least 3 special points on it, and every genus 1 component has at
least 1 special point on it. The genus of the prestable curve is again its arithmetic
genus.

Exercise 3.2. Note that the stability condition is a topological condition on a curve C.
Observe that a prestable curve is stable if and only if its automorphism group is finite.

Exercise 3.3. You can associate to each prestable curve a weighted multigraph, where the
vertices are the irreducible components. Each node of the curve corresponds to an edge
that connects the two vertices associated to the irreducible components that intersect in
that node. Each such graph is then decorated with a genus function, which assigns to each
vertex the geometric genus of the corresponding irreducible component.

(1) prove that the curve is stable if and only if the associated graph has only finitely
many automorphisms,

(2) if g, n is fixed, there are only finitely many graphs associated to genus g, n-pointed
stable curves,

Definition 3.4. A stable map is the datum of (C, xi, f), where:
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(1) (C, x1, . . . , xn) is a prestable curve,
(2) f : C → X is a morphism,
(3) If the map f contracts an irreducible component Ck to a point, then

• If Ck has geometric genus 0, it must have at least 3 special points on it,
• If Ck has geometric genus 1, it must have at least 1 special point on it. a stable

map represents a class β ∈ H2(X) if f∗([C]) = β.

We describe now the moduli problem of stable, n-pointed maps.

Definition 3.5. We define the groupoid Mg,n(X,β)(S), for S any algebraic scheme of
finite type over C. The objects of Mg,n(X,β)(S) are:

C
f
//

π
��

X

S

si

II

where:
(1) The morphism π is flat and projective,
(2) The morphisms si are n sections of π,
(3) For any s ∈ S geometric point, (Cs, x1, . . . , xn) is a prestable curve of genus g
(4) For any s ∈ S geometric point, fs : Cs → X is a stable map that represents the

class β.

Exercise 3.6. Define the morphisms between families of stable pointed maps and realize
that families of stable pointed maps over a base S form indeed a groupoid.

Definition 3.7. The associated set Mg,n(X,β)(S). The association Mg,n(X,β) is a con-
travariant functor from the category of schemes of finite type over C to the category of
sets.

Theorem 3.8. Mg,n(X,β) is a Deligne–Mumford stack. There is a coarse moduli space
for the functor Mg,n(X,β). The first is a proper stack, the latter is a projective scheme.

Proof. See [BM96, Theorem 3.14] for the first stacky theorem, and [FP97] for the projec-
tivity of the coarse moduli space. The generality adopted by Behrend-Manin is slightly
bigger, the case stated here corresponds to the case when their graph τ is the graph with
one vertex. The stability condition gives the fact that each automorphism group of the
objects is finite (so the stack id Deligne–Mumford).

The notes of Fulton-Pandharipande [FP97, Sections 2,3,4,5] construct the coarse moduli
space, assuming the projectivity of the moduli space of curves Mg,n (a result estabilished
by Deligne–Mumford–Knudsen). A nice overview of their construction can be found in
[A96, Section 1.6].
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Assuming that Mg,n(X,β) is an algebraic scheme, an alternative proof of projectivity
can be found in [Co95]. �

Example 3.9. (1) Mg,n(X, 0) ∼=Mg,n ×X,
(2) M0,0(Pm, 1) is the Grassmannian of lines in Pm.

Exercise 3.10. Study the moduli stack M0,0(P2, 2). Its coarse moduli space can be iden-
tified with the classical space of complete conics ([KV07, Section 2.9], [HKKPTVVZ03,
Section 24.2]).

Exercise 3.11. Study the moduli stack Mg,0(P1, d). It gives an example of moduli stack
reducible, non reduced, of impure dimension, where the open part is not dense. Observe
that when d = 1 the open part is empty, but the compactification is not!

Exercise 3.12. Show that M0,n(Pm, 1) is a locally trivial fibration with fiber the Fulton–
Macpherson compactification P1[m] over M0,0(Pm, 1).

From the example, we see that in general Mg,n(X,β) is possibly not smooth (even as a
Deligne–Mumford stack), reducible, non reduced, of impure dimension. Moreover it is not
the closure of the open part, as we are adding lots of new “extraneous” components

Definition 3.13. (some properties) (see [HKKPTVVZ03, Section 24.3])

(1) Evaluation maps: there are n evaluation maps evi : Mg,n(X,β) → X, defined by
evi(C, xi, f) := f(xi). The proof that these are well-defined maps of stacks can be
found in [BM96, Proposition 5.5].

(2) Forgetful map, π :Mg,n+1(X,β)→Mg,n(X,β) ([BM96, Proposition 4.5])
(3) If g : X → Y , there is an induced map: fg :Mg,n(X,β)→Mg,n(X, g∗β), as long as

the space on the right exists. If Y is a point, this gives a map stab :Mg,n(X,β)→
Mg,n

Exercise 3.14. Universal curve. Let Cg,n(X,β) → Mg,n(X,β) be the universal curve.
Prove that there is an isomorphism of Cg,n(X,β) andMg,n+1(X,β) overMg,n(X,β), where
the last map is the forgetful map defined above.

4. Genus 0 invariants

In this section, we define the genus 0 Gromov–Witten invariants. We thus focus on the
moduli stack M0,n(X,β). We introduce some further hypothesis on X in order to have a
better-behaved moduli space:

Definition 4.1. A projective variety X is convex when, for every f : P1 → X, the vector
space H1(P1, f∗(TX)) vanishes.



INTRODUCTION TO GROMOV–WITTEN THEORY AND QUANTUM COHOMOLOGY 13

Definition 4.2. ([H75, Section 12.1, Section 21.3]) A projective variety is said to be
homogeneous, if it is isomorphic to the quotient G/P where G is a linear algebraic group,
and P is a parabolic subgroup.

Exercise 4.3. Prove by induction the following statement: if X is convex, then
H1(C, f∗(TC)) = 0 for any f : C → X, where C is a genus 0 prestable curve.

Exercise 4.4. Prove that an homogeneous variety is convex, using the fact that the tangent
bundle to an homogeneous variety is generated by its global sections.

Example 4.5. (1) The projective space Pk is homogeneous,
(2) The grassmannians are homogeneous,
(3) Flag varieties are homogeneous,
(4) Abelian varieties are convex, but not homogeneous,
(5) Projective bundles over curves are convex (if the genus of the curve is bigger than

0), but not homogeneous.

Theorem 4.6. Let X be a convex variety. ThenM0,n(X,β) is a smooth Deligne–Mumford
stack with normal crossing divisors. If X is furthermore homogeneous, then M0,n(X,β) is
irreducible. In both cases, its dimension is dim(X) + n− 3 +

∫
β c1(TX).

Proof. See [FP97, Theorem 2, Theorem 3] and [BM96, Proposition 7.4]. The original proof
that if X is homogeneous, then the moduli space of maps from genus 0 curve is irreducible
was given in [KP01, Theorem 1].

A nice intuitive argument that motivates the dimension by computing the tangent space
at points where f is a closed immersion is in [HKKPTVVZ03, Section 24.4]. If X is
projective, it is possible to prove that the locus of maps f that are immersions is open and
nonempty, (cfr. [KV07, Lemma 2.1.2]). �

From now on, in this section and in the following one, we shall assume that X is homo-
geneous. Benefits of this choice, besides Theorem 4.6:

(1) The cycle map cyc : A∗ → H∗ is an isomorphism ([Fu84, Chapter 19]),
(2) The evaluation maps are flat.
(3) The monoid of effective classes N+(X) ⊂ H2(X,Z) is generated by finitely many

classes 〈β1, . . . , βp〉, where βi = µi∗(P1) for certain µi closed embedding.

Exercise 4.7. Using the torus action (see [H75]) on an homogeneous variety X, prove this
last assertion (stated in the proof of [FP97, Lemma 15]).

Exercise 4.8. Using generic flatness, and the fact that there is a transitive group action on
X homogeneous, prove that the evaluation maps are flat. Observe that the total evaluation
map ev :M0,n(X,β)→ Xn are not flat!
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Definition 4.9. (genus 0 Gromov-Witten invariants for homogeneous projective varieties)
Let X be an homogeneous projective variety. We define the following linear maps:

〈〉X0,n,β : H∗(X)⊗n → Q

as follows:

〈α1, . . . , αn〉 :=
n∏
i=1

ev∗i (αi) ∩ [M0,n(X,β)] =
∫
M0,n(X,β)

ev1(α1) ∪ . . . ∪ evn(αn)

Example 4.10. If P is the class of a point in P2, the number of points Nd should morally
be equal to 〈P, . . . , P 〉0,3d−1,d. We shall prove this fact rigourously as a consequence of
Proposition 4.12.

We now focus on the enumerativity property of Definition 4.9. To prove it, we shall need
the following intuitive lemma, due to Kleiman, and usually referred to as Kleiman–Bertini:

Lemma 4.11. [K74] Let G be a connected linear algebraic group, and X an homogeneous
G−variety, and f : Y → X, g : Z → X be two morphisms. For σ ∈ G we denote Y σ the
scheme Y as a scheme over X via the map σ ◦ f . Then:

(1) There exists an open, dense subset G0 ⊂ G such that Y σ ×X Z is either empty or
of pure dimension dim(Y ) + dim(Z)− dim(X) for all σ ∈ G0,

(2) If Y and Z are nonsingular, G0 can be chosen in such a way that Y σ ×X Z is
nonsingular too.

With this Lemma, one can prove the enumerativity property of genus 0 Gromov-Witten
invariants:

Proposition 4.12. Let Γ1, . . . ,Γn be subvarieties of an homogeneous projective variety
X = G/P , and γi be the corresponding cohomology classes. Now suppose that the codimen-
sions of Γi add up to the dimension of the moduli space M0,n(X,β) for a certain class β.
Then for generic g = (g1, . . . , gn) ∈ Gn, we have that the scheme-theoretic intersection:

ev−1
1 (g1Γ1) ∪ . . . ∪ ev−1

n (gnΓn)

is a finite number of reduced points supported on the open part M0,n(X,β). Moreover, one
has the equality:

〈γ1, . . . , γn〉0,n,β = #{ev−1
1 (g1Γ1) ∪ . . . ∪ ev−1

n (gnΓn)}

Proof. The proof of this is given in [FP97, Lemma 14]. A more friendly and detailed
exposition is in [A96, Section 1.3]. �

Let us now show that the linear maps 〈〉X0,n,β satisfy some convenient and geometrically
intuitive properties (which we used in Section 1 to prove Kontsevich’s formula):

• Splitting property
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• Mapping to a point
• Fundamental class insertion
• Divisor insertion

The following properties are stated and then proved in [FP97, p.35].

Proposition 4.13. (Mapping to a point) Suppose β = 0. Then 〈〉0,n,0 is identically zero,
unless n equals 3, in this case 〈α1, α2, α3〉0,3,0 = α1 ∪ α2 ∪ α3

Proposition 4.14. (Fundamental class insertion) 〈α1, . . . , αn, 1〉0,n+1,β is always zero,
unless β = 0, n = 3, in this case it is α1 ∪ α2.

Proposition 4.15. (Divisor insertion) Let D ∈ H2(X), then 〈D,α1, . . . , αn〉0,n+1,β =
〈α1, . . . , αn〉0,n,β

∫
β D

For the Splitting property, we need a bit of notation and of understanding of the bound-
ary of M0,n(X,β), analogous to the one we carried out for X = P2 in Section 1. Let
A tB = [n] be a partition [n], and β = β1 + β2 such that βi ∈ H2(X,Z)+.

Definition 4.16. We define D(A, β1|B, β2) as the closure of the substack of M0,n(X,β),
whose generic element is a stable map f from a curve C made of two irreducible components
C1 and C2, where C1 is an A−pointed and C2 is a B−pointed rational curve. Thus f can
be written as (f1, f2), and we require fi∗([Ci]) = βi.

Exercise 4.17. Let Y be the fiber product in the following diagram:

Y //

��

M0,At∗(X,β2)

ev∗
��

M0,Bt•(X,β1)
ev• // X

Then gluing the two curves in Y produces a map Y → D(A, β1|B, β2), which is an isomor-
phism.

From the previous exercise, we have a natural map i : D(A, β1|B, β2)→M0,At•(X,β1)×
M0,Bt?(X,β2). We also have an inclusion map α : D(A, β1|B, β2)→M0,n(X,β).

It is thus a natural (and technically important) question, to relate the invariants on the
two sides via the divisor D. For this we introduce a basis for H∗(X): T0, . . . , Tm, and we
fix gij :=

∫
Ti ∪ Tj .

Lemma 4.18. (Splitting property) The following equality holds:

i∗α
∗(
∏

ev∗i (αi)) =
∑
e,f

gef

(
ev∗•(Te)

∏
i∈A

ev∗i (αi)

)ev∗∗(Tf )
∏
j∈B

ev∗j (αj)


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Proof. This is proved in [FP97, Lemma 16]. �

We will see in the following sections a nicer and more compact way to express this
property. It will be the constituency part for the formal properties of a Gromov–Witten
theory. In particular we will see that this property can be recasted as an associativity
property of a certain product, or even as the flatness property on a certain connection
defined on the manifold H∗(X).

5. Quantum Cohomology

Let X be a smooth, projective, homogeneous variety. In this section we introduce two
quantum cohomology products, a small and a big one. From our view point so far, they
are a nice way to organize the information obtained from the Gromov–Witten invariants.

We start by observing that on H∗(X) there is an associative cup product and a bilinear
nondegenerate pairing 〈, 〉:

〈α, β〉 :=
∫
α ∪ β

The cup product and 〈, 〉, together give H∗(X) the structure of a Frobenius algebra, with
unit the fundamental class 1X ∈ H0(X).

Now we generalize this structure. We define:

α1 ∗β α2 := ev3∗
(
ev∗1(α1) ∪ ev∗2(α2)

)
where the moduli space considered isM0,3(X,β). We introduce a formal parameter qβ for
each element β ∈ H2(X,Z)+ with the rule qβ1qβ2 = qβ1+β2 . Thus we define:

α1 ∗ α2 :=
∑
β

α1 ∗β α2q
β

and extend this product Q[[H2(X,Z)+]]-linearly to H∗(X) ⊗ Q[[H2(X,Z)+]]. We call the
resulting structure on this vector space QH∗s (X).

Exercise 5.1. Show that, if α1 and α2 are fixed, there are only finitely many β for which
∗β is nonzero.

Proposition 5.2. The small quantum cohomology QH∗s (X) is a Frobenius algebra with
the same unit of H∗(X).

Proof. The assertion on the unity boils down to the fundamental class insertion property
of the previous section. The most complicated thing to prove as usual is associativity. To
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do this we consider the following big diagram:

M0,4(X,β1 + β2)

evi

��

evj

��

evk

''

evl

##
D(12β1|34β2)

hhRRRRRRRRRRRRR

��

//M0,3(X,β2) //

�� %%JJJJJJJJJJJ
X

M0,3(X,β1)

uukkkkkkkkkkkkkkkk

��

// X X

X X

We call the four marked points on M0,4(X,β1 + β2) i, j, k, l. With some entertaining
diagram-chaising, the associativity is reduced to (using also that the product is clearly
commutative):∑
β1+β2=β

ev∗i (α1)ev∗j (α2)ev∗k(α3)∩[D(12β1|34β2)] =
∑

β1+β2=β

ev∗i (α2)ev∗j (α3)ev∗k(α1)∩[D(12β1|34β2)]

reordering the terms on the right hand side, one obtains:

ev∗i (α1)ev∗j (α2)ev∗k(α3) ∩ [D(23β1|14β2)] = ev∗i (α2)ev∗j (α3)ev∗k(α1) ∩ [D(12β1|34β2)]

so the associativity of ∗ follows from the fact that:∑
β1+β2=β

[D(12β1|34β2)] =
∑

β1+β2=β

[D(23β1|14β2)]

This in cohomology is a consequence of the fact that points in M0,4 are cohomologically
equivalent, and if F : M0,4(X,β) → M0,4 is the forgetful map, the two sides of the last
equation are just two ways of computing F ∗(Q) for Q a point. �

Observe that, after fixing a basis T0, . . . , Tm for H∗(X), we have that the product is
given by:

α1 ∗ α2 =
∑
β,j

〈α1, α2, Ti〉0,3,βgijTjqβ

Exercise 5.3. (see [CK99, Example 8.1.2.1]) The small quantum cohomology ring of Pr
is isomorphic to Q[H][[q]]/(Hr+1 − q) where H is the class of an hyperplane in H2(Pr).

If on one hand this result satisfactorily shows that the small quantum cohomology is
a deformation of the usual cohomology ring, on the other hand we see (by solving the
exercise) that the only enumerative information contained is the 3-points information. In
other words, the numbers Nd do not appear in the small quantum cohomology of P2.
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To really collect all the information from n−point functions, we need the big quantum
cohomology. Let us define the Gromov–Witten potential :

Φ(γ) :=
∑
n≥3

∑
β

〈γn〉0,n,β
n!

qβ

Here we use the notation that γn = γ, . . . , γ, n−times. Now putting γ =
∑
yiTi, we obtain

a formal power series in yi:

Φ(y0, . . . , ym) =
∑

n0+...+nm=n,β∈H2(X,Z)

〈Tn0
0 , . . . , Tnm

m 〉0,n,β
yn0
0

n0!
. . .

ynm
m

nm!

Exercise 5.4. ([FP97, Lemma 15]) This is indeed a power series. In particular, for any
n, there are only finitely many β such that the number 〈γn〉0,n,β is nonzero.

We denote with Φijk := ∂i∂j∂kΦ. Observe that:

Φijk(γ) =
∑
n≥0,β

〈Ti, Tj , Tk, γn〉0,n,β
n!

Definition 5.5. The big quantum product is defined on the basis T0, . . . , Tm as:

Ti ∗b Tj :=
∑
e,f

Φijeg
efTf

and then extended Q[[y0, . . . , ym]]-linearly to a product on the whole H∗(X) ⊗
Q[[y0, . . . , ym]].

One can easily check that the product ∗ is well defined, in other words if one
changes the basis T0, . . . , Tm in T ′0, . . . , T

′
m, the linear change of coordinates from

H∗(X)⊗Q[[y0, . . . , ym]] to H∗(X)⊗Q[[y′0, . . . , y
′
m]] identifies the two product structures.

Theorem 5.6. The big quantum cohomology ring H∗(X)⊗Q[[y0, . . . , ym]] is a Frobenius
algebra.

Proof. The detailed proof is in [FP97, Theorem 4]. Commutativity follows from the fact
that the product is defined in terms of partial derivatives of Φ. The fundamental class
insertion property show that the usual 1 in cohomology is a unity for this new algebra.
Associativity follows from the splitting property and the usual equivalence of points on
M0,4

∼= P1. �

Exercise 5.7. [FP97][Section 9]The Gromov–Witten potential for P2 is:

ΦP2
(y01 + y1H + y2H

2) =
1
2

(xy2 + x2z) +
∑
d

Nd
y3d−1
2

(3d− 1)!
edy1
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where Nd are the numbers defined in Section 1. The big Quantum Cohomology ring of P2

is isomorphic to:

QH∗(P2) = Q[[y0, y1, y2]][Z]/(Z3 − Φ111Z
2 − 2Φ112Z − Φ122)

6. Formal properties of Quantum Cohomology

In this section we give a shadow of the equivalence of three structures on (H, g), a finite
dimensional complex vector space H endowed with a symmetric bilinear nondegenerate
form g, and a fixed basis of it T0, . . . , Tm. We borrow this presentation from the book of
Manin [M99], where the equivalence is fully proved. We address the reader who seeks for
more details to [M99], and in particular to Chapter 0.

Let Φ ∈ Q[[y0, . . . , ym]], we say that Φ is a formal solution of the associativity equation
(or that it is a potential), if the following is satisfied for all a, b, c, d:

(6.1)
∑
e,f

Φabeg
efΦfcd =

∑
e,f

Φbceg
efΦfad

where gij = g(Ti, Tj).
The name comes from the fact that, if one defines a product as in the section above:

Ti ∗ Tj :=
∑

Φijeg
efTf

this product is associative as a consequence of 6.1. Moreover this product is invariant
under adding terms of degree < 3 to the formal power series Φ.

Now let In be a family of linear maps:

In : H⊗n → H∗(M0,n), n ≥ 3

For any splitting σ of [n] into A tB, we have an induced gluing map:

φσ :M0,A+1 ×M0,B+1 →M0,n

The family of linear maps In is said to be a cohomological Field Theory if they satisfy:

(6.2) φ∗σ ◦ In(γ1, . . . , γn) = IA+1 ⊗ IB+1

⊗
i∈A

γi ⊗∆⊗
⊗
j∈B

γj


where ∆ ∈ H⊗2 is the diagonal class:

∆ :=
∑
i,j

gijTi ⊗ Tj

each linear map In is then called a correlator.
Now the theorem Manin proves is:
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Theorem 6.3. ([M99, Theorem 0.5]) There is a natural bijection between the set of formal
solution of the associativity relation, modulo terms of degree ≤ 2, and structures of a
Cohomological Field Theory on (H, g).

Exercise 6.4. (for those who now operads) Recast the notion of Cohomological field theory
using Poincaré duality on H∗(M0,n), as a map:

H∗(M0,n)→ Hom(H⊗n, H)

thus giving H the structure of an algebra over the operad H∗(M0,n). (suggested reading:
[A96, Section 3.6] [M99, Chapter 4])

We now see a third way of giving a Cohomological Field Theory. Let (H, g) be as before.
If a potential Φ is given, we can define the following connection on the (linear) manifold
H. In coordinates, we define the structure constants of the connection as:

Akij :=
∑
e

Φijeg
ek

and then the connection ∇ is defined by:

∇∂i
∂j :=

∑
k

Akij∂k

The curvature (3, 1)-tensor R writes, in terms of A (with Einstein convention):

Rmijk := AfikA
m
fj −A

f
jkA

m
fi + ∂jA

m
ik − ∂iAmjk

Now the curvature tensor is clearly torsion-less, as the last two terms in the sum vanish as
a consequence of the commutativity of the partial derivatives ∂i∂jΦ = ∂j∂iΦ.

Exercise 6.5. Check that the associativity property of Φ is equivalent to the vanishing of
the first two terms. Thus an associative potential Φ gives rise to a flat connection on the
manifold H. ([M99, Definition 0.4, Theorem 0.5], formal Frobenius manifold).

The equivalent structures of Cohomological Field Theory, associative potential, formal
Frobenious manifold, are a first glimpse of the three different avatars of the formal Quantum
Cohomology that appear in enumerative geometry, theoretical phyisics, and mathematical
physics (integrable systems, in the Dubrovin formalism).

Now we setH := H∗(X) whereX is an homogeneous projective manifold, and T0, . . . , Tm
a basis of it, with gij :=

∫
Ti ∪ Tj as in the former section. The linear maps 〈〉0,n,β factor

through the cohomology of M0,n:

H∗(X)⊗n
〈〉0,n,β //

I0,n,β

&&MMMMMMMMMM
Q

H∗(M0,n)

∫ ;;vvvvvvvvvv
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where I0,n,β is defined by:

I0,n,β(α1 ⊗ . . .⊗ αn) := stab∗(
∏

ev∗i (αi))

(the map stab is defined in 3.13).
The correlators of this sections In are then obtained by taking the sum over all β ∈

H2(X,Z) of I0,n,β. Arguing as in 5.4, one can see that given α1, . . . , αn this sum is always
finite, so that:

In :=
∑

β∈H2(X,Z)

I0,n,β

is a good definition.
A last observation. This section motivates us to use the correlators I0,n,β instead of the

functions 〈〉0,n,β. Indeed, what we have done is to abstract the result of Lemma 4.18. The
formula in Lemma 4.18 is then expressed by the (equivalent) equations 6.1 and 6.2.

In genus 0 though, the information contained in the correlators and in the functions
〈〉0,n,β is equivalent, (this is a consequence of Theorem 6.3). Two more important reasons
to prefer the correlators instead of the functions 〈〉0,n,β are:

(1) The theory can be extended to include the so-called gravitational descendents (see
[HKKPTVVZ03, 26.9]). In this note we will not discuss the importance of this.

(2) In higher genus the correlator functions Ig,n,β carry strictly more informations than
〈〉g,n,β. In the next section we will construct Gromov–Witten theory using the
approach of correlators.

7. Axioms for Gromov–Witten theory

We now present the axiomatic theory of Gromov–Witten classes. Historically, Kontse-
vich discovered his formula (that we treated in Section 1) around 1993. This motivated
him to write the paper [KM94], where they build the theory that allows the formulation of
reconstruction theorems, results that permit the reconstruction of all datas of the theory
out of fewer datas. The first reconstruction theorem for P2 becomes the result that we
saw in Section 1, allowing one to reconstruct all the Nd’s from the knowledge of N1: the
number of lines passing through two points in the plane. One important point to recall is
that, although the theory is stated in full generality, the results are described only for the
restriction to the genus 0 case (that we called Cohomological Field Theory, and they call
tree level system).

The result reconstruction theorems of Kontsevich and Manin are formal, because they
count the the number of Gromov–Witten invariants, so one needs a result like 4.12 to obtain
enumerative datas. As for the whole theory in arbitrary genus, the existence of sensible
Gromov–Witten theories was proved a few years later the paper [KM94] was published.
The key technical point for these theories is the existence of a virtual fundamental class
for the moduli space Mg,n(X,β).
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The presentation of this section borrows heavily from [A96, Section 3.7]. We fix X a
smooth projective variety (from now on, the more restrictive homogeneity assumption is
dropped).

Definition 7.1. ([KM94, Definition 2.2]) A system of Gromov–Witten classes on X is the
datum, for all g, n such that 2g + n ≥ 3 and β ∈ H2(X,Z), of linear maps:

IXg,n,β : H∗(X)⊗n → H∗(Mg,n)

satisfying a series of axioms (GW0), . . . (GW9).

Remark 7.2. The axiom (GW9) is taken from [CK99, Chapter 7.3], and it motivates
the adjective invariants, in that the Gromov–Witten classes are deformation invariants.
Even if this axiom is not explicit in the requests of Kontsevich and Manin, it is a desirable
property that is then obtained for instance with the construction of Virtual Fundamental
class that we shall see in the following section.

Before stating the axioms, we want to make a couple of considerations to motivate some
of them. We have the following diagram of maps in mind:

Mg,n(X,β)
ev //

forg
��

Xn

Mg,n

Where Mg,n is the stack of n−pointed prestable curves of genus g (it is an Artin stack,
nonseparated, not of finite type, see [B97], [BM96]). This last stack is unobstructed (hence
smooth) of dimension 3g−3+n, and containsMg,n as an open (but still proper!) substack.
We can compute the expected dimension of Mg,n(X,β): it will be 3g − 3 + n plus the
dimension of the fibers of forg. If (C, xi, f) is a point ofMg,n(X,β), the dimension of the
fiber forg−1(C, xi) is determined by deformation theory, as the tangent space to deforming
the map f : C → X by leaving C, xi fixed. Deformation theory shows us that this space
is obstructed. Its tangent space is H0(C, f∗(TX)), and a natural choice for an obstruction
space is H1(C, f∗(TX)). Thus our expected dimension will be:

expdim := 3g − 3 + n+ χ(f∗(TX)) = 3g − 3 + n+ dim(X)(1− g) +
∫
β
c1(TX) =

(dim(X)− 3)(1− g) +
∫
β
c1(TX) + n

now we state the axioms. We start with the group of axioms that we consider more formal:
(GW1), (GW6), (GW7):

• (GW1): Sn-equivariance. If σ ∈ Sn, then

Ig,n,β(α1 ⊗ . . . , αn) = Ig,n,β(ασ(1) ⊗ . . . , ασ(n))
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• (GW6): Splitting axiom. For all σ partition of g and [n] in g1 + g2 = g, AtB = n,
we have a (gluing) map:

φσ :Mg1,A+1 ×Mg2,B+1 →Mg,n

and the axiom asks for any partition φσ, the following to hold:

φ∗σ ◦ Ig,n,β

(
n⊗
i=1

αi

)
=

∑
β1+β2=β

Ig1,A+1,β1 ⊗ Ig2,B+1,β

⊗
i∈A

αi ⊗∆⊗
⊗
j∈B

αj


where ∆ ∈ H∗(X)⊗2 is the diagonal class under the Künneth decomposition.
• (GW7): Genus reduction. There are maps ψ :Mg−1,n+2 →Mg,n, the axiom asks

for each such map the following to hold:

ψ∗ ◦ Ig,nβ(. . .) = Ig−1,n+2,β(. . .⊗∆)

Where ∆ is as in the previous axiom.

These three axioms give H∗(X) the structure of an algebra over the modular operad
H∗(Mg,n) (see [GK98] for the definition of modular operad and algebra over it, it is a
generalization of the structure of algebra over the operad H∗(M0,n) that we have observed
in 6.4). These three axioms for the genus 0 case become the axioms for a Cohomological
Field theory or a tree-level system, which we have studied in the previous section.

Now we see the remaining, “geometric” axioms:

• (GW0): Effectivity. If β is not an effective class, then Ig,n,β is identically zero.
• (GW2): Degree. The degree of Ig,n,β is equal to:

2((g − 1) dim(X)−
∫
β
c1(TX))

This is motivated by the fact that the fibers of forg have (complex) dimension
−(g − 1) dim(X) +

∫
β c1(TX).

• (GW3): Fundamental class insertion. If π :Mg,n+1 →Mg,n forgets the last point,
we have:

Ig,n+1,β(. . .⊗ 1X) = π∗Ig,n,β

moreover, in the special case of g = 0, n = 3:

I0,3,β(α1, α2, 1X) =

{∫
X α1 ∪ α2 if β = 0

0 otherwise

• (GW4): Divisor insertion. With the same notation of the previous axiom, if γ ∈
H2(X) is the class of a divisor, then:

π∗Ig,n+1,β(. . .⊗ γ) = Ig,n,β

∫
β
γ
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• (GW5): Mapping to a point. This says what happens when β = 0. Let E := π∗(ωπ)
be the Hodge bundle. Then, if we let p1 and p2 be the two projection maps:

Mg,n(X, 0) =Mg,n ×X
p2 //

p1
��

X

Mg,n

and E := p∗1(E∨)⊗ p∗2(TX), the axiom fixes the value of Ig,n,0 to be:

Ig,n,0(α1 ⊗ . . .⊗ αn) = p1∗

(
p∗2

(∏
αi

)
∪ ctop(E)

)
Exercise 7.3. We can make sense of the previous axiom in the following way. The dimen-
sion of Mg,n(X, 0) is simply 3g − 3 + n+ dim(X), so we are off from the expected dimen-
sion by dim(X)g. Indeed the obstruction at each point (C, xi, f) equals H1(C, f∗(TX)) =
H1(C,OC)⊗ Tf(C)C since f is a constant map as β = 0. Moreover, by elementary Serre-
Duality, H1(C,OC) = H0(C,ωC)∨, where ωC is the dualizing sheaf on C. One can easily
see that E = p∗1(E∨) ⊗ p∗2(TX) is the sheaf of obstruction patched together on Mg,n × X
(for instance the fiber of it at a point C, xi, f is H0(C,ωC)∨ ⊗ Tf(C)C).

And now the last two axioms:
(1) (GW8): Motivic axiom. The correspondences Ig,n,β can be described in terms of

elements in A∗(Mg,n ×Xn), the Chow group. Indeed, we consider the diagram:

Mg,n(X,β)
ev //

stab
��

Xn

Mg,n Mg,n ×Xn

p

OO

q
oo

The axiom requires the existence of classes cg,n,β ∈ A∗(Mg,n×Xn) and the following
equalities:

Ig,n,β = q∗(p∗() ∩ cg,n,β)

(2) (GW9): Deformation axiom. Suppose X → T is a smooth projective map over a
connected base T , and we call Xt the fibers of the map over t ∈ T a geometric
point. Then we have a family of maps:

IXt
g,n,βt

: H∗(Xt)→ H∗(Mg,n)

If αi are locally constant sections of H∗(Xt) and βt is a locally constant section of
H2(Xt,Z), then the axiom imposes:

IXt
g,n,βt

(α1 ⊗ . . .⊗ αn)

to be constant.
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Example 7.4. (Ruan’s example) In [R94], the Deformation invariance is exploited to
show an example of two diffeomorphic manifolds that are not deformation invariant. One
argues as follows. Take two algebraic surfaces V and W that are homeomorphic but such
that V is minimal and W is not. These are nondiffeomorphic, but V ×S2 and W ×S2 are
diffeomorphic, and Ruan gives lots of examples (starting with V equal to the Barlow surface
and W equal to the 8-point blowup of CP 2) where the diffeomorphism can be arranged
to intertwine the first Chern classes, whence by a theorem of Wall the almost complex
structures are isotopic. However, the distinction between the GW invariants between V

and W (which holds because V is minimal and W is not) survives to V × S2 and W × S2,
so that they are not deformation equivalent. (source: Mathoverflow).

Now the program to pursue enumerative geometry on X, following this approach, be-
comes:

(A) To construct a system of Gromov–Witten classes on X. We will see an example
of system of Gromov–Witten classes constructed in three papers by Behrend [B97],
Behrend–Fantechi [BF97] and Behrend–Manin [BM96].

(B) To compute the Gromov–Witten classes (and therefore, the Gromov–Witten invariants
〈〉g,n,β);

(C) To prove (or to study) enumerativity, like in 4.12.

Example 7.5. The restriction of the axioms to the case of genus 0 curves: in this case we
have a system of Gromov–Witten classes on X a smooth projective homogeneous variety
constructed as in the previous sections.

Example 7.6. Again if g = 0, a trivial example of a system of Gromov–Witten classes
is given by the zero map for all I0,n,β, unless β = 0. In this case the mapping to a point
axiom fixes:

I0,n,0(α1 ⊗ . . .⊗ αn) = 1M0,n

∫
α1 ∪ . . . ∪ αn

This shows in particular that the system of Gromov–Witten classes is not unique. In-
tuitively, given a system of Gromov–Witten classes, one can also rescale them by using
appropriate constants to obtain another system of Gromov–Witten classes.

Let us now see the first reconstruction theorem due to Kontsevich-Manin. Its motivation
is the reconstruction theorem we have studied in Section 1. We strongly suggest the reader
to study its proof.

Theorem 7.7. ([KM94, Theorem 3.1]) Let X be a smooth projective variety, for which
there is a system of genus 0 Gromov–Witten classes {I0,n,β}. Suppose furthermore that
H∗(X) is generated by H2(X). Then the system of Gromov–Witten classes IX0,n,β can be
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uniquely reconstructed from the set of datas:{
I0,3,β(γ1 ⊗ γ2 ⊗ γ3)| −

∫
β
c1(TX) ≤ 2 dim(X) + 1,

∑
|γi| = 2(

∫
β
c1(TX) + dim(X), |γ3| = 2

}
8. An introduction to the Virtual fundamental class

In this section we construct the system of Gromov–Witten classes defined in three papers
by Behrend [B97], Behrend–Fantechi [BF97] and Behrend–Manin [BM96].

The idea is to construct the system of Gromov–Witten classes in the following way:

IXg,n,β(α1 ⊗ . . . αn) = stab∗

(
ev∗

(⊗
αi

)
∩ [Mg,n]virt

)
where [Mg,n]virt is a virtual fundamental class and the maps are, as usual:

Mg,n(X,β)
ev //

stab
��

Xn

Mg,n

The idea is: the usual fundamental class does not do the job (we do not have Poincaré
duality on Mg,n(X,β) as it is not smooth), but there is a valid “virtual” substitute for
it, which makes the moduli space behave af if it were smooth. (see [CK99, 7.1.2] for an
intuitive but more precise and detailed explanation of this).

The techniques needed for this construction are: deformation theory, intersection theory,
algebraic stacks, the cotangent complex. We give just a short presentation, based on [B99].
An other good reference is a series of online lectures given by Fantechi at SISSA [F10].

So we give now an overview of the construction. It is based on two steps (see [B99,
Section 3]):

(A) The construction of the Intrinsic normal Cone ([BF97]) for any “space” X. This is a
construction intrinsic to the space (scheme, Deligne–Mumford stack . . . );

(B) The choice of an obstruction theory for X. In particular, since our space isMg,n(X,β)
there is a natural obstruction theory given by the moduli problem the space itself
solves. Note that this is not intrinsic on the space, and therefore the virtual funda-
mental class we will construct depends upon the choice of this obstruction theory.

As for the point (A), if we are given a space M that can be locally embedded in a smooth
space Y via a map i, then we have that i∗(TY ) acts on the normal cone of M in Y , CMY .
We can take the stack quotient:

[CMY/i∗(TY )]

this is a cone (Artin) stack of pure dimension 0, and Behrend-Fantechi show that this stack
is independent of the choice of i. So the local construction glue to a global cone stack CM ,
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again an Artin stack of dimension 0. There is also a relative version of this construction
over an algebraic stack S, where one starts with:

M

  A
AA

AA
AA

A
i // Y

����
��

��
�

S

and Y is smooth over S, and then the outcome is an Artin stack CM |S , of dimension equal
to dim(S).

In our special case, we take M :=Mg,n(X,β) and S := Mg,n, and thus get an intrinsic
normal cone CMg,n(X,β)|Mg,n

.
As for point (B), let us consider the diagram:

Cg,n(X,β)
f

// X

Mg,n(X,β)

where Cg,n(X,β) is the universal curve, and consider:

Rπ∗f
∗TX ∈ D[0,1](Mg,n(X,β))

(an element of the bounded derived category of coherent sheaves on the DM stack
Mg,n(X,β)). Behrend–Fantechi show that it is possible to find a complex of vector
bundles on Mg,n(X,β) that is quasiisomorphic to Rπ∗f∗TX :

R0π∗f
∗TX → E0 → E1 → R1π∗f

∗TX

One can then construct the quotient as a vector bundle (Artin) stack: [E1/E0], and this
depends only on Rπ∗f

∗TX as an element in the derived category. The fact that Rπ∗f∗TX
is an obstruction theory for Mg,n(X,β), says precisely that there is a closed embedding:

CMg,n(X,β)|Mg,n
⊂ [E1/E0]

We have thus the following diagram:

CMg,n(X,β)|Mg,n
// [E1/E0]

��
Mg,n(X,β)

0
YY

Where 0 is the zero section of the vector bundle (Artin) stack. So one defines:

[Mg,n(X,β)]virt := 0∗
(

[CMg,n(X,β)|Mg,n
]
)
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With this construction, one has then the Theorem:

Theorem 8.1. ([B97]) The definition:

Ig,n,β(α1 ⊗ . . .⊗ αn) := stab∗
(
ev∗(α) ∩ [Mg,n(X,β)]virt

)
defines a system of Gromov–Witten classes as defined in the previous section.

Remark 8.2. The original definition of a virtual fundamental class by Behrend, Behrend–
Fantechi was slightly more complicated, as a pull–back map from an Artin stack ([E1/E0])
was not defined. This is nowadays available as a consequence of Kresch’ thesis [K99].

9. Orbifold cohomology
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