Classical Control Theory
Laplace Transform
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The Laplace transform of a function converts this function from time domain to s-domain and quite often is easy to deal with mathematically than the original function itself. The function and its Laplace transform are equivalent. Classical control theory relies heavily on Laplace transforms.

Some important results:
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For a mass-spring-damper system of 
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important
Laplace transform converts differentiation and integration with respect to t into polynomials or fractions of s. Thus a differential equation in t becomes an algebraic equation in s and hence is much easier to solve.
Example:
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Laplace transform: 
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s-domain solution: 
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time-domain solution: 
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Open-loop Control
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General rule with blocks

Output = transfer function ( input (for Laplace transforms)
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Input-output relationship: 

With disturbance
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Without disturbance
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where
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Closed-loop (Feedback) Control


[image: image13]
Input-output relationship:
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G(s) :  forward-path transfer function
H(s) : feedback-path transfer function (
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 :  close-loop transfer function

Some Performance Indicators

(Maximum) overshoot:
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Peak time: the time taken for the response to reach its peak value

Delay time: the time taken for the response to reach 50% of its final value

Rise time: the time taken for the response to rise from 5% to 95% (or 10% to 90%) of its final

Settling time: the time taken for the response to decrease to and remain within a certain percentage (say 5%) of its final value

Steady-State error: 
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The final value theorem: 
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 general
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 (when H =1) very useful
Example: a mass-spring-damper system whose displacement is controlled





by a controller producing force f (t)






The equation of motion of the system is
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The force may be proportional to the 





error
 between the desired position and 





the actual position 
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Laplace transforms:
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thus
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The close-loop transfer function
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Actually, the system equation is
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A system’s performance can be assessed by its response to a unit-step input below
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Inverse Laplace transform of X(s) yields
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It can be shown that
Overshoot: 
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Peak time:
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 (half period)

Rise time from 10% to 90%
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5% settling time:
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Steady-State error:


0 (why?)

It can be seen that these performance indicators are interrelated so that specifying one of them may well specify others, which prevents good performance from being achieved for all performance indictors. This calls for more advanced control strategies than the proportional control.
Steady-state Error

For an open loop 
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For a closed loop of unity feedback   
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For a close loop of general feedback   
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If the input is a unity step, then
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[image: image41.wmf])
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 is usually called dc gain and is normally greater than 1. Therefore the steady-state error of an open loop can be significant while well-designed closed loop should have a small steady-state error. A modified controller with a right transfer function can also reduce the steady-state error.
Example:

An open loop system is shown below. Calculate its steady-state error to a unit-step input and suggest a simple way of reducing it without changing the plant and determine the new steady-state error.



Answer: As 
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 (-100%), which is unacceptable. A simple way of reducing the steady-state error without changing the plant is to add a unity feedback to form a closed-loop system. This makes 
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 (33%), which is an improvement but still unsatisfactory. 
Two options are possible theoretically.

(1) A new controller C(S) is added as shown below:
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If we choose 
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. Note: Consideration of the steady-state error alone may not always be satisfactory (there are other performance indicators). The choice of C(s) is not unique.

With this particular C(s), 
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 which can be converted to the following convenient form
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This means 
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 in the table of Laplace transforms.
Inverse Laplace transform of X(s) yields
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hence 
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, where  is the phase angle. 
When x(t) is plotted, it may be seen that the overshoot is very big.
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(2) (Non-unity) Closed-loop control: 
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. With this particular H(s), 
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 in the table of Laplace transforms.

Inverse Laplace transform yields 
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When plotted, it may be seen that the over shoot is small.
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