Surgery in Complex Dynamics.

Carsten Lunde Petersen

IMFUFA at NSM, Roskilde University

Introduction

Magic Lecture 1: Cut and Past surgery using interpolations.

Magic Lecture 2: Quasi-conformal massage, -maps on drugs -.

Magic Lecture 3:

Quasi-conformal surgery using real conjugacies.

Magic Lecture 4:

Trans-quasi-conformal surgery.

Terminology

Let $Q_c(z) = z^2 + c$, $c \in \mathbb{C}$,

and let $J_c := \partial \{z | Q_c^n(z) \longrightarrow \infty\} \subset \overline{\mathbb{C}}$ denote the Julia set.

Let $M := \{c \in \mathbb{C} | Q_c^n(0) \not\to \infty, asn \to \infty\}$ denote the Mandelbrot set.

A hyperbolic component H of M is a maximal domain on which Q_c has an attracting periodic orbit.

A center of a *H* is a parameter $c_0 \in H$ such that the corresponding periodic orbit has multiplier 0.

Surgery application 1

Mane, Sad and Sullivan caracterized the hyperbolic component of a hyperbolic map f as the set of all maps which are q-c conjugate to f on the Julia set.

Theorem 1. Any hyperbolic component H of M has a center.

The following proof was initially done by Sullivan.

We shall give it in two steps:

```
Step 1: Period k = 1.
```

Step 2: Arbitrary period.

Cut and Glue in an attracting basin.

Suppose $Q_c(z_0) = z_0$ and $Q'_c(z_0) = \lambda \in \mathbb{D}$. Let Λ_0 denote the basin of z_0 . Choose $U \subset \Lambda_0$ a topological disk with real analytic Jordan boundary, $c \in U$ and $Q_c(U) \subset U$. Then $z_0 \in U$ and $U' = Q_c^{-1}(U) \supset U$ is a topological disk with real analytic Jordan boundary and $Q_c : \partial U' \longrightarrow \partial U$ is a degree 2 o-p covering. Let $\eta : U \longrightarrow \mathbb{D}(r)$ for some 0 < r < 1 be a uniformization with $\eta(z_0) = 0$. Define a new dynamics $F : \mathbb{C} \longrightarrow \mathbb{C}$ by

$$F(z) = \begin{cases} Q_c(z) & z \notin U', \\ \text{q-c interpolation} & z \in A' = U' \setminus \overline{U}, \\ \eta^{-1}((\eta(z))^2) & z \in \overline{U} \end{cases}$$

A q-c gluing-lemma.

Definition 2. An arc $\gamma \subset \mathbb{C}$ is called a quasi arc if there exists C > 0 such that for any pair of points $x, y \in \gamma$ the (smaller) subset I of $\gamma \setminus \{x, y\}$ bounded by x and y satisfies the 'no turning condition':

$$\operatorname{diam}(I) \le C|x - y|.$$

In particular any smooth compact arc is a quasi arc. A quasi-circle is a Jordan quasi arc.

Lemma 3. Suppose $f : U \longrightarrow V$ is a homeomorphism between open subsets of \mathbb{C} and that $\gamma \subset \Omega$ is a quasi arc. If f is q-c on $\Omega \setminus \gamma$, then f is q-c on Ω .

F is quasi-regular

Definition 4. A mapping $F : U \longrightarrow V$, $U, V \subset \overline{\mathbb{C}}$ is called quasi-regular, if locally it can be written as a composition $F = f \circ \phi$ where f is holomorphic and ϕ is q-c.

Lemma 5. The cut and glued mapping

$$F(z) = \begin{cases} Q_c(z) & z \notin U', \\ \text{q-c interpolation} & z \in A' = U' \setminus \overline{U}, \\ \eta^{-1}((\eta(z))^2) & z \in \overline{U} \end{cases}$$

is quasi-regular.

A new invariant almost complex structure

Let σ_0 denote the standard (Euclidean) almost complex structure and let σ denote the unique F * invariant almost complex structure which coincides with σ_0 on U and $\overline{\mathbb{C}} \setminus \Lambda_0$.

Let $\phi : (\overline{\mathbb{C}}, \sigma) \longrightarrow (\overline{\mathbb{C}}, \sigma_0)$ denote the unique integrating o-p q-c homeomorphism for σ normalized by

$$\phi(z_0) = 0, \qquad \frac{\phi(z)}{z} \to 1 \qquad \text{as} \qquad z \to \infty$$

Then $P = \phi \circ F \circ \phi^{-1} : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ is the quadratic polynomial $Q_0(z) = z^2$ and ϕ conjugates Q_c to $Q_0 = P$ on the complement of U' and in particular on a neighbourhood of J_c .

The higher case period

Lets pause and think about the more general higher period case.

A variant of Ahlfors-Beurling

Definition 6. A homeomorphism $F : \Gamma \longrightarrow \gamma$, where $\Gamma, \gamma \subset \mathbb{C}$ is called quasi-symmetric if there exists a constant C > 1 such that for any triplet of points $x, y, z \in \Gamma$ with |x - y| = |y - z|:

$$1/C \le \frac{|F(x) - F(y)|}{|F(y) - F(z)|} \le C.$$

Remark that any q-c maping is quasi-symmetric. Lemma 7. Suppose $A', A'' \subset \mathbb{C}$ are closed annuli with quasi-circle boundary components, oriented counter clockwise and $F : \partial A' \longrightarrow \partial A''$ is a locally quasi-symmetric d : 1 covering respecting orientation and inner respectively outer boundary. Then F has a quasi-regular extension $F : A' \longrightarrow A''$ of degree d.

Polynomial-like mappings

Definition 8. A polynomial like mapping is a proper holomorphic map $f: U' \longrightarrow U$ with preferred domain $U' \simeq \mathbb{D}$ and range $U \simeq \mathbb{D}$, where $U' \subset \subset U \subset \mathbb{C}$.

We assume $deg(f) = d \ge 2$ in order to make f dynamically interesting.

The filled-in Julia set K_f of f is the compact and non empty set

$$K_f = \{ z \in U' | \forall n \in \mathbb{N} : f^n(z) \in U' \}.$$

Equivalences of polynomial-like mappings

Definition 9. Two polynomial-like mappings $f: U' \longrightarrow U$ and $g: V' \longrightarrow V$ are q-c equivalent if a) there exists neighbourhoods Ω_f and Ω_g of K_f and K_g respectively such that $f: \Omega'_f \longrightarrow \Omega_f$ and and $g: \Omega'_g \longrightarrow \Omega_g$ are polynomial-like where $\Omega'_f = f^{-1}(\Omega_f), \, \Omega'_g = g^{-1}(\Omega_g)$ and b) there exists a q-c homeomorphism $\phi: \Omega_f \longrightarrow \Omega_g$ such that

Equivalences cont.

Definition 10. The q-c equivalence ϕ

is called

i) a hybrid equivalence if $\overline{\partial}\phi = 0$ a.e. on K_f . ii) an external equivalence if $\overline{\partial}\phi = 0$ a.e. on $\Omega_f \setminus K_f$. iii) a conformal equivalence if $\overline{\partial}\phi = 0$ a.e. on Ω_f or equivalently ϕ is conformal.

The Straightening Theorem

Surgery example 2

Note that a polynomial has polynomial-like restrictions of the same degree and shall henceforth also be considered a polynomial-like mapping.

Theorem 11. Let $f: U' \longrightarrow U$ be polynomial-like of degree $d \ge 2$. Then there exists a polynomial P of degree d hybridly equivalent to $f: U' \longrightarrow U$. Moreover if K_f is connected, then P is unique up to affine conjugacy.

Shishikuras rotation ring to disk surgery

Surgery example 3

Theorem 12 (Shishikura). Suppose the rational map $R : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ has a Herman-ring H with core geodesic γ and let D_1 and D_2 denote the two connected components of $\overline{\mathbb{C}} \setminus \gamma$. Then there exist rational maps R_i , i = , 1, 2 each with a fixed Siegel disk Δ_i and o-p q-c homeomorphisms $\phi_i : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ conformal on $D_i \cap H$ and conjugating R to R_i on D_i .

Augmentation of the Julia set

Theorem 13 (Branner and Douady). There is a natural embedding of the 1/2-limb of the Mandelbrot set, mapping the 1/2-vein, $[-2, \frac{1}{4}]$ onto the 1/4-vein in particular the later is an arc.