An Introduction to Holomorphic Dynamics

IV. Local fixed point theory

L. Rempe

Liverpool, January 2008

This handout is created from the overhead slides used during lectures. Examples and proofs will be done on the board, and are not included.

IV.1 Introduction

Basic question

Question. Suppose z_0 is a fixed point of a holomorphic function f. What is the *local dynamics* near z_0 ?

For example, we may ask

Question. Is f conformally conjugate to a linear map $z \mapsto \lambda z$ near z_0

Basic conjugacy results

Often in dynamics, conjugacy results come from expansion.

We will try to phras some conjugacy results in a way which emphasizes this idea.

IV.2 Hyperbolic fixed points

Linearization of attracting fixed points

IV.2.1 Theorem (Königs). Let $\lambda \in \mathbb{D} \setminus \{0\}$, and suppose that

$$f(z) = \lambda z + O(z^2)$$

is holomorphic near 0.

Then there is a conformal map ϕ , defined in a neighborhood of 0, such that $\phi(0) = 0$ and

$$\phi(f(z)) = \lambda \phi(z).$$

Linearization of repelling fixed points

IV.2.2 Corollary. Let $\lambda \in \mathbb{C}$, $|\lambda| > 1$, and suppose that

$$f(z) = \lambda z + O(z^2)$$

is holomorphic near 0.

Then there is a conformal map ϕ , defined in a neighborhood of 0, such that $\phi(0) = 0$ and

$$\phi(f(z)) = \lambda \phi(z).$$

IV.3 Böttcher coordinates

Böttcher coordinates

IV.3.1 Theorem. If f has a superattracting fixed point z_0 , then f is conjugate to $z \mapsto z^d$ near z_0 .

(Here d is the local degree of f near z_0 .)

$$z \mapsto z^d + O(z^{d+1}).$$

Remark. The conjugacy is unique up to a choice of an (m-1)th root of unity.

IV.4 Fatou coordinates

Fatou coordinates

$$f(z_0) = z_0; \quad f'(z_0) = e^{2\pi i \theta}, \quad \theta \in \mathbb{Q}.$$

 $z \mapsto z + z^m + O(z^{m+1}).$

Leau-Fatou flower

Fatou coordinates: f is conjugate to $z \mapsto z + 1$ in attracting petals.

IV.5 Irrational fixed points

Irrational fixed points

$$f(z_0) = z_0; \quad f'(z_0) = e^{2\pi i\theta}, \quad \theta \notin \mathbb{Q}.$$

- Linearizable: *Siegel disk*
- Not linearizable: *Cremer point*.

IV.6 Outlook

Outlook

- 1. The role of singular values.
- 2. Parameter spaces.
- 3. Hyperbolicity, structural stability, subhyperbolicity ...
- 4. Topological structure of the Julia set; escaping sets.
- 5. Geometry of the Julia set.
- 6. Measurable dynamics.
- 7. ...