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Exceptional values

Definition II.1.1 (Exceptional value)

A value z0 ∈ Ĉ is called (Fatou) exceptional if the backward
orbit

O−(z0) = {w ∈ X : ∃n ≥ 0, f n(w) = z0}

is a finite set.

Example 1

f (z) = z2; z0 = 0.
f (z) = exp(z); z0 = 0.

Lemma II.1.2 (Number of exceptional points)

f has at most two exceptional points in Ĉ.
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Exceptional values

Remark
For rational functions of degree at least two, exceptional
values are always in the Fatou set.

A rational map with one exceptional value is conjugate
to a polynomial.
A rational map with two exceptional values is conjugate
to z 7→ zm, m ∈ Z \ {−1, 0, 1}.
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Density of backward orbits

We can now reformulate a property of the Julia set which
we mentioned already in the previous lecture:

Lemma II.1.3 (Backward orbits)
If z0 is not a Fatou exceptional value, then

J(f ) ⊂ O−(z0).

If furthermore z0 ∈ J(f ), then

J(f ) = O−(z0).
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Liouville’s Theorem

Recall that Liouville’s Theorem states that a bounded entire
function must be constant.
Compare this with the Removable Singularities Theorem,
which says that an isolated singularity of a bounded
holomorphic function is removable.
Also recall that any family of bounded entire functions, with
a uniform bound, is normal.



Holomorphic
Dynamics,
Lecture I

L. Rempe

Exceptional
values

The Bloch
principle
The Bloch principle

The Zalcman lemma

Density of
repelling
cycles

Expansion
property of the
Julia set

Liouville’s Theorem

Recall that Liouville’s Theorem states that a bounded entire
function must be constant.
Compare this with the Removable Singularities Theorem,
which says that an isolated singularity of a bounded
holomorphic function is removable.
Also recall that any family of bounded entire functions, with
a uniform bound, is normal.



Holomorphic
Dynamics,
Lecture I

L. Rempe

Exceptional
values

The Bloch
principle
The Bloch principle

The Zalcman lemma

Density of
repelling
cycles

Expansion
property of the
Julia set

Liouville’s Theorem

Recall that Liouville’s Theorem states that a bounded entire
function must be constant.
Compare this with the Removable Singularities Theorem,
which says that an isolated singularity of a bounded
holomorphic function is removable.
Also recall that any family of bounded entire functions, with
a uniform bound, is normal.



Holomorphic
Dynamics,
Lecture I

L. Rempe

Exceptional
values

The Bloch
principle
The Bloch principle

The Zalcman lemma

Density of
repelling
cycles

Expansion
property of the
Julia set

Theorems of Montel and Picard

Theorem II.2.1 (Picard)
Suppose f is meromorphic on a domain U, except at an
isolated singularity z0 ∈ U.
If f omits three values in the Riemann sphere (e.g., f never
takes the values 0, 1 and ∞), then z0 is a removable
singularity.

Theorem II.2.2 (Picard)

Any meromorphic function f : C → Ĉ which omits three
values is constant.

Theorem II.2.3 (Montel)
A family of meromorphic functions which all omit the same
three values is normal.
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The Bloch Principle

A property which implies that an entire (or
meromorphic) function on the plane is constant
should imply that a family of entire (or
meromorphic) functions with this property is
normal.

Of course, this heuristic principle isn’t true as stated: for a
trivial example, consider the property f omits some
collection of three points.
(There are more interesting examples as well.)
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Zalcman’s rescaling lemma

Larry Zalcman formulated a rescaling lemma which makes
Bloch’s heuristic principle explicit.

Theorem II.2.4 (Zalcman’s Lemma)
The family f of meromorphic functions is not normal near a
point z0 if and only if:
There exists a sequence (fn) in F , a sequence zn → z0, and
a sequence of rescaling factors ρn with ρn → 0 such that the
functions

z 7→ fn(zn + ρnz)

converge locally uniformly to a nonconstant meromorphic
function f : C → Ĉ.
(Furthermore, f can be chosen with f # ≤ 1 for all z ∈ C.)
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Zalcman’s rescaling lemma

Zalcman’s lemma has revolutionized the study of normal
families.
It can not only be used to prove the equivalence of results
for normal families and global analytic functions, but often
also to prove such results themselves.
For example: simple proofs of Montel’s theorem, Picard’s
theorem, Koebe’s theorem, some theorems by Nevanlinna
and Ahlfors, . . . .
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Idea of the proof

If F is not normal near z0, then there is a sequence of
points zn and functions fn ∈ F such that the spherical
derivative tends to ∞ (by Marty’s theorem).
This gives us a sequence of rescalings of fn with
spherical derivative, say, bounded by 1.
Again, we can apply Marty’s theorem to see that this
sequence is normal, and hence extract a convergent
subsequence.
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Proof of Montel’s theorem from
Picard’s theorem

1 Let F be a family of functions on U, all of which omit
the values {0, 1,∞}.

2 If F is not normal, we can find a sequence of rescalings
converging to a nonconstant entire function f .

3 The limit f must also omit {0, 1,∞} by Hurwitz’s
theorem.

4 This contradicts Picard’s theorem.
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Some other instances of Bloch’s
principle

Nevanlinna’s deficiency relation.
The Ahlfors five islands theorem.
. . .
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Periodic points

z ∈ C is periodic if f n(z) = z.
A periodic point is attracting if |(f n)′(z)| < 1.
(Attracting points are in the Fatou set.)
A periodic point is repelling if |(f n)′(z)| > 1.
(Repelling points are in the Julia set.)
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Theorem II.3.1 (Density of repelling cycles)
Let f : X → X be nonlinear and nonconstant, as before,
where X ∈ {C, Ĉ, C∗}.
Then repelling periodic points are dense in J(f ).

For rational functions, the usual proof uses the finiteness of
nonrepelling cycles.
Baker’s original proof for entire functions uses the five
islands theorem.
We will give a proof using Zalcman’s lemma, essentially due
to Schwick (with simplifications due to Duval-Berteloot and
Bargmann).
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Then repelling periodic points are dense in J(f ).

For rational functions, the usual proof uses the finiteness of
nonrepelling cycles.
Baker’s original proof for entire functions uses the five
islands theorem.
We will give a proof using Zalcman’s lemma, essentially due
to Schwick (with simplifications due to Duval-Berteloot and
Bargmann).



Holomorphic
Dynamics,
Lecture I

L. Rempe

Exceptional
values

The Bloch
principle
The Bloch principle

The Zalcman lemma

Density of
repelling
cycles

Expansion
property of the
Julia set

Theorem II.3.1 (Density of repelling cycles)
Let f : X → X be nonlinear and nonconstant, as before,
where X ∈ {C, Ĉ, C∗}.
Then repelling periodic points are dense in J(f ).

For rational functions, the usual proof uses the finiteness of
nonrepelling cycles.
Baker’s original proof for entire functions uses the five
islands theorem.
We will give a proof using Zalcman’s lemma, essentially due
to Schwick (with simplifications due to Duval-Berteloot and
Bargmann).
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Expansion property of the Julia
set

As a consequence of the density of repelling periodic points,
we can strengthen a number of properties of the Julia set.

Theorem II.4.1 (Expansion property)
Let K ⊂ X be a compact set which does not contain any
exceptional points.
If U is an open set with U ∩ J(f ) 6= ∅, then there is n ≥ 0 with

K ⊂ f n(U).
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Expansion property of the Julia
set

As a consequence of the density of repelling periodic points,
we can strengthen a number of properties of the Julia set.

Theorem II.4.1 (Expansion property)
Let K ⊂ X be a compact set which does not contain any
exceptional points.
If U is an open set with U ∩ J(f ) 6= ∅, then there is n ≥ 0 with

K ⊂ f n(U).
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Existence of convergent
subsequence

Lemma II.4.2
Let z ∈ J(f ). Then z has no neighborhood in which the
sequence (f n) has any uniformly convergent subsequence.
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