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This handout is created from the overhead slides used during lectures. Exam-
ples and proofs will be done on the board, and are not included.

II.1 Exceptional values

Exceptional values
II.1.1 Definition (Exceptional value). A value z0 ∈ Ĉ is called (Fatou) exceptional
if the backward orbit

O−(z0) = {w ∈ X : ∃n ≥ 0, fn(w) = z0}

is a finite set.

Example 1. • f(z) = z2; z0 = 0.

• f(z) = exp(z); z0 = 0.

II.1.2 Lemma (Number of exceptional points). f has at most two exceptional
points in Ĉ.

Exceptional values
Remark. For rational functions of degree at least two, exceptional values are al-
ways in the Fatou set.

• A rational map with one exceptional value is conjugate to a polynomial.

• A rational map with two exceptional values is conjugate to z 7→ zm, m ∈
Z \ {−1, 0, 1}.

1



Density of backward orbits
We can now reformulate a property of the Julia set which we mentioned al-

ready in the previous lecture:

II.1.3 Lemma (Backward orbits). If z0 is not a Fatou exceptional value, then

J(f) ⊂ O−(z0).

If furthermore z0 ∈ J(f), then

J(f) = O−(z0).

II.2 The Bloch principle

II.2.1 The Bloch principle

Liouville’s Theorem
Recall that Liouville’s Theorem states that a bounded entire function must be

constant.
Compare this with the Removable Singularities Theorem, which says that an

isolated singularity of a bounded holomorphic function is removable.
Also recall that any family of bounded entire functions, with a uniform bound,

is normal.

Theorems of Montel and Picard

II.2.1 Theorem (Picard). Suppose f is meromorphic on a domain U , except at an
isolated singularity z0 ∈ U .

If f omits three values in the Riemann sphere (e.g., f never takes the values 0,
1 and ∞), then z0 is a removable singularity.

II.2.2 Theorem (Picard). Any meromorphic function f : C → Ĉ which omits
three values is constant.

II.2.3 Theorem (Montel). A family of meromorphic functions which all omit the
same three values is normal.

The Bloch Principle

A property which implies that an entire (or meromorphic) func-
tion on the plane is constant should imply that a family of entire (or
meromorphic) functions with this property is normal.
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Of course, this heuristic principle isn’t true as stated: for a trivial example,
consider the property f omits some collection of three points.

(There are more interesting examples as well.)

II.2.2 The Zalcman lemma

Zalcman’s rescaling lemma
Larry Zalcman formulated a rescaling lemma which makes Bloch’s heuristic

principle explicit.

II.2.4 Theorem (Zalcman’s Lemma). The family f of meromorphic functions is
not normal near a point z0 if and only if:

There exists a sequence (fn) in F , a sequence zn → z0, and a sequence of
rescaling factors ρn with ρn → 0 such that the functions

z 7→ fn(zn + ρnz)

converge locally uniformly to a nonconstant meromorphic function f : C → Ĉ.
(Furthermore, f can be chosen with f# ≤ 1 for all z ∈ C.)

Zalcman’s rescaling lemma
Zalcman’s lemma has revolutionized the study of normal families.
It can not only be used to prove the equivalence of results for normal families

and global analytic functions, but often also to prove such results themselves.
For example: simple proofs of Montel’s theorem, Picard’s theorem, Koebe’s

theorem, some theorems by Nevanlinna and Ahlfors, . . . .

Idea of the proof

• IfF is not normal near z0, then there is a sequence of points zn and functions
fn ∈ F such that the spherical derivative tends to ∞ (by Marty’s theorem).

• This gives us a sequence of rescalings of fn with spherical derivative, say,
bounded by 1.

• Again, we can apply Marty’s theorem to see that this sequence is normal,
and hence extract a convergent subsequence.
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Proof of Montel’s theorem from Picard’s theorem

1. Let F be a family of functions on U , all of which omit the values {0, 1,∞}.

2. If F is not normal, we can find a sequence of rescalings converging to a
nonconstant entire function f .

3. The limit f must also omit {0, 1,∞} by Hurwitz’s theorem.

4. This contradicts Picard’s theorem.

Some other instances of Bloch’s principle

• Nevanlinna’s deficiency relation.

• The Ahlfors five islands theorem.

• . . .

II.3 Density of repelling cycles

Periodic points

• z ∈ C is periodic if fn(z) = z.

• A periodic point is attracting if |(fn)′(z)| < 1.

(Attracting points are in the Fatou set.)

• A periodic point is repelling if |(fn)′(z)| > 1.

(Repelling points are in the Julia set.)

II.3.1 Theorem (Density of repelling cycles). Let f : X → X be nonlinear and
nonconstant, as before, where X ∈ {C, Ĉ, C∗}.

Then repelling periodic points are dense in J(f).

For rational functions, the usual proof uses the finiteness of nonrepelling cy-
cles.

Baker’s original proof for entire functions uses the five islands theorem.
We will give a proof using Zalcman’s lemma, essentially due to Schwick (with

simplifications due to Duval-Berteloot and Bargmann).
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II.4 Expansion property of the Julia set

Expansion property of the Julia set
As a consequence of the density of repelling periodic points, we can strengthen

a number of properties of the Julia set.

II.4.1 Theorem (Expansion property). Let K ⊂ X be a compact set which does
not contain any exceptional points.

If U is an open set with U ∩ J(f) 6= ∅, then there is n ≥ 0 with

K ⊂ fn(U).

Existence of convergent subsequence

II.4.2 Lemma. Let z ∈ J(f). Then z has no neighborhood in which the sequence
(fn) has any uniformly convergent subsequence.
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