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This handout is created from the overhead slides used during lectures. Exam-
ples and proofs will be done on the board, and are not included.

I.1 Introduction

I.1.1 Discrete dynamical systems

Discrete dynamical systems
General setting:

• X phase space;

• f : X → X function;

• fn = f ◦ · · · ◦ f iterates of f ;

• study behaviour of fn(x) as n →∞.

A remark
Remark. It may very well make sense to have f defined only on a subset of X .

For example, one can study the iteration of meromorphic functions f : C → Ĉ,
or more general families of functions such as those considered by Adam Epstein
and others.

1



Holomorphic dynamics

• X is a Riemann surface (i.e., a connected one-dimensional complex mani-
fold);

• f : X → X is a holomorphic function.

Interesting behavior only for

X ∈ {Ĉ, C, C \ {0}, C/Z2}.

Our setting
I.1.1 Standing Assumption. X is either the complex plane C, the Riemann sphere
Ĉ = C ∪ {∞}, or the punctured plane C∗ = C \ {0}.

f : X → X is a nonconstant holomorphic function which is not a conformal
automorphism of X .

Entire functions
Recall that a holomorphic function f : C → C which is not a polynomial is

called a transcendental entire function.
I.e.,

f(z) =
∞∑

k=0

akz
k,

where ak 6= 0 for infinitely many k and the series converges for all z ∈ C.
The case where X = C and f is a transcendental entire function is the one we

will have in mind for most of the lectures.

Julia and Fatou sets
The phase space X can be partitioned into two fundamentally different sets:

• The Fatou set is the set where the dynamics is regular.

This is an open set, and the possible types of behaviour are (fairly) well-
understood.

• The Julia set is the set where the dynamics is “chaotic”.

The structure and dynamics of the Julia set can be very complicated.
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I.1.2 An example

The simplest possible case

f(z) = z2.

The quadratic family

f(z) = z2 + c, c ∈ C.

Very complicated behaviour as c varies — gives rise to the Mandelbrot set.

I.2 Definition of Julia and Fatou sets

Equicontinuity
Recall that we want to define the Fatou set as the locus of stable behaviour.
This means that

small perturbations lead to small changes in long-term behaviour.

I.2.1 Definition (Equicontinuity). Let A and B be metric spaces. A family F of
functions from A to B is equicontinuous in a point x0 ∈ A if

∀ε > 0∃δ > 0∀f ∈ F ∀x ∈ A :

d(x, x0) < δ ⇒ d(f(x), f(x0)) < ε.

Fatou and Julia sets
Let X and f : X → X be as in our standing assumption.

I.2.2 Definition (Fatou set). A point z ∈ X belongs to the Fatou set F (f) if there
is a neighborhood U of z such that the family

{fn : n ∈ N}

is equicontinuous in every point of U (with respect to the spherical metric).

I.2.3 Definition (Julia set). The Julia set of f is the complement of the Fatou set:

J(f) := X \ F (f).
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I.3 Normal families

Locally uniform convergence
Let fn be a family of holomorphic (or meromorphic) functions defined on

some open set U .
Recall that we say that (fn) converges locally uniformly to a function f if the

sequence converges uniformly on every compact subset of U .
(For example, the sequence fn(z) = z/n converges locally uniformly to

f(z) = 0 on C.)

Results from Complex Analysis

I.3.1 Theorem (Schwarz Lemma). Let f : D → D be a holomorphic function
with f(0) = 0 (where D is the unit disk). Then

|f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z ∈ D,

with equality if and only if f is a rotation.

I.3.2 Theorem (Weierstraß theorem). If fn → f locally uniformly, where fn and
f are holomorphic functions defined on some open set U ⊂ C, then f ′n → f ′

locally uniformly.

I.3.3 Theorem (Hurwitz theorem). If fn → f locally uniformly, as above, and
fn(z) 6= 0 for all z, then either f 6= 0 for all z, or f is constant.

Normality
A family F of holomorphic or meromorphic functions on U is normal (on

U ) if every sequence of functions in F contains a locally uniformly convergent
subsequence.

We say that F is normal in a point z if z has an open neighborhood on which
F is normal.

Arzelá-Ascoli Theorem

I.3.4 Theorem (Arzelà-Ascoli). F is normal if and only if it is equicontinuous in
every point of U .

(In particular, normality is a local property: F is normal if and only if it is
normal in every point of U .)

Hence the Fatou set of a function f : X → X is the set of normality of the
family of iterates.
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Marty’s theorem
The spherical derivative of a meromorphic function f in z is

f#(z) :=
2|f ′(z)|

1 + |f(z)|2
.

I.3.5 Theorem (Marty). The family F of meromorphic functions is normal if and
only if the spherical derivatives in F are locally bounded.

(I.e., every z0 ∈ U has a neighborhood N such that f#(z) is uniformly
bounded in N , with the bound independent of f ∈ F .)

Two theorems of Montel

I.3.6 Theorem (Montel). A uniformly bounded family of holomorphic functions
is normal.

I.3.7 Theorem (Montel). Let a, b, c ∈ Ĉ. Let F be a family of meromorphic
functions on some open set U which omits the the three values a, b, c.

(I.e., f(z) /∈ {a, b, c} for all f ∈ F and all z.)
Then F is normal.

Basic properties

I.3.8 Lemma (Basic properties of Julia and Fatou sets). • F (f) is open; J(f)
is closed (in X).

• F (f) and J(f) are completely invariant; i.e.

z ∈ F (f) ⇐⇒ f(z) ∈ F (f).

• Julia and Fatou sets are preserved under iteration.

(That is, F (fn) = F (f), J(fn) = J(f).)

Properties of the Julia set

I.3.9 Theorem (Julia set infinite). The Julia set J(f) contains infinitely many
points.

(Proof for entire functions: see course by Rippon and Stallard. Proof for ra-
tional functions: easy; see e.g. book by Milnor.)
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Consequences

I.3.10 Corollary (Backward orbits are dense). For all points z0 ∈ Ĉ with at most
three exceptions, the closure of the backward orbit

O−(z0) := {w ∈ X : fn(w) = z0 for some n ≥ 0}

contains the Julia set J(f).

I.3.11 Corollary (Characterization of J(f)). J(f) is the smallest closed and
backward invariant set containing at least three points.

I.3.12 Corollary (Julia sets with interior). If J(f) 6= X , then J(f) has no interior.
(I.e., J(f) contains no nonempty open set.)

More consequences

I.3.13 Corollary (Julia set is perfect). J(f) has no isolated points. In particular,
J(f) is unbounded.

I.3.14 Corollary (Dense orbits). There exist (uncountably many) points z ∈ J(f)
such that the orbit

O+(z) := {fn(z) : n ≥ 0}

is dense in J(f).

Density of repelling periodic points
I.3.15 Definition (Periodic points). A point z ∈ X with fn(z) = z is called
periodic. (The smallest such n is the period of z.)

Such a periodic point is called

• attracting if 0 < |(fn)′(z)| < 1;

• superattracting if |(fn)′(z)| = 0;

• repelling if |(fn)′(z)| > 1;

• indifferent (or “neutral”) if |(fn)′(z)| = 1.

I.3.16 Theorem (Density of repelling cycles). Repelling periodic points are dense
in the Julia set.
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