
Introduction
The function has a Baker domain

Distribution of singular values

Dynamical properties of a family of entire functions

Dominique Fleischmann
d.s.fleischmann@open.ac.uk

Department of Mathematics
The Open University

January 2008

Dominique Fleischmann Dynamical properties of a family of entire functions



Introduction
The function has a Baker domain

Distribution of singular values

Outline

1 Introduction

2 The function has a Baker domain

3 Distribution of singular values

Dominique Fleischmann Dynamical properties of a family of entire functions



Introduction
The function has a Baker domain

Distribution of singular values

Fatou and Julia sets
Some properties ofJ(f ) andF(f )
Types of Fatou components
Baker’s results from 1981
The family of functions

Fatou and Julia sets

Let f be a meromorphic function which is not rational of degree one
and denote byf n, n ∈ N, thenth iterate off .

TheFatou set, F(f ), is defined to be the set of points,z∈ C, such
that the sequence{f n}n∈N is well-defined, meromorphic and
forms a normal family in some neighbourhood ofz.

The complement,J(f ), of F(f ) is called theJulia setof f .

Note: A family of functions is “normal” at a pointz if every sequence
in it contains a subsequence that is convergent on a neighbourhood of
z.
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Examples of Julia sets of rational functions

Figure:Douady Rabbit (courtesy of Peter Kankowski)
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Examples of Julia sets of rational functions (continued)

Figure:Dendrite (courtesy of Peter Kankowski)
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Some properties ofJ(f ) andF(f )

By definition, for any rational or transcendental functionf , F(f )
is open andJ(f ) is closed.

BothF(f ) andJ(f ) are completely invariant.

J(f ) is a perfect set; that isJ(f ) is closed, non-empty and
contains no isolated points.

EitherJ(f ) = C or J(f ) has empty interior.

If z0 ∈ J(f ) is not an exceptional point, thenJ(f ) = O−(z0)
whereO−(z0) is the set of pointsw ∈ C such thatf n(w) = z0 for
somen ∈ N.

Note: Sketch.
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Types of Fatou components

Distinction between transcendental entire functions and polynomials
Common:

attracting

parabolic

Siegel disc

Transcendental entire only:

wandering

Baker domain

Note: A “Fatou component” is a maximal open connected subset of
F(f ).
Note: The framework for categorization of components is due to
Fatou and Julia (common) and Baker (transcendental entire).
Note: Fatou’s example.f (z) = z+ 1 + e−z.
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Link between order of growth and unbounded Fatou
components

In 1981 (J. Austral. Math. Soc.) Baker proved

Theorem

If for transcendental entire f there is an unbounded invariant
component of F(f ), then the growth of f must exceed order1/2,
minimal type.

Is the value 1/2 sharp?

That is, can an example be found of a transcendental entire
function with order of growth 1/2 mean type which has an
invariant unbounded Fatou component?

Note: There is a formal definition for “Order” and “Type” but I shall
not give it here.
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The family of functions

Baker demonstrated that the value 1/2 is indeed sharp by introducing
the example

fc(z) = z+
sin

√
z√

z
+ c, for c ∈ R. (1)

Entire
(

sin
√

z√
z = 1− z

3! + z2

5! − z3

7! + . . .
)

,

Transcendental,

Order 1/2 (the order ofeza
is a).
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Computer experiments

Figure:Julia set offc for c = 6 and “typical” orbits
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Computer experiments (continued)

Figure:Julia set offc for c = 0.05 and “typical” orbits
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Baker’s original result

Proposition

The function fc has a Baker domain for sufficiently large c.

Baker constructed a domainD symmetric about the real axis with a
(truncated) parabolic boundary. He proved thatf (D) ⊂ D, by showing
that

∣

∣

∣

∣

sin
√

z√
z

∣

∣

∣

∣

< dist(z+ c, ∂D),

for z∈ D andc sufficiently large. The precise criterion is

1
2

c

(

x + 1 +
1
2

c

)−1/2

> e|z|−1/2, for z = x + iy ∈ D,

which is true whenc > 6 sofc has a Baker domain for suchc.
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Baker’s parabola
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Did Baker exhaust all possible values ofc?

With more care, similar arguments can be used to show that an
invariant domain exists forc > 1.
However, if 0< c < 1, a serious problem arises sinceno invariant
parabolic domain exists.

Is 1 a significant constant?

Doesfc have a Baker domain for smaller values ofc?

A new proof strategy would be required for smallerc.
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Statement of new Theorem

Theorem

For all c > 0, the function fc defined by

fc(z) = z+
sin

√
z√

z
+ c

has an invariant Baker domain U, symmetric about the real axis and
containing the interval(xc,∞) for some xc > 0.
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Key ideas of proof

We begin by observing that

there exists somex0 ∈ R such that

f (x) > x +
c
2

for all x ≥ x0, and

Any curve defined by the interval[x1,∞) is invariant, where
x1 ≥ x0.

The rest of the proof is concerned with showing that there exists a
Fatou componentU containing[x1,∞) for somex1 > x0.
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Key ideas of proof (continued)

We consider the auxilliary functiongc defined by

gc(w) = h−1 ◦ fc ◦ h(w) =
√

fc(w2) =

√

w2 +
sinw

w
+ c

= w

√

1 +
sinw
w3 +

c
w2 (2)

which is analytic when 1+ sinw
w3 + c

w2 is away from the origin and
negative real axis.
ForK ≥ 0 andL > 0 we define the open half-stripRby

R(K, L) = {w : ℜ(w) > K, |ℑ(w)| < L}.

Note: gc is not meromorphic, soF(gc) is not defined.
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Change of variables - mapping of parabola to strip
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Dynamics in thew-plane

AlthoughR(K, L) is not invariant for 0< c < 1, computer
experiments do suggest that orbits omit a large part ofC.

Figure:Dominique Fleischmann Dynamical properties of a family of entire functions
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Key ideas of proof (continued)

We show that for anyc > 0 there are two stripsR(K, L) andR(K, 2L)
such that

gn
c(R(K, L)) ⊂ R(K, 2L), for all n ∈ N,

Figure:The setsR(K, L) andR(K, 2L)

(In the constructionL 2L so we will not obtain an invariant set)
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Key steps to show thatg(R(K, L)) ⊂ R(K, 2L)

Expandgc using the binomial theorem:
gc(w) = w + sinw

2w2 + c
2w + B(w).

Real and imaginary parts of the function:
gc(w) = w + δu + iδv, where

δu = ℜ
(

sinw
2w2

)

+ ℜ
(

c
2w

)

+ ℜ(B(w)), and
δv = ℑ

(

sinw
2w2

)

+ ℑ
(

c
2w

)

+ ℑ (B(w)).

Estimateδu andδv.
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Symmetry

Sincefc andgc are symmetrical in the sense that

fc(z) = fc(z) andgc(w) = gc(w),

it suffices to considerw ∈ R+(K, L).
Note: Sketch
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Key ideas of proof (continued)

It can be shown that

δu = c
2u + O

(

1
u2

)

and

δv = cosusinhv
2u2 − cv

2u2 + O
(

v
u3

)

, as|w| → ∞ in R+(K, L)

for K sufficiently large.

When 0< c < 1 andw = 2πn + iv ∈ R+(K, L), we haveδv > 0, so
R+(K, L) (and henceR(K, L)) is not invariant undergc no matter
how smallL.
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Key ideas of proof (continued)

Writing wn = un + ivn = gn
c(w0), from the form ofδu andδv we can

deduce that

orbits move to the right byδun ≈ c
2un

, and

the growth of the imaginary part of the orbit is controlled as the
real part increases fromu0 to u0 + 2π. In particular,

|vn − v0| < A
v0

u0

for every iteratewn in R+(K, 2L) with real part lying betweenu0

andu0 + 2π.

We use this to improve the particular estimate forvN − v0, where
uN ≈ u0 + 2π.
Note: Sketch
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Key ideas of proof (continued)

In fact, 0< vN < v0 for all w0 ∈ R+(K, L) ⊂ R+(K, 2L).

Below we outline why this is so.
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Key ideas of proof (continued)

vN − v0 =
N−1
∑

n=0

δvn

=
1
2

N−1
∑

n=0

sinhvn cosun

u2
n

− c
2

N−1
∑

n=0

vn

u2
n

+ A
N−1
∑

n=0

vn

u3
n
,

for some constantA. Now the last sum is much smaller asu0 → ∞,
so the task is to show that

1
2

N−1
∑

n=0

sinhvn cosun

u2
n

<
c
2

N−1
∑

n=0

vn

u2
n
.
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Key ideas of proof (continued)

The key problem here is that sinhvn > cvn whenc < 1, so the cosun

term must be exploited to reduce the size of the left-hand side; that is,
there is significant cancelation.
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Key ideas of proof (continued)

Now

π

12
v0

u0
<

c
2

N−1
∑

n=0

vn

u2
n
,

sinceN > 4πu0
3c , and

1
2

N−1
∑

n=0

sinhvn cosun

u2
n

≈ sinhv0

2u2
0

N−1
∑

n=0

cosun + smaller terms.

So it suffices to show that
N−1
∑

n=0

cosun = O(1) asu0 → ∞.

Note: v0 is very close tovn.
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Key ideas of proof (continued)

We do this by noting that
N−1
∑

n=0
δun cosun is a Riemann sum for

2π
∫

0

cosu du

Note: It is crucial that the factorδun can be introduced without too
much error, sinceδun ≈ c

2un
≈ 2π

N .
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Generalizing the key steps

If x1 is sufficiently large (andx1 > x0), then for anyw0 ∈ R(x1, L)

wn moves to the right anduN ≈ u0 + 2π, and

0 < vn < 2L for all n ∈ {0, . . . , N} and 0< vN < v0.

By inductionwn ∈ R(x1, L), for all n ∈ N.

Forz0 ∈ h(R(x1, L)) ≡ P we havezn ∈ h(R(x1, 2L)) ≡ Q for all
n ∈ N.

Dominique Fleischmann Dynamical properties of a family of entire functions



Introduction
The function has a Baker domain

Distribution of singular values

Baker’s original result
Extended result and new proof

Concluding the proof

C \ Q contains more than 3 points, so by Montel’s theorem,
P ⊂ F(fc).

SinceP is connected and unbounded, there exists a single
unbounded component,U say, ofF(fc) such thatP ⊂ U.
From above,

[x1,∞) ⊂ P ⊂ U is invariant, and
f n
c (x) → ∞ asn → ∞ for all x ∈ [x1,∞)

Thusall points inU tend to infinity underfc, soU is a Baker
domain.

This concludes the proof.
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Background

Forp ∈ N, we denote by

sing(f−p)

the set of finite singularities off−p; that is, the set of pointsw ∈ C

such that some branch off−p cannot be analytically continued
throughw.

The set sing(f−1) consists of the critical values and finite asymptotic
values off , and we refer to these points assingular values of f.

Let γ be a curve starting at zero and tending to∞. Suppose there
existsα ∈ C such thatf (z) → α asz→ ∞ onγ. Thenα is a finite
asymptotic value off .
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Bargmann’s Theorem (J. Anal. Math.) 2001

Theorem

Let f be an entire function with an invariant Baker domain. Then
there exist constants C> 1 and r0 > 0 such that:

{z : r/C < |z| < Cr} ∩ sing(f−1) 6= ∅, for r ≥ r0.

Note: Generalized by Rippon and Stallard to meromorphic functions
that have a finite number of poles and ap-cycle of Baker domains
with sing(f−1) replaced by sing(f−p).
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Comment on Bargmann’s Theorem

It is natural to ask if Bargmann’s result is sharp.

Many known examples of functions satisfying the hypotheses have the
property that sing(f−1) meets every annulus of some uniform width.

For examplef (z) = z+ e−z + 1 has an invariant Baker domain with
no finite asymptotic values and critical points{2nπi : n ∈ Z} so
sing(f−1) = {2nπi + 2 : n ∈ Z}.
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fc has sparsely distributed singular values

Theorem

For the function

fc(z) = z+
sin

√
z√

z
+ c, c > 0,

the setC \ sing(f−1
c ) contains an infinite sequence of nested annuli

{An} with An = {z : an < |z| < an + Kn} where{an} is an increasing
sequence which tends to∞ and where K is a positive constant.

This is the first example of a transcendental entire function with such
sparsely distributed singular values.
Whereas this does not demonstrate the sharpness of Bargmann’s
result, it does close the gap somewhat.
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