Dynamical properties of a family of entire functions

Dominique Fleischmann d.s.fleischmann@open.ac.uk

Department of Mathematics The Open University

January 2008

Outline

- Introduction
- The function has a Baker domain
- 3 Distribution of singular values

Fatou and Julia sets

Let f be a meromorphic function which is not rational of degree one and denote by f^n , $n \in \mathbb{N}$, the nth iterate of f.

- The *Fatou set*, F(f), is defined to be the set of points, $z \in \mathbb{C}$, such that the sequence $\{f^n\}_{n \in \mathbb{N}}$ is well-defined, meromorphic and forms a normal family in some neighbourhood of z.
- The complement, J(f), of F(f) is called the *Julia set* of f.

Note: A family of functions is "normal" at a point *z* if every sequence in it contains a subsequence that is convergent on a neighbourhood of *z*.

Examples of Julia sets of rational functions

Figure: Douady Rabbit (courtesy of Peter Kankowski)

Examples of Julia sets of rational functions (continued)

Figure: Dendrite (courtesy of Peter Kankowski)

Some properties of J(f) and F(f)

- By definition, for any rational or transcendental function f, F(f) is open and J(f) is closed.
- Both F(f) and J(f) are completely invariant.
- J(f) is a perfect set; that is J(f) is closed, non-empty and contains no isolated points.
- Either $J(f) = \mathbb{C}$ or J(f) has empty interior.
- If $z_0 \in J(f)$ is not an exceptional point, then $J(f) = \mathcal{O}^-(z_0)$ where $\mathcal{O}^-(z_0)$ is the set of points $w \in \mathbb{C}$ such that $f^n(w) = z_0$ for some $n \in \mathbb{N}$.

Note: Sketch.

Types of Fatou components

Distinction between transcendental entire functions and polynomials Common:

- attracting
- parabolic
- Siegel disc

Transcendental entire only:

- wandering
- Baker domain

Note: A "Fatou component" is a maximal open connected subset of F(f).

Note: The framework for categorization of components is due to Fatou and Julia (common) and Baker (transcendental entire).

Note: Fatou's example. $f(z) = z + 1 + e^{-z}$.

Link between order of growth and unbounded Fatou components

In 1981 (J. Austral. Math. Soc.) Baker proved

Theorem

If for transcendental entire f there is an unbounded invariant component of F(f), then the growth of f must exceed order 1/2, minimal type.

- Is the value 1/2 sharp?
- That is, can an example be found of a transcendental entire function with order of growth 1/2 mean type which has an invariant unbounded Fatou component?

Note: There is a formal definition for "Order" and "Type" but I shall not give it here.

The family of functions

Baker demonstrated that the value 1/2 is indeed sharp by introducing the example

$$f_c(z) = z + \frac{\sin\sqrt{z}}{\sqrt{z}} + c, \quad \text{for } c \in \mathbb{R}.$$
 (1)

- Entire $\left(\frac{\sin\sqrt{z}}{\sqrt{z}} = 1 \frac{z}{3!} + \frac{z^2}{5!} \frac{z^3}{7!} + \ldots\right)$,
- Transcendental,
- Order 1/2 (the order of e^{z^a} is a).

Computer experiments

Figure: Julia set of f_c for c = 6 and "typical" orbits

< □ ト < 圖 ト < 臺 ト < 臺 ト

Computer experiments (continued)

Figure: Julia set of f_c for c = 0.05 and "typical" orbits

Baker's original result

Proposition

The function f_c has a Baker domain for sufficiently large c.

Baker constructed a domain D symmetric about the real axis with a (truncated) parabolic boundary. He proved that $f(D) \subset D$, by showing that

$$\left|\frac{\sin\sqrt{z}}{\sqrt{z}}\right| < \operatorname{dist}(z+c,\partial D),$$

for $z \in D$ and c sufficiently large. The precise criterion is

$$\frac{1}{2}c\left(x+1+\frac{1}{2}c\right)^{-1/2} > e|z|^{-1/2}, \quad \text{for } z=x+iy \in D,$$

which is true when c > 6 so f_c has a Baker domain for such c.

Baker's parabola

Did Baker exhaust all possible values of *c*?

With more care, similar arguments can be used to show that an invariant domain exists for c > 1.

However, if 0 < c < 1, a serious problem arises since **no** invariant parabolic domain exists.

- Is 1 a significant constant?
- Does f_c have a Baker domain for smaller values of c?

A new proof strategy would be required for smaller c.

Statement of new Theorem

Theorem

For all c > 0, the function f_c defined by

$$f_c(z) = z + \frac{\sin\sqrt{z}}{\sqrt{z}} + c$$

has an invariant Baker domain U, symmetric about the real axis and containing the interval (x_c, ∞) for some $x_c > 0$.

Key ideas of proof

We begin by observing that

• there exists some $x_0 \in \mathbb{R}$ such that

$$f(x) > x + \frac{c}{2}$$

for all $x \ge x_0$, and

• Any curve defined by the interval $[x_1, \infty)$ is invariant, where $x_1 \ge x_0$.

The rest of the proof is concerned with showing that there exists a Fatou component U containing $[x_1, \infty)$ for some $x_1 > x_0$.

We consider the auxilliary function g_c defined by

$$g_c(w) = h^{-1} \circ f_c \circ h(w) = \sqrt{f_c(w^2)} = \sqrt{w^2 + \frac{\sin w}{w} + c}$$
$$= w\sqrt{1 + \frac{\sin w}{w^3} + \frac{c}{w^2}}$$
(2)

which is analytic when $1 + \frac{\sin w}{w^3} + \frac{c}{w^2}$ is away from the origin and negative real axis.

For $K \ge 0$ and L > 0 we define the open half-strip R by

$$R(K, L) = \{w : \Re(w) > K, |\Im(w)| < L\}.$$

Note: g_c is not meromorphic, so $F(g_c)$ is not defined.

Change of variables - mapping of parabola to strip

Dynamics in the w-plane

Although R(K, L) is not invariant for 0 < c < 1, computer experiments do suggest that orbits omit a large part of \mathbb{C} .

We show that for any c > 0 there are two strips R(K, L) and R(K, 2L) such that

$$g_c^n(R(K,L)) \subset R(K,2L), \quad \text{ for all } n \in \mathbb{N},$$

Key steps to show that $g(R(K, L)) \subset R(K, 2L)$

• Expand g_c using the binomial theorem:

$$g_c(w) = w + \frac{\sin w}{2w^2} + \frac{c}{2w} + B(w).$$

• Real and imaginary parts of the function:

$$g_c(w) = w + \delta u + i \delta v$$
, where

•
$$\delta u = \Re\left(\frac{\sin w}{2w^2}\right) + \Re\left(\frac{c}{2w}\right) + \Re(B(w))$$
, and

•
$$\delta v = \Im\left(\frac{\sin w}{2w^2}\right) + \Im\left(\frac{c}{2w}\right) + \Im\left(B(w)\right).$$

• Estimate δu and δv .

Symmetry

Since f_c and g_c are symmetrical in the sense that

$$f_c(\overline{z}) = \overline{f_c(z)}$$
 and $g_c(\overline{w}) = \overline{g_c(w)}$,

it suffices to consider $w \in R^+(K, L)$.

Note: Sketch

It can be shown that

- $\delta u = \frac{c}{2u} + O\left(\frac{1}{u^2}\right)$ and
- $\delta v = \frac{\cos u \sinh v}{2u^2} \frac{cv}{2u^2} + O\left(\frac{v}{u^3}\right)$, as $|w| \to \infty$ in $R^+(K, L)$

for *K* sufficiently large.

When 0 < c < 1 and $w = 2\pi n + iv \in R^+(K, L)$, we have $\delta v > 0$, so $R^+(K, L)$ (and hence R(K, L)) is **not invariant** under g_c no matter how small L.

Writing $w_n = u_n + iv_n = g_c^n(w_0)$, from the form of δu and δv we can deduce that

- orbits move to the right by $\delta u_n \approx \frac{c}{2u_n}$, and
- the growth of the imaginary part of the orbit is controlled as the real part increases from u_0 to $u_0 + 2\pi$. In particular,

$$|v_n - v_0| < A \frac{v_0}{u_0}$$

for every iterate w_n in $R^+(K, 2L)$ with real part lying between u_0 and $u_0 + 2\pi$.

We use this to improve the particular estimate for $v_N - v_0$, where $u_N \approx u_0 + 2\pi$.

Note: Sketch

In fact,
$$0 < v_N < v_0$$
 for all $w_0 \in R^+(K, L) \subset R^+(K, 2L)$.

Below we outline why this is so.

$$v_N - v_0 = \sum_{n=0}^{N-1} \delta v_n$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} \frac{\sinh v_n \cos u_n}{u_n^2} - \frac{c}{2} \sum_{n=0}^{N-1} \frac{v_n}{u_n^2} + A \sum_{n=0}^{N-1} \frac{v_n}{u_n^3},$$

for some constant A. Now the last sum is much smaller as $u_0 \to \infty$, so the task is to show that

$$\frac{1}{2} \sum_{n=0}^{N-1} \frac{\sinh v_n \cos u_n}{u_n^2} < \frac{c}{2} \sum_{n=0}^{N-1} \frac{v_n}{u_n^2}.$$

The key problem here is that $\sinh v_n > cv_n$ when c < 1, so the $\cos u_n$ term must be exploited to reduce the size of the left-hand side; that is, there is significant cancelation.

Now

$$\frac{\pi}{12}\frac{v_0}{u_0} < \frac{c}{2}\sum_{n=0}^{N-1}\frac{v_n}{u_n^2},$$

since $N > \frac{4\pi u_0}{3c}$, and

$$\frac{1}{2}\sum_{n=0}^{N-1}\frac{\sinh v_n\cos u_n}{u_n^2}\approx \frac{\sinh v_0}{2u_0^2}\sum_{n=0}^{N-1}\cos u_n + \text{ smaller terms }.$$

So it suffices to show that

$$\sum_{n=0}^{N-1} \cos u_n = O(1) \quad \text{as } u_0 \to \infty.$$

Note: v_0 is very close to v_n .

We do this by noting that $\sum_{n=0}^{N-1} \delta u_n \cos u_n$ is a Riemann sum for

$$\int_{0}^{2\pi} \cos u \, du$$

Note: It is crucial that the factor δu_n can be introduced without too much error, since $\delta u_n \approx \frac{c}{2u_n} \approx \frac{2\pi}{N}$.

Generalizing the key steps

If x_1 is sufficiently large (and $x_1 > x_0$), then for any $w_0 \in R(x_1, L)$

- w_n moves to the right and $u_N \approx u_0 + 2\pi$, and
- $0 < v_n < 2L$ for all $n \in \{0, ..., N\}$ and $0 < v_N < v_0$.

By induction $w_n \in R(x_1, L)$, for all $n \in \mathbb{N}$.

For $z_0 \in h(R(x_1, L)) \equiv P$ we have $z_n \in h(R(x_1, 2L)) \equiv Q$ for all $n \in \mathbb{N}$.

Concluding the proof

- $\mathbb{C} \setminus Q$ contains more than 3 points, so by Montel's theorem, $P \subset F(f_c)$.
- Since P is connected and unbounded, there exists a single unbounded component, U say, of $F(f_c)$ such that $P \subset U$.
- From above,
 - $[x_1, \infty) \subset P \subset U$ is invariant, and
 - $f_c^n(x) \to \infty$ as $n \to \infty$ for all $x \in [x_1, \infty)$
- Thus **all** points in U tend to infinity under f_c , so U is a Baker domain.

This concludes the proof.

Background

For $p \in \mathbb{N}$, we denote by

$$sing(f^{-p})$$

the set of finite singularities of f^{-p} ; that is, the set of points $w \in \mathbb{C}$ such that some branch of f^{-p} cannot be analytically continued through w.

The set $sing(f^{-1})$ consists of the critical values and finite asymptotic values of f, and we refer to these points as *singular values of f*.

Let γ be a curve starting at zero and tending to ∞ . Suppose there exists $\alpha \in \mathbb{C}$ such that $f(z) \to \alpha$ as $z \to \infty$ on γ . Then α is a finite asymptotic value of f.

Bargmann's Theorem (J. Anal. Math.) 2001

Theorem

Let f be an entire function with an invariant Baker domain. Then there exist constants C > 1 and $r_0 > 0$ such that:

$$\{z: r/C < |z| < Cr\} \cap sing(f^{-1}) \neq \emptyset, \quad for \ r \geq r_0.$$

Note: Generalized by Rippon and Stallard to meromorphic functions that have a finite number of poles and a p-cycle of Baker domains with $sing(f^{-1})$ replaced by $sing(f^{-p})$.

Comment on Bargmann's Theorem

It is natural to ask if Bargmann's result is sharp.

Many known examples of functions satisfying the hypotheses have the property that $sing(f^{-1})$ meets every annulus of some uniform width.

For example $f(z)=z+e^{-z}+1$ has an invariant Baker domain with no finite asymptotic values and critical points $\{2n\pi i:n\in\mathbb{Z}\}$ so $\mathrm{sing}(f^{-1})=\{2n\pi i+2:n\in\mathbb{Z}\}.$

f_c has sparsely distributed singular values

Theorem

For the function

$$f_c(z) = z + \frac{\sin\sqrt{z}}{\sqrt{z}} + c, \quad c > 0,$$

the set $\mathbb{C} \setminus sing(f_c^{-1})$ contains an infinite sequence of nested annuli $\{A_n\}$ with $A_n = \{z : a_n < |z| < a_n + Kn\}$ where $\{a_n\}$ is an increasing sequence which tends to ∞ and where K is a positive constant.

This is the first example of a transcendental entire function with such sparsely distributed singular values.

Whereas this does not demonstrate the sharpness of Bargmann's result, it does close the gap somewhat.

