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Fatou and Julia sets

Letf be a meromorphic function which is not rational of degree one
and denote by", n € N, thenth iterate off.

o TheFatou setF(f), is defined to be the set of pointse C, such
that the sequencl"}nen is well-defined, meromorphic and
forms a normal family in some neighbourhoodzof

@ The complement](f), of F(f) is called thelulia setof f.

Note: A family of functions is “normal” at a poirtif every sequence
in it contains a subsequence that is convergent on a neighbourhood of
z
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Fatou and Julia sets
Introduction Some properties

Figure: Douady Rabbit (courtesy of Peter Kankowski)
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Fatou and Julia sets
Introduction Some properties af(f) andF(f)
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Examples of Julia sets of rational functions (continued)
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Figure: Dendrite (courtesy of Peter Kankowski)
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Some properties af(f) andF(f)

@ By definition, for any rational or transcendental functior (f)
is open and(f) is closed.

o BothF(f) andJ(f) are completely invariant.

e J(f) is a perfect set; that i¥(f ) is closed, non-empty and
contains no isolated points.

o EitherJ(f) = C or J(f) has empty interior.

o If zp € J(f) is not an exceptional point, thexf ) = O—(2)
whereO (29) is the set of pointsv € C such thaf"(w) = z; for
somen € N.

Note: Sketch. ®h
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Types of Fatou components

Distinction between transcendental entire functions and polynomials
Common:

@ attracting

@ parabolic

o Siegel disc
Transcendental entire only:

@ wandering

@ Baker domain

Note: A “Fatou component” is a maximal open connected subset of
F(f).

Note: The framework for categorization of components is due to
Fatou and Julia (common) and Baker (transcendental entire). ®)
Note: Fatou’s exampld.(z) = z+ 1+ e 2 -

Dominique Fleischmann Dynamical properties of a family of entire functions
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The family of functions

Link between order of growth and unbounded Fatou
components

In 1981 (J. Austral. Math. Soc.) Baker proved

If for transcendental entire f there is an unbounded invariant
component of i), then the growth of f must exceed ordg®,

minimal type.

@ Is the value 12 sharp?

@ Thatis, can an example be found of a transcendental entire
function with order of growth 12 mean type which has an
invariant unbounded Fatou component?

Note: There is a formal definition for “Order” and “Type” but | shall O

not give it here.
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The family of functions

Baker demonstrated that the valu&1ls indeed sharp by introducing
the example

siny/z

fe(z) = z+ 7z +c, forceR. (1)
oEntire(S"\’/\ZfZ: —§+§—§+...>,

o Transcendental,
@ Order 1/2 (the order o is a).
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Computer experiments

(Q

Figure: Julia set off. for c = 6 and “typical” orbits
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Fatou and Julia sets
Introduction Some properties af(f) andF(f)
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Computer experiments (continued)

(Q

Figure:Julia set off. for c = 0.05 and “typical” orbits
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Baker's original result

The function has a Baker domain Extended result and new proof

Baker’s original result

—

Proposition
The function § has a Baker domain for sufficiently large c.

Baker constructed a domallhsymmetric about the real axis with a
(truncated) parabolic boundary. He proved &) C D, by showing
that

Si

n,/z .
V2 < dist(z+ ¢, D),
VZ
for z € D andc sufficiently large. The precise criterion is

5C <x+ 1+2c> >elZ7Y2,  forz=x+iyeD,

(Q

which is true whert > 6 sof; has a Baker domain for such
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Baker's original result

The function has a Baker domain Extended result and new proof

Baker's parabola
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. . Baker's original result
The function has a Baker domain Extended result and new proof

Did Baker exhaust all possible valuesasf

With more care, similar arguments can be used to show that an
invariant domain exists far > 1.

However, if 0< ¢ < 1, a serious problem arises simo@invariant
parabolic domain exists.

o Is 1 a significant constant?
@ Doesf; have a Baker domain for smaller valuexaf

A new proof strategy would be required for smalter
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Baker’s original result
Extended result and new proof

The function has a Baker domain

Statement of new Theorem

Theorem

For all ¢ > 0, the function § defined by
sin
VZ .
VZ
has an invariant Baker domain U, symmetric about the real axis and
containing the intervalxc, co) for some x > 0.

fe(z) = z+

o
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof

We begin by observing that
o there exists somg) € R such that

c
f(x) > X+§

for all x > xg, and
@ Any curve defined by the intervit;, co) is invariant, where
X1 2> Xo.
The rest of the proof is concerned with showing that there exists a
Fatou componenitl containing[xs, o) for somex; > Xo.
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. . Baker’s original result
The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

We consider the auxilliary functiog, defined by

gc(W) = h Lo fe o h(w) = y/fo(W2) = W2+ﬂv

sinw
=wy/14+ 2=+

C

which is analytic when 4 %V + = is away from the origin and
negative real axis.

ForK > 0 andL > 0 we define the open half-stripby
R(K,L) = {w: R(w) > K, |I(W)| < L}.
Note: g is not meromorphic, sB(gc) is not defined.

Dominique Fleischmann

Dynamical properties of a family of entire functions

(Q




Baker’s original result

The function has a Baker domain Extended result and new proof

Change of variables - mapping of parabola to strip

PN R(I{,, I)
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Baker’s original result
Extended result and new proof

The function has a Baker domain

Dynamics in thewv-plane

AlthoughR(K, L) is not invariant for O< ¢ < 1, computer
experiments do suggest that orbits omit a large patt.of
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in Baker’s original result
Extended result and new proof

Key ideas of proof (continued)

We show that for ang > 0 there are two stripR(K, L) andR(K, 2L)
such that

g2(R(K,L)) c R(K,2L), forallneN,

g (\1»)

////////////////

\

Figure: The setR(K, L) andR(K, 2L)
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key steps to show thatR(K, L)) C R(K, 2L)

@ Expandg. using the binomial theorem:
Ge(W) = w+ SDW 4 L 4 B(w).
o Real and imaginary parts of the function:
Oc(W) = W+ du + idv, where
o Su=R () + R (%) + R(BW), and
o ov=C(S) + S (&) + S (Bw)).

o Estimateju anddv.
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Baker’s original result

The function has a Baker domain Extended result and new proof

Symmetry

Sincef; andg. are symmetrical in the sense that

fo(2) =fc(z)  andge(W) = ge(w),

it suffices to considew € R™ (K, L).
Note: Sketch
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

It can be shown that
@ fu= 5 +0O(%)and
o IvV= 7005352'”*“’ — ZCTYZ +0 (u—‘g) as|w| — coin RT(K, L)

for K sufficiently large.

When 0< ¢ < 1 andw = 2rn+ iv € RT(K, L), we havedv > 0, so
R™ (K, L) (and hencér(K, L)) is not invariant underg. no matter
how smallL.
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

Writing Wy, = Un + ivh = g2(Wp), from the form oféu anddv we can
deduce that
@ orbits move to the right byu, ~ Z—En and

o the growth of the imaginary part of the orbit is controlled as the
real part increases froop to ug + 2x. In particular,

V
[Vn — Vo| < A2
Uo

for every iteraten,, in R™ (K, 2L) with real part lying betweeng
andug + 2.

We use this to improve the particular estimatevigr— vp, where o
UN =~ Ug + 2. O
Note: Sketch ‘
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

In fact, 0< vy < Vo for allwp € RT(K, L) € RY (K, 2L).

Below we outline why this is so.
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

N—1
VN — Vo = Zévn
N—1

smhvcosu V
22 : “22 FAY B

n=0

for some constar. Now the last sum is much smaller ag— oo,
so the task is to show that

1 Y= sinhv;, cosu chly,

Sy TN 2y

2 ug 2 u
n=0 n=0

(Q
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

The key problem here is that sigh > cv,, whenc < 1, so the cosp,
term must be exploited to reduce the size of the left-hand side; that is,
there is significant cancelation.
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

Now

sinceN > 2% and

smhv cosu sinhv,
5 Z o~ 0 Z cosun + smaller terms

2u0 o
So it suffices to show that
N—1
> cosu, = 0O(1) asup — oo.
n=0

Note: vy is very close tos,.
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Baker’s original result

The function has a Baker domain Extended result and new proof

Key ideas of proof (continued)

N—-1
We do this by noting tha® ~ ou, cosu,, is a Riemann sum for
n=0

27

/ cosudu

0

Note: It is crucial that the factafu, can be introduced without too
much error, sincéun ~ 55~ ~ 2
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Baker’s original result

The function has a Baker domain Extended result and new proof

Generalizing the key steps

If x; is sufficiently large (ana; > Xp), then for anywp € R(xz, L)
@ W, moves to the right andy = up + 27, and
@ 0<wvy<2Lforallne{0,...,N} and 0< vy < Vo.

By inductionw, € R(xq, L), foralln € N.

Forzy € h(R(x1,L)) = P we havez, € h(R(x,2L)) = Q for alll
neN.
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Baker’s original result

The function has a Baker domain Extended result and new proof

Concluding the proof

e C)\ Qcontains more than 3 points, so by Montel’'s theorem,
P C F(fe).
@ SinceP is connected and unbounded, there exists a single
unbounded componen, say, ofF(f;) such thaP C U.
@ From above,
e [X1,00) C P C Uisinvariant, and
e f0(X) — oo asn — oo forall x € [x3,00)

@ Thusall points inU tend to infinity undef¢, soU is a Baker
domain.

This concludes the proof.

(Q
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Background
Bargmann’s Theorem
Distribution of singular values fc has sparsely distributed singular values

Background

Forp € N, we denote by
singf P)

the set of finite singularities df P; that is, the set of points € C
such that some branch bfP cannot be analytically continued
throughw.

The set sinf ~1) consists of the critical values and finite asymptotic
values off, and we refer to these points sisgular values of f

Lety be a curve starting at zero and tendingxto Suppose there
existsa € C such thaf (z) — a asz — oo on+. Thena is a finite

asymptotic value of. -
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Background
Bargmann’s Theorem
Distribution of singular values fc has sparsely distributed singular values

Bargmann’s Theorem (J. Anal. Math.) 2001

Let f be an entire function with an invariant Baker domain. Then
there exist constants € 1 and rp > 0 such that:

{z:r/C< |z <Crinsingf™)#0, forr>ro.

Note: Generalized by Rippon and Stallard to meromorphic functions
that have a finite number of poles ang-aycle of Baker domains
with sing(f ~1) replaced by sing —P).
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Background
Bargmann’s Theorem
Distribution of singular values fc has sparsely distributed singular values

Comment on Bargmann’s Theorem

Itis natural to ask if Bargmann’s result is sharp.

Many known examples of functions satisfying the hypotheses have the
property that sin¢f ~1) meets every annulus of some uniform width.

For exampld (z) = z+ e %+ 1 has an invariant Baker domain with
no finite asymptotic values and critical poid&nri : n € Z} so
singf~1) = {2nzi + 2: ne Z}.
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Background
Bargmann’s Theorem
Distribution of singular values fc has sparsely distributed singular values

fc has sparsely distributed singular values

Theorem
For the function

(2 siny/z

=z+—>—+¢c, c>0,

Z

the setC \ sing(f:1) contains an infinite sequence of nested annuli
{An} with Ay = {z: an < |7 < an + Kn} where{a,} is an increasing
sequence which tends 4o and where K is a positive constant.

o

This is the first example of a transcendental entire function with such
sparsely distributed singular values.

Whereas this does not demonstrate the sharpness of Bargmann’s -
result, it does close the gap somewhat. -
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