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Abstract
Towers of Finite Type Complex Analytic Maps
by

Adam Lawrence Epstein

Adviser: Professor Dennis Sullivan

An analytic map f : W — X of complex 1-manifolds is said to be of
finite type if X is compact and f is an even cover near all but finitely many
singular values in X; when W C X, the iterates of f constitute a one-
generator dynamical system. We extend the three core principles of rational
dynamics,

1. The density of repelling periodic points in the Julia set,
2. The standard classification of periodic components of the Fatou set,
3. The nonexistence of wandering components,

to finite type maps. Our results apply more generally to countably generated
towers constructed inddctively from finite type maps. Such towers can be
geometric limits of sequences of one-generator systems.
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Introduction

Our goal in this thesis and its sequels [?, ?] is to elucidate a new entry in
Sullivan’s “dictionary” between Kleinian groups and rational maps. Both
subjects abound with questions concerning the relation between algebraic
and quasiconformal deformations, and the role of parabolic bifurcations in
the study of boundary phenomena in parameter space. In the theory of
Kleinian groups, such issues are naturally addressed in the language of al-
gebraic and geometric convergence. The space of representations of a fixed
abstract group into PSL,C can be topologized in terms of convergence of gen-
erators; when p; — p, we say that the image groups converge algebraically.
On the other hand, the space of all subgroups carries a natural topology of
geometric convergence, that is, convergence of subgroups in the sense of the
Hausdorff metric. This compact topology is the appropriate arena for the
discussion of Kleinian groups as dynamical systems. Given an algebraically
convergent sequence we may pass to a geometrically convergent subsequence
and compare the respective limits. The geometric limit always contains the
algebraic limit, but is often larger; the additional dynamics encodes a good
deal of the structure of the asymptotic geography of parameter space.

Some years ago, McMullen asked whether the natural complex analytic
product structure on the space of quasi-Blaschke products, rational maps
possessing two fully invariant attracting domains, extends continuously to
the closure in the parameter space of degree d rational maps. This was
known to be true for d = 2 [?], but believed to be false for d > 3. There
were two grounds for this suspicion. Douady and Hubbard [?] had shown
that for d > 3, the process of straightening polynomial-like maps is discon-
tinuous. Moreover, Kerckhoff and Thurston [?] had shown that the natural
product structure of the space of genus 2 quasi-Fuchsian groups does not ex-
tend continuously to the space of Mobius representations of the underlying
abstract group. The latter argument involves a comparison of algebraic and
geometric limits, as oné quotient surface degenerates through pinching or
twisting, while the other remains fixed in Teichmiiller space. When the par-
allel degeneration is performed in a different “Bers slice”, the new complex
structure reflecting the change of slice may spill into the regions uniformiz-
ing the degenerated surface, possibly altering its moduli. A specific example
where such a change occurs is then constructed and verified.

The Douady-Hubbard counterexample is similar in spirit: discontinuity
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occurs at a map possessing a parabolic point, and is exhibited by means
of their technique of “Ecalle Cylinders”. As was well undertood classically,
parabolic fixed points give rise to local quotient cylinders. Douady showed
how to construct cylinders for appropriate perturbations of a parabolic map
f; in an appropriate sense, these cylinders converge to the quotient cylinders
for f. High iterates of the perturbations may converge to a second, transcen-
dental generator, defined on the parabolic basin and commuting with f: the
two-generator system is a useful caricature of the dynamics of the perturba-
tions. This approach yields a “first-order” understanding of the asymptotic
structure of parameter space near para.bolic bifurcations. Prototypical ex-
amples are Douady and Lavaurs’ description of the limiting shape of “ele-
phants” advancing into the main cusp of the Mandelbrot set, and Lavaurs’
proof of non-local connectivity for the connectedness locus of degree 3 poly-
nomials [?]. A refined analysis [?] leads to the expected negative resolution
of McMullen’s question concerning quasi-Blaschke products. Douady’s con-
struction may often be iterated: Shishikura’s proof [?] that the boundary
of the Mandelbrot set has Hausdorff dimension 2 employs three-generator
systems in a similar fashion. McMullen observed that this method could be
viewed as a rational maps analogue to the use of geometric limits in [?], and
proposed the development of such a theory.

The sequel [?] to this work will put forward a framework for investigating
geometric convergence in the setting of rational maps. The local nature of
convergence of analytic maps and the transcendentality of limits force a sheaf-
theoretic formulation for general conforrmal dynamical systems. A conformal
dynamical system on a complex 1-manifold X is a collection of nowhere locally
constant analytic maps from open subsets to X, closed under restriction and
composition, and containing the identity; a sequence of systems F converges
geometrically to the system F, and we write F, — F, when:

1. If fx, € Fi, and fi, — g, then g € G,

2. If g € G there exist fr € Fi. with fi, — g¢.

’

By fi — ¢ we mean local uniform convergence of maps on convergent do-
mains, that is, any compact subset of dom(g) lies in dom(fy) for large k
and vice-versa. The space of conformal dynamical systems on X is compact;
the subspace of systems which are themselves closed under local uniform
convergence is Hausdorff.
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The geometric limit of a convergent sequence of 1-generator systems (fi)
associated to maps fi consists of maps ¢ expressible as local uniform lim-
its ¢ = limg—oo 1%, where the ny are non-negative and possibly unbounded.
There is a Structure Theorem for such geometric limits under the assumption
of algebraic convergence, that is local uniform convergence f, — f, where f is
a map of finite type: an analytic map f: W — X issaid to be of finite type if
X is compact and f evenly covers neighborhoods of all but finitely many sin-
gular values, e.g. any rational map. The Structure Theorem, together with a
converse Realization Theorem, yields a purely synthetic characterization of
the conformal dynamical systems arising as geometric limits of 1-generator
systems with finite type algebraic limit. Such systems are towers assembled
through inductive application of the Ecalle cylinder construction.

A tower of height 1 is simply a system (f) where f is an analytic map
on a complex 1-manifold X; the tower construction terminates here unless f
possesses parabolic cycles. By the Fatou Flower Theorem, each such cycle has
an associated cluster of quotient cylinders, one for each petal. The interior
cylinders are quotients of the various parabolic basins; the exterior cylinders
are local quotients of the intervening zones. We compactify the cylinders to
spheres by adjoining “North and South poles”, and consider isomorphisms,
respecting these poles, from interior cylinders to exterior cylinders. In the
case of interest, these transit maps respect each cluster and obey simple
combinatorial rules of admissibility.

A transit map @ lifts to a isomorphism between the universal covers of
the interior and exterior cylinders. Each lift ® gives rise to a transcendental
analytic map ¢ = x o ® o @ from the corresponding parabolic basin to X.
Here, @ is the small-orbit projection from the basin to the universal cover of
the interior cylinder, and y is the reverse projection from the universal cover
of the exterior cylinder to X. By construction, ¢ commutes with f. The
smallest conformal dynamical system F containing f and the maps ¢ for the
various lifts of ® is a tower of height 2.

. The Julia and Fatou sets of f project down to the exterior cylinders, and
there is an induced map F from the image of the parabolic basins to the
interior cylinders. If f is a map of finite type, then £ inherits this property.
The map ® U E on the collection of cylinders determines a new 1-generator
system which may itself possess parabolic cycles. In this case the above
construction may be repeated, yielding a height 2 tower on the cylinders
and, upon lifting, a height 3 tower on.*X". Continuing in this fashion, one may
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asssemble towers of any finite height; an infinite height tower is the ascending
union of a compatible sequence of finite height towers of unbounded height.
The base of a tower F is the map f from which the construction originated;
if fis a finite type map, then F is said to be a tower of finite type. A tower
is admissible if all transit maps in the construction obey the admissibility
rules..

The Structure Theorem asserts that a geometric limit of 1-generator sys-
tems with finite type algebraic limit S is an admissible augmented tower
G with base f: that is, a tower F with a bit of additional dynamics sup-
ported on the smallest invariant set =(F) containing the lifts to X of all
rotation domains of maps arising in the construction of F. The Realization
Theorem asserts that, up to this negligible extra dynamics, every admis-
sible tower arises as a geometric limit of such an algebraically convergent
sequence. The proof of the Structure Theorem has two main ingredients. On
general grounds, the geometric limit of an algebraically convergent sequence
possesses a natural hierarchical structure. An inductive argument, making
use of the extension to the general case of the discussion in [?, ?, ?] for
simple parabolic cycles, yields an admissible augmented tower forming the
“initial” part of the geometric limit; this discussion will appear in [?]. Any
“transfinite” dynamics beyond this augmented tower lives on Fatou domains
of infinite height relative to the underlying tower: here, the height of an open
set U is the least n € NU {oo} such that U supports maps added at each
stage prior to n in the tower construction. We show that infinite height do-
mains must wander, but that finite type towers have no wandering domains;
the augmented tower therefore accounts for the entire geometric limit.

The bulk of this thesis consists of the extension, to finite type maps and
more generally finite type towers, of the basic structure theory of rational
maps:

1. The density of repelling periodic points in the Julia set;
2. The standard classification of periodic components of the Fatoy set;
3. The nonexistence of wandering domains.

The general philosophy is to extend vesults first to finite type maps and
then, through fairly simple inductive arguments, to towers. Enough of the
Fatou-Julia theory carries over to address the first two points without any
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major difficulty. New proofs required for the typical maps which overflow
their domain are often simpler and yield more information. Our treatment
of the third point follows Sullivan’s use of quasiconformal deformations [?].
As the finite dimensionality of the algebraic deformation space of rational
maps has no direct analogue in the general setting, we must construct a finite
dimensional parameter space out of “pure thought” and the raw material of
Teichmiiller theory. Our main result is the following:

Central Finiteness Theorem Let F be a finite type tower. Then Teicht(F)
is a finite dimensional complex manifold.

Here Teich™(F) consists of isotopy classes of F-invariant complex structures
supported on the domain of the base.

In Chapter 1, we develop the necessary background from Riemann surface
theory to discuss finite type maps and effect our constructions later on. We
present the classical tools in the context of hyperbolic geometry, in particular,
a simple but crucial metric comparison principle. After a brief discussion of
ideal boundaries and the theory of quasiconformal maps, we indulge in an
admittedly idiosyncratic “functorially correct” presentation of Teichmiiller
Theory. The cornerstone of our constructions is the existence of Mobius
equivariant extensions of circle homeomorphisms, as applied in [?] to obtain
conformally natural isotopies. These considerations are applied to prove the
first version of the Injection Principle. The chapter ends with a discussion
of the Contraction Principle, stated and proved in the language of quadratic
differentials, for analytic maps between Teichmiller spaces.

In Chapter 2, we pursue a painstaking but ultimately soft discussion of
iterated maps, hierarchical conformal dynamical systems, the Ecalle cylinder
construction, and finally towers. The main result is that infinite height Fatou
components must wander. For use in the next chapter, we introduce the class
of complete maps and téwers.

. In Chapter 3, we extend the Fatou-Julia theory to finite type maps and
towers. Our main tool is a covering property of finite type and associated
maps near their domain boundaries. We prove the density of repelling points
in the Julia set and the classification of fixed Fatou components, and conclude
with a discussion of the measure alternative for strongly geometrically finite
maps. -

&
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In Chapter 4, we take up the discussion of quasiconformal deformations
and the construction of finite dimensional parameter spaces. Dynamical ver-
sions of the Injection and Contraction Principles lead to a proof of the Central
Finiteness Theorem; along the way, we establish the conformal rigidity of ge-
ometrically finite maps. The No Wandering Domains Theorem follows, and
we deduce the nonexistence of infinite height Fatou components for finite
type towers.

Ty
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Chapter 1

Foundations

1.1 Riemann Surfaces

We begin by fixing some terminology and notation. A 2-manifold is a Haus-
dorff space X equipped with a maximal atlas of coordinate neighborhoods
Yo : Wy = R? = C; a surface is a connected 2-manifold. The choice of a a
sub-atlas with holomorphic overlaps specifies a complez structure on X. A
compler 1-manifold is a 2-manifold with a choice of complex structure; when
other complex structures are considered, we shall term this choice the fidu-
cial structure. Every complex 1-manifold has a mirror-image X*. A Riemann
surface is a connected complex 1-manifold. A map f: X — Y between com-

plex 1-manifolds is analytic if its expression in all local coordinate systems

'y
L

in holomorphic.

4

" Let f: X — Y be an an analytic map of complex 1-manidolds. We shall
say that an open set V C Y is evenly covered if f~1(V) is homeomorphic to

the product of V with a discrete space, possibly empty. For connected X

A
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and Y, we say that f is a covering space when every point of ¥ has an eveniy
covered neighborhood. On the other hand, a point of Y is a singular value if
no neighborhood is evenly covered.

Recall that z € X is a critical point when the derivative D f, vanishes.
The images of such points constitute the set of critical values C(f). We
say that y € Y is an asymptotic value if f o y(t) — y along some path v
in X tending to infinity, and write A(f) for the set of such values. Then
C(f)U A(f) C S(f) by simple path-lifting arguments. Note as well that
any boundary point of the image f(X) is automatically a singular value, and

thus S(fiy) = S(f) for open dense U C X.

Consider analytic maps f: V =Y, g: W — Z, where X, Y, and Z are
complex 1-manifolds, V' € X, and W C Y. By elementary covering space

theory,
S(go f) = S(gwnsv)) Ug(S(f)). (1.1)
In particular, S(g) C S(g o f) when f(V) is open and dense in W.

There is a one-to-one correspondence between equivalence classes of pointed
covering spaces and conjugacy classes of subgroups of the fundamental group.

In particular, there is a simply connected universal covering space X, and

™

X = X/m(X).

Uniformization Theorem. Up to conformal equivalence, there are three

simply connected Riemann surfaces: the disc A, The plane C, and the sphere

A
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It follows easily from the Uniformization Theorem every Riemann surface

is second countable; this fact was established eariler by Rado.

Lemma 1 Let {f.p: Xo = Xp: a < 3} be a direct system of covering maps
of Riemann surfaces. Assume that at least one X, has a non-abelian funda-
mental group. Then lim_ X, erists as a Riemann surface X_,. Moreover, if

71(X ) is finitely generated, then the maps f,p are eventually bijective.

Proof: See [37]. O

The underlying smooth structure on a complex 1-manifold determines a
o-finite Lebesgue measure class. Nonconstant analytic maps are locally in-
vertible away from the isolated critical points where the derivative vanishes,
so measure 0 is preserved under images and pre-images. Moreover, we may
discuss the tensor bundles k™" = k™ @ k", where xk = T*X is the canoni-
cal line bundle. The type (m,n) tensors, measurable sections of k™™ form
complex linear spaces M(X : k™"); each space carries a topology of local
uniform convergence. The tensor product on sections gives

Ten(X) =P M(X : &™")
mon
the structure of a bigraded algebra over the ring M(X : k%9) of complex-
valued measurable functions, complex conjugation interchanging M (X : x™")
and M(X : k™). A tensor r € M (X : k™") vanishing on a set of mea-

—m,=n )

sure 0 has a multiplicative inverse £ € M(X : « Furthermore, for

e M(X: k™M) withm+n=2¢ |7 = VTT € M(X : k%) is well-defined.

4



An analytic map f : X — Y induces a pull-back homomorphism of graded

algebras f*: Ten(Y) — Ten(X) given in local coordinates by
frr(z)d="dzm = 1(f(2)) f1(2)" () dmdE

As the line bundles k™° are holomorphic, we may speak of type (m,0) holo-
morphic and meromorphic tensors and their local vanishing orders ord,r,
where ord,7 = —k at a pole of order k; the pole is simple if £k = 1. By
convention, ord,T = —oo if T is not meromorphic at z. If 7 is meromorphic

at f(z) then f*ris meromorphic at z, the local orders related by the formula
ord,f*r =d ordj T + m(d — 1) (1.2)

where d = deg, f. Conversely,.’if f*7 is meromorphic at z, then 7 is holomor-
phic in a punctured neighborhood of f(z); we claim that 7 is meromorphic
at f(z). As f* is an algebra homomorphism, we may assume via 4.2 that
is a function and f*7 is holomorphic. Then 7 is locally bounded, so f(z) is
a removable singularity. Consequently, 1.2 remains valid at points of order

—OQ.
Metric Comparisons

Each of the three simply connected Riemann surfaces carries a constant cur-

I3
’

vature geometry. In terms of their densities relative to the standard coordi-

nate on C, these metrics are:
e Spherical metric on C: p(z) ;ﬁ%—z—‘ﬂdzl,

)



¢ Flat metricon C: p(z) = |dz|,

¢ Hyperbolic metric on A: p(z) = 1_—fz|—2-|dz!.

The hyperbolic metric on A is invariant under the conformal automor-
phism group, and consequently descends to the Poincaré metric dx on any
Riemann surface X it covers. Such Riemann surfaces are termed hyperbolic,
and represent the typical case. Inspection of Aut(C) and Aut(C) reveals
that, up to conformal equivalente, the non-hyperbolic Riemann surfaces are
precisely C, C, the punctured plane C*, and the tori; all but the first have
universal cover C, and hence carry flat metrics. We shall call a complex 1-
manifold hyperbolic if all of its components are hyperbolic Riemann surfaces,
its infinitessimal Poincaré metric specified componentwise.

A key property of the Poincaré metric is its behavior under analytic maps.

This is the content of Schwarz’ Lemma as expressed by Pick.

Schwarz’ Lemma. Let f : X — Y be an analytic map of hyperbolic complex
I-manifolds. Then the derivative of f with respect to the X -Poincaré metric
in the domain and Y -Poincare metric in the range is everywhere less than or
equal to 1 in modulus; consequently, analytic maps do not increase Poincare
distance. Moreover, if e',;]uality holds at one point it holds everywhere, hence
f’[is a local isometry and a covering space.

For hyperbolic subsets U and V of a complex 1-manifold X, we denote

nY : UN V — R the ratio of the infinitessimal Poincaré metric on U to

“
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that on V. As a consequence of Schwarz’ Lemma we have the fundamental

metric comparison:

Proposition 1 Let X be a hyperbolic Riemann surface, K C X closed,
U=X—-K. Then

A. n%(=z) = a(dx(z,K)) for dx(z,K) sufficiently small, where

1
a(t)f\/mdst-—)().

B. n%(z) < B(dx(z, K)) for dx(z, K) sufficiently large, where B(t) — 1

ast — oo.

Proof: We may assume U connected. Fixing z € U, choose y € K with
dx(z,y) = dz(z,k) = R(z). Let = : (A,0) — (X,y) be a universal cover,
i € = Yz) with dx(%,0) = R(z), U the connected component of =~1(U/)
containing #. Note that |Z| = r(z) where R(z) = log 1—5—%% Successive

applications of the Schwarz-Pick Lemma yield

¢ (2) = 13(2) 2 12"(8) = oA :

hence the estimate in A., and, writing B(z) = {z € A : d(Z,z) < R(z)},

whence B. O '
Corollary 1 Let X be a hyperbolic Riemann surface, S C X closed and
discrete, U CC X open, C a component of OU. Assume C is not a single

point. Then n%_g(z) — o0 as z — C.

7



Proof: Fixing € > 0, consider
Ne={ze X —-S5:dx-s(z,C —=8) <€}

By definition, N, is a punctured neighborhood of z for z € C — S. For each
of the finitely many y € C' N S, choose a conformal disc D C X with y € D,
D* =D —-{y} € X—35, and coordinate ¥ : (D,y) — (A,0). By assumption,
C intersects I', = {z € D : |¢(z)| = r} for sufficiently small r, hence as

r — y’;f

o 1 ™
— < . * < =la-(T o) = 7
dx-s(a,C = §) £ dp+(2, 07N C) £ Gar (T = sy = 0

It follows that N, contains a punctured neighborhood of every point of CN S,
hence N UC is a neighborhood of C, and thus dx_s(z,C—-S5) = 0as z — C;

by Lemma 1, n¥_s(z) = o0. O

Definition. Let X and Y be complex 1-manifolds. A family F of analytic
maps f : X — Y is normal if every sequence of maps in F' has a subsequence
which either converges locally uniformly, or else tends locally uniformly to

“infinity, on any component of X.

Montel’s Theorem. Let X and Y be complex 1-manifolds. IfY is hyperbolic

then the family of ana?ytic maps f: X — Y is normal

Picard’s Theorem. Let X be a Riemann surface, f : A® — X analytic

with an essential singularity at 0. Then X is the sphere or a torus, and f

o
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A

assumes every value in X, with up to two exceptions when X = C, in any

neighborhood of 0.

Proof: Consider the maps fi(2) = f(5%) defined on punctured discs in-
creasing to C*. Suppose f omits FF C X with X — F as above. In view
of Montel’s Theorem, the fx form a normal family on annuli increasing to
C*, hence some subsequence converges normally on C* to ¢ € O(C~, X).
Moreover, g =z € F or g: C* — X — F', hence constant. Thus, z=01is a

removable singularity. O

1.2 Intrinsic Boundaries

Definition. A complex 1-manifold X is unpunctured if every analytic em-

bedding j : A* — X extends to A.

Let W and X be complex l-manifolds, j : W — X an analytic em-
bedding. We shall refer to the isolated points of X — j(W) as punctufés;
these form a countable set, empty if W is unpunctured. Given a complex
1-manifold X, we construct a complex 1-manifold X* by glueing in a disc
along every embedding A* — X. The canonical injection j : X — X7 is
analytic, and X+ — j(X) is discrete.

_ It follows from Alex;nder Duality that a closed totally disconnected sub-
selt of a topological surface has connected complement. See [31] for a geomet-

ric treatment, [17] for a discussion from the viewpoint of dimension theory.

We will only require this fact in the case of a countable set.

:..
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Lemma 2 Let X be a compler I-manifold. There exist an unpunctured com-
plez 1-manifold X and an analytic embedding ¢ : X — X, unique up to

conformal equivalence, such that X — (X)) is countable.

Proof: See revisions. O

By Riemann’s Theorem on removable singularities, every analytic embed-
ding W — X extends to an analytic embedding W — X. For any analytic
map f : W — X there is a largest subset of W to which f extends analyti-
cally as a map into X. We denote this extension f. If Y is unpunctured and

W CY, we may regard f as defined on a subset of Y.

A bordered complex 1-manifold is a real 2-manifold with boundary X U
equipped with a maximal atlas of charts in the closed upper-half plane, where
the overlap maps are holomorphic in the open upper-half plane and real-
analytic on the real line. Note that the interior of a bordered Riemann surface
with non-empty border is necessarily hyperbolic. We define the mirror image
bordered 1-manifold *X U 8 as in the unbordered case; we may double along
B to form the complex 1-manifold Dy X with anticonformal involution .

The structure of a bordered complex 1-manifold enables us to discuss
analytic maps. A non-gonstant analytic map f : X U BX — Y UBY of
berdered Riemann surfaces must map X into Y. Conversely, it follows from
Schwarz’ Reflection Principle that an analytic map f : X — Y such that
f(zx) tends to BY for any sequence z, tending to X extends analytically

to a map betwen the doubles. In particular, if f is injective then so is the
. @
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extension to 3X. Consequently, we may glue any two bordered complex i]_—
manifolds X U 51X, X U 3, X along their common interior to form a new
bordered manifold. The bordered complex 1-manifolds with interior X thus
form a direct system. It follows that the direct limit is a bordered complex
l-manifold X U 37X and we refer to its border as the ideal boundary of X;
the double of X is the complex 1-manifold DX obtained by doubling along
o' X.

Lemma 3 Let X be a hyperbolic Riemann surface. A choice of universal

cover p: A — X with deck group T determines an analytic isomorphism
(A — A(D)/T-SX UI'X.

Proof: By definition of the limit set, p extends to a universal covering
A — A(T) — (A = A(T))/A(T) of bordered surfaces, and thus A — A(I)
injects canonically into X U 9’ X. Conversely, p extends to a universal cover
X! — XUd'X. As A is compact, any sequence tending to the border of X!
must tend to S!, hence X! < A US! analytically. The image of the border
must lie in S — A(T), and thus X Ud' X — (A — A(I'))/T. O

Intuitively, the removal of a closed totally disconnected set should not

create any new ideal bo'ﬁnda,ry.

Lemma 4 Let E be a closed totally disconnected subset of a complex 1-
msnifold X. Then the inclusion X — E — X extends continuously to an

analytic injection (X — E)U /(X — E) — X U X,
N ";“‘
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Proof: Let U U3 be a half-disc neighborhood of a point in 9/(X — E). It
suffices to show that glueing 8 to X along U produces a bordered complex
1-manifold with interior X; we need only show that a sequence in U tending

to # cannot accumulate in X. Let Y be the end compactification of X. Then
L={yeY: o — y for some z4 € U tending to 3}

is a compact connected set. Furthermore, if L has two or more points, then
L N X contains a non-degenerate continuum. As LN X lies in the totally

disconnected set E, it follows that L is a single point y, necessarily an end

of X. O

Many facts about compact Riemann surfaces are valid more generally for
surfaces with empty ideal boundary. We may often reduce to the latter case

with the aid of the following:

Lemma 5 Let X be a complez I-manifold. Then DX has empty ideal bound-

ary.

Proof: Assume 8'DX # 0. Let @ = *p.X, 3 the symmetric extension of
*x. Then a and # are anticonformal involutions of DDX, and oo B3 is a
conformal automorphise interchanging DX and *DX. The fixed point sets
of a and f3 are the real-analytic 1-manifolds A = 3’X and B = 97X U0 X,
the closure taken in DDX. As a0 3 fixes any point in AN B, it follows that
AN B is discrete. On the other hand, A C B by the definition of /X, and

we have a contradiction as B cannot_be discrete. O

12
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Alternatively, if 9'X # @ then A(T') is a Cantor set; by Lemma 4, the
covering space C - A(T) of DX has empty ideal boundary, and we may

conclude that /DX = 0.

1.3 Quasiconformal Maps

We assume familiarity with the basic theory of quasiconformal mapping in

the plane, specifically:

¢ The geometric definition in terms of modules of quadrilaterals, the
compactness of uniformly quasiconformal families, and extension to

the ideal boundary;

¢ The conformality of 1-quasiconformal maps, and Bers’ Lemma on ex-

tensions by the identity;

e The almost everywhere differentiability, existence and properties of

complex dilatations, and the Ahlfors-Bers Theorem.

See [23] for details.

Recall that for a locally compact topological space X, composition is
continuous in the spaceof self-maps C'(X) equipped with the compact-open
tdpology. A homotopy can be viewed as a path in C(X). Consider the
group of self-homeomorphisms Homeo(X) C C(X) in the induced topology.
If X is compact, or locally compact and locally connected, Homeo(X) is

a topological greup [4]. It follows from elementary point-set topology that

13






‘a continuous bijection of a compact Hausdorff space is a homeomorphism.
However, there exist rather well-behaved non-compact spaces for which this
is false; for finite-dimensional manifolds, the assertion may be recovered via
the Jordan-Brouwer theorems.

Let X be a complex 1-manifold. The subgroup QC(X) C Homeo(X) con-
sisting of quasiconformal self-homeomorphisms of X is a topological group.
We will consider various subgroups Q(X) and their respective identity path
components Qo(.X). Recalling that every ¢ € QC(X) extends continuously

to the ideal boundary of .X, we consider, for closed A C X U 8/ X,
QC(X. A) = {6 € QC(X) : ¢a = Ida}.

Given analytic f: X — Y and a closed set £ C Y containing S(f), we
may lift any ¢ € QCo(Y, EUI'Y) componentwise on Y — E. In view of Bers’
Lemma, the extension by the identity is a quasiconformal homeomorphism
f'o € QCo(X, (X — fTYE)) U X).

We will make great use of Douady and Earle’s construction of Mdbius
equivariant extensions to the disc of circle homeomorphisms. As shown in
[10], the existence of such extensions is used to produce Mdbius equivariant
isotopies to Ida of quaq‘_jconformal maps with boundary extension Idg:. We
shall comment more onnsuch functorial isotopies in the revisions.

Consider a quasiconformal map ¢ € QC(X) preserving an open subset
U C X and fixing OU. In many applications it is necessary to pass back and

forth between isotopies rel dU and isotopies rel 3'U. By work of Earle and

14



McMullen [10], a bounded isotopy rel 87 U extends to an isotopy rel U v;'e
include their proof below. Through harmonic measure considerations, they
show conversely that a homotopy rel dU extends to an homotopy rel 9U.
Strictly speaking, they prove these assertions for bounded plane domains,
but the general case follows by easy covering space arguments. We present a
more geometric proof of the weaker assertion equating the existence of such
isotopies.

Let ,X be a Riemann surface, Uy a sequence of connected open subsets
with ba,s'e points ux. Suppose U is open and connected, and uy — u € U
with U. We say (U, ux) converges to (U,u) in the sense of Carathéodory
if every compact connected subset of U lies in Uy for k sufficiently large
and conversely. Let W be a Riemann surface, fy : W — X’analytic

with non-constant limit f; by Rouché’s Theorem and local compactness,

(fe(W), fe(w)) converges to (f(W), f(w)) for any choice of w € W. Carathéo

dory proved the converse for Riemann maps of plane domains. We require a
generaliéation to covering spaces. It is easy to see that if (Ug,ux) converges
to (U,uj with U hyperbolic, then Uy is hyperbolic for large k Consequently,
any sequence of universal covers px : (A,0) — (Uk,ux) has a convergent

subsequence.

o
A
R

Lémma 6 Let X be a Riemann surface, Uy connected open subsets with base
points ux. Assume (Ug,ur) converges to in the sense of Carathéodory to (U, u)

with U hyperbolic. Then the limit of any convergent sequence of universal

¢
>
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covers px : (A,0) — (U, ug) ts a universal cover p: (A,0) — (U, u).

Proof: Let D CC U be simply connected, B a component of p~!(D). By
assumption, pr evenly covers D for large k. Fixing w € B, choose analytic
g : D — A with pr o g = Idp and gr(pe(w)) = w. Let g be the limit of
a convergent subsequence. Then pog = Idp and g(p(w)) = w. As B is

connected, pg = ¢g~!' : B — D is a homeomorphism; thus p evenly covers D.

a

Lemma 7 Let X be a complez 1-manifold, ¢ € QC(X) fizing a closed subset
A containing ' X. Then ¢ € QCo(X, A) if and only if v € QCo(U, 87U)
for every component U of X — A.

Proof: We may assume without loss of generality that X is a hyperbolic
Riemann surface; in viev‘v of Lemma 5 we may further assume 'X = 0.
"‘Every ¢ € QCo(X, A) preserves complementary components. Let F, C A be
finite sets with limit A. By Lemma 4, U;, = X — F} is a hyperbolic Riemann
surface with /U, = 0. Fix a component U of X — A, a point = € U, and
universal covers py : (A,0) — (Ux, z). As Uy has empty ideal boundary, ¢,
has a lift ¥, € QC(A,S!). The ) are uniformly quasiconformal, so there
is, a subsequence 1, cghverging uniformly on A to some ¥ € QC(A,S?).
In/ view of Lemma 6, we may assume that pg, converges to a universal cover
p:(A,0) = (U,z). Then ¢op = po Y by the continuity of composition;
consequently, ¢y € QCo(U, ory).

16



Conversely, let ¢ : X — X be a homeomorphism with ¢, € QCo(U, 8'U)
for every component U of X —A. Fix isotopies Z(¢jy)¢ to the identity through
maps of uniformly bounded dilatation, and define bijections ®, : X — X by

o _} =(¢)e for zin a component U of X — A
(z) = z forze A

Points of X — A move a uniformly bounded Poincaré distance under the
isotopy. In view of Proposition 1, each @, is continuous, so ®, € QC(X, A)

by Bers’ Lemma. Consequently, ¢ € QCo( X, A). O

The existence of functorial isotopies allows the following reduction:

Lemma 8 Let X be a Riemann surface, A C XU X. Suppose ¢ € QC(X)
with D¢ € QCo(DX, AU A*). Then ¢ € QCo( X, A).

Proof: In view of Lemma 7, D¢y € QCo(U, 8'U) for every component U of
DX — AU A*. Moreover, D¢;y commutes with the anti-conformal involution
*y for any U intersecting 8/ X. Using functorial isotopies in the argurﬁént

above, we may construct an isotopy rel AU A* preserving §/X. O

A general surface homeomorphism isotopic to the identity rel each closed
set in an ascending sequence need not be isotopic to the identity rel the
limit. Fortunately, quasiconformal maps are better behaved. We shall prove

the following folklore lemma in the revisions:

Lemma 9 Let X be a Riemann surface, E C X closed, ¢ an orientation-

preserving homeomorphism firing E pointwise. Then ¢ fizes each component

of X — E. -
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Proposition 2 Let X be a complex I-manifold, Ay C XU X closed subsets
with limit A, ¢ € QCo( X, Ax) uniformly quasiconformal with limit . Then
¢ € QCO()(’ A)

Proof: We may assume without loss of generality that X is a hyperbolic
Riemann surface, and that 8’X = §. By hypothesis, 14 = Id4. Fix finite
F, C A with F, — A; then U, = X — F}, is a hyperbolic Riemann surface
with 8'U, = 0. In view of Lemma 9, ¢ preserves components of X — A.
As in the proof of Lemma 7, we conclude that ¢y € QCo(U,8'U) for every
component U, hence ¢ € QCy(X, A). O

Corollary 2 Let X be a complex 1-manifold, Ax € XU X a direct system
of closed subsets with limit A.Then QCo(X,A) = N, QCu(X, A,).

Proof: Clearly, QCo(X,A) C N, @Co(X,As). Let z, € A = |, A, be a
dense sequence, Fy = {1,...,k}. Each F} lies in some A,, and Fx — A. By

Proposition 2,

NQCo(X, A2) € () QCo(X. Fi) C QCo(X, A) O

o k=1

1.4 Teichmiller Spaces

Téichmiller Theory studies the geometry of spaces of complex structures on

a fixed topological object. Let X be a complex 1-manifold. The quantity
1,
d(cla 02) = él\cl €2 (IdX)

13
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defines the distance between complex structures ¢; and ¢, on X. A complex
structure ¢ at finite distance from the fiducial structure is said to be bounded.
The bounded structures form the metric space C(X). The Ahlfors-Bers bi-
jection between C(X') and the unit ball in L>®(X : x~!'!) with its “hyperbolic

metric”
p(p1, pg) =77

is an isometry. By means of this identification, C(X) becomes a complex
Banach manifold.

For closed E C X, let
Teich(X,E) =C(X)/QCo(X, EU d' X)

as a topological space, Teich(X) = Teich(Xv, 0). By the compactness of
uniformly quasiconformal maps and the fact that 1-quasiconformal maps are
conformal, the distance on complex structures descends to Teichmiiller met-
rics on the spaces Teich(X, E). The fiducial structure specifies a base point
in each Teichmiller space. While it is somewhat more elegant to discuss,
in base point free terms, the Teichmuller space of a quasiconformal surface,
the global nature of quasiconformality creates certain complications in the
non-compact case. The presence of base-points in our formulation necessi-
ta,ltes certain natura.lityn-considera.tions. For quasiconformal ¢ : X — X,

the induced translation ¢* : C(X;) — C(X) is an isometry, descending to an

1sometric allowable bijection
- % Teich(X,, ¢(£)) — Teich(X, E)
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for each choice of closed £ C X. The allowable self-bijections constitute the
modular group Mod(X, E) acting on Teich(X, E).

The primative operations on complex structures give rise to continuous
structure maps between the various Teichmiiller spaces. Let X be a complex
l-manifold, F C E closed subsets. As QCo(X, FUI' X) C QCo(X, EU'X),

the identity on C(X) descends to a surjective forgetful map
Teich(X, E) — Teich(X, F).

Let f: W — X be analytic, with W open in Y. For ¢ € C(Y), there is
a unique f#*c € C(X) agreeing with f*c on W and the fiducial structure on
X — W. Suppose the image of f intersects S(f) in a set of measure 0, and
let £ C X be a closed set containing S(f). If ¢1,¢c € C(Y), and ¢; = ¢*c;
with ¢ € QCo(Y, E U d'Y), then f#*¢, = (f'$)* f#¢c,. Consequently:

Lemma 10 Let X andY be complez 1-manifolds, W C Y open. An analytic
map f: W — X whose image intersects S(f) in a set of measure 0 induces

a continuous injection
Teich(Y, E)25Teich(X, (X — W)U f~Y(E)).

The above constructions are functorial in that base points and composi-

’

tions are respected. Furthermore, the forgetful maps

Teich(X, E) — Teich(X, F)



are natural in the sense that .
Teich(X,E) &~ Teich(X,,(E))

l , !
Teich(X,F) &~ Teich(X:,d(F))

commutes for every quasiconformal ¢ : X — X;.

The maps Tetch(Y, E)—j—iTeich(X, f7Y(E)) are natural in the sense that
Teich(V,E) &5 Teich(Y:, $(E)))

f*1 . LfE
Teich(X, f~Y(E)) &= Teich(Xy, f{ (4(E)))

commutes for every pair of quasiconformal maps ¢:Y — Y, o : X — X|,

where ¢ is conformal on Y — W and fiop = o f.
Injectivity Principle

Our dynamical applications will involve various infinite processes on Te-
ichmiller spaces. A direct system {E,} of closed subsets of X with limit E
determines an inverse system of forgetful maps and a corresponding canonical
map

Teich(X, E) — lim Teich(X, E,).

The injectivity of such maps will be a key ingredient of the construction in
Chapter 3 of functorial deformation spaces of conformal dynamical systems.

We first establish a simple property of quotients of group actions.

»

Lemma 11 Let G a grbup acting without fized points on a set X, {T,} an
inverse system of subgroups with intersection I'. Then there is a canonical
injection

X/T < lim X/ T,

¥
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Proof: The ‘quotient maps X — X/I', induce a canonical map
ji X = limX/H,.

If j(z) = j(y), then y = va(z) for some v, € I's. By hypothesis, the v, are

equal, hence y = y(z) where ¥ € I'. Consequently, the induced map
X/T - 1lim X/T,
is injective. O

Proposition 3 Let X be a complez I-manifold, {E,} a direct system of

closed subsets with limit E. Then the canonical map
Teich(X, E) — limTeich(X, E,)
1s 1njective.

Proof: Without loss of generality, we may assume X is hyperbolic, hence
QCo(X,0"X) acts on C(X) without fixed points. Injectivity follows from

Lemma 11 and Corollary 2. O

Lemma 12 A. Let {X,} be a direct system of covering maps of Riemann

surfaces. If Xoo =glim_ X, is a Riemann surface then
lim Teich(Xa) = Teich(Xx)

canonically; otherwise, lim_ Teich(X,) limit is either a point or home-

omorphic to H.

o
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B. Let-¥ be a semigroup of fized point free self-coverings of a Riemann sur-
face X, and denote by Teich(X)® the fized point set of the induced ac-
tion of ¥ on Teich(X). If X/E is a Riemann surface, then Teich(X)®
is canonically homeomorphic to Teich(X/X); otherwise, Teich(X)* is

either a point or homeomorphic to H.

Proof: See revisions. O

Thus, lim._ Teich(X,) and Teich(X)* are always contractible complex
Banach manifolds. In the special cases' where the direct limit or quotient
is not a Riemann surface, the homeomorphism to H is well-defined up to
post-composition with a Mobius transformation; the revisions will contain an

invariant formulation in terms of the Teichmiiller space of a foliated annulus.

For measurable A C X with 94 C E, let C*(X) consist of all structures
¢ € C(X) agreeing with the fiducial structure on X — A, and consider the
space |

Teich*(X, E) = C*(X)/QCo( X, EU d' X).

By definition, Teich®(X, E) is a point when A has measure 0.

Lemma 13 Let X be a complez 1-manifold, E C X closed, A C X with
6{1 CE.

A. Teich*(X, FE) is canonically homeomorphic to Teich(A, ANE) for open
A.



B. Teich*(X, E) is canonically homeomorphic to CA(X) = L(A) when
AC E.

" The inclusion C*(X) — C(X) determines a canonical continuous map
Teich(X,E) — Teich*(X, E). If A is open, the restriction map C(X) —
C(A) determines a homeomorphism Teich*(X, E) — Teich(A, AN E), while
for A C OE, Teich(X,E) = CA(X) = L(A).

Consequently,
Teich(X, E)-—Teich(X — E) x CE(X).

Lemma 14 Let X be a complezr 1-manifold, E C X closed, { A} a countable

partition of X into measurable sets with 0Ax C E. Then the canonical map

Teich(X, E) — [ Teich™(X, E)
k=1

is injective. [f all but finitely many A, have measure 0, the canonical map is

a homeomorphism.
Proof: By the Ahlfors-Bers Theorem,

C(X) = ﬁ CA*(X),

k=1

Iry

and
C(X)-= TI e (X)
k=1
when all but finitely many A have measure 0. O



Complex Structure

Through the work of Ahlfors and Bers, the Teichmiiller space of any Riemann
surface carries a natural complex Banach manifold structure. This structure
is crucial to our dynamical applications, though we will use it non-trivially
only in the case of finite type surfaces. It is reasonable to inquire whether
the more general spaces Teich(X, E) are complex Banach manifolds. We will
establish this fact through a brief recapitulation of the classical construction;
see [13] and [32] for further details.

For any complex 1-manifold X, the identification C(X) & L>(X : x~11),
tﬁrns C(X) into a complex Banach manifold; the complex structure is natural
in the sense that allowable bijections C(X;) — C(X) are analytic. The
tangent space at the base point is L=(X : x~'!), canonically dual to LY(X :

k2°) via the fundamental pairing

(g, p) = /}; qp.

In this sense, we regard L'(X : k*°) as the cotangent space at the base point.

The complex structure on the Teichmiiller space of a Riemann surface
arises from considerations in the theory of univalent functions. A locally
injective analytic map hetween domains on C has a holomorphic Schwarzian
derivative

sit =5 -3

= )2
f/
By virtue of the Cayley identity S(fg) = (Sf 0 ¢)¢9’® + Sg, the Schwarzian

derivative transforms under analytig coordinate changes as a type (2,0)-
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tensor, or quadratic differential; moreover, Sf = S(M o f) for Mobius M.

Furthermore, for injective f defined in the lower half-plane L,

Sf(z), 3
[ < —
i‘e‘}j’ y? | 2

by work of Nehari.
The Poincaré metric on a hyperbolic Riemann surface Y determines an

area form A € M(Y : k'''). The complex linear injection
a: M(Y*: k¥%) — M(Y : k711

sending a quadratic differential ¢ on the mirror image Y™™ to the harmonic Bel-
trami differential 52 on Y, induces an L* norm on M(Y™* : k*°); the holomor-
phic quadratic differentials of finite norm form a Banach space B(Y™*). A cov-
ering space 7 : Z — Y determines an isometric inclusion 7#*B(Z*) — B(Y™);
if #: H— Y is a universal cover, the image consists of the quadratic differ-
entials on L which are pull-back invariant under the cover group.

A complex structure ¢ € C(H) extends by the fiducial structure on L to
¢ e C(C), and S¢jL, where ¢ : (C,é) — C is conformal, is a well-defined
element of the ball B(L) 1 By virtue of the analytic parameter dependence of
solutions to the Beltrarr&_i equation, the assignment ¢ ~» S, determines an
a.r;,alytic map C(H) - é(L) We obtain corresponding maps C(Y) — B(Y™)

through uniformization:



By work of Bers, C(Y) — B(Y*) is a submersion, descending to an injec-
tive map

B:Tech(Y) — B(Y™)

with image in the ball B(Y*)%; in fact, the image is open by work of Ahlfors.

Moreover, the image contains the ball B(Y*)é, and somewhat remarkably

B(Y*) 1 —>L>(Y : *9), = C(Y)

1
2

is a analytic cross-section. We thereby obtain an analytic chart at the base
“point of Téiéh(Y), By means of allowable bijections, we obtain charts at
every point, and a standard computation reveals that the overlap maps are
holomorphic. Thus, Teich(Y') is a complex Banach manifold, the complex
structure natural in the sense that allowable bijections are analytic. In view
of the universality of the constants 1 and %, the above considerations apply

equally well to disconnected Y. Consequently, if £ is a closed subset of a

complex 1-manifold X, the canonical splitting
Teich(X, E) = Teich(X — E) x L(E)

determines a natural complex Banach manifold structure on Teich(X, E).

b d

Contraction Principle

Quadratic differentials enter more geometrically in the discussion of the in-
finitessimal structure of Teichmiiller space. A quadratic differential ¢ €

M(X : k*°) determines an area form |q| € M (X : ') and, if ¢ vanishes on
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a set of measure 0, a linefield % € M(X : k~'1!). Two quadratic differentials
determine the same area form if and only if their quotient is a.e of modulus
1, the same linefield if and only if the quotient is a.e. positive.

The area form associated to a quadratic differential integrates to a mea-
sure on X. The total mass ||¢|| = [y |¢| gives a norm on M(X : xk*°) and
the finite norm quadratic differentials form a Banach space L!'(X : k29). For
closed £ C X, let Q(X, E) be the linear subspace of finite norm quadratic
differentials which are holomorphic on X — E. By the mean value property,
the local sup-norms on X — E are bounded in terms of the L! norm [32].
‘Thus Q(X, F) is a Banach space.

The tangent space at the base point is canonically dual to Q(Y) via the
fundamental pairing; moreover, If r : Z — Y is a covering space, the co-
derivative of 7# : Teich(Y) — Teich(Z) at the base point is 7. : Q(Z) —
Q(Y). The cotangent space at the base point is canonically identified with

Q(X, E). Moreover, the co-derivative of
f#* . Teich(Y, E) — Teich(X, fY(E)),

where f : X — Y is analytic, f~'(S5(f)) has measure 0, and S(f) C E, is f, :
QUX, f7HE)) — Q(Y, E). For F C E, the co-derivative of the forgetful map
Teich(X, E) — Teich()}, F) is the isometric inclusion Q(X, F') — Q(X, E).
The injectivity of the canonical map Teich(X, E,) — lim_ Teich(X, E) aris-

ing from a direct system of closed sets F, with limit £ has the infinitessimal



analogue
Q(‘X’ E) = U Q(‘Ya Eoz)
which follows from an approximation theorem of Bers [13].

The norm of a quadratic differential is preserved under pull-back by an-
alytic isomorphisms. More generally, let f: X — Y be an analytic map of
Riemann surfaces. Up to a set of measure 0, ¥ — S(f) is filled by countably
many simply connected open sets: for example, each unit of a countable
pants decomposition splits canonically into a pair of geodesic hexagons; al-
~ternatively, use any of the standard constructions of fundamental doma.ins
[13]. Moreover, if Y — S(f) is connected, it lies entirely in the image of f,
and thus || f*q|| = (deg f)||ql| for ¢ € M(X : x*0°).

If f: X =Y is an analytic map of complex 1-manifolds, and S(f) has
measure 0, there is also a push-forward operator: for ¢ € L'(Z : k*°) where

Z 2 X, the absolutely convergent sum
faa=2"9%
g
over local inverse branches to f in Y — S(f) defines a quadratic differential

in LY(Y : x*°), and || f.q]| < |lq||. Moreover,

[ 3Q(Z,E) = Q(Y,S(f) U f(E)).
If,l Y — S(f) is connected and deg f < oo, then
ffra=3 9 fq=3 (fog)g=> g"qg=(deg f)q

for g € LY(Y : x%9).



Lemma 15 Let X be a Riemann surface, q, g2 measurable quadratic differ-

entials on X.

A. If ¢ and gy are L' and ||q|| +|g2]| = llgs + @all, then q1,q2, and q1 + g,

determine the same measurable linefield.

B. Suppose q; and q, are holomorphic on X — E, where E C X is closed
measure 0 set with connected complement. If q; and g, determine the

same measurable linefield, then g, is a positive scalar multiple of q;.

Proof:
[A.] If not, the argument of the measurable function A = £ is uniformly

bounded away from 0 on some positive measure set A. Thus,

/’Q(Il"}'fhl </ |fh|+/ |q2]
A A 4

and ||g1]} + g2l < llg1 + ¢2ll-

[B.] By assumption, the measurable function A = L satisfies

h(z)
|h(2)]

Consequently, h is almost everywhere real and positive. As h is meromorphic

=1 for ae. z€ W.

on W — E| it follows that h is a positive constant. O

A

« The coherence expressed in Lemma 15 gives rise to a weak contraction
principle sufficient to establish the non-existence of invariant quadratic dif-
ferentials in the dynamical setting of Chapter 3. The latter principle will

enter in the proaf of the central ﬁnit%ness theorem in two essential ways.
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Lemma 16 Let X and Y be Riemann surfaces, f: X — Y analytic, S(f)
totally disconnected of measure 0. Assume q € Q(X, E) is not identically

zero. Then ||f.q|| = |lql| if and only if f*f.q = (deg f)q; in particular,
deg f < 0.

Proof: Suppose ||f-ql| = |lq||.- Then

ollgmdl = U f-owll = 11> g7dll,

on any simply connected open U C Y — S(f), the sums ranging over local
inverses to f. By the first part of Lemma 15, f.q and any g*q determine the
- -same linefield on U. For inverse branches g; and g;, both gjq and g¢3q are
holomorphic on the complement of g;'(E) U g5 '(E), hence positive scalar
multiples by the second part of the Lemma; thus f.q and any g*q are positive
scalar multiples on U. Consequently, f*f.q is a locally constant positive mul-
tiple of g on X — f~1(S(f)). But f~1(S(f)) is a totally disconected measure
0 set. Thus, ¢ and f*f.q are positive scalar multiples. The conclusion and

converse follow as ||f*f.q|| = (deg f)|| f-ql|- O

Lemma 16 is a precursor to more powerful contraction principles for iter-
ation on Teichmiller space - for example, in Thurston’s topological charac-
terization of rational maps among branched covers [9], McMullen’s approach
to the geometrization o"t;‘ 3-manifolds [27, 28], and Sullivan’s work on renor-

malization [39]. See [29] for an account relating these three.

Quadratic differentials arise in the solution of the extremal problem of

finding the most. efficient quasiconformal map in a given homotopy class. By
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compactness, for quasiconformal ¢ : X — Y and closed £ C X, the infinum

K6l = g, K19

is always achieved by some 1 in the class of ¢ rel E. By contrast, the
uniqueness and geometric description of extremals are rather deep issues.

A quasiconformal homeomorphism ¢ : X — X, of Riemann surfaces is a
Teichmuller map if its Beltrami differential is a scalar multiple of the line-
field determined by some L! holomorphic quadratic differential on X. More
generally, if £ C X is a closed measure 0 set with connected complement,

we will say ¢ is a Teichmiuller map rel £ when

q
B =t
lql
where ¢ € Q(X, E) is non-zero, and 0 < t < 1; by Lemma 15, ¢ determines
g uniquely up to a postive scalar.

Proceeding from Groétzsch’s extremal length inequality [13], Teichmiiller

proved:

Teichmiiller’s Theorems: Every homotopy class of quasiconformal maps
of finite type Riemann surfaces has a unique representative of minimal di-
latation. Moreover, thefeztremal map is either conformal or a Teichmuller

s

map.

Further work of Hamilton, Reich, and Strebel established that Teichmiiller

maps, when they exist, are always unique extremals [13]. However, extremals



need not be unique. Strebel formulated a rather general criterion for unique

extremality.

Definition. A quasiconformal map ¢ : X — Y relazes at infinity if there

exist compact L C X and quasiconformal ¢ € [¢] with K(@)x-1) < K(¢).
Note that ¢ is allowed to have larger dilatation than ¢ in L.

Strebel’s Frame Mapping Theorem: The conclusion of Teichmiller’s
Existence and Uniqueness Theorems hold for every a homotopy class of qua-

siconformal maps admitting representive that relaxes at infinity.

See [13] for proofs.

Furthermore, if ¢ € Q(X, E) and z € E is isolated, then ¢ is meromorphic
at z with at worst a simple pole; see [32] for the relevant computation.
Quadratic differentials in Q(X, F) with E countable admit an important

description.

Lemma 17 Let X be a complez 1-manifold, E C X a countable closed set,
q € Q(X,E). Every isolated point of E where q fails to be holomorphic is a
simple pole; every point where q fails to be meromorphic is a limit of simple

poles.

Proof: We may assume without loss of generality that ¢ is not holomorphic
at any point of £. By the Cantor-Bendixson Theorem, the isolated points,

simple poles as above, are dense in E. O
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Chapter 2

Conformal Dynamical Systems

2.1 Basic Notions

For complex manifolds X and Y, we denote O*(X;Y’) the space of nowhere

locally constant analytic maps f : X — Y in the compact-open topology.

Definition. A conformal dynamical system F on a complex 1-manifold X is

an assignment U ~ F[U] C O*(U; X) for non-empty open U C X satisfying:
e [dy € F[U] for every U;
o If VCU and f € F[U], then fiy € F[V];

o If U is the disjoint union of open sets U,, f € O(U; X), and each
fiua € FlUs), then f € F[U].
"o If fe F[U] and g € F[f(U)], then go f € F[U].
We will freely identify a system F with the set

LI Flv)c LI o (U; X).

- UCX VUcx
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For z € X, the sets O*(U; X) with U ranging over connected neighborhoods
of z form a direct system under restriction of domain. We refer to elements
of the direct limit as germs at z, and denote F, the collection of germs at z
of elements of a presheaf F. A subset of F[U] or F, consisting only of the

identity is termed trivial.

Definition. Let F be a conformal dynamical system on .X. A connected
open set U C X is simple for F if every f € F[V], with V C U open and

connected, has an extension in F(U].

Equivalently, U is simple whenever every germ at a point of U has an
extension in F[U]. Such extensions are of course unique.
Let F and G be conformal dynamical systems on X We say F is a sub-

system of G, and write F C G, when F[U] C G[U] for open U C X. For any

collection I' of conformal dynamical systems on X,
U~ FlU] = NgerG (U]

defines a conformal dynamical system F. Thus there is a smallest conformal
dynamical system (F') containing a given collection F of analytic maps from

open subsets to X.

ary

Examples:

1. Iterated maps. Let W C X be open, f : W — X analytic; we say f
is an analytic map on X. The system (f) on X consists of the iterates

f*, for n 2 0, where defined.
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O

[terated Correspondences. Let P : X x X — Y an analytic map to
an auxiliary complex 1-manifold Y, y € Y. Then there is a smallest
conformal dynamical system P on X containing every analytic local
solution w = (z) of the equation P(z,w) = y. See [5] for a look at

algebraic correspondences on C.

3. Groups of Mobius transformations. A subgroup G of PSL,C determines

a conformal dynamical system (G) on C.

4. Flows. Let v be a holomorphic vector field on an open set W C X, ¢!
the time ¢ flow where defined. The forward semi-flow F, on X consists
of all ¢! with ¢t > 0; note that F, = F_, for ¢ > 0, while F_, is the

backward semi-flow.

5. Complex codimension 1 transversely holomorphic foliations. Such a
structure on a real n + 2 dimensional manifold M is determined by
a system of coordinate charts 3, : W, — C with transition maps
Nag = Yoo ;' belonging to the pseudogroup of local homeomorphisms
of R* x C of the form 5(z,z) = (g(z,2),kh(z)), with g continuous
and h holomorphic. The associated holonomy system H on C is the
smallest conforma} dynamical system containing these 7,5. See [15] for

a dynamical study of such foliations.

Due to the generality of the definition, it is an esay matter to construct

highly pathological conformal dynamical systems of no intrinsic interest. We
: v

H
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must impose more structure to obtain a workable theory. The first four

examples satisfy the Continuation Condition:
o fU=U,Us f€O(U; X), and each fy, € F[U,], then f € F[U].

When this condition holds, we say that F is a sheaf. In this case, for each
f € F[V] with V C X open and connected, there is a largest connected
open U 2 V such that f is the restriction of a map in F[U]. This mazimal
continuation of f in F is unique.

We express further properties of conformal dynamical systems in terms
~of a natural ordering on elements. For g € F[U] and h € F[V] we write
g 2 h when g has an extension § € F[U U V] such that h = a0 § for some
a € Flg(V)]; we generally abbreviate this to ¢ < h when no confusion is
possible. This relation on F is transitive on any single F[U]. Note however
that if F is a sheaf then ¢ < h <X ¢ for any g and A with disjoint domains;
thus, < is not generally transitive on the entire system. Examples 1, 3, and

4 satisfy the following Cancellation Condition:

o If g,h € F then ¢ < h, h < g, or both.

Definition. A conformal dynamical system F meeting the continuation and

cancellation conditions is said to be tight.

In view of the continuation condition, it suffices to verify cancellation

for maps with overlapping connected domains. Let F be a tight system,

-
B
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g he FlU]. fg=h=gand h=aog, g=poh, where a € Flg(U)],
ﬂ € f[h(U)], then 01‘0,3 = [dg(U) and ,3 ca = [dh(U)§ that iS, a =X [dg(U) and
B =X Idyu).

Definition. A tight system F is directed if no F[U] has a nontrivial element

g with ¢ < Idy.

Lemma 18 Let F be a tight system on X, U C X open and connected,
g € FIU]. If g(U) is simple then so is U. The converse holds when F is

directed.

Proof: Let V C U be open and connected, h € F[V]. If h < g then h extends
to some h € F[U]. On the other hand, if ¢ < h then A = a o g for some
a € F[g(V)], and o extends to some & € F[g(U)]. Then h = & o g € F[U]
and hyy = h.

Conversely, let V' C ¢(U) be open and connected, h € Flg(V)]. Fix
a component W of ¢g7'(V). Then h o gjw has an extension a € F[U]. If
a X g then oqw =X gw =X ow. As F is directed, it follows that a = g,
hence h = Idy which extends to Id,y € F[g(U)]. Otherwise, ¢ < «, hence
a = ho g for some h € Flg(U)], and hy = h. O

We say = € X is a ffred point of F if the semigroup

f
‘

Fizp(z)={f € Fr: F(f) =z}

is nontrivial. The fixed points of the system (f) are the periodic points of f;

, the period of z is the least positive p.with f?(z) = «.
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Definition. Let F be a conformal dynamical system on X. A subset A of

X is:
o forward invariant if f(z) € A whenever z € A and f € F,,
o backward invariant if t € A whenever f(z) € A and f € F,,

e 1nvariant if both forward and backward invariant.

Let §2 be open and forward invariant with simple components. Then
F acts in the obvious way on the components U: we write f.U for the

component containing f(U). We say f € F[U] fizes U when f.U = U. Each

component U has an associated semigroup
Fizry(U)={fe FU): fLU=U}.

Assume further that F is directed. Then for each component U of 2, the
maps g : f.U — g.f.U with f € F[U] and g € F[f.U] constitute a direct

system in the category of Riemann surfaces.
Definition. In this setting, U is:
o escaping if Flg.U] is trivial for some g € F[U],
b3
" o final if for every g € F[U] there exists h € Fizz(U) with g < h.
A non-escaping component U is

s meandering if no g.U with g € F[U] is final,
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s wandering if g.U # h.U for distinct g,h € F[U].

By definition, every component either escapes, meanders, or eventually

maps to a final component; wandering is a special case of meandering.

Lemma 19 Let F be a directed system, () open and forward invariant with

simple components. Let U be a component of Q, f € F[U]. Then
o U escapes if and only if f.U escapes,
o IfU 1is final then f.U s final,
o U meanders if and only if f.U meanders,

o If U wanders then f,U wanders.
Proof: See revisions.

In the systems of interest, the set of wandering components will also be

backward invariant.

Definition. A tight system F is hierarchical if for any maps g € F[U] and
h € F[V] with V, h(V) C U, there exists o € F[g(V)] with a0 gy = go k.
A hierarchical system i abelian if g o hyy = h o gy for any g,h C F[U] with
v, g(V), (V) C U.

[t is easily verified that iterated maps, semi-flows, and groups of Mobius

transformations determine hierarchical systems; the the first two give abelian

o
B
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systems. Let F be a hierarchical system, Q a forward invariant open set with
simple components U. For a € F[U] and g € Fizs(U), let a.g be the unique
map in Fla.U] with (a.g)oa = aog. Then a. : Fizz(U) — Fizr(a.U) is
a homomorphism of semigroups; there is an analogous action for germs.

By convention, we denote W(f) the domain of an analytic map, when
not otherwise specified, and write 9(f) for the domain boundary. If F is a
conformal dynamical system on X, we similarly denote W (F) the union of

the open sets U C X for which F[U] is nontrivial.

Definition. Let F be a conformal dynamical system on X. A map f €
F[W(F)] such that fiy # Idy on each component V of W(F), and f < ¢

for every nontrivial ¢ € F with connected domain is said to be a base of f.

Definition. Let 7 and G be conformal dynamical systems on X. We say G

1s an enrichment of F, and write F < G, when:
* FCG,

e For connected open U and V with V C U and g € G[U] — F[U], every
f € F[V] has an extension f € F[U], and f < g.

It is not hard to see g.hat the relation of enrichment defines a partial order
on the set of conformal dynamical systems on X. Observe that if F<I G, and
U is a connected open set for which G[U] # F[U] then U is simple for F. It
follows by an easy induction that if F is tight with base f, then (f) < F.

We say F is a proper enrichment og f if for each connected open U with
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FlU] # (f) there exists distinct m,n > 0 such that f™(U) and f*(U) lie in

the same component of X.
Definition. Let F be a conformal dynamical system on X. Then
Zy ~ 5 Zy & there exist £ € Z, and nontrivial g € F, with g(z) € Z,

defines a relation on the set of components of X; we say that Z; is a prede-
cessor of Z, and that Z; is a successor of Z,. The system F is trivial on Z
if Z has no successor. If Z ~+r Z we say that essential for F. We say F is

mizing if Z, ~z Z, for any pair of components with Z; nontrivial.

Observe that if F is a sheaf and every maximally continued element has
dense image, then ~» r is transitive. Similarly, an analytic map f determines

a relation

there exist z € Z; and m > 0 with

A1 29 oW and f7(z) € Z,

If no iterate of f is locally the identity, then (f) is directed, and the relations

~; and ~ gy agree; we shall say simply that f is directed.

Lemma 20 Let f be an analytic map on X, F a proper enrichment of f.

Assume F is directed, nd that every component of X has an essential suc-

s
.

cesor under F. Then the same is true of f.

Proof: See revisions.



Let F be a conformal dynamical system on X. For any collection Z of
components of X, there is an induced system of returns FZ on U Z: for open
Ucuz,

FEUl={g e FIU] : g(U) €U 2}
If F is tight, directed, hierarchical, or abelian, then the same is true of FZ.

Let f be an analytic map on X. Note that Z is essential if and only if

wZ=J2n D{W(f") N U2}

is nonempty. For each z € W72 there is a least positive n(z) with M@ (z) €
"UZ, and f#(z) = f**)(z) defines an analytic map fZ : WZ — Uz. Itis
easily checked that F2 = (f%). More generally, if F is a directed system

with base f and Z is essential, then fZ is the base of FZ.

2.2 Fatou-Julia Theory

Classically, a point © € C belongs to the Fatou or Julia set of a rational
map f according to whether or not there exists a neighborhood of z on
~which the iterates f™ form a normal family. To extend these notions to more
general conformal dynamical systems, we must allow for the possibility that

the elements of F, have.no common domain of definition.

Definition. Let F be a conformal dynamical system on X. The Fatou
set QU(F) consists of all points of X possessing a simple neighborhood U for
which F[U] is a normal family. The complement of Q(F) is the Julia set
J(F). -

o
o
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The Julia set of any conformal dynamical system is a closed set. Moreover,

if  is a sheaf then every component U of Q(F) is simple, and F[U] is normal.

Lemma 21 Let F and G be conformal dynamical systems, F 9 G. Then
J(F) € J(G).

If f is an analytic map on X, we define Q(f) to be the set of points of z

possessing a neighborhood U for which either
o UC W(fr)— W(f**!) for some n > 0, or
* U C Wx(f) and the family {f{; : n > 0} is normal,

and accordingly, J(f) = X — Q(f). The Fatou and Julia sets of a directed
map f agree with those of the system (f). Note that in our setting, the
Julia set of an entire map as a system on C contains the point at infinity.
In accordance with the usual convention for meromorphic maps [2], J(f)
contains 9(f") for every positive n. Moreover, Q(f) contains f~"(X — W)
for n > 0. In view of Montel’s Theorem, a self-map of a hyperbolic complex
l-manifold has empty Julia set. More generally, for any analytic map f
on a complex l-manifold, consider the largest open subset on which f is a

self-map, namely the igterior Wo(f) of X+(f) = N2, W(f"). We write
Do (f) = Xo(£)NQUS) and Ty (f) = X4 ()N J(f).

Definition. An analytic map f on a complex 1-manifold X is typical if

W (f) is hyperbolic, exceptional otherwise.

v‘g
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This dichotomy was noted by Radstrém [34]. Clearly, W, (f) C Q(f) for

typical f, and by the remarks above we may conclude:

Lemma 22 Let f be a typical analytic map on a compler 1-manifold. Then

J(f) =Uzz, 9(/7).

Rational maps are exceptional, as are entire maps and Radstrém maps:
self-maps of C* with an essential singularity at oo and either an essential
singularity or pole at 0. Affine toral endomorphisms are also exceptional.
Observe that if f is an exceptional map, then so is f. In view of the Riemann-

Hurwitz formula ??, we conclude:

Lemma 23 Let f be an erceptional map on a Riemann surface. Up to
conformal conjugacy, f is either a rational, entire, or Radstrom map on the

sphere, or an affine toral endomorphism.

Definition. An exceptional analytic map f on a Riemann surface X is

elementary if #J(f) < 2.

Such a map is either a translation of the torus, or extends on removing
at most two singularitigs to a Mdbius transformation of the sphere. By

definition, Q( f) is hyperbolic for non-elementary f.

The erceptional part of an analytic map f on X consists of all essential
components Z for which f{?} is exceptional. In view of Liouville’s Theorem,

. the éxceptional part is forward invariagnt. As Z N W (f) is connected for Z
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in the exceptional part, each such Z has a unique successor under f. Con-
sequently, the exceptional part splits into disjoint cycles. We will similarly

speak of the elementary part of f.

Lemma 24 Let F be a directed system admatting a base element with empty

elementary part. Then for any open U and g € F[U], the family
(he FIU]: h=<g}

is normal.

Proof: See revisions. O

Lemma 25 Let G be a directed system. Assume that G is a proper enrich-
ment of a base element f with empty elementary part, and suppose F 4 G.
Then G, = F, for z € J(F).

Proof: Let U be a connected open set containing z, g € G[U] — F[U]. As G
is an enrichment of F, U is simple for F and A =g ¢ for all A € F[U]. By
Lemma 24, F[U] is normal, and thus U C Q(F). O

Proposition 4 Let F be a directed system with base f. Assume that F is
a proper enrichment of f and that f has no elementary returns. Then J(F)

is tnvariant under F. *

Proof: Fix a point z, a connected open set U containing z, and g € F[U].

By Lemma 18, U is simple if and only if g(U) is simple. As
Fl={heFU]l:h3g}U{acg:ae FlgU)]}
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if F[U] is normal then so is F[g(U)]; the converse follows by Lemma 24.
Thus, z € J(F) if and only if g(z) € J(F). O

Fatou Components

Let f be an analytic map on a complex 1-manifold. The eigenvalue p(z) of
a fixed point z of f is the conformal invariant given in local coordinates by
p(z) = f'(z); the eigenvalue of a periodic point is its eigenvalue as a fixed
point of f?, where p is the period of f. A periodic point z is superattracting if
p(z) =0, attracting if 0 < |p(z)| < 1, indifferent if |p(z)| = 1, and repelling if
lo(z)] > 1. In the indifferent case, write p(z) = e*™?. We say z is linearizable
when f is locally analytically conjugate to a rotation. In the linearizable case,
f 1s locally of finite order if 8 is rational, and we call z a Siegel point when
0 is irrational. In the non-linearizable case, we say that z is parabolic when
6 is rational, and a Cremer point otherwise. There are subtle Diophantine
criteria for linearizability in the irrational case; see [30] for discussion and
references.

[t is not hard to see that attracting, superattracting, linearizable indif-
ferent periodic points belong to Q(f), and that repelling points lie in J(f).
We shall see below thatfparabolic and Cremer points also belong to J(f).

“ For non-elementary rational f, the fixed components of Q(f) are of five

types:

1. Superattracting Domain: f has a superattracting fixed point = € U,
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and fj; — .

o

Attracting Domain: f has an attracting fixed point £ € U and fy — =
3. Parabolic Domain: f has an parabolic fixed point z € AU and fiv — <.

4. Siegel Disc: fiy is analytically conjugate to an irrational rotation of

the disc.

5. Hermann Ring: fy is analytically conjugate to an irrational rotation

of an annulus.

More generally, let f be an analytic map on X. Periodic components
of (f) lie in essential components of X, and are hyperbolic as long as f
has empty elementary part. The classification of periodic components thus
entails the study of self-maps of hyperbolic Riemann surfaces.

Proofs of the following two standard results can be found in [38] and [30].

Lemma 26 Let U be a hyperbolic Riemann surface, f : U — U analytic, and
suppose some orbit is bounded. Then one of the following mutually exclusive

possibilities holds:

® [ has a unique agtracting or superattracting fized point x € U, and

P

fr—z;

o f is analytically conjugate to an irrational rotation of a disc, punctured

disc, or finite annulus;



o f is a bijection of finite order.

[t remains to discuss the case in which some orbit tends to infinity in W.
Note that a path v :[0,1] — U with f(~(1)) = v(0) extends by the relation
f(3( + 1)) = 4(t) to a forward invariant path 4 : [0,00) — U. Recall the

Snail Lemma:

Lemma 27 Let f be an analytic map on X with fized point z, and suppose

that = is the limit of some forward invariant path. Then |p(z)| < 1 or

plz) =1.

Lemma 28 Let f : W — X be an analytic map on X, and let U be fized
component of Q(f). Suppose that fi; tends to infinity in U, but not in W.

Then U is a parabolic domain.

Proof: Let v:[0,1] — U be a rectifiable path with f(y(1)) = 7(0); extend

to a forward invariant path 4 : [0,00) — U and consider
L={zeX: 5(ty) — z for some t; — co}.

By the local compactness of X, if L consists of more than one point then no
point is isolated.
Suppose ¥(tx) — « 8¢ some ty — co. Write ¢ty = np+s, with 0 < s < 1,

and let wy = v(sx). As ¥([0,1]) is compact and f™(wg) — z, it follows that

fir — =. In particular,

- k—o0 k— o0

lim f™(4(0)) = z = lim f™(v(1)),
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so any point in W N L is fixed by f and therefore isolated. By assumption,
WnNL#®, and it follows that fly converges to a fixed point  which, by the

Snail Lemma, must be parabolic. O

If some orbit tends to infinity in W and fiy converges to a point in 9(f),
shall refer to U as a Baker Domain; see [] for examples arising from entire
maps. This is the only other possibility If X is compact and 8(f) is totally

disconnected. In the remaining case, we say that U is an Ezotic Domain.

2.3 Parabolic Enrichments

Definition. Let f be an analytic map on X.

e A linearizing coordinate is an analytic map @ : B — C such that

B C W(f) and @w o f = 7 o w for some linear map 7(z) = Az.

® A linearizing parameter is an analytic map x : V — X where V C C

and yor = foy.

By Schwarz’ Lemma, every linearizing coordinate or parameter is associ-

ated to an attracting or repelling fixed point with eigenvalue A.

Definition. Let f be 2n analytic map on X; denote 7 : C — C the unit

1 .
translation.

o A Fatou coordinate is an analytic map w : B — Csuchthat B C W(f),

o T M(@(B))=C,and wo f =710 w.

Kd
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o A Fatou parameter is an analytic map y : V — X where V C C,
2o (V)=C,and yor = fox.

As discussed in [30], a parabolic fixed point z has associated attracting
and repelling petals whose union punctured neighborhood of z; the petals
have associated Fatou coordinates and parameters. These assertions consti-
tute Fatou’s Flower Theorem. The relevant calculations will be reproduced

in the revisions.

Definition. Let f be an analytic map on X. Wesay @w : B — C is a global
linearizing or Fatou coordinate if B is maximal. Similarly, y : V — X is a

global linearizing or Fatou parameter if V is maximal.

These are all well-defined up to homothety or translation. In the revisions

we shall discuss the functorial construction of source and target planes §*.

Definition. Let f be an analytic map on X. The post-singular set PS(f)

1s the smallest forward invariant set containing S(f); we denote its closure

PS(f).

Lemma 29 Let f be an analytic map on a Riemann surface X. Assume

that f has no removable'?singularities. Then X — PS9f) is hyperbolic unless

I3

f is elementary or conjugate to z ~» ztn for somen > 1.

Proof: See revisions.
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Lemma 30 Let w : B — C be a global linearizing or Fatou coordinate for
an analytic map f on X. Then S(w) is the smallest closed T~ invariant
subset of C containing w(S(f)). Similarly, if x : V — X is a global Fatou
parameter then S(x) C PS(f).

Proof: See revisions.

More precisely, we will show that S(w|g), where B is the component of
B fixed by f, is the smallest closed r~! invariant set containing @=(S( fg)-

It follows that a fixed attracting or parabolic basin for a analytic map with

--empty elementary part contains a singular value of f.

)

Let x : V — X be a global Fatou parameter assoctiated to a repelling
petal of a fixed point of eigenvalue 1. In view of the Fatou Flower Theorem,
V contains a left half-plane. Thus there is a unique component which is
unbounded to the left. This main component is backward invariant under ,
and every other component is disjoint from its translates. Further discussion

will appear in the revisions.

Lemma 31 Let x : V — X be a global linearizing or Fatou parameter for
an analytic map f on X. Consider the component Z of X containing x(V),

where V is the main coinponent of V.

f
v

o If f12} is exceptional then V =V = C. Furthermore, x has an essential

singularity at co unless f1%} is elementary.
o If f17) is typical then O(x) = Ui, ™ (x 7} (3(f™)) U {oo}.
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Figure 2.1: Global Fatou parameter associated fo a repelling petal



Proof: See revisions.

More generally, if z has period m, then the coordinates and parameters
associated to the minimal iterate fixing = give rise to maps = and x semi-
conjugating f and o, where o cyclicly permutes m copies of the plane, and
the return map is tau. We denote wy : By — X and x : Vy — X} the
maps so obtained on taking together all parabolic cycles and the canonical
global Fatou coordinates and parameters associated to their attracting and
repelling petals. We write W, = X;I(Bf). The quotients Xfi = Xf/cf are
cylinders. We denote «; : By — X; the induced projection. On removiﬁg
-the punctures, we obtain spheres Xf* with poles which we may label 0 and
co. There is an induced map £y : W, — 52'17, where W, C X;‘ and the poles.
For notational ease, we shall drop the subscript f on the maps @y, xy, and

7¢ when the context is clear.

Definition. Let f be an analytic map on a complex 1-manifold. Assume
that f has at least one parabolic cycle, and let A be a nonempty collection
of components of 52; A transit map for f is a analytic map ®: UA — X}L

which is a pole preserving isomorphism on each component.

A choice of transit nap ® determines an analytic map ® U £ on the

complex 1-manifold Xf“ U X’}*

Lemma 32 Let f be an analytic map with empty elementary part, ® a tran-

sit map for f. Then ® U E 1s typical

K
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Proof: See revisions. O

Consider the following homotopy conditions on a map f : W — C=,

where W C C~ is open:

1. For any homotopically trivial closed curve 4 in W, the curve f o+ is

homotopically trivial on C*.

2. For any homotopically nontrivial closed curve v in W, the curve f oy

is homotopically nontrivial on C*.

We may easily adapt these conditions to apply to maps on unions of

spheres with labelled poles.

Lemma 33 Let f be an analytic map on X, with parabolic cycles. Then

E:W;— i’f meets the first and second homotopy conditions.

Let f be an analytic map on X, where X consists of cylinders. A com-
ponent U of (f) may be equatorial, that is, homotopically nontrivial on X.
We may extend the discussion to the case where some or all of the punctures

of X have been filled. An equatorial component containing a pole is is polar.

Lemma 34 Let X be afunion of spheres with labeled poles, f an analytic map
ott X, and U a periodic component of Q(f). Assume that U is equatorial.
Then U is not a parabolic domain; moreover, if U is a superattracting or
attracting domain then U is polar.
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Proof: We may assume f fixes U. Let v : S' — U* be homotopically
nontrivial on X~. As f is positive, the curves v, = f" oy are all homotopi-
cally nontrivial. On the other hand, if U is a parabolic domain then the -,
eventually lie in a contractible petal. Similarly, if U is a superattracting or

attracting domain, the associated fixed point must be a pole of X. O

Definition. Let f be an analytic map on a complex 1-manifold. Assume
that f has at least one parabolic cycle. Let H be a conformal dynamical
system on Yf‘ u i’?’ with base element ® U E, for some choice of transit
~map P. Aésumé further that any o € H[U], where U C )A(f‘ is open and
R(U) C X7, may be expressed as @ = E o 3 for some 8 € H. Suppose

further that every map in H meets the first homotopy condition.

We define a conformal dynamical system f *H on X by
» For U € By, f +H[U] = (F)U};
e For U C By, f*H[U] consists of all g = xoawy, where & : @w(U) — I/Vf
is a lift of some a € H.
We shall say that F = f * H is a parabolic enrichment of f.
It is often more con\égnient to work with the system of returns RF of H

to X;. A more precise account of parabolic enrichments will appear in the

revisions.

Lemma 35 Let F be a parabolic enrichment of f. Then F cannot be ez-

. pressed as a one-generator system. ‘¥
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Figure 2.2: Parabolic Enrichment
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Lemma 36 Let F be directed with base f. Then F = f+H for at most one

H; moreover, H is directed.

Lemma 37 Let F = f * H be directed with base f, U C B; open and

connected.
o IfU is simple for F, then w(U) is simple for H.

e If 7(U) is simple for H but U is not simple for F, then there ezist
z€U and g€ F; with g(z) € 9(f).

Proof: Assume U is simple, and fix z € U, v € H,. If y(n(z)) € X}" then
¥(w(z)) € V; for a suitable lift 4. By assumption, y o ¥ o @ € F, extends
to some g € F[U]. In view of ??, g = x o & o @ for a unique lift tildea of
a unique a € H[r(U)]; clearly, a extends v. If v(7(z)) € X}, we apply this
argument to extend ® oy to 7(U). As v X ® oy and H is directed, v again
extends to m(U). Thus, U is simple.

Suppose on the other hand that =(U) is simple. If U is not simple, there
exist connected open V C U and h € F[V] with no extension in F[U].
Clearly, h € (f); we may assume that A is maximally continued. As 7(U) is
simple, h = £ 0o @ o w wlhiere & is a lift of some o € F[r(U)]. Then &(V) C V;
bat &(U) Q V¢. Consequently, &(r(z)) € 0Vy = 9(x) for some z € U, and

thus g(z) € 9(f) forg= Yoo lowe F,. O

Thus, J(F) € J(f)UnH(J(f)).
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2.4 Towers

Fix n, a positive integer or infinity, and consider a sequence f; on complex 1-
manifolds X}, where 1 <k < n+1. Suppose that for k > 1, X;,, = X,‘k U,{(}t
and frqy = @, U Ey, for some choice of transit map @, between X;k and X;;

By induction on finite n, we obtain systems

(fl1"'|fn):f1*(f2|"‘|fn>

on Xi; if n is infinite, we define

(f1|"‘)=\k/(f1|"“fk)-

Then (fi | ---) = fi*{(f2 | ---) by Lemma ??. We call such a conformal

dynamical system an n stage construct. Constructs are abelian systems.

Definition. A tower of height n, where n is a positive integer or infinity, is

a directed n stage construct.

Let F =(fi|---] fa) or {fi | ---) be a tower of height n < c0. As F
‘is directed, f; is the unique base. By Lemma 36, if n > 1 and F = f = H
then H = (fa | --- | fn}, respectively (f, | ---); moreover, H is a tower of
height n—1. By Lernma.35 and induction, n and the sequence f; are uniquely
determined; we write height(F)=n. Forl <m <n+1, F™* = (fi | -+ | fm)
is a tower of height m. In view of Lemma ?? these subtowers form an

ascending sequence.
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We assign heights to the elements ¢ € F with connected domain. By

convention, htr(Idy) = 0, while for non-trivial g € F[U] we set

ht = min m < co.
#(9) min

If htr(g) > 2 then U C By, g = xaw for a unique lift & of a unique
ca:n(U) — X in H, and htr(g) = hty(a) + 1. Note that as the towers
F™ are ascending, ht(g) = ht(gv) for any g € F[U] and connected V C U;
we set htr(€) = htr(g) for € = [g] € F.. Moreover, by an easy induction on
heights, if 7 and G are towers and F < G then htz(g) = htg(g) for every
g € F. It follows that for any ascending sequence of towers Fy, the system

F =V, Fi is a tower and height(F) = sup height(Fy).

Lemma 38 Let F be a tower on X, U C X open and connected, g € F[U],
h € Flg(U)]. Then htxr(hog) = max(htr(h), htx(g)).

Proof: We proceed by induction on n = min(htz(k), htx(g)). The claim is
trivial for n = 0. Suppose first that n = 1. If hty(h) = 1 = htz(g) then
h and ¢ are restrictions of some f™ and f¢, where f is the base of F and
m,¢ > 0, hence htr(hog) = htz(f™*¢) = 1. Otherwise, height(F) > 2, and
we write F = f * H. If‘ht}-(h) =1 < htr(g), then h = f7 ;) as above and

F
g =xo0a&ow, where &: @w(U) — V; is a lift of some a € H[r(U)]. Thus,
hog= ffoxodow=xoc"oaow

where 0™ o & is another lift of a, so htr(h o g) = htr(g). On the other

- hand, if htg(h) =1 > htr(g), thetvg = f, and h = x o B o for a lift
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B:w(g(U)) — V; of some g € H[r(g(U))]. Again,
" hog=yoBowmoflf=xo0Boclow

where B o o is another lift of 3, so htr(h o g) = htg(h).
Now suppose n > 1. Then ¢ = yoaow and h = Xoﬁow as above;
moreover, U and g(U) lie in By, so &(w(U)) € W; and therefore a(x(U)) C

W;. Consequently,
hog=xoBowoyxyodow=yoJow

where ¥ is a lift of v = B0 Ef o . As htn(Ef) =1 < min(hty(B), htr(a)),

it follows by induction that hty(y) = max(htx(S), htn(a)), hence

htr(h o g) = max(htx(B), htr(e)) + 1 = max(ht£(h), htz(g)). O

In particular, if g, h € F have overlapping connected domains and g < h,

then htz(g) < htz(h). These height relations apply equally to germs.

Given a tower F on X, we may also assign heights to points and simple
open subsets of X:
htr(z) = Sup hts(€),  hts(U) = sup htx(g).
. (EF: geF(U]
Thus, htr(U) = htx(z) if U is simple and = € U. Clearly, htr(z) = 0 if and
only if z € X — W, and htr(z) < 1 for z € By, where f : W — X is the
base of F. Moreover, htx(z) = htH("Z(x)) + 1 for F = f*H and z € By.
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Lemma 39 Let F be a tower on X, x € X, and g € F,. Then
htr(z) = max(ht#(g), htr(g(z)).

Proof: By definition, htr(z) > htr(g). If equality holds and h € Fy(,, then
htxr(h o g) = htx(z), hence htr(h) < hir(z) by Lemma 38. Thus,

htr(g(x)) = sup htx(h) = hig(z).

he}-g(z)
Otherwise, htzr(z) > htr(g), and as htr(g) is finite, htx(h) > htz(g) for
some h € Fy;). By Lemma 38, htr(h o g) = htr(h), and thus
htr(g(z)) = sup htr(h) = sup htr(hog) = htr(z). O
h€F g z) hE€F 4 z)
Suppose a,3 € F, with ¢ <X 3. Then hir(a(z)) < htz(B(z)). Conse-

quently, when h € Fy() is large, htr(h(z)) is equal to the eventual height

htz(z) = min hiz(g(z)).

Note that htr(z) = 0 if and only if some necessarily unique g € F, sends z
outside the domain of the base. If htr(z) > 1 then z € By and

tn}-(n'(a:)) = TZ?}'(:E) - 1. (21)

b4

Points of infinite height are of special interest. Certainly, htr(z) = oo if
htr(z) = co. Conversely, suppose htr(z) = oo, and let ¢ € F,. By Lemma
39, htzr(g(z)) = oo as htr(g) < co. Thus,

htr(z) = co %> htr(z) = 0.
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Recall that g(U) is simple for g € F[U] and simple U, hence

htz(U) = max(htz(g), ht=(g(V)).

Consequently, if © is open and forward invariant with simple components
then hir(a.lU) < htx(B.U) for any component U and o < 3 € F[U]. As
above, for large h € F[U], htr(h.U) = htr(U) where

hir(U) = min_ htz(g.U),

equal to mf(:v) for any z € U. Observe that htx(U) = 0 if and only if U

“escapes, and again htr(U) = oo if and only if htz(U) = oo.

Let F be a tower on X, U C X open and connected, g € F[U] with htr(g) =
n 2 1. We say g is primitive of height n if for any alpha € F[U] and
B € Fla(U)] with ¢ = B o a, either htr(a) < n or htz(B) < n.

The primitive elements of height 1 are the restrictions of the base f.
Clearly, if g € F[U] is primitive and h € F[U] with htz(h) = htx(g) then A
is also primitive. It further follows from Lemma 38 that aog, for a € F[g(U)]
with htz(a) < n, is primitive. Again, if V C X is connected and 3 € FlV]

with htz(8) < n, then g o 3 is primitive.

Lemma 40 Let F be a tower on X, z € X.

o For 0 < n < htr(z), there is a primitive element of height n in F.
o Ifg € F, with htr(g) = n, then g is a composition of primitive elements
of height n; the length of the co%position depends only on g.
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o [fn < htr(z) then F, contains arbitrarily long compositions of primi-

tive elements of height n.

Proof: See revisions, where we will further comment on the natural order

on orbits of F.

Let F be a tower with base f. As F is a parabolic, hence proper en-
richment of f, J(F) and Q(F) are invariant. For 0 < n < height(F) + 1,
Fr<d F,so J(F*) C J(F) for 0 <n < height(F). It is easily checked that

J(F) = U J(F?) (2:2)
n=1

for infinite height F.

Lemma 41 Let F be a tower, 0 < n < height(F).
o If F, = FI then htg(z) = htpn(z) < n and ﬁ?yn(a,;) = hts(z).
o Otherwise, z € Q(F™) and hizn(z) = htza(z) = n < htz(z).

Proof: As htr(g) = ht}(g) for every g € F7, it follows that htr(z) =
ht%:(z) < n if and only if F, = F. Moreover, if F, # F then ht%(z) =
n < htz(z) by Lemma 40, and = € Q(F") by Lemma 25.

As htr(g(z)) < htr(z) for g € F, it follows that htza(z) = htr(z) when
htr(z) < n. On the o;her hand, if htz(z) > n then htza(z) = htza(g(z))

for some g with htz(g) = n. By Lemma 39, htgn(z) = htga(z) =n. O

Consider, for 0 < n < oo, the invariant set

Xo(F) = {z €X : htg(z) = n}.
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Then J,(F) = J(F)NX,.(F) and Q,(F) = Q(F)NX,(F) are also invariant.
Clearly,

Jo(F) = U g7'(0(f)) (2.3)

9EF

is the smallest backward invariant set containing d(f), and Qo(F) consists

of the escaping components of Q(F). We further denote
X4 (F)={z € X : htx(z) > 0}

and define J (F) and Q4 (F) accordingly; this convention is consistent with
~our earlier ﬁsagé of Jy(f) and Q4 (f). By ?? and 2.1,

T N Jact(RF)) C Ju(F)

for n > 2, while

" (Jo(RF)) C Jo(F) U Jy(F). (2.4)

Similarly, Q,(F) C By for n > 2 and
(2. (F)) € Qnr (RF),

while

©( By N (Qo(F) U (F)),) C Q(RF).

™

Note that the function htr : X — [0, 0] is lower semi-continuous; that is
On(F) = {z € X : htx(z) > n}

is open for every n. The infinite height points thus constitute an invariant

"G in X. ) hd
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Lemma 42 Let F be a tower, 0 < n < height(F). Then Q(F*) = O, U
QF). Each component of O, is a component of Q,(F"). Every other com-
ponent of Q(F™) is a component of Q(F) with htr(U) = htzn(U).

Proof: Without loss of generality, hezght(F) > 2, and we write F = f x H
with transit map ®. By Lemma 41, O, U Q(F) C Q(F™) and it suffices to
show that any component U of Q(F™) intersecting O,(F) is contained in
O.(F). Clearly, U C By, and @ is defined on the cylinder containing =(U).
Suppose n = 1. For each z € U there is a lift ® with ®(ww(z)) € V}, and
g=yodow e F, has htr(g) = 2; consequently, U C O,(F). On the
other hand, if n > 1 then n(U) C RU intersects O,_;(H), and by induction

RU C On-1(H); consequently, U C O,(F). O

Thus, J(F™) consists of the points of J(F) with htr(z) < n. Lemma 41

implies more generally that

Jn(F) = {z € J(F: htr(z) =m, hir(z)=n}

for every m. Consequently,

In(F) = g7 (In(F™) (2.5)
9EF
for0<m< height(}');{- 1, and thus for infinite height F,
" In(F) = U Jm(F™) (26)
n=1



for 0 < m < height(F). As Ji(F') = J, (f), it follows from 2.3 and 2.5 that

Jo(F)U Ji(F) is the smallest backward invariant set containing J(f).

Proposition 5 Let F be a tower with base f. Then Jo(F)U Ji(F) is dense
in J(F); for typical f, Jo(F) is dense.

Proof: As the second statement is an immediate consequence of the first, we
may prove them simultaneously by induction on n = height(F). In view of
2.2 and 2.6 we may assume n < 00, and for n = 1 there is nothing to prove.
~Assume n 2 2, and let J = Jo(F)U Ji(F). As J(f) C J(F), it suffices to
show J(F)NB; C J.

Fix ¢ € J(F) N By, and connected open U C By containing . Suppose
7(U) is simple for RF. By the second part of Lemma 37, either UN J #
or U is simple for F. In the latter case, F[U] cannot be a normal family, so
UNJ # 0 by Montel's Theorem. As any smaller neighborhood of 7(z) is
simple, it follows that z € J.

On the other hand, if no such n(U) is simple then 7(z) has no simple

neighborhood. Consequently, 7(z) € J(RF). By induction, n(z) € Jo(RF)
as RF has typical base. In view of 2.4, z € 7=}(Jo(RF)) C J. O
It immediately follows that Q,.(F) is the interior of X,,(F) for1 < m <<

¢

oo. In particular, J,,(F) has empty interior for 1 < m < oo.

Let F be a tower, U a component of Q(F). A priori, the semigroup

Fizx(U) fixing U might have elements of many different heights. In fact,

o
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the actual possibilities are quite restricted. Recall that the renormalized

towers R™F for 1 < m < height(F) have positive base elements.

Lemma 43 Let F be a tower with positive base, U an equatorial component

of QUF). Then htx(U) < 1.

Proof: Let f be the base of . If htx(U) > 0 then U lies in a periodic
component of Q(f), and the latter component V is also equatorial. In view

of Lemma 34, V is not a parabolic domain; thus, U = V and htz(U) =1. O

Y_Propositibn 6 Let F be a tower, U a component of Q(F), g € Fizr(U)
nontrivial. Then htx(g) < htx(U) < htx(g) + 1.

Proof: By definition, htz(g) < htx(U); we establish the other inequality
by induction on n = htz(g). Let f be the base of F. If n = 1 then g is
the restriction of an iterate of f and U lies in a periodic component of Q( f).
Moreover, if htz(U) > 1 the latter component is a parabolic domain. Let
v be a path in U with endpoints z and ¢(z). As w(g(z)) = w(z) + m for
some positive integer m, the curve 7 o 4 in RU is closed and homotopically
bnon-trivial on Xy, hence RU is equatorial. As RF has positive base, we
conclude from Lemma %3 that htr(U) = htrr(RU) + 1 £ 2. On the other

hand, if n > 1 then ng‘e Fizrr(RU) is nontrivial. By induction,
htr(U) = htrr(RU) + 1 < htrr(Rg) + 1= htr(g) +1. O

Corollary 3 Letbf be a tower, U a component of Q(F) with htx(U) = oo.

Then U wanders. A
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Proof: Suppose g,h € F[U] with ¢.U = h.U. Without loss of generality,
h = aog for some a € Fizr(g.U). If ¢ # h then a is nontrivial, and
htr(U) < htx(g) + 1 < oo by the Proposition; thus g=h. As htr(U) = o0,

U cannot escape. Consequently, U wanders. O,

Let 7 be a tower, U a component of Q(F), and consider the quantities
ht'-(U) = min{htz(g) : g € Fizr(U) nontrivial 1,

ht¥(U) = max{htz(g) : g € Fizz(U) nontrivial }.

- By convention, ht’-(U) =0 = htﬁ(U) for wandering U, and both are other-

wise positive. In view of Proposition 6,
htr(U) < RtE(U) < ht£(U) < bt (U) + 1.

We say that U is a type I component when ht'-(U) = ht¥(U), a type II

component otherwise.

Lemma 44 Let F be a tower, U a non-wandering component of Q(F), m =
ht'=(U) > 1. The elements h € Fizx(U) with htz(h) = m are the iterates of

a unique g € Fizr(U) with htg(g) = m.

Proof: Fix g € Fiz (I8 with ht£(g) = m of minimal rank ¢. if 7 is another
sxi'ch element then without loss of generality ¢ < 4, hence v = « o g for some
a € Fizp(U). As g and v have the same rank, htr(a) < m; thus, o = Idy,
s0 g is unique. By the minimality of ¢, each h € Fizz(U) with htx(h) = m

. has rank n¢ for some n > 1. As g" €*Fizr(U), it follows that A = gt. O
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We say g is the generator of height At’z(U). In the type II case there are
height ht¥(U) elements of minimal rank, and for any two such h; < h, there

exists ¢ with hy = g®o h;. However, there is no canonical generator of height

htE (U).

Lemma 45 Let F be a tower, U a component of Q(F). Then ht%(U)

htr(U) if and only if U 1s final. In particular, every type II component is
final.

Proof: Suppose first that U is final. For each a € F[U] there exists 3 €

Fizs(U) with a < 8, hence hix(a) < htz(8). Consequently, ht#(U)
htx(U).

Assume conversely that ht¥(U) = htx(U). Fix g € Fizr(U) of height
ht#(U) and minimal rank ¢, and suppose b € F[U]. If htz(h) < ht%(U) then
h < g. Otherwise, hts(h) = ht¥(U) of rank m, and g" < h when n¢ > m.
Thus, U is final. O

Recall that as F is hierarchical, each a € F[U] determines a homomor-
phism

a,: Fizg(U) — Fizg(aU)

where a.(g)oca =ao g“

Lemma 46 Let F be a tower, U a component of Q(F). Then a. is an

tsomorphism.

i Proof: See revisions. 4 ks



In particular, htr(a.g) = htr(g) for every g € Fizx(U). Thus, ht’s(a.U) =
ht'o(@.U), and ht¥(a.U) < htE(aU)

In addition, if U C By then g ~ Rg gives a surjective homomorphism
R: Fizr(U) — Fizrr(RU). (2.7)

For a € F[U] with a.U C B; the diagram
‘ FZ’L‘}-(U) =, Fz’x}—(a_U)
R\ IR

Fizrr(RU) T2 Fizpr(Raul)

commutes. Recall that if Rg = Rh with ¢ < h then A = f™ o g for some

m > 0. Thus, 2.7 is an isomorphism if and only if At%:(U) > 1.

In the revisions, we will discuss the various dynamical possibilities for

final components of Q(F).

2.5 Complete Towers

Definition. Let X and Y be compact Riemann surfaces, W C X open and
connected. We shall say y € Y is a neglected value of f : W — Y if there
exist a connected open set U intersecting W and a component V of U — W
such that V'N f~!(y) = 0. An analytic map f: W — Y is complete if the
sét N (f) of neglected values is finite.

Observe that we are including the possibility that d(f) = @, in which case
f is a finite degree surjection and A (f) = 0; we shall say that deg f = oo
' when 9(f) # 0. Thus, f(W) D Y — N (f) for any complete map f: W — Y.
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By definition, a complete map has no removable singularities. Conversely,
let X and Y be compact Riemann surfaces, W C X open, and assume that
f + W — Y has no removable singularities. Suppose further that 9(f) is
countable. Then W = X — J(f) is connected, and as the isolated points
of O(f) are dense, it follows from Picard’s Theorem that f is complete with
#N(f) <2

Let X and Y be compact Riemann surfaces, W C X open and connected,

f: W — Y analytic. Given'A C X, consider the subset

fA={yeY: fy) C A}

of f(A)UN(f). Clearly, f,A C f,B for A C B. If f is a complete map of
infinite degree and A is finite, then f,A C N(f).

More generally, let X and Y be complex 1-manifolds with compact com-
ponents, and W C X open. We shall say that f : W — X is complete if
fiv, for each component V of W, is complete as a map to the component
of Y containing f(V). Then N(f) = Uy MN(fjv) is countable. Similarly, set
foA=Uy flro(VNA) for AC X.

Lemma 47 Let X, Y and Z be compler 1-manifolds with compact compo-
nents, VC X and W @Y connected open sets, f:V =Y andg: W — 7

ks

complete analytic maps. Then go f is complete, and
N(go f) SN(g)UgoN(f).

Proof: See revisions. >
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In particular, V(g o fiy) = M(g) when deg f = co.

More generally, let X and Y be complex 1-manifolds with compact com-
ponents, and W C X open. We shall say that f : W — X is complete if
fiv, for each component V of W, is complete as a map to the component
of Y containing f(V). Then NV(f) = Uy M(fjv) is countable. Similarly, set
foA = Uy five(V N A) for A C X.

Under these conventions, if f and g are complete and composable, then
g o f is complete,

N(go f) SN (g) U gN(f).

It follows from Lemma 47 that the iterates of a complete analytic map
f are complete. Moreover, if A(f) is finite, for example when W(f) is
connected, then NV'(f*) C N(f) for every n. In general, U2, V(f) is the

n=1"+

smallest set A containing A (f) such that f,A C A. Let

NE) = £(H)U U NP,

n=1

where £(f) is the set of exceptional values; then NE(f™) C VE(f) for every
n. Furthermore, any return map fZ is complete, and NV(fZ) C NE(S).

Consider the special case in which X is a Riemann surface and 9(f) is

countable. As 9(f") is Countable, it follows that A'(f™) C N(f) for any n.

Ifl'f is typical, then £(f) = 0, and it follows that NE(f) = N (f); by the

discussion above, #ANVE(f) < 2. We may still conclude #NE(f) < 2 when f

is exceptional: if deg f < co then N'(f) = @, while the backward invariance

+ of £(f) forces £1f) C NV (f) when dég f = co. Moreover, {oo} C N(f) for
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entire f, equality holding unless f is conjugate to z ~ p(z)e?®) + ¢, where ¢
is holomorphic on C, p is a polynomial, and ¢ € C. If f is Radstrom, then
N(f)=E(f) = {0,00}.

Let f is a complete analytic map with empty elementary part, on a com-
plex 1-manifold X. Then Z N J(f) is infinite for every component Z of X
with an essential successor. Recall that a set R in a topological space T is
residual if R contains the intersection of countably many open dense subsets
of T. By the Baire Category Theorem [4], a residual subset of a complete

~metric space is dense.

Lemma 48 Let f a complete analytic map on X. Assume that f has empty
elementary part, and that every component of X has an essential successor.
Then W(f)NJ(f), for each n > 1, is open and dense in J(f). Consequently,
Jo(f) is residual in J(f).

Proof: We proceed by induction on n. Suppose n = 1. Fix a component V
of W(f), and let Z be the component of X containing f(V). By assumption,
ZNnJ(f) = N(fiv) # 0, hence oV C f=1(J(f)) € W(f)NJ(f). Conse-

quently,

W(H)nI(f) =a(f)u (W(f)nJ(f)) = J(f).

4

Now suppose n > 1. By induction, W(f*"!') N J(f) is open and dense in

J(f). As f is an open map and

T WY N IED) = WM N J(f),

T4



we conclude that W(f™) N J(f) is open and dense in J(f). Therefore,

[e.e]

Je(f) = WM NI

n=1

is residual in J(f). O.

Under the above hypotheses, it follows immediately that

a(f™) S A(f") = f-t=m(O(fm)) (2.8)

for m < n. Furthermore, if f is typical and U is a component of Q,(f), then
the component of W( f™) containing U is a proper subset of the corresponding

component of W (f™).

Let f a non-elementary complete analytic map on a Riemann surface X.
Suppose y € X — NVE(f), and let U C X be an open set intersecting J(f).
For exceptional f, it follows from the definition of £(f) that y € f*(U) for
some n > 0. This observation underlies the classical arguments that prove
J(f) is perfect. Given z € J(f) and y € £(f), there exists a backward orbit
string --- i»y_y—{»y converging to r; we may arrange that y_; # y, and thus
Y-k # z for infinitely many k.

On the other hand, if f is typical then U intersects 9( f*) for some n > 1,
and we again conclude;that y € f*(U). In general, any closed backward

invariant set either contains J(f) or lies in NE(f).

Lemma 49 Let f be a complete analytic map on a Riemann surface. As-
sume that f is typical. Then there exists ¢ < 3 such that for anyn > 1, every

point in O(f™) is an accumulation paint of 8( f¢™).
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Proof: Let ¢ = SUP.ea(s) (., where ¢, is the least m > 0 such that z is an
accumulation point of (f™*!). Clearly, ¢, = 0 if and only if z is isolated in
d(f), so ¢ = 0 if and only if d(f) is perfect. Suppose ¢ > 0. It follows from
Picard’s Theorem that X is a torus or sphere; moreover, £ = 1 on the torus,
while

¢ = min{fm >1: #9(f™) >3} <3
on the sphere. The conclusion follows by 2.8. O

In particular, J( f) is perfect, hence uncountable. Consequently, any open

“set U intersecting J(f) contains points in J(f) — N E(f), and thus

J(f)c U fU)
n=0
by the remarks above.

Proposition 7 Let F be a tower on X with complete base f. Assume that

every component of X has an essential successor. Then J(F) is perfect.

Proof: In view of Proposition 5 and Lemma 20, it suffices to treat the
height 1 case. Suppose that z € J(f) is isolated. If z € J,.(f) then W (f)
contains a neighborhood U of z. Moreover, some sequence fi;7 must fail to
be normal, and we mairassume that the images f™(U) all lie in the same
co(mponent Z of X. On the other hand, Z N J(f) is infinite, and it follows
by Montel’s Theorem that z cannot be isolated. Thus, z € 9(f") for some

n,so U — {z} C W(f") for some neighborhood U. Let Z be the component

Rd
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of X containing f*(U — {z}). Again, Z N J(f) is infinite, and it now follows

from Picard’s Theorem that z cannot be isolated. O

We digress slightly to present some simple observations crucial to the
construction of towers in the next Chapter. Let f be a complete analytic
map on a complex 1-manifold X, and suppose U is a finite order component
of Q(f), that is ffp = Idy for m > 1. Further, let V be the component
of W(f™) containig U, and Z the component of X containing V. Then
Idy = fv, and therefore V= Z; thus, Z lies in the elementary part of
f. Consequently, if f is an analytic map on X and f is complete with
empty elementary part, then Q(f) has no finite order components. Similar

considerations prove the following:

Lemma 50 Let f be an analytic map on a compler 1-manifold X. Assume
thatf is complete with empty elementary part, and that every component of
X has an essential successor. Further, let F be a tight system with base f.

Then f is the unique base of F.

Proof: Assume without loss of generality that f is complete, and let ¢ be
another base element. Then f and g have the same domain, and flv # g on
some component U; let ¥ = f(U), Z = g(U). As f and g are base elements,
tHere exist a € F[¥] and B € F[Z] with gy = a0 fiy and fiy = Bo gp.
Clearly, Boa = Idy and ao 3 = Id.

As f is a base element, either a = fiy for some m > 0 or else fiy 2 a

for every n; similarly, 8 = fiz for some m > 0, or else fl’fz =< p for every n.
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Consequently, Y C W_(f), and fly is injective for every n. By completeness,
Y is a component of X and therefore compact. It follows that Y, = f*(Y)
is a component of X, and fly, : Yi — Yiy, a bijection, for every £ > 0. By
assumption, Yy = Y} for some k # ¢; but then Y} lies in the elementary part

of f. O

We record the obvious relation between neglected and singular values.

Lemma 51 Let f : W — Y be a complete analytic map. Then N(f) C
5(f)-

Proof: We may assume without loss of generality that W and Y are con-
nected, and that deg f = co. If y € S(f) then any simply connected neigh-
borhood D C Y —S(f) is evenly covered. Fixing z € D~N(f) and z € 3(f),
choose z; € f~!(z) with zx — z; let gx : D — W be the local inverse to f
with gi(2) = z;. As the regions gx(D) are disjoint, the sequence gj is a
normal, hence g — z. In particular, yx — z, where yx = gi(y) € f~'(y).

Consequently, y € N (f). O

Definition. Let f be an analytic map on X. The post-singular set PS(f)

is the smallest forward gnvariant set containing S(f); we denote its closure

PS(f).

Clearly, £(f) € S(f) when f is complete, and thus NE(f) C PS(f).

~
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Lemma 52 Let f be a complete analytic map on X with empty elementary

part, x : V — X a global linearizing or Fatou parameter. Then x is complete,

and N(x) S NE(f).

Proof: Consider first the main component V of V, and let Z be the compo-
nent of X containing x(V),and h = f1Z}. If 9(f) = {co} then #AN(x) < 2 by
Picard’s Theorem and the first part of Lemma 31; it follows that A'(x) = £(h)
as both sets are countable and backward invariant under A. Suppose, on the
other hand, that 9(f) # {oc}. By the second part of the Lemma, any open
- U intersecting d(V') must intersect y~}(9(h™)) for some n > 1. As h is com-
plete, x = h" o x|y o 77" assumes every value = € N'E(h) in U, that is,
N(xiv) SNE(h).

Final details will be supplied in the revisions.

Note that
7(d(x)) € 9(x)
by 2.8

Recall that an element g € F[U] of a conformal dynamical system F is
maximally continued when U is connected and g extends in F to no larger
cgnnected open set. WeEWrite 9 € Farax|[U], and denote Fprax the collection
ofl all maximally continued elements of F. Let us say that a tower JF is
complete if every g € Farax is a complete map. Then

- NeEFE=£)u U M)

9€Farax
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1s a countable set.

Lemma 53 Let F be a complete mizing tower on X. Assume height(F) >
2, and let Y be the set of components of f{; where the transit map is defined.

Then the tower (RF)Y is mizing.

Proof: Suppose Y;, Y2 € ), and fix components Z; and Z, of X such
that Z; N #~'(Y;) # 0. By assumption, there exist a connected open V C
ZyNrY(Yy) with y € (V) and g € Farax[V] with htr(g) = 2. Let Z
be the component of X containing g(V). As F is mixing, there exist a
‘cormected open W C Z and h € Fprax[W] with (W) C Z,. Fix z €
ZoN 7 N (Y)) — NE(F), and z € g~Y(W) with h o g(z) = z. Then 7(z) € ¥}
and a(n(z)) = 7(z) € Y2, where a = R(hoyg) € RF x(z) is nontrivial as

htrr(a) > htr(g)—1 > 1. O

If the base of F is itself mixing, we may choose h with htx(k) = 1 to

obtain o with htpz(a) = 1. It follows then that RF has mixing base.

Lemma 54 Let F be a complete mizring tower on X. Suppose y € X —
NE(F), and let U C X be an open set intersecting J(F). Theny = g(z) for

somez €U and g € F,

Proof: By Proposition 5, we may choose open V C U and a € F[U] with
a(V) intersecting J(f). Let Z; and Z, be the components of X containing
a(V) and y, and set 8 = f{%2}, By assumption, we may choose a maximally

+ continued y € F[W] such that W & Z; and v(W) C Z,. By assumption,
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y = 7(w) for some w € W, and there exist z € (V) and m > 0 with
p™(z) = w. Fix r € V with a(z) = 2z, and take g = y0 ™ 0 a. Then g € F

and g(z)=y. O

Lemma 55 Let F be a complete mizing tower on X, and let Z be a set of

components of X. Then J(F2) = J(F)NnU2Z.

Proof: It is enough to show J(F{%}) = J(F)n Z for every component Z.
Clearly, J(F{%}) C J(F)N Z, so it suffices to show that J(F1?}) is a dense

subset. Let U be an open set intersecting J(F), and fixy € J(FZH—-NE(f).
| By Lemma 54, there exist z € U and g € F, with g(z) = y. As y € 7,
g € F{Z} hence z € J(F1Z}). O

Proposition 8 Let F be a complete mizing finite type tower. Assume that

height(F) > 2. Then J(F) = n~Y(J(RF)).

Proof: Clearly, 7-1(J(RF)) C J(f) U 7~ Y(J(RF)) C J(F), where f is
the base of F; we show that 7=1(J(RF)) is dense. Let U be an open set
intersecting J(F), and fix y € By — N'E(F) with 7(y) € J(RF)). In view
of Lemma 54, y = g(z) for some z € U and g € F,, and z € B; by Lemma
??. Consequently, 7(y) & 7 0 g(z) = (Rg) o 7(z), where Rg € RF (s, and

it Tollows that (z) € J(RF). O



A
~"|

-

C

" Figure 2.3: J(F) and J(RF) = J(® o E)
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Chapter 3

Finite Type Maps and Towers

3.1 Finite Type Maps

Definition: Let W and X be complex 1-manifolds, f : W — X analytic.

We say that f is a map of finite type if X is compact and S(f) is a finite set.

Given an open set Y C X, we will often write ¥~ for Y — S(f) and Y*
for Y — f=1(S(f)). When W and X are connected, we take deg f to be the

degree of the covering space fiwx : W* — X™. In view of 1.1 we observe:

Lemma 56 Let f and g be composable analytic maps of finite type. Then

go f is a finite type analytic map, and S(go f) C S(g) U g(S(f)).

A
x

“ Recall that the singular set of an analytic map f : W — X contains
every critical or asymptotic value. Conversely, let z € S(f) be an isolated
point, and fix a path v : [0,1] — X with v(0) € S(f) and 4(1) = z. Each

choice of § € f~}(y) determines a unjque lift 4 : [0,1) — W with 3(0) = 7.
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If 3(ty) — w € W for some t; — 1, then f(w) = limg_o ¥(tx) = z. Thus,
4 either extends to a closed path in W or tends to infinity. If every lift is
bounded in W, then some lift limits at a critical point of f; it follows that z

is a critical or asymptotic value. In particular:
Lemma 57 Let f be a finite type analytic map. Then S(f) = C(f) U A(f).

Every positive degree analytic map of compact Riemann surfaces is a
map of finite type. Such a map has no asymptotic values; the possibilities
are restricted by the Riemann-Hurwitz formula ??. Our treatment of the
infinite degree case begins with a discussion of the covering properties of a
finite type map near its domain boundary.

Let f : W — X be an analytic map of complex 1-manifolds, B C X
a Jordan domain, D a component of f~!(B); we say that D is a proper
preimage of B if fip : D — B is a branched cover, necessarily of finite
degree. We will refer to a Jordan domain B containing a single point of S{f)
with boundary disjoint from S(f) as an isolating neighborhood. If the cyclic
cover fipx : D* — B* has finite degree, then DX is conformally equivalent
to a punctured disc. The puncture is a removable singularity, so D is a
disc if D € W in this rase D is a proper preimage. On the other hand, if
dég fipx = oo then D is conformally equivalent to the disc, and we refer to
D as a tract. Its boundary in W is the open arc f~(dB); its accumulation

is the closed set 9D N dW.



Figure 3.1: Tracts

Lemma 58 Let f : W — X be a finite type analytic map, where W lies
in a complez 1-manifold Y. Further, let B be an isolating neighborhood of
z € A(f), and T a tract covering B*. Then f~'(0B) is dense in 0D.

The proof will show that the ends of f~!(9B) have the same accumulation
in dW. We will require some basic facts concerning the boundary behavior

of conformal maps.

Definition. Let U be an open subset of a topological space X. A boundary

b g

point z € AU is accessidle if = = lim,—; y(¢t) for some path v:{0,1) — U.

‘

As arc and path connectedness are equivalent for metric spaces, we are
free to upgrade paths to arcs or even geodesics when discussing accessible

boundary points on Riemann surfacgs. It is really no more difficult to work
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in the more general setting of path-metric spaces. Recall that the length of
a path v:[0,1] — X in a metric space (X, d) is
n

)= osup S d(v(E), A(ti)) < oo,

n, 0=tp<-<tn=1 ;9

and v is rectifiable when £(v) is finite. The distance function d is a path-

metric if d(z,y) = inf, ¢(v), where v ranges over all paths in X between z

and y.

Lemma 59 Let U be an opeh"subset of a path-metric space X. Then the

accessible bbundary points of U C X are dense in OU.

Proof: Fixing =z € 9U, choose z; € U with d(z,z,) < 3¢. By assumption,
we may construct a path v : [0,00) — X with y(k) = z«x and €(Yjk+1]) < 3=
for every integer k& > 0; as v has finite length, we obtain a closed path on
setting ¥(o0) = . Clearly, z is accessible if v(t) € U for sufficiently large ¢;

otherwise,

ty = sup{t > k: y([k,t]) C U} < o0,

v(ty) € OU and v(tx) — z. Each v(tx) is an endpoint of the path v,

hence accessible. O

A
&

Lemma 60 Let X be a Riemann surface, ¢ : A — D C X a conformal
isomorphism, and a an open arc in D. If o tends to a point of 9D, then the
arc ¢~ o o tends to a point of OA. Moreover, if two such arcs have distinct

endpoints in D, then their inverse images have distinct endpoints in OA.
" v
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The above is shown in [30] for plane domains, via the Fatou-Riesz theo-
rems on radial limits of functions holomorphic in the disc; the general case

follows on passage to the universal cover. We now prove Lemma 58.

Proof: A conformal isomorphism £ : (A,0) — (B, z) extends to a homeo-
morphism of the closures [30]. Choosing a universal cover 7 : A — A* and
alift 3: A — T of Bja+, we may therefore extend B to a homeomorphism
AUa — DU f~Y(9B), where « is the arc complementary to some point
of JA. Every point in f~'(9B) is accessible, while by Lemma 60, at most
~one accessible boundary point of T belongs to dW. 1n view of Lemma 59,

f~Y(9B) is dense in T. O

Lemma 61 Let f: W — X be an analytic covering map of Riemann sur-
faces, where W lies in a Riemann surface Y. Further, let U C Y be a
connected open set, and assume that f(wy) is bounded in X for some se-
quence wy € W tending to U N OW. Then any Jordan domain B C X with

BN S(f) =0 has infinitely many proper preimages compactly contained in
U.

Proof: We may assume without loss of generality that f(wi) — z € X. Let
r be the diameter of B ih the path-metric induced from dx.. By assumption,

diamy- D < r < oo for every preimage D of B. Fixn > r + dw-(z,B). In

view of Corollary ?7?, for large enough k the neighborhood

. Re={we W dw-(w,we) <7}
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lies inside U and is isometric to the hyperbolic disc of radius 7. Consequently,
R contains a preimage of B; as wy tends to W there are infinitely many

such preimages in U. O

Note that if the w; belong to the same component V of U N W, then

these preimages lie compactly within V.

Proposition 9 Let f : W — X be a finite type analytic map, where X
is a Riemann surface and W lies in a complez 1-manifold Y, and let U C
Y be a connected open set intersecting OW and containing no removable
"singularities. Then any Jordan domain B C X with BN S(f) = @ has

infinitely many proper preimages compactly contained in U.

Proof: By compactness, there exist vy € W with vy — y € U N OW and
f(v) — = € X. Suppose z € S(f) and fix an isolating neighborhood N. If
k is sufficiently large then wy lies in a preimage of N. By assumption, the
boundary of this preimage intersects U; by Lemma 58, the corresponding
component of f~'(9N) intersects U. Shrinking U, we obtain wy — y with
f(wy) € OB. We may therefore assume at the outset that z € S(f), and

obtain the desired preimages by Lemma 61. O

. It should be possible to adapt this argument to the case where B is an

isolating neighborhood of a singular value z of bounded ramification:

z & A(f) and sup deg, f < 0.
f

(w)=z



With unbounded ramification, the proper preimages, if they exist at all,
might remain large as they approach W so there is no guarantee that any

lie completely inside U.

Suppose further that 9U N 9W = B, and let B be an isolating neighbor-
hood of z € S(f). Then U is disjoint from the closure of all but finitely many
preimages of B. By Proposition 9 there exist wxy € W with wy, — y € UNOW
and f(wi) — z € X, and we may assume that each wy lies in a preimage of
B. A preimage T containing infinitely many wy must be a tract, as y € 97T.
If there is no such T, then U intersects infinitely many preimages and com-
‘pactly contains all but finitely many; each of the latter is either a proper

preimage or a tract accumulating in U N 9W. We have shown:

Corollafy 4 Let f: W — X be a finite type analytic map of Riemann
surfaces, where W lies in a Riemann surface Y, and let U C'Y be an open
set intersecting W and containing no removable singularities. Assume that
U NOW = 0, and let B C X be an isolating neighborhood of z € S(f).
Then eéther U compactly contains infinitely many proper preimages of B, or

else some preimage is a tract with accumulation in U N OW.

The deployment of §reimages near an isolated boundary point y is espe-
cially simple: some tract or sequence of proper preimages accumulates at y,
and the diameters of the proper preimages tend to 0 even if z has unbounded

ramification.



It is worth comparing Proposition 9 to a classical theorem involving no

assumption of finite type.

a

Ahlfors’ Islands Theorem Let By,...,Bs be Jordan domains in C with

disjoint closures. Then:

o For any transcendental analytic map f : C — C, some B; has infinitely

many unramified proper preimages;

o The analytic maps f : A — C under which no B; has infinitely many

unramified proper preimages form a normal family.

In Ahlfors’ terminology, a proper preimage is referred to as an island.
The number 5 may be reduced slightly if ramified islands are allowed, or if
there is an omitted point. The Islands Theorem is a deep result in Ahlfors’
theory of covering surfaces. Its proof [16, 33] entails an analysis of the mean
covering properties of the analytic maps under consideration; like that of
Proposition 9, it is metric in character. We shall not make use of Ahlfors’
Theorem in this work.

Let us return to the setting of Proposition 9. If U N W is totally dis-
connected, the use of Lemma 58 may be replaced by a purely topological
argument. Otherwise, UrN W may have more that one component, and we
wish to show that each contains proper preimages. The argument below
involves considerations of Brownian motion. Through the work of Sullivan
(?], the proof may be recast in the language of geodesic flows, and thereby

related to that of-Lemma 58.

.
o
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Lemma 62 Let f : W — X be an analytic map, where X is a compact
Riemann surface, S(f) has capacity 0, and W lies in a complez 1-manifold
Y. Further, let U C'Y be a connected open set intersecting OW in a set of
positive capacity, and let V' be a component of U N W. Then any Jordan
domain B C X with BN S(f) = O has infinitely many proper preimages

compactly contained in V.

Proof: By assumption, a continuous path in U starting from a fixed

v €V — f1(S(f)) hits 9W with positive probability, and avoids f~1(S(f)).
On the other hand, a path in X starting from f(v) almost surely passes
through B infinitely often, while avoiding S(f). It follows that the set of
paths v : [0,00) — U such tha£ ¥(0) = v, 4(T) € UN W for some finite T,
(t) € V for t € [0,T), and y(tx) € f~'(B) for some t; / T, has positive

measure. In particular, there exist at least one such path; the conclusion

follows by Lemma 62. O

Proposition 10 Let f : W — X be a finite type analytic map with no
removable singularities, where W lies in a complez 1-manifold Y. Further,
let U C'Y be a connected open set intersecting W, and let V be a component
of UNW. Then any Jordan domain B C X with BNS(f) =0 has infinitely

many proper preimages compactly contained in U.

In particular, a finite type analytic map f : W — X, where W lies in a
complex 1-manifold ¥ with compact components, is complete if and only if

. there are no remiovable singularities.»
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Figure 3.2: Proper preimages near d(f)

Observe that by Lemma 56, the iterates of a finite type analytic map are

maps of finite type.

Lemma 63 Let f be a finite type analytic map on X, and let Z be an es-

sential set of components. Then fZ is map of finite type.

Proof: As S(f) is finite, there exists m such that for each y € S(f), the
least if any & > 0 with f*¥(y) € UZ is less than or equal to m. Fix a
component V of W(fz;j; then ff, = fjv for some n. For 0 < ¢ < n, denote
Ve the component of W(f™~%) containing f¢(V); observe that Vo = V, V, is
a component in Z, and V, for 0 < ¢ < n is disjoint from |JZ. By Lemma 56

and induction, any singular value of f“Z/ can be expressed as f¥(z), where



0<k<nandzeS(f)NnV, _;;; necessarily, £ < m, and it follows that

(%) = Ustr) € ) s
k=0
is finite. O |

Similarly, if z € X has infinite forward orbit, z, = f"!(z), then for large
enough n the backward orbit of any point in f~!(z,4,)— {z,} is disjoint from

PS(f). Furthermore:

Lemma 64 Let f be a complete finite type analytic map on X. Assume that
f has empty elementary part, and let z € X be a point with infinite forward
orbit. Then f~Yz,41) — {zo} # 0 for large n.

Let f be a finite type analytic map on a complex 1-manifold. Setting

NS(f) = S(f), let NSpp1(f) = S(f) U foN'So(f) for n > 1, and consider

NS(5) = U MSa(9)

Lemma 65 Let f be a complete finite type analytic map on X with empty
elementary part. Then NS(f) is finite.

Proof: If NS(f) is infinite, then there exists z € S(f) whose forward orbit
is'infinite and lies in NS(f). Let W, be the component of W(f) containing
z, = f*"!(z), and Z, the corresponding component of X. If n is sufficiently
large then z,41 € S(f), and thus V. N f~!(z,4;) # @ for every component
\ V of W(f) with (V) C Zns1; by assumption, Va0 f=Y(zns1) C N'S(f) for
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some such component V. As above, A'S(f) N fY(zny1) = {z.} for large
enough n, so V, N f™Y(zn41) = {z,}, and therefore V, = W,; that is, fiw.
is injective for sufficiently large n. But then f{?} is elementary for some

component Z of X. Consequently, N'S{f) is finite. O

As E(fYUN(F) C S(f), it follows that NE(f) C NS(f) is finite.

3.2 Finite Type Towers

Definition. Let F be a tower on X. We say that F is a tower of finite type

*if the base f is a finite type map on X.

In view of ??7, we observe:
Lemma 66 Let F be a finite type tower. Then RF is a finite type tower.

Recall that the definition of towers includes the infinite condition that no
element be locally invertible. This condition is satisfied automatically in the

case of finite type.

Proposition 11 Let F be a construct admitting a finite type base element

with empty elementary part. Then F is a finite type tower.

f

Proof: We must show that F is directed. It suffices to prove this for n stage
constructs with n finite, and we proceed by induction on n. By Lemma 50,

the unique base of F is a finite type map f with empty elementary part, so
- ¥
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F is directed for n = 1. Forn > 1 write F = f * H, where Hisan n — 1
stage construct with finite type base ® U E'. In view of Lemma 32, ® U E has
empty elementary part; by induction, H is direcﬁed.

Suppose g o fijy = Idy where U is connected and g € F[f(U)]. As seen

above, g € (f), so g = x o & o w for a lift & of some « € H[r(U)]. Then
YXoGooow =yoaowo f=Idy.

Aswoyxodaooisalift of Eoq, it follows that £ o a = Id,), contrary to

what we have just shown. Therefore, F is directed. O.

Recall that O,(F) = {z € X : htx(z) > n} is an open set for any tower

F and any n.

Lemma 67 Let F be a complete mizing finite type tower, and suppose n <

height(F). Then On(F)N J(F) is open and dense in J(F).

Proof: We argue by induction on n. Clearly, Og(F) = W(f) where f is the
base of F, and thus Oo(F) N J(F) is dense in J(F). Suppose n > 1. By
induction, in view of Lemma 53, O,_;(RF)NJ(RF) is dense in J(RF). As

7 is an open map and

7 N0 (RF)NJ(RF)) C O.(F)n J(F),

7
‘

it follows from Proposition 8 that O,(F) N J(F) is dense in J(F). O
In view of Lemma 42, we observe
0(F)=J(F") = {wz € J(F): htr(z) < n}.
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Recall that Jo(F)U Ji(F) is dense in J(F) for any tower F, and that Jy(F)

is dense when F has typical base. By comparison:

Proposition 12 Let F be a complete mizing finite type tower, 1 < m < n,
where n = height(F). Then Jn(F) is dense in J(F). Furthermore, J, (F)

is residual.

Proof: We proceed by induction on m. Suppose m = 1. By Lemma 48,
J4(f) is residual, and thus dense in J( f). Let U be an open set intersecting
J(F). In view of Proposition 5, there exist open V C U and g € F[V] with
gVINJ(f) # 0 By Lemma 48, there exists z € V with g(z) € J.(f); thus,
y € UNJy(F). It follows that J;(F) is dense in J(F). Moreover, for n = 1,
F = (f) and thus Ji(F) = J4(f) is residual.

Suppose now that 1 < m < oco. By induction, J,_1(RF) is dense in
J(RF) and residual if m — 1 = height(RF) =n —1. As 7 is an open map,
In(F) = 771 (J o1 (RF)) is dense in 7~ }(J(RF)) and residual if m = n; the
conclusion follows by Proposition 8.

Finally, if m = oo = n then J,(F) = N2e O(F)N J(F). By Lemma 67,
each set in the intersection is open and dense in J(F). Consequently, Jo,(F)

is residual. O

Proposition 13 Let f be a complete finite type map with empty elementary
part, @ : B — C a global Fatou or linearizing coordinate. Further, let U be a
connected open set intersecting 0B, and V a component of U NB. Then any

Jordan domain B C C, where 0 ¢ B in the case of a linearizing coordinate,
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has infinitely many unramified proper co-preimages compactly contained in

V.

Proof: Let Z be the component of X containing the associated fixed point,
B, = 1™(B) for m > 0. Then f*(V) € Z for some n, and by Lemma ??
there exist z € OV N U N W(f*) and a disc D C U N W(f") containing
z such that fi, : D — f*(D) is either a homeomorphism or a branched
cover with unique critical value f*(z) € dB. Fix a component P of DNV,
and let @ be the component of f*(D) N B containing P; then f* maps P
homeomorphicaily onto Q. If @ contains infinitely many unramified proper
w-preimages of B, = 7"(B), then P contains infinitely many such preimages
of B. We may therefore assume without loss of generality that U/ C Z. Then
OB is infinite, closed, and backward invariant, and consequently equal to
J(f).

By Lemma ?? there exists n such that B,, N S(w) = @ for m > n.
Suppose first that U N 9B contains a nondegenerate continuum, and let
€ dVNUNW(f*), D, P, and Q be as above. By Lemma ??, fM(D)YnoB
contains a nondegenerate continuum, and it follows by Lemma 62 that Q
contains infinitely many unramified proper w-preimages of B,; as above, P
contains infinitely manyséuch preimages of B. Otherwise, 9B is a Cantor set,
a,n’d f is consequently rational or typical. Fix z € B with infinite forward or-
bit, and let z,, = f™(z); in view of Lemma 64, for large enough m there exist
Ym € B such that f™(ym) = zm but f™ " (ym_1) # zm-1. By construction,

L
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the y,, are distinct points in @w™!(z); as X is compact, there exist m; — oo
and y € 9B such that yn., — y. It follows by Lemma 61 that any neighbor-
hood of y contains infinitely many unramified proper w-preimages of each
B, with m > n. If f is rational then y ¢ £(f), and thus y = f™(z) for
some z € UNW(f™); as above, V = U — 9B contains infinitely many proper
w-preimages of B. In the typical case, Lemma 48 implies U N 9(f™) # 0
for some m > n, and the existence of the desired preimages follows from

Proposition 9. O

In particulaf, w is complete, with A () = {00} for a Fatou coordinate,

and {00} C M(w) C {0,00} for a linearizing coordinate.

Theorem 1 Let F be a tower with complete base f. Then F is complete,
and NE(F) = NE(F).

Proof: By definition,

NEW) =€y u U VU,

so it suffices to show N (g) C NE(f) for every g € Farax with htr(g) > 2
Writing F = f *'H, we have g = x 0 & o wyv, where V is the domain of g and

& is a lift of some a € Fprax. By Lemma 47,

s
‘

N(g) SN (x) U xoN(aow),

where

N(&dow) C N (a)U a.N(m).
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In view of Lemma 13, &N (w) C &.00 = @, while M(&) C oo by Lemmas

?? and ??. Therefore,

by Lemma 52,

N(g) SN(x) SNE(f). O
3.3 Repelling Fixed Points

[t was establishéd classically by means of Montel’s Theorem that the Julia set
of a non-elementary rational map is the closure of the set of repelling periodic
points. Later on, this principle was extended to entire [1] and Radstrém maps
(3], and more recently to meromorphic maps [2], through the application of
Ahlfors’ Islands Theorem. Using instead Proposition 9 and the stratification
of the Julia set, we prove the density of repelling points for maps, and then

towers, of finite type.

Schwarz’ Lemma gives rise to repelling fixed points in many settings. We

begin with the simplest configuration.

Lemma 68 Let f: D & B be analytic, where B and D are simply connected
and D CC B. Suppose that f is either a homeomorphism or a branched cover
whose only critical value lies outside D. Then D contains a repelling fired

point of f.



Proof: Without loss of generality, we rmay assume that B and D are Jordan
domains. If fip is a homeomorphism, there is an inverse g : B — D. By
Schwarz' Lemma, D contains a fixed point, attracting for g hence repelling
for f. In the branched case, we may slit B along a closed arc leading from the
critical value to OB and avoiding D. The slit region B~ is simply connected,
as are its preimages. Fix such a preimage D~ lying in D. By construction,
fip- : D7 — B- is a homeomorphism and D~ CC B7; as above, D~

contains a repelling fixed point. O

Note that as J(f) is perfect, the density of repelling periodic points for
" a typical finite type map on a Riemann surface follows directly from Propo-
sition 9 and the stratification of J(f). To treat exceptional finite type maps
without invoking Ahlfors’ Islands Theorem, we must produce repelling fixed

points near the essential singularities.

Lemma 69 Let f be an analytic map on X and let B and T be Jordan
regions in X, and T € BN OT. Suppose that fir is a universal cover of
B — {z}. Then z is a limit of repelling fized points of f.

Proof: Observe that we are free to replace B and T by any smaller Jordan
neighborhood of z and the corresponding preimage component. The portion

f T outside any given udlSC about z is compact and maps into the exterior
of some other such disc. Consequently, we may assume that BUT lies in

a contractible neighborhood of z, and that f|'f~{x} is a universal cover of

B = {z}. As the curve 9B already bounds B, and thus cannot bound a disc
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Figure 3.3: Fixed points in a tract

in T, it follows that 9B € T. Hence, it is possible to connect = to 9B by an
arc « in B which intersects T only at z, and slit B along « to obtain a simply
connected region B~. The preimage of B~ in T consists of infinitely many
regions, each bounded by two consecutive components of f~!(a) meeting at
r and an arc of 7.

Let B> = B — {z}; in view of Corollary 1, there exists a smaller Jordan
neighborhood D with 7%.(w) > 2 for every w € DN T. If 9D is disjoint
from T then T CC D; otherwise, T has first and last intersections with 8D,
the ends of 0T — {z} ﬁ?é inside D, and the subtended arc of D intersects
at( most finitely many components of f~!(a). Consequently, D contains all
but finitely many of the preimages of B~ in T. Fixing a preimage P C D,
let v :[0,1] — P be a rectifiable path with f(¥(1)) = v(0). As P C B~, we

o
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may extend to a path ¥ : [0,00) — P with f(§(t + 1)) = ¥(t). Let £5.(n)
and ¢r(n) be the Poincaré lengths in B* and T of the segment ¥|(n nt1]; then
lge(n+1) < Jlr(n+1) = lp.(n) for n > 0. Consequently, ¥ has finite length

in B*, and lim,_., ¥(t) € P is a repelling fixed point of f. O

Eremenko and Lyubich [12] investigated the more general class of entire
maps for which S(f) — {oo} is bounded. In conjunction with Lemma 70
to follow, the argument above establishes the density of repelling periodic

points for this class.

Proposition 14 Let f be a complete finite type analytic map on a Riemann

surface X. Then every point of (f) is a limit of repelling fized points of f.

Proof: Fix z € 9(f) and an isolating neighborhood B of z. By Lemma 68,
any proper preimage D CC B contains a repelling fixed point of f. If there
is no such preimage then it follows from Proposition 9 that z is isolated in
I(f). In view of Corollary 4, some preimage of B is a tract accumulating at

z, and the existence of the desired fixed points follows from Lemma 69. O

It follows that 9(f"), for n > 1, is in the accumulation of the set of
repelling fixed points of f"; conversely, any limit of such fixed points lies in
(f™). In view of Lemn;é 48, 9(f™), for n > 1, is the accumulation of the set

‘

of period n repelling points of f.

Lemma 70 Let g: W — X and h: V — X be analytic maps on X, and let

z € V such that( = h(z) is a repelling or parabolic fixred point of g. Suppose
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z = g™ (w) for some m > 0 and some w # ( in a linearizing neighborhood
or repelling petal N for (. Then for lavge I there erist z, — z, each T\ a

repelling fized point of h o g™**.

Proof: Let v: N — N be the distinguished local inverse of g. Fix a Jordan
neighborhood A of {, and let B be the component of A~1(A) containing z, and
C the component of g~™(B) containing w. If A is sufficiently small then B is
a Jordan domain, and kg : B — A is either a homeomorphism or a branched
cover with critical value {. Shrinking A and hence B, we may assume as well
that C CC N — {¢} is a Jordan domain, and that gic : C — B is either
a homeomorphism or a branched cover with critical value z. For & > 0,
Cr = v¥(C) is a Jordan domain and g{‘ck : Cy — C is a homeomorphism.
Moreover, ¢ € Ck, and Cy, CC A when k is sufficiently large; for such k, let
Dy CC B be a component of A~}(Cy). Then D, is a Jordan domain and
z lies outside D;. By Lemma 68, D, contains a repelling fixed point zj of

m+k

hog™** and z; — = by construction. O

Theorem 2 Let F be a complete mizing finite type tower on X. Then J(F)

is the closure of the set of repelling points of F.

Proof: Every repelling;ﬁxed point belongs to J(F). Conversely, we show
by induction on finite n < height(F) that every open set intersecting J(F™)
contains repelling fixed points of height n. In view of Lemma 55, we may

assume without loss of generality that X is connected.

K
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Figure 3.4: Creating more fixed points

We show first that the base f has a repelling or parabolic fixed point
¢ € NE(f). By Proposition 14, if deg f = oo then f has infinitely many
repelling fixed points; only finitely many can lie in NE(f). For rational f,
a standard global index formula [30] guarantees the existence of a repelling
or parabolic fixed point (, and ( € NE(f) as NE(f) = E(f) consists of
superattracting points. If f is a toral endomorphism then NE(f) = @ and
the existence of repelling fixed points can be verified by inspection. Fix
an associated linearizing neighborhood or repelling petal IV, and suppose U
intersects J(F') = J(b}). By the remarks after Theorem 1, { = f¢(z) for
some ¢ € U — NE(f) and ¢ > 0. Again, z = f™(w) for some w € N and
m > 0. It follows by Lemma 70 that = is a limit of repelling fixed points z,

of hk = f€+m+k § }-, and ht}'(l‘k) = /It}'(hk) = 1.
) w
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Now suppose U N J(F™) # @ where n > 2. By Proposition 8 and induc-
tion, there exists z € U such that n(z) is a repelling fixed point of RF with
htrr(m(z)) = n—1. As J(F™) is perfect, we may assume without loss of
generality that z € N E(f). It follows from Lemma ?? that there exist ¢ > 0
and g € fw_u with htx(g) = n for which ¢ = f4(z)isa repelling fixed point.
In view of Theorem 1, there exists m > 0 such that z = g™ (w) for some w
in a linearizing neighborhood. We conclude by Lemma 70 that z is a limit of
repelling fixed points z) of kx = fCog™** € F, and htz(zx) = htr(he) = n.

a

3.4 Final Fatou Components

We now complete the classification of final Fatou components for towers of
finite type. In the case of maps, it remains to show that (f) has no Baker
or exotic domains. The nonexistence of Baker domains for finite type en-
tire maps was by Eremenko and Lyubich [12] with an argument involving a
logarithmic change of variable and the Koebe-1 Theorem. The result was
extended to finite type Radstrom maps [20] and certain finite type meromor-
phic maps [21] by Kotus; see also [6]. Although this argument adapts to the
general case, it does ndﬁ: address the issue of exotic domains. We rule out

r

both possibilities in the following:

Proposition 15 Let f: W — X be a sp#riftéte finite type analytic map on

X. A fized component U of Q(f) on which fji; tends to infinity is a parabolic

i
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Figure 3.5: The Snake Argument

domain.

Proof: Let v : [0,00) — U be a locally rectifiable forward invariant path.
By assumption, v tends to infinity in U, and the tail avoids S(f). As in
Lemma 28, it suffices to show that v does not tend to infinity in W. We
argue by comparing the lengths ¢y (n) of the segments 7jn n41) in the Poincaré
" metrics on various regions Y in X; as previously, we write Y* and Y* for
Y — S(f) and Y — f-1(S(f)). Without loss of generality, f has empty
elementary part, so U fs hyperbolic; in view of Lemma 29 we may further
a.s:'sume ghat X~ is hyperbolic. By Schwarz’ Lemma, 0 < ¢x.(n) < {y.(n) and

ly(n) ﬁ/@(n + 1) for n > 0. In view of Proposition 1 and the finiteness of

the singular set, n{f (y(t)) — 1 as t — oo. Consequently, {x-(n) is bounded.

¢
>
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If v tends to infinity in W, then the set L of accumulation points is a
continuum in J(f). As above, n¥.(y(t)) — 1 as t — co. By Corollary 1,
n¥e (¥(t)) — oo if L consists of more than one point; then 7% (v(t)) — oo,
so lxe(n+ 1) = bwx(n) > 2¢x-(n) for large n, and thus €x<(n) — co. On
the other hand, if L = {z} then z is an asymptotic value. Fix an isolating
neighborhood B of z; the tail of v lies in a tract T, and n%.(y(t)) — oo by
Corollary 1. Again, {g+(n+1) = z(n) = 2¢p+(n) for large n, so {5.(n) — oo;
by Proposition 1, n§.(v(t)) — 1, and thus £x.(n) — oco. Therefore, v has a

limit point in W, so U must be a parabolic domain. O

In view of the remarks preceding Lemma 50, every periodic component

of Q(f) is of one of the five standard types. By induction, we conclude:

Theorem 3 Let F be a complete finite type tower. A type I final component
U of Q(F) is a superattracting, attracting, parabolic, Siegel, Hermann, or
Baker domain; in the last case, the associated limit point is a parabolic fired
point of height m, where 0 < m < htx(U). A Type II final component is an

attracting, Siegel, or Hermann domain.

Recall that an attracting or parabolic basin for a finite type map with
empty elementary part contains a singular value. Consequently, there are
ﬁgitely many fields of ;ttracting, superattracting, parabolic, or Baker do-
mains in the Fatou set of a finite type tower. There is a more subtle associ-

ation of singular values to rotation domains and Cremer points. Let us first

note the following consequence of Theorem 2.

v
»
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Lemma 71 Let f be a complete finite type analytic map on X. Further, let
U be a connected open set intersecting J(f), and suppose gx — g, where each

gk : U — X is a local inverse of f** and ny — oco. Then g is constant.

Proof: If g is non-constant, then f** converges locally uniformly on ¢(U) to
g~ !. Consequently, the derivatives f™’, computed in fixed local coordinates,
are locally uniformly convergent. On the other hand, U contains a repelling

periodic point z, and f*’(z) — oco. Therefore, g is constant. O

Propositidn 16 Let f: W — X be a finite type analytic map with empty
elementary part. The boundary of any Siegel disc or Hermann ring lies in

PS(f). Similarly, any Cremer point is an accumulation point of PS(f).

Proof: In view of Lemma 29, we may assume that X —PS(f) is hyperbolic.
Let U be a Siegel. disc or Hermann ring, and fix a sequence gx : U — U of
inverse branches of f™ with g, — Idy. Suppose OU € PS(f), and fix an
open set V disjoint from PS(f) and intersecting U C J(f); without loss of
generality, U UV is simply connected. Each gx extends to an analytic map
g : UUV — X. By assumption, the sequence of extensions is normal, hence
gx — Idyyv by Vitali’s gheorem. In view of Lemma 71, this is impossible.
+ Similarly, let 2 be a Cremer point, and suppose that z is disjoint from the
accumnulation of PS(f). Then there exist a simply connected neighborhood
V and inverse branches g, : V — X of f* with g,(z) = z. Observe that

lgZ(z)] = 1 in any local coordinate. The sequence of injective maps g, is

v
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therefore normal with non-constant limits; again, this contradicts Lemma 71.

O

3.5 Geometric Finiteness I

In Section 3.3 we established a topological alternative for the Julia set of a
finite type analytic map on a complex 1-manifold X: either J(f) is nowhere
dense or else J(f) = X. The corresponding question in measure theory has
engendered much speculation. The best general result is due to Lyubich [12]:
if f is a rational map for which every infinite forward critical orbit tends to
a periodic cycle, then J(f), if nowhere dense, has Lebesgue measure 0. This
condition on the critical orbits is the next simplest after outright finiteness;
such rational maps correspond in Sullivan’s dictionary to the geometrically

finite Kleinian groups.

Definition. A finite type analytic map f on a complex 1-manifold is geo-
metrically finite if every infinite forward singular orbit tends to a periodic

cycle.

In view of Proposition 16 we observe:

o
a .

Lemma 72 A geometrically finite map with empty elementary part has no

irrationally indifferent periodic points and no Hermann rings.

To extend Lyubich’s result to infinite degree maps of finite type, we must

distinguish between preperiodic and<terminating finite orbits. Indeed, Mc-
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Mullen has shown that the entire maps fy(z) = Asinz always have positive
measure Julia set [26]; on the other hand, it is easy to find parameter values
for which J(f\) is nowhere dense and both finite singular values are preperi-
odic. Let f be an analytic map on a complex 1-manifold. We denote T'S( f)

the union of all terminal singular orbits in J(f).

Definition. A geometrically finite map f is strongly geometrically finite if

TS(f) = 0, that is, if every singular value in J(f) is preperiodic.

Note that entire and Radstrom maps are excluded, as their essential sin-
gularities are singular values. If f is typical then 0(f) may itself have positive
measure; the correct generalization of Lyubich’s theorem concerns the mea-
sure of J,(f) for strongly geometrically finite maps.

We recall the standard considerations of density and distortion in the
plane. Let £ and B be Lebesgue measurable subsets of C. The density of E

in B is the quantity

meas(B N E)

den(E : B) = meas(B)

The density of F at z € C is defined to be

T*
[
"

den(E) = lir% den(E : B.(z)),

where B.(z) is the Euclidean r-ball about z, whenever the limit exists; if
deny(E) = 1 then z is a density point of E. By the Lebesgue Density

Theorem [?], almost every point of £ is a density point.
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For open B C C containing z, the scale-invariant quantity

_sup,eap llz — vl

M:(B) = 1 plle — vl

measures the ecceniricity of B relative to . Note that B occupies a definite
proportion, depending only on the eccentricity, of the area of the circum-
scribed ball about z. A family of neighborhoods of z whose eccentricity
relative to z is uniformly bounded is said to be of bounded shape relative to
z. If z is a point of density of £ and By, is a fundamental system of bounded
shape neighborhoods of z, that is, if ditam By — 0, then den(E : By) — 1.

The distortion of a map g : D — C defined on an open set D C C is the

ratio
) = i e
where
st 2,9) = L2 I,
Clearly,
den(E : D) < dist(f)? - den(f(E) : f(D)) (3.1)

for measurable E C C. The distortion of a smooth map is easily bounded in
terms of the partial derivatives. The notions of density point and bounded

shape neighborhood thdrefore make sense on a Riemann surface.

I

Koebe Distortion Theorem Let g : Ar — C be an injective analytic map.

Then dist(fia,) < k(%) for0 <r < R, where x(t) = 1 ast — 0.

See [33] for ane of many proofs.
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Lemma 73 Let f be a finite type analytic map on a complez 1-manifold X .

Assume that J(f) is nowhere dense. Then w(z) C PS(f)NJ(f) for every
density point z € J,(f).

Proof: Suppose f**(z) — y & PS(f), where ny — oco. Choose a conformal
disc U C X — PS(f) centered at y, and let D CC B CC U be concentric
subdiscs. For large k there are inverse branches g, : U — X of f™* with
ge(f™(z)) = z, and g — = by Lemma 71. The open sets By = gx(B) with
f™*(z) € D form a fundamental system of bounded shape neighborhoods of
z. Consequently, den(J.(f) : Br) — 1, soden(J,(f) : B) =1 by 3.1 and the

Koebe Distortion Theorem. But then B C J(f), contrary to assumption. O

If f is geometrically finite, then PS(f) N J(f) is a finite set consisting of
parabolic cycles, repelling cycles, and TS(f). Assume further that J(f) is
nowhere dense, and let = € J,.(f) be a Lebesgue density point. In view of
Lemmas ?? and 73, if w(z) € TS(f) then w(z) is a parabolic or repelling
cycle, and z is consequently preperiodic. As the set of preperiodic points is

countable, the Lebesgue Density Theorem yields:

Lemma 74 Let [ be geometrically finite with nowhere dense Julia set. Then

w(z) CTS(f) for almat every x € J(f).

I3
¢

We may immediately conclude:

Theorem 4 Let f be strongly geometrically finite with nowhere dense Julia
set. Then J.(f) has measure 0.
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Furthermore, if d(f) has measure O then f~™(9(f)) has measure 0 for

n > 0, proving:

Corollary 5 Let f be strongly geometrically finite with nowhere dense Julia

set, and assume O(f) has measure 0. Then J(f) has measure 0.

In certain situations, the requirement of strong geometrically finiteness
may be relaxed. Lyubich proved Theorem 4 for geometrically finite entire
maps satisfying a growth condition which, while dynamically unnatural, may
be verified in concrete cases. Further arguments of McMullen establish mea-
sure 0 when the Julia set is sufficiently thin at infinity.

Let us say that a singular value y of a finite type map is nearly unramified
if y is not an asymptotic value, and if the local degree is 1 at all but finitely

many preimages.

Proposition 17 Let f be geometrically finite with nowhere dense Julia set.
Assume that deg, f =1 forz € W(f)NTS(f), and that every singular value
in TS(f) is nearly unramified. Then J,(f) has measure 0.

Proof: It suffices to show that no density point =z € J,(f) has w-limit set in
TS(f). Fix an isolatingtneighborhood D, about each ¢ € 9(f) N T S(f); for
we fT™(¢)NTS(f), let D, be the component of f~™(D,) containing w. If
the original neighborhoods are sufficiently small, the discs D, for w € T S(f)

are pairwise disjoint, and f|p, is a homeomorphism when w € W(f). We

)
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may further assume that the preimages of D, intersecting D, have degree; 1
for every w,( € TS(f) with ¢ € 9(f).

Suppose w(z) C T'S(f). Without loss of generality, the orbit of z never
leaves U,ers(s) Dw- Moreover, there exist ny — oo and ¢ € 9(f) N TS(f)
such that f™(z) — (. For large enough k, z lies in a component Bj of
f7™(D¢). By the Koebe Distortion Theorem and Lemma 71, the By form
a fundamental system of bounded shape neighborhoods of z. As above,

den(J4+(f): B¢) =1, hence B C J,(f) contrary to hypothesis. O

Geometrically finite maps arise quite naturally from finite type towers of
infinite height. The most basic measure of the dynamical complexity of a
finite type analytic map f on a complex 1-manifold X is the number é( f) of
distinct forward infinite grand singular orbits. Let F be a finite type tower

with base f. Assume that height(F) > 2, and let r be the base of RF. Then
5(r) < #(Sy = Py) = #7(B; N S(f)) < 8(S). (3.2)

If equality holds on the left-hand side then every point of Sy — Py has infinite
forward orbit under r, and any two points lie ih distinct grand orbits. Conse-
quently, every component of f{; is essential for r, and there are no singular
orbit relations: that is,s_rp(:zz) = ri(y) for positive p,q and =,y € S(r) implies
p = q and z = y. Of course, there may still be orbit relations among the
critical points. If equality holds on the right-hand side then every infinite
forward singular orbit of f lies in By, so f is geometrically finite.

Suppose now that height(F) = oo, and for m > 0 let r,, be the base of
R '3
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R™'F. By the above, if §(rm_1) = 8§(rm) = 8(rm41) then r,, is strongly
geometrically finite with no singular orbit relations outside the pole-set; in
particular, J(r,,) has measure 0. In view of 3.2, the sequence §(r,,) is non-
increasing, and therefore stabilizes; let §(F) be the eventual value, and My
the least m for which §(r,,) = 6(F). In view of Theorem 4 and the analyticity

of the projections 7., we conclude:

Corollary 6 Let F be a finite type tower of infinite height, and suppose
Mr < m < co. Then r, is strongly geometrically finite with no singular

orbit relations outide the pole-set, and J,.(F) has measure 0.

We assert nothing about the measure of J(F). Indeed, if F has infinite
height and the sequence 6(fn) is constant, then Q(F) has no final compo-
nents. It will follow from Theorem 7 in the next chapter that J(F) = X if
the domain of the base f is dense in X; thus J(F) may have full measure.

The use of different techniques will enable us to comment on the ergodic

theory of Joo(F).

2.
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Chapter 4

Rigidity and Finiteness
Theorems

4.1 Marked Points

Definition Let F be a tower.
M(F)={z € X : ¢(z) = z for every ¢ € Homeoo(F)}.
We refer to the elements of M(F) as marked points.

Lemma 75 Let F be a finite type tower, E C X a totally disconnected set
preserved by every ¢ € Homeo(F). Then E C M(F).

Proof: Evaluation at a fixed z € E gives a continuous map Homeo(F) — E.

Consequently, ¢(z) = z for ¢ € Homeoy(F). O

Proposition 18 Let F be a finite type tower with least element f. Then
M(F) is the smallest closed invariant set containing S(f) and the fized points
of F. - M
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Proof: For n > 1, S(f") is a finite set preserved by Homeo(F), hence
S(f*) © M(F). Similarly, all fixed points are marked. And it follows from

Lemma 75 that M(F) is invariant. O

It follows that components of X — AM(F) are F-simple, and g : U — ¢, U

is a covering space for g € F[U].

Corollary 7 Let F be a finite type tower. The canonical map mo(X —
M(F)) = mo(UF) s surjective. Moreover,

e IfU is an attracting, parabolic, or wandering domain, then U — M(F)

is connected.

o IfU is a Siegel disc, Hermann ring, or superattracting domain. then

U — M(F) 7splits into annuli”.

Lemma 76 Let F be a finite type tower, U a component of Q(F). Suppose

some a € F[U] is not a covering space. Then there is a least such a.

Lemma 77 Let F be a finite type tower, U a wandering component of Q(F).

Then the maps in Fu are eventually covers.

Proof: By hypothesis; there exists g € F[U] such that R, UNS(f) = 0
for all b € Flg.U]; moreover, F[g.U] is non-trivial. We claim that every
map in F[g.U] is a covering space. Otherwise, by Lemma 76 there is a least

a € Flg.U] which is not a cover. Now a = f o 3 for some 3 € F[U], and

K
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fis.u 1s a cover as a.U N S(f) = 0. But B =X a implies § is a cover, hence o

is a cover, contrary to assumption. O
For a tower F with least element S, let PS(F) be the smallest closed for-
ward F-invariant set containing S(f)> GS(F) the smallest closed F-invariant

set containing S(f).
é(f) = F — invariant conformal structures

C(F) = F — invariant structures = fiducial on X — W

Lemma 78 Let F be a finite type tower, C a closed F-invariant set con-

taining S(f) U J(f).
A. QC,o(F,C) = QC(F) N QCy(X, C),
B. QCo(F,C) = N2, GCo(F,0),

C. QCoF,C) = QC(F) N QC,(F,C).

Proof: For all three assertions, the righthand side contains the lefthand side
by definition.

A. Suppose ¢ € QAC(f)ﬂQCo(X, C). Fixing a bounded functorial isotopy
=, define bijections ®, 32X — X for t € (0,1] by

By(z) = { () for z in a component U of X — C
T forze C

As = is bounded, each ®, is continuous, hence ®, € QC(X,C) by Bers’
Lemma. By functoriality, @, € QAC({) for every t, hence ®, € QC,(F, C).
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Proposition 19 Let F be ¢ finite type tower with base W 2 X, 44
closed forward F-invariant set containing S(f), c1,¢; € C(F), ¢ € QCu(X, A)
with ¢™c; = ¢;. Ife¢; and ¢z agree on X — W, or if 4 € QCo(X, AU a(f),
then ¢ € QCo(F, A%).

Proof: By Lemma ??, it suffices to show ¢ € QCo(X,C), for some F-
invariant closed C' D S(f)UJ(F), under the inductive assumption that the
Proposition holds for all towers of lesser height.

F) = 1. By hypothesis, flo € QCo(X, f~Y(A) U 8(f)),
and (f'¢)*c; and ¢, agree on W. In the first case, it follows that (f'¢)cs = ey,
hence f'¢ ~ @ rel Ajas AC /Y Ayu (X -W). Consequently, f'o = ¢, that
is, € QC(f). In the secod case, consider ¥ : X — X given by

Suppose height(

_ ) flé(z) forzew
¥lz) = { #(z) forze X - W

In view of the additional assumption on @, Bers’ Lemma implies
%Z’ € QCO(‘Yv f‘I(A) U a(f)),

and ¢*c; = ¢;. As before, Y =¢,50 ¢ € QC(f). Inductive application of

the homotopy lifting property yields

,_, 6 € QCo(X, | F(AUa(f)

1=0

for every m > 0. By Corollary 2, ¢ € QCo( X, C) where C = UiZe f77(AU O(f)).

Assume 1 < N < oo. Let & : Xy — X} be the transit map.
- ¥
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By induction, ¢ € QCyo(f, AY). Consequently, ¢ induces
e U € QCo(zf U X!, EUEY

where E is m(A/) union the poles of the cylinders in X, E' the union
of Q(x"'(Af)) and the poles of X}. Then ®~!(EY) D E is forward RF-
invariant. As d(¢;) C Et,

» € QCo(RF, 7 (EN™)
by induction. Note that AF = 7=1(&-1(EN*¥) U M(f). By Bers’Lemma,

_ | ©'o(z) forz € By
¥(e) = { 6(z) forze X —B,

defines a quasiconformal homeomorphism in QCo(X, A%), and ¥ = ¢ as
PYreq = ¢y,

Finally, suppose N = co. By induction, ¢ € QCo(F™, A¥") for finite n.
As AT = U2, A7), ¢ € QCo(X, AT) by Corollary 2. O

4.2 Geometric Finiteness 11

The central conjecture concerning iterated rational maps, the density in pa-
rameter space of struct&'rally stable maps, reduces to establishing conformal
r;‘gidity on the Julia set: that invariant complex structures agreeing on Q( f)
be equal [?]. While there have been encouraging partial results, this question

is still very much open. In our setting, we must require such complex struc-

tures to agree on 9(f). Such rigidity is automatic when J(f) has measure
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0, as was shown in section ?? for strongly geometrically finite maps. In this
section, we present an independent route to rigidity through considerations
of Teichmiiller Theory. While we will not recover the measure dichotomy,
we may weaken the dynamical hypothesis to geometric finiteness, thereby
readmitting certain entire and Radstrém maps. |

The affine toral endomorphisms z ~» mz, m > 2 are exceptions to this
conformal rigidity. These maps occur in one complex-dimensional families
parametrized by the Teichmiiller space of the underlying torus; any two of
the same degree m? are conjugate by an affine stretch. As observed by Lattes,
these torus maps commute with the involution z ~» —z and descend to affine
rational maps of C with similar properties; he also exhibited related rigid
examples arising from tori admitting complex multiplication. Details may
be found in [24], where rigidity is proved for post-critically finite rational
maps using Teichmiiller’s Existence and Uniqueness Theorems (see also [41],
[9]). Our adaptation of this argument employs Strebel’s more general Frame
Mapping Theorem, which McMullen first used to prove rigidity in a different
setting [25].

The ultimate mechanism behind conformal rigidity for geometrically fi-
nite maps i1s a weak cq}ntraction principle concerning the infinitessimal Te-
ichmiiller metric: the non-existence of invariant quadratic differentials. We
must consider quadratic differentials with countably many singularities. For
the purposes of this section, invariance refers’to f7; invariance under f. will

be the relevant notion when we apply the principle again in section ??.
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Recall the relation
ord,f"q = d ords(;)qg + 2rn — 2 where d = deg, f. (4.1)

Proposition 20 Let X be a Riemann surface, f : W — X a finite type
iterable analytic map, g € Q(X,C) where C is a countable clesed set. For

q # 0, the following are equivalent:

L fuq=gq;
2. f*q = (deg f)q, hence deg f < o0;
3. f*q and q determine the same measurable linefield on W .

Furthermore, if deg f > 1 and any of the above conditions holds for some

q#0, then f is an affine endomorphism of a sphere or torus.

Proof: We may assume without loss of generality that f is complete. Then
by Lemma ?7?, either deg f < co and W = X or deg fjy = oo for every

component V of W. In view of Lemma 16 and the inequality

|| feql] < Ev: | fiveall < ; !l < llqll,

f«q = q implies deg f &o0 and f*q = f*f.q = (deg f)q. In particular, f*q

and q determine the same linefield on X. Conversely, suppose f*q and ¢
determine the same linefield on a component V. Both quadratic differentials
are holomorphic on the complement of the countableset (WNC)Uf~!(C). By

Lemma 15, (f*q)v and qv are positfve scalar multiples, so ||(f¢q)v]|| < oo.
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Consequently, V = X, deg f < oo, and f*q = (deg f)q; by Lemma 16,

faa= g5l fra=1q

For the second part, assume f*q = (deg f)q with deg f finite. Without
loss of generality, f is a rational map with deg f > 2, and q is not holomorphic
at any point of C. By Lemma 17, C = P U E, where P is the set of poles
and F is the set of accumulation points; moreover, every pole is simple. Let

Z be the set of zeros of q. By the relation
ord,f*q = d ords;)q + 2n — 2 where d = deg, f, (4.2)

P is forward invariant, Z is backward invariant, and F is invariant. By the
remarks after Lemma ??, the closed countable backward invariant set ZU F
must lie in £(f). We further deduce from 4.2 that every superattracting point
liesin E. As the points of £(f) are superattracting, we conclude that Z = .
It further follows from 4.2 that every critical point outside E is simple, and
that every critical value outside E is a pole.

Any backward orbit string of poles must accumulate in E. As E consists
of superattracting points, there can be no such backward orbit string; thus,
every pole lies in PS(f). On the other hand, it follows from Lemma 64
that any pole with inﬁr’%te forward orbit gives rise to poles not belonging to
PS(f) Consequently, P is finite, E = 0, and ¢ is meromorphic on C. By
the index relation 7?7, there are precisely four poles and, as demonstrated in

[24], f is affine. O



Corollary 8 Let f : W — X be a finite type iterable analytic map with
empty affine and elementary parts, ¢ € Q(X,C) where C is a countable
closed set. If fuq = q then g =0.

Proof: We may assume without loss of generality that f is complete. Sup-
pose f.q = ¢, and let Z; be the components of X. By ??, qz = 0 for |
inessential Z;. Moreover,
gl < 20 fwiadll < 30 Haws, Il < Hlall,
Wi, #0 Wi, #0

where Wi; = ZiNf~1(Z;). As above, it follows that || fw, .ql| = |lqw,, ||, hence
W,; = Z;, whenever W;; # 0. In particular, f{%} is exceptional for essential
Z;. Thus, f1%} = f™ for some m > 1, and fm"Y(Z;) is the unique essential
component intersecting f~!(Z;). Consequently, f.{Z‘}qlzi = (fl"Oz. = qz.-

By Proposition 20, ¢ = 0 in view of the hypothesis. O

As PS(f) may be infinite, we must verify Strebel’s relaxation condition.

The key is the local geometry near parabolic cycles.

Lemma 79 Let ¢ : X — X, be a quasiconformal conjugacy between geomet-
rically finite maps f : W — X and fi : Wiy — Xi. Suppose ¢ is conformal
on Qu(f). Then ¢ relazes rel PS(f).

Proof: Fixing ¢ > 0, we construct a new map v in the same isotopy class rel
PS(f), agreeing with ¢ outside a specified neighborhood of PS(f), and with

dilatation less than 1+ € inside an even smaller neighborhood. By hypothesis,
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¢ is already conformal near the attracting and superattracting points. We
present a construction to relax ¢ near a parabolic point, leaving the map
unchanged outside a small neighborhood. After performing the construction
in disjoint neighborhoods of the parabolic points, it will remain, as is always
possible, to relax ¢ near a finite set of isolated points.

Observe that the induced homeomorphism ¢! : Xt — X[ is conformal at
both ends of each quotient cylinder. More generally, let o : C* — C* be a
quasiconformal homeomorphism, conformal near 0 and o0, and o : C — C
a lift. For some Ty > 0,

5(2) = z+a+n(z) for Sz>T,
wi= z4+B8+n(z) for Jz< =T

2ric 2mi0

where e and e are the eigenvalues of ¢ at oo and 0, 7 is a bounded

analytic function on {z : |Sz| > Tp}, and n(z) = O(e~19?). Schwarz’ Lemma
yields the further estimate 7'(z) = O(e~'®%). By ??, we obtain a uniform
|3(z) — z| < Mo.

Recalling the construction of ??, consider (writing z = z + 7y)

QI+ %@z +:T)—z) for0<S=z<T
yr(z) = ¢ (1 = #(p(z —iT) —z) for =T <320
&(z) for |Sz| > T.

It is easily verified that |yr(z) — z| < M, for T > Ty; by ??, 41 is (T)-
quasiconformal, where &(T) — 1 as T — oo. Fixing T with &(T) < 1 + ¢
arl’ld M > My, consider

A={z:Rz< -M, |S:| < T},
B={z:-M<R:<0, |z < T},
C={z:|S9z| > T},

. D=AuBUC.



Figure 4.1¥ Relaxing conjugacy at parabolic point



Write OB as the union of closed segments 6y, ..., 6, as labelled in Figure 4.2.
Then yr(6;) and v(63) are disjoint, and y7(6;) Uy(62U83Ué4) is a quasicircle
bounding a quasidisc B;. Fixing quasiconformal o : B — B, agreeing with

~r on §, and v on 6, U b3 U &y, set

yr(z) forze AUC
o(z) forze B
z)

5 forze C-D.

Then 4 : C — C is quasiconformal, with K ($jauc) < 1+ €. Moreover, 4 ~ v
rel AU B, as AU BU {oo} is homeomorphic to the closed disc.

Let ¢ be a multiplicity d parabolic fixed point of f, (; = ¢(¢). The
choice of origins in the associated planes of X} and 5(}1, determines lifts
v,...,7%1: C = C, of ¢'. Denote by x*' the restriction of x; to the i-th
plane in the cluster. We may arrange that the x' be defined and injective
on D, with pairwise disjoint images y'( D) lying in a speciﬁed neighborhood
of ¢; let € : x'(D) — D be the corresponding inverse branches. Define

quasiconformal ¥ : X — X by

oy xnodo&(z) forzex'(D),
vlz) = { o(x) elsewhere,

with 4 obtained from 4* as above, using large enough M so that
¥ d-1

. PS(HINUx(AuC) =0.

=1

Near (, 1 has dilatation less than 1 + ¢, and ¥ ~ ¢ rel PS(f). O

We are now in a position to recapitulate McMullen’s argument.

2
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Theorem 5 Let f: W — X be geometrically finite with empty affine part

and suppose ci,cy € C(f) agree on X — J1(f). Then ¢; = ;.

Proof: We may assume without loss of generality that X is connected,
(X,PS(f)) is hyperbolic, and deg f > 2. By Lemma 79, the quasiconformal
map Idx : (X,ca) — (X, c;) relaxes rel PS(f). In view of the. Strebel-
Teichmiller Theorems, there is a unique ¥ € QCo(X, PS(f)) with

Koo)=K= inf K. .(Idx).
taa(P)=K=_ il ea(ldx)

But f'v € QCo(X,PS(f)) and K., ,,(f'$) < K as ¢; and c; agree on X —W.
Consequently, f'4» = . By Proposition 19, ¥ € QCo(f); in particular, ¥ is
the identity on J(f).

Moreover, ¥ : (X,c1) — (X,c¢;) is either conformal or the Teichmiller
map associated to some non-zero ¢ € Q(X, PS(f)). In the latter case, as ¥
is a conjugacy, ¢ and f*q determine the same measurable line field on W;
but then f is affine by Proposition 20. Consequently, i is conformal, so
c1 = Y cy. As ¢y and ¢, agree on Q(f), ¥ : X — X is conformal on Q(f).
By Bers’ Lemma, ¢ is 1-quasiconformal, hence conformal. Thus, ¢ = Idx

and ¢; =c¢,. O

b
e

+ See [11] for an application, involving Radstrém maps, to real dynamics.
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4.3 Teichmiiller Spaces

We pursue a discussion parallel to that of Chapter 1, in the category of finite
type towers. Define
Teich(F) = C(F)/QCol(F).
There is a canonical map Teich(F) — Teich(X, M(F)). Additionally, if G
is a subtower, there is a canonical map Teich(F) — Teich(G).
The forgetful map Teich(X, M(F)) — Teich(F) is natural in the sense

that
Teich(X, M(F)) 22 Teich(X,, M(F)))

! . !
Teich(F) — Teich(Fy)

commutes for every quasiconformal conjugacy ¢ : X — X, from F to F;.
Similarly for Teich(F) — Teich(G)....
As in Chapter 1, we may split Teich(F) according to support. For F-
invariant measurable A C X with 94 C M(F), let -

Teich*(F) = CA(X)/QCo(F)
where CA(F) = C(F)NC(X). As CA(F) is always connected, Teich*(F) is
either trivial or of positive topological dimension.

Lemma 80 Let F be & finite type tower on a complez I-manifold X, A a
partition of X into F-invariant measurable sets with boundary in M(F).

Then the canonical map

Teich(F) — [] Teich*(F)
- ')-,AEA
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is injective. If Teich®(F) is trivial for all but finitely many A, then Teich(F)

and [Taeca Teich?(F) are canonically homeomorphic.

Proof:

We may immediately dispose of sorne special cases.

Lemma 81 Let F be a finite type tower on a complezx I-manifold X.

A. Let A be the set of essential components Z where fZ is conjugate to
z ~» 2" for some n € Z, snd let B be the complementary set. Then

Teich(F) is canonically isomorphic to Teich(FP®).

B. Let A be the affine part of F, B the complementary part. Then Teich*(F)
is homeomorphic to Teicht(F*) x Teicht(FB).

Proof:

We will find it useful to split according to eventual height and member-
ship in the Fatou or Julia sets. For n € N U {c0,+}, we will employ the

abbreviations

Teich“(X) = Teichxn(f)(f)
TCiChQ"(X) = TelChQ"(f)(]:)
Teich’»(X) = Teich!P(F).

Lemma 82 Let F be g'ﬁnite type tower, 0 < m < 00, 0 < n < oo. Under
the canonical map Teich(F) — Teich(F™):

o Form <n, Teich™(F) = Teich™(F™), respecting the further splitting
Qvs. J.
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e Teich™(F) — Teich™(F™), again respecting the splitting Q vs. J.
¢ Form > n, Teich™(F) — Teich®~(F").

Proof: It is easily seen that C™(F) = C™(F") for m < n, and C*(F) C
C"(F™), corresponding statements holding for Cq, C;. Furthermore, C™(F) C
C3(F) when m > n. o

Suppose height(F) > 2. Recall that ¢ € C(F) descends to R(c) € C(RF).

Lemma 83 There is a continuous induced map R : Teich(F) — Teich(RF).
Moreover,

R : Teich*(F)—5Teich(F) x Teich*(RF).
Proof:
Lemma 84 Let O C X be the smallest F-invariant set containing a compo-
nent U of U(F).
A. For wandering U, Teich®(F) = limge sy Teich(g.U).
B. For fized U, £ = Fizx(U), Teich®(F) = Teich(U)=E.

Consequently, Teich?(F) is a complex Banach manifold.

f

4.4 Central Finiteness Theorem

We now prove the Central Finiteness Theorem, that is, the finite dimension-

ality of Teicht(F) for finite type toivers. We obtain a dimension bound on

131



Teich*(F) by induction on heitght(F). As a first step, we bound the di-
mension for finite type maps by exhibiting a natural injection of Teich™( f)
into an auxiliary finite dimensional space of deformations. Sullivan’s original
proof for rational maps made use of the obvious finite dimensional parameter
spaces; however, it is necessary to make certain normalizations, and one only
obtains a locally defined map with totally disconnected fibre. We present an
abstract functorial functorial construction applying in full generality. The
considerations of Section ?? lead to a continuous injection of Teich™(f)
into a space Def(f) whose finite dimensionality follows from the contraction

principle of Section ?7.

Lemma 85 Let F be a finite type tower on X. Then the canonical map

Teich*(F) — Teich(X, PS(F))
is tnjective.

Proof: Without loss of generality, (X, PS(F)) is hyperbolic. By Proposition
19, if ¢1, o € CH(F), ¢ € QCo(X,PS(F)), and ¢*cy = ¢1, then ¢ € QCo(F).

a

b

Let f be a finite typ;‘iterable analytic map. As PS(f) may be infinite, the
ai)ove injection does not directly lead to a dimension bound. Note however
that as
PS(f) S (X = W)U fTHPS(S)),

®
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the forgetful map
Teich( X,(X = W)U f~Y(PS(f)) ) — Teich(X, PS(f))
composed with
f*: Teich(X, PS(f)) — Teich( X,(X — W)U fY(PS(f)))

gives a self-map o : Teich(X, PS(f) — Teich(X,PS(f) whose fixed point
set contains the image of Teicht(f). Recall the forgetful maps for n > 1:

Teich(X, S(f™))
/
Teich(X,PS(f)) -

N
Teich(X,S(f*1))

As S(f*1) C (X = W)U f~1(S(f)), we similarly obtain
n: Teich(X, S(f*)) — Teich(X, S(f*™1))
on composing the forgetful map
Teich( X, (X = W)U f7/(S(f")) — Teich(X, S(f*"))
with
f# i Teich(X, S(f*)) — Teich( X, (X = W)U f7Y(S(f™).

b

Consider the commutative diagrams of analytic maps:

Teich(X, S(f™)) Z, Teich(X, S(f*1))
AN /
pal Teich*(f) L P
N\
Teich(X,S(f*~1)) (i'l;‘ Teich(X, S(f*?))
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Let Def,(f) be the analytic subvariety of Teich(X, S(f™)) where the
maps p, and o, agree; their common restriction sends Defo(f) to Defnor(f).
Taken together, these varieties and projections constitute an inverse system,

and
Def(f) = lilnDefn(f)

canonically injects into lim. Teich(X, S(f™)). By commutativity of the dia-
grams, Def,(f) contains the image of Teich(f) — Teich(X,S(f")); conse-
quently, there is an induced map Teich(f) — Def(f).

Proposition 21 Let f : W — X be a finite type iterable analytic map. Then

the canonical map

Teich(f) — Def(f)
15 injective.
Proof: The square of canonical maps commutes:

Teich(f) — Def(f)

! !
Teich(X,PS(f)) — lim_Teich(X,S(f"))

where

Reich(f) — Teich(X,PS(f))

by Lemma 85, and
Teich(X,PS(f)) — lim Teich(X, S(f))

by Proposition 3. O
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It ié important to take note of the sense in which the injection Teich(f) —
Def(f) is natural. As discussed above, the forgetful maps Teich(f) —
Teich(X,5(f")) commute with the allowable bijections associated to qua-
siconformal conjugacies, and the p, commute with all allowable bijections.
The maps o, : Teich(X,S(f")) — Teich(X,S(f*"!)) are natural in the
sense that

Teich(X,S(f") &5 Teich(Xy, S(f7))
O'nl io'n

Teich(X,S(f*1)) €& Teich(X,, S(f2~1))
- commutes for évery quasiconformal conjugacy ¢ : X — X, conformal on

X — W. Consequently, such a conjugacy induces allowable bijections

¢# : Defn(fl) - Defn(f)

and

¢* : Def(fr) — Def(f)

Thus, Teich(f) — Def(f) is natural in the sense that

Teich(f) <5 Teich(f)
L
Def(fi) <= Def(f)

commutes for quasiconformal conjugacies conformal on X — W.

s

* Forn > 1, let 8,(f) = #Dn where D, = S(f*) = S(f*1); Dpy1 C (D)
by Lemma 57, so 6,(f) is non-increasing. Consequently, fip, : Dn — Dpyy
is eventually bijective, and 6,( f) stabilizes; the eventual value is the number

of distinct forward infinite grand singular orbits. Some of these orbits may
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be absorbed by the affine part of f;let §(f) be the number of the remaining

orbits.

Proposition 22 Let f: W — X be a finite type iterable analytic map with
empty elementary and affine parts. Then Def,(f) — Teich(X,S(f")) is a

complex submanifold of dimension §,(f).

Proof: We may express Def,(f) as the inverse image of the diagonal A

under the analytic map
a =0, X pn: Teich(X,S(f™)) — Teich(X,S(f* 1))

We will prove that « is transverse to A; once we have established this, it
will follow by the Implicit Function Theorem that Def,(f) is a complex

submanifold of dimension
dimg Tetch(X, S(f")) — dimg Teich(X,S(f* 1)) = 6,.(f).
We claim that
Do, — Dp, : T:Teich(X,S(f")) — TeTeich(X, S(f*1))

1s surjective for all 7 € Teich(X,S(f")) and € € Teich(X, S(f*')) with

o.(7) = € = p.(7). By duality, it is equivalent to show that
. Doy — Dpp : T; Teich(X, S(f*7')) = TrTeich(X, S(f™))

is injective. By naturality, it is enough to check this at the base point, where

the cotangent map is given by

S fe= QX S(PTY) = QX S(FM),
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and injectivity follows by Corollary 8.
Given wy, w, € Te(X, S(f*1)), choose v € T;Teich(X, S(f™)) with

(Don = Dpp)v = (w; — w,).
Then (Dajv + (w, w) = (w, w,) where w = w; — (Doy)v. Thus,
Da(T:Teich(X,S(f"))) + T;A = TonTeich(X, S(f1))
at every 7 € Def,(f); that is, f is transverse to A. O

“Corollary 9 Let f: W — X be a finite type iterable analytic map. Then

dimg Teich*(f) < co. Furthermore,
dimg Teich(f) < §(f)
for maps wit h empty affine and elementary parts.
Proof: By Lemma 81,
dimg Teich(f) = dimg Teich(f*) + dimc Teich(f®) < af f(f) + 6(f)

where A and B are the affine and complementary parts, and moreover

dimc Teich(f4) = af§f(f). By Lemma 96, Def(f®) has topological di-
mension less than or equal to 26(f7), and 6(f) = 6(f5) by definition. O

Consequently, there are continuous maps

Teich‘(]-')w“—* Teich(f)
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and

Teich(F) = Teich'(F) x Teich(RF)

which together provide the inductive step in bounding the dimension of
Tewch(F) for finite height towers. To obtain a height-independent bound,

we appeal to:

Lemma 86 Let F be a ﬁﬁite type tower with base f and height(F) > 2, r
the base of RF. Then 6(r) < &(f); if equality holds, then

R : Teich(F)—=oTeich(RF).

Proof: By hypothesis, f is geometrically finite, and Q(F) has no height 1

component; thus Teich!(F) is trivial by either Theorem 4 or 5. O

Finally, a height-independent bound extends to infinite height towers by

virtue of:
Lemma 87 Let F be a finite type tower. Then the canonical map
Teich(F) — lim Teich(F™)

s injective.

Ay

!

Proof:
By Corollary ??, QCo(F) = N, QCo(F™). As C(F) = N, C(F)™, there

is a commutative square of canonical maps:

A
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Teich(7 —  C(X)/QCH(F)
¢ 17
lim_Teich(F*) — lim_C(X)/QCy(F™)

By [#], the action of QCy( f) on C(X) is fixed-point free, hence j is injective

in view of Lemma 11. It follows that ¢ is injective. O
Theorem 6 Let F be a finite type tower. Then dimc Teich(F) < oo.

Proof: Let N = height(F). For 1 <m < N, let f,, be the least element of
R™'F. Then

Teich™(F) = Teich' (R™'F) < Teich(fn),

hence dimc T'eich™(F) < §( fn) by Corollary 9. Moreover, if m+1 < N and
6(fm) = 6(fim+1). then dimg Teich™(F) = 0 be Lemma 86. Summing over
m yields the rough bound

dimg Teich(F) < Z[8(f) + 6(f)?

| -

for finite height towers. By Lemma 87, the same bound holds for infinite

height towers. O

Corollary 10 Let F bg a finite type tower. Then Teich(F) is a contractible

complex Banach manifold.
Proof: By Lemma 80, Teich(F) canonically injects into the product

[[ Teich™(F)

0<n<oo ¥
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of complex Banach manifolds. In view of Theorem 6 every factor Teich™(F)

with n > 0 is finite dimensional, and all but finitely many factors are points.
Thus,
Teich(F)= [[ Teich™(F)

0<n< oo
is a contractible complex Banach manifold. O

Clearly, dim Tetch™(F) = 0 for large finite m, and
Teich®(F) — limTeich™(F™)

‘hence dimc.Teiéhw(f) < §(F). This bound does not require Theorems 4 or

5, as a closer analysis shows

Teich™(F) — limTeichg(F™).
Consequently, we still obtain a bound on dimg Teichq(F), and this is all we
need in the next section to prove no wandering domains.

Finite dim gives reduction to linefields

Corollary 11 Let F be a finite type tower. Then Teich’(F) has finite er-

godic decomposition.

Confiecture 1 Let F bg a finite type tower with no affine part. Then J,(F)

supports no invariant linefield.

There are really two parts to the conjecture, the first concerning J, of
finite type map, appropriately generalizing the standard conjecture for ratio-

nal maps, the second concerning J., 8f an infinite height tower.
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Heuristically, each parabolic basin should decrease the expected dimen-

sion of Teich(f) by 1. Let p(f) be the number of parabolic basins.

Conjecture 2 Let f : W — X be a finite type iterable analytic map with

empty affine part. Then

dimg Teich™(f) + p(f) < 6().

In the algebraic setting of rational maps, the corresponding conjecture
would assert that the loci of maps with parabolic points lie in general position.
This seems to be unknown even with the avaliable algebraic techniques. The
Conjecture would follow from a more refined contraction principle involving
parabolics.

Assuming Conjecture 2, we obtain a sharp dimension bound.

Conjecture 3 Let F be a finite type tower with base f and empty affine and
elementary parts. Then dimg Teicht(F) < §(f).

Proof (assuming Conjecture 2): As above, it suffices to establish the
bound for finite height towers. In view of 9, we may assume height(F) > 2.

Let r be the base of RE; then

' dimg Teich™ (F) < dime Teich!(f) + 6(f)
by induction. Now
dimg Teich!(f) = dimg Tefch*(f) — dimg Teich(X;, S;)
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where

dimg Tetch(Xy,S;) = #S55 — 3p(f).

The sphere components of X; contribute 2p(f) poles with finite forward

r-orbit; as every other point of Sy is the image of an infinite forward singular

f-orbit in Bas(f),
&6(r) < #S(f) —2p(f),

and Conjecture 2 yields the bound

dimg Teich™(F) < [8(f) — p(f)] = [#S; = 3p(f)] + 6(r) < 6(f).

4.5 Dynamical Consequences

We say that an annulus component A of U(F) is infinitely wrapped if deg g —

oo as g increases in F[A].

Lemma 88 Let F be a complete finite type tower, U a fized component of
QUF) containing an annulus component of U(F) with htr(A) = htr(U).
Then U is a type I superattracting domain if A is infinitely wrapped, and a
Siegel disc or Hermann":‘ring otherwise.

In this section we prove the No Wandering Domains Theorem for finite
type towers. The two main ingredients are the finiteness of dim Teich(F)

and a dynamical argument concerning annular components of U(F).
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Lemma 89 Let F be a finite type tower, V a wandering component of 5(F).

Then V is an infinitely wrapped annulus.

Proof: If not, then by Lemma 1, Vo = lim_ ¢.V is a Riemann surface.
Consequently, T'ezch(V,,) injects continuously into Teich(F). By Theorem
6, dimTeich(V,) < 0, so V, is a finite type surface. As m(V,,) is finitely
generated, it follows by Lemma 1 that ¢g.V has finite type for sufficiently
large g. By hypothesis, there are infinitely many g.V occupying distinct

components of X; but X has only finitely many components. O

Let A be an annulus component of U(F), ' C A a circle. For g € F[A],
Ay = g(A) is an annulus component, [y = g(T') is a circle in Ay, and g :

I' = Ty is a covering space of degree deg g.

Lemma 90 Let F be a finite type tower on X, A an infinitely wrapped
annulus component of O(F), I' C A a circle. Then diam(T,) — 0 as g

increases in F[A].

Proof: Without loss of generality, we may assume X connected. Remove a
finite set of marked points to obtain a hyperbolic Riemann surface X*. Then
€x-(Lg) < €4,(Ty) = eg;by Schwarz’ Lemma, and €x(I'y) = O(¢x+(T,)) by
Lemma ??. As ¢, = (degh){y, for h € F[A,], € — 0 as g increases in F[A].

Consequently, diam(Ty) < lx(g) — 0. O

Lemma 91 Let X be a compact surface endowed with a constant curvature

metric. Then there exists ¢ such thiit for any simple closed curve v in X
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with diam|y| < €, exactly one component B of X — |y| is a simply connected

region with diam(B) < €.

Proof: Let ¢ = min(4(X), jdiam(X)), where +(X) > 0 is the injectivity
radius of X. Given v with diam|y| < €, fix ¢ € |y| and let D be the € ball
about z, so that |y| € D. D is isometric to its lifts in X, thus homeomorphic
to a disc and geodesically convex. By the Jordan Curve Theorem, D — ||
has two components, of which the bounded one B is simply connected, and
diam(B) = diam|y| by the geodesic convexity of D. Let A be the other
‘component of X — |y|. Then diam(A) > ¢, as otherwise diamX < 2e.

Moreover, if A is simply connected then X is a sphere. O In view of Lemma

91, for sufficiently large g € F[A], Ty, bounds a unique small disc B, with
diam(B,) = diam(I';) — 0. Let C, be the complementary component of

X-T,.

Lemma 92 Assume in the above setting that F is complete. Then for suf-
ficiently large g € F[A], every h € F[A,) extends to h € F[A, U By], where
iz“gg : By — Bygy is a branched cover of the same degree as h; in particular,

B, C Q(F™) for n < h(A).

Proof: We may assume without loss of generality that X is connected and
htz(A) = hx(A). As f has finite type, B, N S(f) for g beyond some 6§, is
either empty or a single interior point. If f o g > v, the unique component

, of f~'(By,) whose boundary meets,['; is a disc D, with 9D, = I';. We
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Figure 4.2: Wandering annuli I

claim that D, = B, for all g beyond some #,. Otherwise, D,, = C,, for
some cofinal increasing sequence g, € F[A], and X is a sphere. Furthermore,
if B,,N B, =0, then X = C,, UC, € W, so f is rational; but then
X = f(C,,) U f(Cy,) = Byy, U By, , which is impossible as the B, are small.
Consequently, B,, CC B,, or vice-versa. As diam(B;) — 0, there is a
subsequence a; = gx, with B,,,, CC B,, for all ¢. But then C,, CC C,,,,,
so Bja, = f(Ca,) CC f(Caypyy) = Bjgoy,,» contradicting diam(B,) — 0. It
follows for g > 6, that:__every h € F[A,] with htx(h) = 1 extends as claimed.
. Now assume induclively that every a € F[A,], where htr(a) < n <
hr(A) extends in the desired fashion for g > 8,. For large a € F"[A,], T4,
lies in an attracting or parabolic domain U of Q(F™) with Atz (U) = n.

Any increasing_sequence Jx € Fizx(U) converges locally uniformly to the
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associated fixed point. Consequently, diam(I's,,) — 0 as f increases in
Fizg(U). Moreover, for sufficiently large 3, T'soy lies in a small simply
connected absorbing region V' C U, hence Bg, C V. It follows by induction
that B, C Q(F™) for g > 6,.

Continuing, for sufficiently large 3 € Fizz(U), Bga, lies in some region
R C V, where R is a band surrounding the fixed point if U is a type I
attracting domain, and a vertical strip otherwise. By Lemma 40, there exist
arbitrarily small v € F[R] with Atz(y) = n + 1, such that v : R — y(R) is
a covering -space with image in a small disc about a parabolic or repelling
fixed point of F". Moreover, if degy > 1, then 4(R) is a band surrounding
a repelling point. As B,gay C Q(F™), it follows that I, 4., is homotopically
trivial in y(R), hence B,goy € v(R) as y(R) is small. The component of
Y71 (Bygag) with boundary meeting [z, is a disc, necessarily Bp,,, and thus
V\Bgag : Boag = Bypag 15 @ homeomorphism.

Suppose h € F[A,] with htz(h) = n + 1. We claim that & extends in the
desired fashion. Assume without loss of generality that h is primitive. As
v o0 Boa =X h for sufficiently small v, h = § 0y o B0 a where htr(§) < n. By

induction, h extends as claimed. O

Lemma 93 For sufficiently large g € F[A], if h € F[A,] and deg(h) > 1,
then there is a largest j € F[A] with j < h and degj = 1. Furthermore, if

F is complete, then B;, contains a critical value of f.
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Figure 4.3: Wandering annuli II

Proof: Proceeding by induction on n = htz(h), we may assume without
loss of generality that A is primitive. For n =1 there is nothing to show. If
n > 1, write h = § oy o 3 where htx(3),hts(6) < n and Atr(y) = n. As
shown above, we may choose 3 and § so that degy = 1. Thus, either deg 3

or deg 3 is greater than 1, and the assertion follows by induction. O

Proposition 23 Let F be a complete finite type tower on X, A an infinitely
wrapped annulus component of 5(F). Then for large g € F[A], A, lies in a
type I superattracting domain of height hx(A).

Proof: Assume without loss of generality that htz(A) = Ar(A). In view of
Lemma 93, there is a cofinal sequence g, € F[A] with each B,, containing

one of the finitely many critical valyes of f. Consequently, as diam(B,) —
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0, there exist ¢ € F[A] and A € F[A,] with By, CC B,. Let U be the
component of (F) containing A,. By Lemma 92 and Schwarz’ Lemma, B,
contains an attracting or superattracting fixed point r of F*, where n =
htr(h). Thus, Up, is a fixed component of Q(F™). But htr(A,) = htr(z) =
n, hence U = U, by a further appeal to Lemma 92. The conclusion follows

by Lemma 88. O

Theorem 7 Let F be a finite type tower. Then Q(F) has no wandering

component.

Proof: By Lemma ?7?, if U is a wandering component of Q(F) then A =
U — M(F) is a wandering component of U(F). In view of Lemma 89, A is

an infinitely wrapped annulus. But then U is stable by Proposition 23. O

In view of Corollary 3, we conclude:

Corollary 12 Let F be a finite type tower. Then every component of Q(F)
has finite height.

Proposition 24 Let X be a compact complez 1-manifold, f : W — X a
finite type iterable analytic map. Assume that every essential component is
a sphere or torus. Thengthe set of non-repelling periodic points of f is finite.
Consequently, all but finitely many grand orbits in mo(Q(f)) either escape or

contain Siegel discs.

Corollary 13 Let F be a finite type tower. Then all but finitely many grand
' orbits in mo(QU(F)) are Siegel discs of height 1.
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Proof: By Proposition 24, Q(r;) has a finite number of periodic components

assoonas k>1. 0

Topological Dimension

We repeatedly use the following trivial fact: If f : X — ¥ is continuous and

V C Y is open, then f(3f~1(V)) C gV.

Lemma 94 Let X and Y be topological spaces, f: X — Y continuous and

injective. Then dim X < dimY.

Proof: We may assume without loss of generality that d = dimY < oo, and
proceed by induction on finite d. The case d = —1is vacuous as X = Y = .
Assume d > 0, and inductively assume the dimension inequality for n < d.
Suppose U is open, z € U C X. As f is injective, we may chooseopen V C Y
with z € f~1(V) C U and dimdV < d. Then frog-1vy : OfF Y (V) — 9V is

injective, hence dimdf~'(V) < dimdV < d by inducton. O

Lemma 95 Let X and Y be non-empty topological spaces of finite dimen-
sion, f: X — Y continuous. If V C Y is open and dimdV < dimY then
dimdf~ (V) < dim X .r

7

Proof: Let g = fiap-1(v) : 8f7}(V) — 9V. We proceed by induction on
d=dimY. For d =0, 9V = 0, hence f~1(V) = @ and thus dim f~Y(V) =
—1 < dim.X. Assume the claim for d — 1. Given z € df~'(V) and open

Kd
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U C 9f~!(V) containing z, choose open W C 9V with z € g~ (W) C U and

dim oW < dimdV <dim X as X is finite dimensional. O

Lemma 96 Let {fo5: Xo — Xp : @ > B} be an inverse system of topologi-
cal spaces. Then

dimliln X, < limsupdim X,.

Proof: Let Y = lim._ X, with canonical maps =, : ¥ — X,, and let
d = limsupdim X,. If d = oo, there is nothing to prove; we proceed by
induction on finite d. Passiﬁg to a cofinal subsystem, we may assume every
X, has dirﬁension d. If d = —1 then every X, = 0, hence Y = @ and
dimY = —1. Assume the claim holds for d — 1, and suppose U C Y is
open, y € U. There exist v and open V, C X, with y € nJ(V,) € U and
dimdV, < d-1. Set V = n7(V,), Vo = f5 (V,) for @ > 4. By construction,
V and the V, are open sets, m,(0V) C 9V, for a > v, and f,5(9V,) C dV;

for « > 8 > v. Moreover, dimdV, < d — 1 by Lemma 95. Thus,

{foplove : OVa = 0Vp : a2 32>}
1s an inverse system, and there is a canonical continuous map
j 10V —1imaV,.

b4

By naturality, composin’é with the canonical map lim._ 9V, — lim_ X, gives

the inclusion of V into Y, hence j is injective. By induction,
dimdV < dimlimdV, < d -1,
. hencedimY <& O ¥
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Proposition 25 Let M be a topological n-manifold, 0 < n < co. Then
dimM = n.

2ry
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