L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

An Introduction to Holomorphic Dynamics (with particular focus on transcendental functions)

L. Rempe

Department of Mathematical Sciences, University of Liverpool

Liverpool, December 2006

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Introduction

- Basic notation
- Basic concepts
- Some examples

Normal families

- Definition
- Theorems of Picard and Montel
- Definition of Fatou and Julia sets
- **Basic Properties**
 - Periodic points
- Fatou components
- Properties of the Julia set
- 5 $J(f) \neq \emptyset$
 - Periodic points
 - Escaping points

Outline

・ロット (雪) ・ (日) ・ (日)

э

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

2

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componer Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Introduction

- Basic notation
- Basic concepts
- Some examples

Normal families

- Definition
- Theorems of Picard and Montel
- Definition of Fatou and Julia sets
- **Basic Properties**
 - Periodic points
- Fatou components
- Properties of the Julia set
- 5 $J(f) \neq \emptyset$
 - Periodic points
 - Escaping points

Outline

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

2

3

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Introduction

- Basic notation
- Basic concepts
- Some examples

Normal families

- Definition
- Theorems of Picard and Montel
- Definition of Fatou and Julia sets
 - **Basic Properties**
 - Periodic points
 - Fatou components
 - Properties of the Julia set
- 5 $J(f) \neq \emptyset$
 - Periodic points
 - Escaping points

Outline

・ コット (雪) (小田) (コット 日)

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

2

3

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Introduction

- Basic notation
- Basic concepts
- Some examples

Normal families

- Definition
- Theorems of Picard and Montel
- Definition of Fatou and Julia sets
- **Basic Properties**
 - Periodic points
 - Fatou components
 - Properties of the Julia set
- 5 $J(f) \neq \emptyset$
 - Periodic points
 - Escaping points

Outline

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Introduction

- Basic notation
- Basic concepts
- Some examples

Normal families

- Definition
- Theorems of Picard and Montel
- Definition of Fatou and Julia sets
- **Basic Properties**
 - Periodic points
 - Fatou components
 - Properties of the Julia set
- 5 $J(f) \neq \emptyset$

3

- Periodic points
- Escaping points

Outline

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

L. Rempe

Introduction

Basic notation

Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic notation

• \mathbb{C} is the complex plane.

• $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.

- A function f : U → Ĉ is called *meromorphic* if it is holomorphic with respect to the complex structure on C. (I.e., f is holomorphic outside of a discrete set of poles.)
- A holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is called *entire*.
- A function f : C → Ĉ (entire or meromorphic) is called transcendental if it does not extend continuously to Ĉ. (I.e., f has an essential singularity at ∞.)
- (Otherwise, it is a polynomial or a rational function.)

L. Rempe

Introduction

Basic notation

Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic notation

・ コット (雪) (小田) (コット 日)

• \mathbb{C} is the complex plane.

• $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.

- A function f : U → Ĉ is called *meromorphic* if it is holomorphic with respect to the complex structure on C. (I.e., f is holomorphic outside of a discrete set of poles.)
- A holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is called *entire*.
- A function f : C → Ĉ (entire or meromorphic) is called transcendental if it does not extend continuously to Ĉ. (I.e., f has an essential singularity at ∞.)
- (Otherwise, it is a polynomial or a rational function.)

L. Rempe

Introduction

Basic notation

Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic notation

- \mathbb{C} is the complex plane.
- $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.
- A function f : U → Ĉ is called *meromorphic* if it is holomorphic with respect to the complex structure on C. (I.e., f is holomorphic outside of a discrete set of poles.)
- A holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is called *entire*.
- A function f : C → Ĉ (entire or meromorphic) is called transcendental if it does not extend continuously to Ĉ. (I.e., f has an essential singularity at ∞.)
- (Otherwise, it is a polynomial or a rational function.)

L. Rempe

Introduction

Basic notation

Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic notation

- C is the complex plane.
- $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.
- A function f : U → Ĉ is called *meromorphic* if it is holomorphic with respect to the complex structure on C. (I.e., f is holomorphic outside of a discrete set of poles.)
- A holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is called *entire*.
- A function f : C → Ĉ (entire or meromorphic) is called transcendental if it does not extend continuously to Ĉ. (I.e., f has an essential singularity at ∞.)
- (Otherwise, it is a polynomial or a rational function.)

L. Rempe

Introduction

Basic notation

Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic notation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- \mathbb{C} is the complex plane.
- $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.
- A function f : U → Ĉ is called *meromorphic* if it is holomorphic with respect to the complex structure on C. (I.e., f is holomorphic outside of a discrete set of poles.)
- A holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is called *entire*.
- A function f : C → Ĉ (entire or meromorphic) is called transcendental if it does not extend continuously to Ĉ. (I.e., f has an essential singularity at ∞.)

• (Otherwise, it is a polynomial or a rational function.)

L. Rempe

Introduction

Basic notation

Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic notation

- $\bullet \ \mathbb{C}$ is the complex plane.
- $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere.
- A function f : U → Ĉ is called *meromorphic* if it is holomorphic with respect to the complex structure on C. (I.e., f is holomorphic outside of a discrete set of poles.)
- A holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is called *entire*.
- A function f : C → Ĉ (entire or meromorphic) is called transcendental if it does not extend continuously to Ĉ. (I.e., f has an essential singularity at ∞.)
- (Otherwise, it is a polynomial or a rational function.)

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that *f* is nonconstant and nonlinear.

For simplicity, we will assume that *f* is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions *f* : C → C; e.g.
 z → exp(*z*);
- Transcendental meromorphic functions *f* : C → Ĉ; e.g.
 z → tan(*z*).

We want to study *f* as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

- Definition Theorems of Picard and Montel
- Definition o Fatou and Julia sets
- Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that *f* is nonconstant and nonlinear.

For simplicity, we will assume that f is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions *f* : C → C; e.g.
 z → exp(*z*);
- Transcendental meromorphic functions *f* : C → Ĉ; e.g.
 z → tan(*z*).

We want to study *f* as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

- Definition Theorems of Picard and Montel
- Definition o Fatou and Julia sets
- Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that *f* is nonconstant and nonlinear.

For simplicity, we will assume that f is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions *f* : C → C; e.g.
 z → exp(*z*);
- Transcendental meromorphic functions *f* : C → Ĉ; e.g.
 z → tan(*z*).

We want to study *f* as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

- Definition Theorems of Picard and Montel
- Definition o Fatou and Julia sets
- Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that *f* is nonconstant and nonlinear.

For simplicity, we will assume that f is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions *f* : C → C; e.g.
 z → exp(*z*);
- Transcendental meromorphic functions *f* : C → Ĉ; e.g.
 z → tan(*z*).

We want to study *f* as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

- Definition Theorems of Picard and Montel
- Definition o Fatou and Julia sets
- Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that f is nonconstant and nonlinear.

For simplicity, we will assume that f is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions *f* : C → C; e.g.
 z → exp(*z*);
- Transcendental meromorphic functions $f : \mathbb{C} \to \hat{\mathbb{C}}$; e.g. $z \mapsto \tan(z)$.

We want to study *f* as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

・ロト・日本・日本・日本・日本・日本

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that f is nonconstant and nonlinear.

For simplicity, we will assume that f is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions *f* : C → C; e.g.
 z → exp(*z*);
- Transcendental meromorphic functions $f : \mathbb{C} \to \hat{\mathbb{C}}$; e.g. $z \mapsto \tan(z)$.

We want to study *f* as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

・ロト・西ト・ヨト・ヨー うへぐ

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

- Definition Theorems of Picard and Montel
- Definition of Fatou and Julia sets
- Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that *f* is nonconstant and nonlinear.

For simplicity, we will assume that f is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto \exp(z)$;
- Transcendental meromorphic functions $f : \mathbb{C} \to \hat{\mathbb{C}}$; e.g. $z \mapsto \tan(z)$.

We want to study *f* as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Holomorphic dynamics

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Suppose also that f is nonconstant and nonlinear.

For simplicity, we will assume that f is either a polynomial or transcendental. (Don't consider rational functions.)

That is, we have the following cases:

- Polynomials $f : \mathbb{C} \to \mathbb{C}$; e.g. $z \mapsto z^2$;
- Entire transcendental functions *f* : C → C; e.g.
 z → exp(*z*);
- Transcendental meromorphic functions *f* : C → Ĉ; e.g.
 z → tan(*z*).

We want to study f as a dynamical system. That is, we are interested in the behavior of

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic objects

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $f:\mathbb{C}\to\hat{\mathbb{C}}$

- **Fatou set** *F*(*f*): set of points near which the iterates have "stable" behavior.
- Julia set *J*(*f*): complement of the Fatou set; locus of "chaotic" behavior.
- Escaping set

 $U(f) := \{z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty\}.$

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic objects

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$f:\mathbb{C}\to\hat{\mathbb{C}}$$

- **Fatou set** *F*(*f*): set of points near which the iterates have "stable" behavior.
- Julia set *J*(*f*): complement of the Fatou set; locus of "chaotic" behavior.

• Escaping set

 $f(f) := \{z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty\}.$

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Basic objects

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$f:\mathbb{C}\to\hat{\mathbb{C}}$$

- **Fatou set** *F*(*f*): set of points near which the iterates have "stable" behavior.
- Julia set *J*(*f*): complement of the Fatou set; locus of "chaotic" behavior.
- Escaping set

1

$$f(f) := \{z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty\}.$$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

A simple example

For example, when $f(z) = z^2$: points with |z| < 1 will converge to a stable equilibrium at zero under iteration. Points with |z| > 1 will converge to ∞ .

On the unit circle, there are points nearby which converge to 0 and points which converge to ∞ , so the behavior is *not* stable there. So we should have:

 $J(f) = \{ |z| = 1 \};$ $F(f) = \mathbb{C} \setminus J(f) = \{ |z| \neq 1 \};$ $I(f) = \{ |z| > 1 \}.$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the

 $J(f) \neq \emptyset$ Periodic points Escaping points

A simple example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

For example, when $f(z) = z^2$: points with |z| < 1 will converge to a stable equilibrium at zero under iteration. Points with |z| > 1 will converge to ∞ .

On the unit circle, there are points nearby which converge to 0 and points which converge to ∞ , so the behavior is *not* stable there. So we should have:

 $J(f) = \{ |z| = 1 \};$ $F(f) = \mathbb{C} \setminus J(f) = \{ |z| \neq 1 \};$ $I(f) = \{ |z| > 1 \}.$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou compone Properties of the

 $J(f) \neq \emptyset$ Periodic points Escaping point

A simple example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

For example, when $f(z) = z^2$: points with |z| < 1 will converge to a stable equilibrium at zero under iteration. Points with |z| > 1 will converge to ∞ .

On the unit circle, there are points nearby which converge to 0 and points which converge to ∞ , so the behavior is *not* stable there. So we should have:

 $J(f) = \{ |z| = 1 \};$ $F(f) = \mathbb{C} \setminus J(f) = \{ |z| \neq 1 \};$ $I(f) = \{ |z| > 1 \}.$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the

 $J(f) \neq \emptyset$ Periodic points Escaping point

A simple example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

For example, when $f(z) = z^2$: points with |z| < 1 will converge to a stable equilibrium at zero under iteration. Points with |z| > 1 will converge to ∞ .

On the unit circle, there are points nearby which converge to 0 and points which converge to ∞ , so the behavior is *not* stable there. So we should have:

 $J(f) = \{ |z| = 1 \};$ $F(f) = \mathbb{C} \setminus J(f) = \{ |z| \neq 1 \};$ $I(f) = \{ |z| > 1 \}.$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componer Properties of the

 $J(f) \neq \emptyset$ Periodic points Escaping points

A simple example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

For example, when $f(z) = z^2$: points with |z| < 1 will converge to a stable equilibrium at zero under iteration. Points with |z| > 1 will converge to ∞ .

On the unit circle, there are points nearby which converge to 0 and points which converge to ∞ , so the behavior is *not* stable there. So we should have:

 $J(f) = \{ |z| = 1 \};$ $F(f) = \mathbb{C} \setminus J(f) = \{ |z| \neq 1 \};$ $I(f) = \{ |z| > 1 \}.$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

A simple example

For example, when $f(z) = z^2$: points with |z| < 1 will converge to a stable equilibrium at zero under iteration. Points with |z| > 1 will converge to ∞ .

On the unit circle, there are points nearby which converge to 0 and points which converge to ∞ , so the behavior is *not* stable there. So we should have:

 $J(f) = \{ |z| = 1 \};$ $F(f) = \mathbb{C} \setminus J(f) = \{ |z| \neq 1 \};$ $I(f) = \{ |z| > 1 \}.$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some Julia sets

- The Julia set *J* is compact.
- The escaping set is a completely invariant component of the Fatou set (called the basin of infinity).

・ロト・西ト・西ト・日・ 白・ シック・

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some Julia sets

• The Julia set *J* is compact.

 The escaping set is a completely invariant component of the Fatou set (called the basin of infinity).

▲口▶▲圖▶▲≣▶▲≣▶ ■ のQの

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some Julia sets

- The Julia set *J* is compact.
- The escaping set is a completely invariant component of the Fatou set (called the basin of infinity).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some Julia sets

$z \mapsto \exp(z) - 2$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

• *J* is an uncountable union of Jordan arcs $g : [0, \infty) \to \mathbb{C}$ with $g(t) \to \infty$. We call $g((0, \infty))$ a *ray* and g(0) the *endpoint* of that ray.

- The set *E* of all endpoints has Hausdorff dimension 2, but the union *R* of all rays has Hausdorff dimension 1.
- *E* is totally disconnected, but
 E ∪ {∞} is connected.

Some Julia sets

 $z \mapsto \exp(z) - 2$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

• *J* is an uncountable union of Jordan arcs $g : [0, \infty) \to \mathbb{C}$ with $g(t) \to \infty$. We call $g((0, \infty))$ a *ray* and g(0) the *endpoint* of that ray.

- The set *E* of all endpoints has Hausdorff dimension 2, but the union *R* of all rays has Hausdorff dimension 1.
- *E* is totally disconnected, but
 E ∪ {∞} is connected.

Some Julia sets

$z \mapsto \exp(z) - 2$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

J is an uncountable union of Jordan arcs g : [0,∞) → C with g(t) → ∞. We call g((0,∞)) a ray and g(0) the endpoint of that ray.

- The set *E* of all endpoints has Hausdorff dimension 2, but the union *R* of all rays has Hausdorff dimension 1.
- *E* is totally disconnected, but
 E ∪ {∞} is connected.

Some Julia sets

$$z \mapsto \exp(z) - 2$$

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

J is an uncountable union of Jordan arcs g : [0,∞) → C with g(t) → ∞. We call g((0,∞)) a ray and g(0) the endpoint of that ray.

- The set *E* of all endpoints has Hausdorff dimension 2, but the union *R* of all rays has Hausdorff dimension 1.
- *E* is totally disconnected, but
 E ∪ {∞} is connected.

Some Julia sets

 $z \mapsto \exp(z) - 2$

L. Rempe

Introduction

- Basic notation Basic concepts
- Some examples

Normal families

- Definition Theorems of Picard and Montel
- Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componer Properties of the Julia set

$J(f) \neq \emptyset$ Periodic points

The set *R* of rays is completely contained in the escaping set *l(f)*.

• Some endpoints belong to *I*(*f*); others do not.

Some Julia sets

$z \mapsto \exp(z) - 2$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

L. Rempe

Introduction

Basic notation Basic concepts

Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou compone Properties of the Julia set

$J(f) \neq \emptyset$ Periodic points

Escaping points

• The set *R* of rays is completely contained in the escaping set *I*(*f*).

• Some endpoints belong to *I*(*f*); others do not.

Some Julia sets

 $z \mapsto \exp(z) - 2$

・ コット (雪) ・ (目) ・ (目)

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componen Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Locally uniform convergence

Let f_n be a family of holomorphic (or meromorphic) functions defined on some open set U.

Recall that we say that (f_n) converges *locally uniformly* to a function *f* if the sequence converges uniformly on every compact subset of *U*.

(For example, the sequence $f_n(z) = z/n$ converges locally uniformly to f(z) = 0 on \mathbb{C} .)

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Locally uniform convergence

Let f_n be a family of holomorphic (or meromorphic) functions defined on some open set U.

Recall that we say that (f_n) converges *locally uniformly* to a function *f* if the sequence converges uniformly on every compact subset of *U*.

(For example, the sequence $f_n(z) = z/n$ converges locally uniformly to f(z) = 0 on \mathbb{C} .)

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Locally uniform convergence

Let f_n be a family of holomorphic (or meromorphic) functions defined on some open set U.

Recall that we say that (f_n) converges *locally uniformly* to a function *f* if the sequence converges uniformly on every compact subset of *U*.

(For example, the sequence $f_n(z) = z/n$ converges locally uniformly to f(z) = 0 on \mathbb{C} .)

L. Rempe

Normality

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

A family \mathcal{F} of holomorphic or meromorphic functions on U is *normal* (on U) if every sequence of functions in \mathcal{F} contains a locally uniformly convergent subsequence.

We say that \mathcal{F} is normal *in a point z* if z has an open neighborhood on which \mathcal{F} is normal.

Arzela-Ascoli: Normality is a local property.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Normality

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

A family \mathcal{F} of holomorphic or meromorphic functions on U is *normal* (on U) if every sequence of functions in \mathcal{F} contains a locally uniformly convergent subsequence.

We say that \mathcal{F} is normal *in a point z* if *z* has an open neighborhood on which \mathcal{F} is normal.

Arzela-Ascoli: Normality is a local property.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Normality

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

A family \mathcal{F} of holomorphic or meromorphic functions on U is *normal* (on U) if every sequence of functions in \mathcal{F} contains a locally uniformly convergent subsequence.

We say that \mathcal{F} is normal *in a point z* if *z* has an open neighborhood on which \mathcal{F} is normal.

Arzela-Ascoli: Normality is a local property.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some facts about normality

Theorem (Riemann)

Suppose f is holomorphic on a domain U, except at an isolated singularity $z_0 \in U$. If f is bounded near z_0 , then z_0 is a removable singularity.

heorem (Liouville)

Any bounded entire function $f : \mathbb{C} \to \mathbb{C}$ is constant.

Theorem (Montel)

Any uniformly bounded family of holomorphic functions is normal.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some facts about normality

Theorem (Riemann)

Suppose f is holomorphic on a domain U, except at an isolated singularity $z_0 \in U$. If f is bounded near z_0 , then z_0 is a removable singularity.

Theorem (Liouville)

Any bounded entire function $f : \mathbb{C} \to \mathbb{C}$ is constant.

Theorem (Montel)

Any uniformly bounded family of holomorphic functions is normal.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some facts about normality

Theorem (Riemann)

Suppose f is holomorphic on a domain U, except at an isolated singularity $z_0 \in U$. If f is bounded near z_0 , then z_0 is a removable singularity.

Theorem (Liouville)

Any bounded entire function $f : \mathbb{C} \to \mathbb{C}$ is constant.

Theorem (Montel)

Any uniformly bounded family of holomorphic functions is normal.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some facts about normality

Theorem (Picard)

Suppose f is meromorphic on a domain U, except at an isolated singularity $z_0 \in U$.

If f omits three values in the Riemann sphere (e.g., f never takes the values 0, 1 and ∞), then z_0 is a removable singularity.

heorem (Picard)

Any meromorphic function $f:\mathbb{C}\to\hat{\mathbb{C}}$ which omits three values is constant.

Theorem (Montel)

A family of meromorphic functions which all omit the same three values is normal.

・ コット (雪) ・ (目) ・ (目)

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some facts about normality

Theorem (Picard)

Suppose f is meromorphic on a domain U, except at an isolated singularity $z_0 \in U$.

If f omits three values in the Riemann sphere (e.g., f never takes the values 0, 1 and ∞), then z_0 is a removable singularity.

Theorem (Picard)

Any meromorphic function $f : \mathbb{C} \to \hat{\mathbb{C}}$ which omits three values is constant.

Theorem (Montel)

A family of meromorphic functions which all omit the same three values is normal.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition

Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Some facts about normality

Theorem (Picard)

Suppose f is meromorphic on a domain U, except at an isolated singularity $z_0 \in U$.

If f omits three values in the Riemann sphere (e.g., f never takes the values 0, 1 and ∞), then z_0 is a removable singularity.

Theorem (Picard)

Any meromorphic function $f : \mathbb{C} \to \hat{\mathbb{C}}$ which omits three values is constant.

Theorem (Montel)

A family of meromorphic functions which all omit the same three values is normal.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Definition of Fatou and Julia sets

F(*f*) := {*z* ∈ ℂ : (*fⁿ*) is defined and normal near *z*}; *J*(*f*) := ℂ \ *F*(*f*).

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Definition of Fatou and Julia sets

F(*f*) := {*z* ∈ ℂ : (*fⁿ*) is defined and normal near *z*}; *J*(*f*) := ℂ \ *F*(*f*).

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Definition of Fatou and Julia sets

F(*f*) := {*z* ∈ ℂ : (*fⁿ*) is defined and normal near *z*}; *J*(*f*) := ℂ \ *F*(*f*).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L. Rempe

Periodic points

・ コット (雪) (小田) (コット 日)

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Periodic points Fatou components Properties of the Julia set

$J(f) \neq \emptyset$ Periodic points Escaping points

• $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.

A periodic point is *attracting* if |(fⁿ)'(z)| < 1.
 (Attracting points are in the Fatou set.)

• A periodic point is *repelling* if $|(f^n)'(z)| > 1$.

(Repelling points are in the Julia set.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Holomorphic Dynamics

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

• $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.

 A periodic point is attracting if |(fⁿ)'(z)| < 1. (Attracting points are in the Fatou set.)

A periodic point is *repelling* if |(fⁿ)'(z)| > 1.
 (Repelling points are in the Julia set.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Holomorphic Dynamics

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition c Fatou and Julia sets

Basic Propertie

Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

- $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.
- A periodic point is *attracting* if |(fⁿ)'(z)| < 1. (Attracting points are in the Fatou set.)
- A periodic point is *repelling* if |(fⁿ)'(z)| > 1.
 (Repelling points are in the Julia set.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Holomorphic Dynamics

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

- $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.
- A periodic point is *attracting* if |(fⁿ)'(z)| < 1. (Attracting points are in the Fatou set.)
- A periodic point is *repelling* if |(fⁿ)'(z)| > 1.
 (Repelling points are in the Julia set.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Holomorphic Dynamics

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

- $z \in \mathbb{C}$ is *periodic* if $f^n(z) = z$.
- A periodic point is *attracting* if |(fⁿ)'(z)| < 1. (Attracting points are in the Fatou set.)
- A periodic point is *repelling* if |(fⁿ)'(z)| > 1.
 (Repelling points are in the Julia set.)

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

- Definition Theorems of Picard and Montel
- Definition o Fatou and Julia sets
- Basic Propertie
- Fatou components
- Properties of the Julia set
- $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
- parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- *Baker domains:* domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Fatou components

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
 - parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- *Baker domains:* domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Fatou components

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
- parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- *Baker domains:* domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Periodic points Fatou components

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
- parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- *Baker domains:* domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Periodic points

Fatou components Properties of the

 $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
- parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- *Baker domains:* domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Fatou components

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
- parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- *Baker domains:* domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Fatou components

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
- parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- Baker domains: domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Fatou components

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Fatou components

- Attracting basins (possibly at ∞ , for polynomials);
- parabolic basins;
- *Siegel disks:* simply connected domains on which *f^k* is conjugate to an irrational rotation;
- Herman rings: doubly connected domains on which f^k is conjugate to an irrational rotation (not possible for polynomials and entire functions);
- Baker domains: domains on which the iterates tend to an essential singularity (not possible for polynomials and rational functions);
- a preimage component of a domain of one of these types;
- Wandering domains: not possible for polynomials and rational functions.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Fatou components

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Examples of Baker and wandering domains

 $f(z) = z + 1 + \exp(-z).$

 $f(z) = z + \sin(2\pi z)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Propertie

Periodic points

Fatou components

Properties of the Julia set

$J(f) \neq \emptyset$ Periodic points Escaping points

Examples of Baker and wandering domains

$$f(z)=z+1+\exp(-z).$$

$$f(z)=z+\sin(2\pi z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties

Fatou componen

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Properties of the Julia set

• J(f) is nonempty. (In fact, J(f) is infinite).

• If $z \in \hat{\mathbb{C}}$ (with at most two exceptions), then the set

$\{w \in \mathbb{C} : f^k(w) = z \text{ for some } k\}$

accumulates on the whole Julia set.

- J(f) has no isolated points.
- J(f) is uncountable.
- J(f) is the closure of the set of repelling periodic points.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties

Fatou componen

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Properties of the Julia set

J(f) is nonempty. (In fact, J(f) is infinite).
If z ∈ Ĉ (with at most two exceptions), then the set

 $\{w \in \mathbb{C} : f^k(w) = z \text{ for some } k\}$

accumulates on the whole Julia set.

• J(f) has no isolated points.

• J(f) is uncountable.

• J(f) is the closure of the set of repelling periodic points.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points

Fatou componer

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Properties of the Julia set

J(f) is nonempty. (In fact, J(f) is infinite).
If z ∈ Ĉ (with at most two exceptions), then the set

 $\{w \in \mathbb{C} : f^k(w) = z \text{ for some } k\}$

accumulates on the whole Julia set.

- J(f) has no isolated points.
- J(f) is uncountable.

• J(f) is the closure of the set of repelling periodic points.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points

Fatou componer

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Properties of the Julia set

J(f) is nonempty. (In fact, J(f) is infinite).
If z ∈ Ĉ (with at most two exceptions), then the set

 $\{w \in \mathbb{C} : f^k(w) = z \text{ for some } k\}$

accumulates on the whole Julia set.

- J(f) has no isolated points.
- J(f) is uncountable.

• J(f) is the closure of the set of repelling periodic points.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points

Fatou componer

Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Properties of the Julia set

J(f) is nonempty. (In fact, J(f) is infinite).
If z ∈ Ĉ (with at most two exceptions), then the set

 $\{w \in \mathbb{C} : f^k(w) = z \text{ for some } k\}$

accumulates on the whole Julia set.

- J(f) has no isolated points.
- J(f) is uncountable.
- J(f) is the closure of the set of repelling periodic points.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

L. Rempe

$J(f) \neq \emptyset$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Theorem

J(f) contains infinitely many points.

The most difficult case is that of $f : \mathbb{C} \to \mathbb{C}$ entire and transcendental.

L. Rempe

 $J(f) \neq \emptyset$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Theorem

J(f) contains infinitely many points.

The most difficult case is that of $f : \mathbb{C} \to \mathbb{C}$ entire and transcendental.

L. Rempe

 $J(f) \neq \emptyset$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Theorem

J(f) contains infinitely many points.

The most difficult case is that of $f : \mathbb{C} \to \mathbb{C}$ entire and transcendental.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points

Existence of periodic points

Lemma

If f has infinitely many periodic points, then J(f) is infinite.

.emma

f² has a fixed point.

Proof: Apply Picard's theorem to
$$z \mapsto \frac{f^2(z) - z}{f(z) - z}$$

.emma

Suppose f has a fixed point at 0. If f only has finitely many fixed points, then f has infinitely many zeros.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Existence of periodic points

Lemma

If f has infinitely many periodic points, then J(f) is infinite.

Lemma

f² has a fixed point.

Proof: Apply Picard's theorem to $z \mapsto \frac{f^2(z) - z}{f(z) - z}$

emma

Suppose f has a fixed point at 0. If f only has finitely many fixed points, then f has infinitely many zeros.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points

Existence of periodic points

Lemma

If f has infinitely many periodic points, then J(f) is infinite.

Lemma

f² has a fixed point.

Proof: Apply Picard's theorem to $z \mapsto \frac{f^2(z) - z}{f(z) - z}$.

emma

Suppose f has a fixed point at 0. If f only has finitely many fixed points, then f has infinitely many zeros.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Existence of periodic points

Lemma

If f has infinitely many periodic points, then J(f) is infinite.

Lemma

f² has a fixed point.

Proof: Apply Picard's theorem to $z \mapsto \frac{f^2(z) - z}{f(z) - z}$.

Lemma

Suppose f has a fixed point at 0. If f only has finitely many fixed points, then f has infinitely many zeros.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Lemma

If f has infinitely many periodic points, then J(f) is infinite.

Existence of periodic points

Lemma

f² has a fixed point.

Proof: Apply Picard's theorem to
$$z \mapsto \frac{f^2(z) - z}{f(z) - z}$$
.

Lemma

Suppose f has a fixed point at 0. If f only has finitely many fixed points, then f has infinitely many zeros.

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition of Fatou and Julia sets

Basic Properties Periodic points Fatou component Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

Theorem (Eremenko)

Let $f : \mathbb{C} \to \mathbb{C}$ be entire and transcendental. Then the escaping set I(f) is nonempty.

(In fact, Eremenko even proves $J(f) \cap I(f) \neq \emptyset$. However, our proof will not yield this directly.)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properti

Fatou components Properties of the Julia set

 $J(f) \neq \emptyset$ Periodic points Escaping points

A consequence of Bohr's theorem

Theorem (Bohr)

Let $f:\mathbb{C}\to\mathbb{C}$ be entire and transcendental. Let R be sufficiently large, and let

 $D := \{ z \in \mathbb{C} : |z| < R \}.$

Then f(D) contains a circle $\{|z| = \widetilde{R}\}$ of radius $\widetilde{R} \ge 2R$.

(As an example, consider $f(z) = \exp(z)$.) We will prove this theorem next time, using a normal family argument.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componer Properties of the

 $J(f) \neq \emptyset$ Periodic points Escaping points

A consequence of Bohr's theorem

Theorem (Bohr)

Let $f:\mathbb{C}\to\mathbb{C}$ be entire and transcendental. Let R be sufficiently large, and let

 $D := \{ z \in \mathbb{C} : |z| < R \}.$

Then f(D) contains a circle $\{|z| = \widetilde{R}\}$ of radius $\widetilde{R} \ge 2R$.

(As an example, consider $f(z) = \exp(z)$.)

We will prove this theorem next time, using a normal family argument.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Introduction

Basic notation Basic concepts Some examples

Normal families

Definition Theorems of Picard and Montel

Definition o Fatou and Julia sets

Basic Properties Periodic points Fatou componer Properties of the

 $J(f) \neq \emptyset$ Periodic points Escaping points

A consequence of Bohr's theorem

Theorem (Bohr)

Let $f:\mathbb{C}\to\mathbb{C}$ be entire and transcendental. Let R be sufficiently large, and let

 $D := \{ z \in \mathbb{C} : |z| < R \}.$

Then f(D) contains a circle $\{|z| = \widetilde{R}\}$ of radius $\widetilde{R} \ge 2R$.

(As an example, consider $f(z) = \exp(z)$.) We will prove this theorem next time, using a normal family argument.