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Abstract The process of infection during an epidemic can be envisaged as
being transmitted via a network of routes represented by a contact network.
Most differential equation models of epidemics are mean-field models. These
contain none of the underlying spatial structure of the contact network. By
extending the mean-field models to pair-level, some of the spatial structure
can be contained in the model. Some networks of transmission such as river
or transportation networks are clearly asymmetric, whereas others such as
airborne infection can be regarded as symmetric. Pair-level models have been
developed to describe symmetric contact networks. Here we report on work
to develop a pair-level model that is also applicable to asymmetric contact
networks. The procedure for closing the model at the level of pairs is discussed
in detail. The model is compared against stochastic simulations of epidemics
on asymmetric contact networks and against the predictions of the symmetric
model on the same networks.
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1 Introduction

Differential equation models can be a useful tool in understanding and pre-
dicting the course of epidemics. The models are often constructed entirely at
the single node level - the so-called mean field models. More recently, differ-
ential equations at the pair level have been investigated [7,11,5,9,13]. These
equations have the potential to carry some of the spatial structure of the
underlying contact network. Pair-level models were used to investigate the
outbreak of foot & mouth disease in the UK in 2001 [3].

Here we develop a pair-level differential equation model for an SIR (susceptible-
infectious-removed) infection [1,4]. In particular we extend the scope of pre-
vious work in this area to allow for asymmetric contact networks.

Transportation networks generally have biased directionality. If the trans-
portation of livestock were included in the contact structure underlying the
2001 foot & mouth epidemic, a model allowing for asymmetric links would
be required. The symmetric model is only applicable to the period following
the livestock movement ban.

Another instance in which asymmetric networks may arise is disease
transmission via water. Many aquatic animal pathogens can spread between
hosts through water. In flowing water such spread is obviously more probable
in a downstream direction. Infected fish can also spread disease by moving
around in the aquatic environment either in search of food and shelter or as
part of a systematic migration. A model of asymmetric transmission therefore
clearly has application to diseases of aquatic life forms and for waterborne
diseases in general.

In the next section we quantify the global structure of asymmetric contact
networks at the order of triples. In section 3 we discuss a closure approxi-
mation for differential equation models at the level of pairs on asymmetric
contact networks. Sections 4 and 5 introduce a differential equation model
to describe the global evolution of an SIR infection on an underlying asym-
metric contact network. Sections 6 and 7 compare this SIR model with the
special case of the model for symmetric networks. Finally we report on the
results of numerical simulations.

2 General network properties

We consider a network of N nodes. Transmission of infection between these
nodes is assumed to be via contacts of equal strength. The contact structure
between the nodes is represented by an N ×N matrix G such that:

Gij =

{

1 if there is contact from node i to node j
0 otherwise

(1)

We also suppose that there is no self-contact; Gii = 0.
Using the bracket notation [ ] to be read as “the number of”, we can

count the number of (directed) pairs of nodes on the contact network:

[pairs] = ‖G‖ = nN (2)
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where ‖G‖ ≡
∑

i,j Gij . Equation (2) defines n, the average number of con-
tacts or neighbours per node.

We now split the contact network G into a symmetric network G↔ where
all of the links are bidirectional and an asymmetric network G→ where all of
the links are unidirectional:

(G↔)ij = GijGji

(G→)ij = Gij(1−Gji) (3)

so that G = G↔ + G→. We also specify the network of nodes with no direct
contact (in either direction). We will refer to this as the open network G⊲⊳ :

(G⊲⊳ )ij = 1− (G↔ + G→ + GT
→

)ij − δij (4)

where δij is the Kronecker delta. From these matrices we can define n↔,n→,
and n⊲⊳ to be the average number of symmetric, asymmetric and open neigh-
bours per node respectively:

‖G↔‖ = Nn↔

‖G→‖ = Nn→ (5)

‖G⊲⊳ ‖ = Nn⊲⊳

From this it follows using equations (2), (3) and (4) that:

n = n↔ + n→ (6)

and:
n⊲⊳ = N − 1− n↔ − 2n→ (7)

Any ordered pair of nodes are linked by one of the networks G↔, G→,
GT

→
or G⊲⊳ . Ignoring the completely open triple, this gives nine distinct ways

in which triples can be arranged. These are shown in figure 1. Introducing the
following arrow notation, we can count the total numbers of type a,b,c,d,e,f,g,h
and i triples respectively as:

[→← · · ·] = ‖G→GT
→
‖ − Tr(G→GT

→
) ≈ Nn→(n→ − 1)

[←→ · · ·] = ‖GT
→

G→‖ − Tr(GT
→

G→) ≈ Nn→(n→ − 1)
[→→ · · ·] = ‖G2

→
‖ ≈ Nn2

→

[→↔ · · ·] = ‖G→G↔‖ ≈ Nn→n↔

[←↔ · · ·] = ‖GT
→

G↔‖ ≈ Nn→n↔

[↔↔ · · ·] = ‖G2

↔
‖ − Tr(G2

↔
) ≈ Nn↔(n↔ − 1)

[→⊲⊳ · · ·] = ‖G→G⊲⊳ ‖ ≈ Nn→n⊲⊳

[←⊲⊳ · · ·] = ‖GT
→

G⊲⊳ ‖ ≈ Nn→n⊲⊳

[↔⊲⊳ · · ·] = ‖G↔G⊲⊳ ‖ ≈ Nn↔n⊲⊳

(8)

In addition to the exact counts, equation (8) also gives an example of ap-
proximations to these quantities. It is easily seen that these approximations
are exact in the case of a network in which where every node has exactly the
same number of symmetric contacts and exactly the same number of asym-
metric contacts. In general the accuracy of this approximation is dependent
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f)e)d)

Fig. 1 This illustrates types of triples possible. The dotted lines indicate unspec-
ified links so these could be via any of the networks G↔, G→, GT

→
or G⊲⊳ .

on the specific distribution in the number of neighbours per node. The va-
lidity of this kind of approximation is indirectly discussed by Rand [11] for
different distributions. The results in the present paper do not depend on
these approximations and we provide them here only draw comparisons with
prior work on pair-approximations [11,5,9,13]. Approximations of this type
may be useful in cases where the whole network is not known, but where
the average number of neighbours per node may be estimated, perhaps by
studying a subsection of the network.

The link represented by the dotted line in figure 1 is unspecified and so
each of the nine triples can take four different forms. This decomposition is
shown explicitly in figure 2. Many of the objects in figure 2 are copies of
each other. There are seven distinct types of triple containing no open links.
These can be counted on the network by:

c1 = [→←←] = Tr(G→(GT
→

)2)
c2 = [→↔←] = Tr(G→G↔GT

→
)

c3 = [←↔←] = Tr(GT
→

G↔GT
→

)
c4 = [↔↔→] = Tr(G2

↔
G→)

c5 = [→→→] = Tr(G3

→
)

c6 = [←↔→] = Tr(GT
→

G↔G→)
c7 = [↔↔↔] = Tr(G3

↔
)

(9)
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Fig. 2 Diagram of the triples in figure 1 including the closing links.

There are eight distinct types of triple containing either one or two open
links. These can be counted on the network by:

o1 = [→←⊲⊳ ] = Tr(G→GT
→

G⊲⊳ ) = [→← · · ·]− 2c1 − c6

o2 = [←→⊲⊳ ] = Tr(GT
→

G→G⊲⊳ ) = [←→ · · ·]− 2c1 − c2

o3 = [→→⊲⊳ ] = Tr(G2

→
G⊲⊳ ) = [→→ · · ·]− c1 − c5 − c3

o4 = [→↔⊲⊳ ] = Tr(G→G↔G⊲⊳ ) = [→↔ · · ·]− c2 − c3 − c4

o5 = [←↔⊲⊳ ] = Tr(GT
→

G↔G⊲⊳ ) = [←↔ · · ·]− c3 − c6 − c4

o6 = [↔↔⊲⊳ ] = Tr(G2

↔
G⊲⊳ ) = [↔↔ · · ·]− 2c4 − c7

o7 = [→⊲⊳ ⊲⊳ ] = Tr(G→G2
⊲⊳ ) = [→⊲⊳ · · ·]− o2 − o3 − o5

o8 = [↔⊲⊳ ⊲⊳ ] = Tr(G↔G2
⊲⊳ ) = [↔⊲⊳ · · ·]− o5 − o4 − o6

(10)
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where the final equalities follow from equations (4), (8) and (9) and are
consistent with figure 2. Using these values we can write down a matrix M
detailing the number of each of the triples in figure 2:

M =



























o1 c1 c1 c6

o2 c1 c1 c2

o3 c1 c5 c3

o4 c2 c3 c4

o5 c3 c6 c4

o6 c4 c4 c7

o7 o2 o3 o5

o7 o3 o1 o4

o8 o5 o4 o6



























(11)

Here each element of M corresponds to the triple in figure 2 in the same
position. Notice, for example, that the second and third terms in figure 2a
are structurally the same. However, both terms are required since they differ
when the identities of the nodes are considered.

Equation (8) shows that the total number of triples can be approximated
if the values of n→, n↔, and n⊲⊳ can be estimated. In the absence of a
complete network, the elements of matrix M could also be estimated by
studying subsections of the network.

3 Closure approximations

Closure approximations are necessary to solve master equations which, in
general, contain terms at an order one higher than that of interest. For ex-
ample, the construction of soluble models at the single node level requires
that the pair quantities are approximated in terms of single nodes. Likewise,
soluble models at the pair level require approximations of triples at the level
of pairs. In this section we will look at one way of forming these approxima-
tions.

Let us first look at the approximation of pair level quantities in terms
of single nodes. Let A, B, ... represent nodes in particular states. Let a, b, ...
denote the type of network bond. For this work, these bonds are typically↔,
←, →, or ⊲⊳ . We shall denote the number of type AB pairs on a network a

by [A
a
− B]. Let P (A

a
− B) denote the probability of picking an A

a
− B pair

uniformly at random from the set of all pairs on network a. Then we have:

[A
a
− B] = [

a
−]P (A

a
− B) (12)

where [
a
−] denotes the number of pairs on network a.

Let us now approximate this probability by assuming independence in
the states of the nodes:

P (A
a
− B) ≈ P (A)P (B) (13)
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We now define P (A) as the probability of selecting a node in state A uni-
formly at random from the set of all nodes:

P (A
a
− B) ≈

[A][B]

N2
(14)

Substituting this into equation (12) gives:

[A
a
− B] ≈

na[A][B]

N
(15)

where we have used the form of equation (2) to define na for any network a.
This equation can be used to approximate pair-level quantities and generate
mean-field models.

Now consider approximations for triples quantities. In the case of an
asymmetric network, there is a complication since, as can be seen from fig-
ure 2, each triple occurs in four different forms. For the most accurate de-
scription, each of these forms has to be considered separately. This then takes
into account the maximum available structure at the triples level. Referring
to the triple illustrated in figure 2a, we have:

[A→ B ← C] = [A→ B ← C ⊲⊳ A] + [A→ B ← C ← A]
+[A→ B ← C → A] + [A→ B ← C ↔ A]

(16)

where the correspondence between this notation and the relevant triples in

the diagram should be clear. Here and in what follows, we use [A
a
− B

b
− C]

to mean [A
a
− B

b
− C · · ·A].

We can approximate each of the terms in equation (16) by using an analo-
gous argument to the mean field approximation. We start with the equivalent
of equation (12):

[A
a
− B

b
− C

c
− A] = [

a
−

b
−

c
−]P (A

a
− B

b
− C

c
− A) (17)

Noting that the first row of the matrix in equation (11) gives the numbers
of each of the types of triple in equation (16), then in conjunction with
equation (17) we have:

[A→ B ← C] = M11P (A→ B ← C ⊲⊳ A) + M12P (A→ B ← C ← A)
+M13P (A→ B ← C → A) + M14P (A→ B ← C ↔ A)

(18)
These matrix elements are precisely defined (see equations (9)-(11)) in terms
of network properties. If insufficient details of this are known, they may be
estimated.

To complete the triples approximation we need an approximation of the
probabilities in equation (18) in terms of pair quantities. Figure 3 shows how
a triple is formed by three pairs of nodes. The pairs in figure 3 are not inde-
pendent of each other. In addition to higher order dependencies, the identity
of a node in one pair specifies the identity of a node in another pair. The
dashed arrows show this dependence in the structure in a symmetrical way.
Referring to figure 3 and using the approximation of statistical independence
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B

CA

A B

B C

C A

b

c

a

a b

c

Fig. 3 This shows how a triple is composed of three pairs of nodes. The letters a, b
and c indicate the type of link between the nodes. The dotted arrows show that
the pairs share nodes in common.

at the level of pairs (this assumption underlies many of the pair approxima-
tions in the literature [7,11,9,13]) we have:

P (A
a
− B

b
− C

c
− A) ≈ P (A

a
− B|A)P (B

b
− C|B)P (C

c
− A|C) (19)

where the quantity P (A
a
− B|A) is the probability that a neighbour (on

network a) of node A chosen uniformly at random is of type B. It is given
by the number of A nodes connected to B nodes divided by the number of
A nodes connected to any node (see Morris [9]):

P (A
a
− B|A) =

[A
a
− B]

F a
A

(20)

where we have defined:

F a
A =

∑

X

[A
a
− X ] (21)

where X runs over the complete set of available node states A, B, ... .
Notice that equation (19) is generated by moving around the triangle in

figure 3 in a clockwise direction. The result we obtain should be indepen-
dent of the direction so we should get the same result in an anti-clockwise
direction. However, equation (21) is not consistent with this. To satisfy this
symmetry requirement, we shall instead use:

F a
A ≈ na[A] (22)

This is the assumption that the average number of neighbours of a node on
a given network is independent of the state of that node.

Substituting the relevant triples densities into equation (18) gives:

[A→ B ← C] ≈
[A→ B][B ← C]

n2
→

[A][B][C]

(

M11

[C ⊲⊳ A]

n⊲⊳

+ M12

[C ← A]

n→

+ M13

[C → A]

n→

+ M14

[C ↔ A]

n↔

)

(23)

In a similar fashion, expressions for the other types of triple in figure 1 can
be obtained.

It is important to be aware of the limitations of the type of approximation
used in this section. The approximation contained in equation (19) assumes
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that the state of a node depends only on the structure at the pair level
and that higher order dependences are insignificant. It is difficult to know
in advance of comparisons with simulations which networks will satisfy this
assumption and which will not. For some networks this assumption turns
out to be a bad one. For example, suppose that we have nodes uniformly
distributed on a plane and each node is connected to its n spatially nearest
neighbours. An epidemic on this network will tend to propagate outwards
as a wave emanating from the first infected node. Models approximated at
the level of pairs are very poor at predicting the course of epidemics on this
type of network. A more relevant model for this is a diffusion equation model
(see for example [8][10]). This type of local structure is of course present in
triangular and square lattices.

4 An SIR model for asymmetric networks

We consider an epidemic model with susceptible, infectious and removed
states which we denote by S, I, and R respectively. We assume that individ-
uals in the removed state cannot return to susceptible or infectious states.
In this model we also ignore birth and death processes.

By noting that the process of infection occurs via contact between an
infectious node and a susceptible node, we can write down the rate of change
of the numbers of nodes in each state:

˙[S] = −τ [S ← I]− τ [S ↔ I]

˙[I] = τ [S ← I] + τ [S ↔ I]− g[I] (24)

where τ is the “rate” of infection across a link and g is the “rate” of removal
of an infected individual. An equation for [R] is not explicitly required as it
is implied by having a complete set of states; [S] + [I] + [R] = N .

This system of equations is not closed. We can close the equations at
the level of single nodes by approximating [S ← I] and [S ↔ I]. Using
equations (15) and (6) gives:

[S ← I] + [S ↔ I] ≈
n[S][I]

N
(25)

By using this approximation in equation (24) we close the system at the level
of single nodes. This is an example of a “mean field” theory and is a special
case of the Kermack-McKendrick model [6,2].

An alternative to closing the system at the level of single nodes is to write
down further differential equations for the rates of change of the relevant
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pair-level quantities. We have:

˙[S → S] = −τ [S → S ← I]− τ [I → S → S]
−τ [S → S ↔ I]− τ [I ↔ S → S]

˙[S → I] = τ [S → S ← I]− τ [I → S → I]− g[S → I]
+τ [S → S ↔ I]− τ [I ↔ S → I]

˙[I → S] = τ [I → S → S]− τ [I → S ← I]− τ [I → S]− g[I → S]
+τ [I ↔ S → S]− τ [I → S ↔ I]

˙[I → I] = τ [I → S → I] + τ [I → S ← I] + τ [I → S]− 2g[I → I]
+τ [I ↔ S → I] + τ [I → S ↔ I]

˙[S ↔ S] =−2τ [S ↔ S ← I]− 2τ [S ↔ S ↔ I]

˙[S ↔ I] = τ [S ↔ S ← I]− τ [I → S ↔ I]− τ [S ↔ I]− g[S ↔ I]
+τ [S ↔ S ↔ I]− τ [I ↔ S ↔ I]

˙[I ↔ I] = 2τ [I → S ↔ I] + 2τ [I ↔ S ↔ I] + 2τ [I ↔ S]− 2g[I ↔ I]
(26)

and for the open pairs:

˙[S ⊲⊳ S] =−2τ [S ⊲⊳ S ← I]− 2τ [S ⊲⊳ S ↔ I]

˙[I ⊲⊳ I] = 2τ [I → S ⊲⊳ I] + 2τ [I ↔ S ⊲⊳ I]− 2g[I ⊲⊳ I]

˙[S ⊲⊳ I] = τ [S ⊲⊳ S ← I]− τ [I → S ⊲⊳ I]
+τ [S ⊲⊳ S ↔ I]− τ [I ↔ S ⊲⊳ I]− g[S ⊲⊳ I]

(27)

These equations contain seven of the nine distinct types of triple iden-
tified in figure 1. To close these equations at the level of pairs, we use the
approximations discussed in section 3.

5 Completeness relations

With the closure approximations in section 3, the differential equations (24), (26)
and (27) can be solved. Here we show how to obtain a closed set of equations
without using equation (27).

We have differential equations for a complete set of pairs. This was en-
sured by equation (4) and the construction of the open network. We can
write the completeness relation for type AB pairs on an asymmetric network
as:

[A · · ·B] = [A→ B] + [A← B] + [A↔ B] + [A ⊲⊳ B] (28)
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When A and B represent nodes in different states, we can determine the term
on the left of this expression:

[A · · ·B] =
∑

ij

AiBj = [A][B] (29)

When the nodes are in the same state, we have:

[A · · ·A] =
∑

ij

AiAj(1− δij) = [A]2 −
∑

ij

AiAjδij ≈ [A]2
(

1−
1

N

)

(30)

where the approximation is almost exact. We use equation (30) instead of
the more obvious expression A(A − 1) as it is consistent with equation (7)
when the mean field approximations are substituted into equation (28) and
is better suited to the continuous dynamics of differential equation models.

Differentiating equation (28) for different states and for the same state
gives:

[A] ˙[B] + ˙[A][B] = ˙[A→ B] + ˙[A← B] + ˙[A↔ B] + ˙[A ⊲⊳ B]

2[A] ˙[A](1− 1/N) = 2 ˙[A→ A] + ˙[A↔ A] + ˙[A ⊲⊳ A] (31)

From equations (24),(26) and (27), we have expressions for each of these
terms. By substituting these expressions into equation (31), it is easily seen
that the terms in g are satisfied. That these equations are consistent in g
is expected since equation (31) is exact (up to the approximation in equa-
tion (30)) and the dynamics of g are fully defined at the pair level. The
terms in τ are also exact, but they are defined at the level of triples and their
implementation in the model requires approximation at the level of pairs.
The closure approximations in section 3 are a combination of triples level
counts and pair-level dynamics. As such, these non-linear expressions cannot
be shown to satisfy triples level identities in general. We shall encounter this
issue again in section 7.

Notice that the completeness equations provide a simple way of calculat-
ing one of the types of pairs in terms of the others. For example by using
the completeness relations, we do not need to solve equation (27) to calcu-
late the open pairs. The difference between using this approach and solving
equation (27) is negligible and is related to the issue of consistency just dis-
cussed. In numerical simulations presented in this paper, we always use the
completeness relations for calculating open pairs.

We shall refer to the differential equations (24), (26) and the completeness
relation (28), together with the closure approximations from section 3 as the
“asymmetric” model.

6 Symmetric networks and node independence for open pairs

We notice now that in addition to the differential equations (equation (27))
and the completeness relations, there is a third way of determining the open
pairs and so obtaining a complete system of equations. This is the assumption
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of node independence that we used to derive the mean field approximation
(equation (15)). Although not a pair level definition, in the case of open pairs
it is likely to hold since these pairs do not interact directly with each other.
We have P (A ⊲⊳ B) ≈ P (A)P (B) so that:

[A ⊲⊳ B] ≈
n⊲⊳ [A][B]

N
(32)

For networks that are not highly connected it is also reasonable to write:

n⊲⊳ ≈ N

[A ⊲⊳ B] ≈ [A][B] (33)

We will now use this method for defining the open pairs to demonstrate
the connection between the asymmetric model and the established triples
approximations for symmetric networks [11,5,9,13].

For a symmetric network, equation (26) becomes:

˙[S ↔ S] = −2τ [S ↔ S ↔ I]

˙[S ↔ I] = τ [S ↔ S ↔ I]− τ [I ↔ S ↔ I]− τ [S ↔ I]− g[S ↔ I]

˙[I ↔ I] = 2τ [I ↔ S ↔ I] + 2τ [I ↔ S]− 2g[I ↔ I] (34)

Furthermore n↔ = n and all of the elements of M are zero except for M61,
M64, M91 and M94. With reference to the sixth row of figure 2, the triples
approximation is then:

[A↔ B ↔ C] ≈
[A↔ B][B ↔ C]

n2[A][B][C]

(

M61

[C ⊲⊳ A]

n⊲⊳

+ M64

[C ↔ A]

n

)

(35)

If we now define φ to be the ratio of the number of triples with no open
links to the total number of triples:

φ =
M64

[↔↔ · · ·]
=

M64

M61 + M64

=
Tr(G3)

‖G2‖ − Tr(G2)
(36)

we can write:

[A↔ B ↔ C] ≈ Nζ
[A↔ B][B ↔ C]

[A][B][C]

(

(1− φ)
[C ⊲⊳ A]

n⊲⊳

+ φ
[C ↔ A]

n

)

(37)
where ζ = [↔↔ · · ·]/Nn2. Using node independence we can rewrite equa-
tion (37) in a more familiar form. Applying equation (33) for the open pair
we have:

[A↔ B ↔ C] ≈ ζ
[A↔ B][B ↔ C]

[B]

(

(1 − φ) + φ
N [C ↔ A]

n[A][C]

)

(38)

This equation was first proposed by Morris[9] and is well known as a closure
approximation for the pair-level dynamics on symmetric contact networks.
However, we have a new definition of ζ. In other work, ζ is defined in terms
of n. For example Keeling[5] uses ζ = (n − 1)/n. Notice that by using the
approximations in equation (8), we find ζ = (n− 1)/n.
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7 Comparison of the symmetric and asymmetric models

Here we look in more detail at the relationship between the asymmetric
model and the special case of the model for symmetric networks. In particular
it is of interest to determine how well a naive application of the simpler
symmetric equations may perform in predicting epidemics on asymmetric
contact networks.

It is useful to define the link ⇒ to mean a connection between two nodes
by either → or ↔ so that:

[⇒] = [↔] + [→] = ‖G→‖+ ‖G↔‖ = ‖G‖ = Nn⇒ (39)

and:
[A⇒ B] = [A→ B] + [A↔ B] (40)

We also define the link # to be either → or ⊲⊳ . From equation (28) we then
have the completeness relation:

[A · · ·B] = [A⇒ B] + [A " B] (41)

and from equation (7) we have n# = n⊲⊳ + n→ = N − 1 − n⇒. Equa-
tion (41) can be used to define [A " B] in terms of [A ⇒ B] given equa-
tions (29) and (30).

We can use these definitions to generalise the closure approximation for
symmetric networks (equation (37)):

[A
a
− B

b
− C] ≈

[A
a
− B][B

b
− C]

nanb[A][B][C]

(

[
a
−

b
−"]

[C " A]

n#

+ [
a
−

b
−⇒]

[C ⇒ A]

n⇒

)

= Nζab

[A
a
− B][B

b
− C]

[A][B][C]

(

(1 − φab⇒)
[C " A]

n#

+ φab⇒

[C ⇒ A]

n⇒

)

(42)

where:

ζab =
‖GaGb‖ − Tr(GaGb)

Nnanb

φab⇒ =
Tr(GaGbG)

‖GaGb‖ − Tr(GaGb)
(43)

and it is understood that G⇒ = G. Note that equation (42) is exactly form
equivalent to equation (37). Also the completeness relation (equation (41))
is exactly form equivalent to equation (28) when the asymmetric parts are
removed. In the case of symmetric networks the closures are the same. In
this sense it is a generalisation of the closure for symmetric networks.

Notice that equation (42) can also be written as:

[A
a
− B

b
− C] ≈ Nζab

[A
a
− B][B

b
− C]

[A][B][C]

(

(1− φab⇐)
[A " C]

n#

+ φab⇐

[A⇒ C]

n⇒

)

(44)
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with:

φab⇐ =
Tr(GaGbG

T )

‖GaGb‖ − Tr(GaGb)
(45)

Either form of the closure is equally valid. However, when we come to ap-
ply this closure approximation to equations (46) and (51) below, it will be
apparent that for these examples, equation (42) is more appropriate because
it gives rise to terms in [I ⇒ S] instead of [S ⇒ I] and thereby leads to a
closed system of equations.

Although the equations discussed in section 6 are only applicable to sym-
metric networks, it is interesting to ask how a “naive” application of them
to asymmetric networks will perform. By a naive application we mean the
way in which the model would behave if it were evaluated on an asymmetric
instead of a symmetric network. We can write down this model as:

˙[S] = −τ [I ⇒ S]

˙[I] = τ [I ⇒ S]− g[I]

˙[S ⇒ S] = −2τ [S ⇒ S ⇒ I]

˙[I ⇒ S] = τ [S ⇒ S ⇒ I]− τ [I ⇒ S ⇒ I]− τ [I ⇒ S]− g[I ⇒ S]

˙[I ⇒ I] = 2τ [I ⇒ S ⇒ I] + 2τ [I ⇒ S]− 2g[I ⇒ I] (46)

where we use the generalised closure (equation (42)) to define the triples
quantities with:

ζ⇒⇒ =
‖G2‖ − Tr(G2)

Nn2

φ⇒⇒⇒ =
Tr(G3)

‖G2‖ − Tr(G2)
(47)

Since this model is designed for symmetric networks and makes no attempt
to account for asymmetric structure other than the use of the asymmetric
network G in equation (47), we shall refer to it as the “symmetric” model in
the remainder of this paper.

Now look at the differential equations of the asymmetric model. Using
equation (40), equation (24) becomes:

˙[S] = −τ [I ⇒ S]

˙[I] = τ [I ⇒ S]− g[I] (48)

This is immediately seen to be the same as the [S] and [I] equations of the
symmetric model.

By using triples level identities such as:

[A⇒ B ⇐ C] = [A→ B ← C]+[A→ B ↔ C]+[A↔ B ← C]+[A↔ B ↔ C]
(49)
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the [S → S], [S ↔ S], [I → S], [I ↔ S], [I → I] and [I ↔ I] expressions in
equation 26 can be reduced to:

˙[S ⇒ S] = −τ [S ⇒ S ⇐ I]− τ [I ⇒ S ⇒ S]

˙[I ⇒ S] = τ [I ⇒ S ⇒ S]− τ [I ⇒ S ⇐ I]− τ [I ⇒ S]− g[I ⇒ S]

˙[I ⇒ I] = τ [I ⇒ S ⇒ I] + τ [I ⇒ S ⇐ I] + τ [I ⇒ S] + τ [S ↔ I]− 2g[I ⇒ I]

(50)

The form of these equations is very similar to pair level expressions of
the symmetric model. Motivated by this similarity, we define the following
model:

˙[S] = −τ [I ⇒ S]

˙[I] = τ [I ⇒ S]− g[I]

˙[S ⇒ S] = −τ [S ⇒ S ⇐ I]− τ [S ⇐ S ⇐ I]

˙[I ⇒ S] = τ [S ⇐ S ⇐ I]− τ [I ⇒ S ⇐ I]− τ [I ⇒ S]− g[I ⇒ S]

˙[I ⇒ I] = τ [I ⇐ S ⇐ I] + τ [I ⇒ S ⇐ I] + γτ [I ⇒ S]− 2g[I ⇒ I] (51)

where γ = 1 + n↔/n. These equations are closed by equation (42) and use
ζ⇐⇐ = ζ⇒⇒ and:

ζ⇒⇐ =
‖GGT ‖ − Tr(GGT )

Nn2

φ⇒⇐⇒ =
Tr(G2GT )

‖GGT ‖ − Tr(GGT )

φ⇐⇐⇒ =
Tr(G2GT )

‖G2‖ − Tr(G2)
(52)

which are obtained from equation (43).
We refer to this as the “part-asymmetric” model. Comparison of equa-

tions (46) and (51) suggests that it better accounts for the asymmetry than
the symmetric model. It does, however, differ from the fully asymmetric
model in the following three ways (the effect of these will be investigated
numerically in the next section):

– The differential equations for the models are the same except for the [I ⇒
I] expression where we have replaced [I ⇒ S]+[I ↔ S] in the asymmetric
model by γ[I ⇒ S]. This is the assumption that the proportion of IS pairs
on symmetric links is the same as the proportion on asymmetric links;
[I ↔ S]/[↔] = [I → S]/[→]. The [I ⇒ I] expression is only required
for the detailed triples structure in the [I ⇒ S ⇐ I] term and it is not
needed at all for networks with no closed triples. Clearly the sensitivity
of the model to the value of γ will depend on the number of closed triples
in the network.
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– Another difference is related to the closure of the differential equations.
From section (3), a general ABC triple is approximated in the asymmetric
model by:

[A
a
− B

b
− C] ≈

[A
a
− B][B

b
− C]

nanb[A][B][C]

(

[
a
−

b
−⊲⊳ ]

[C ⊲⊳ A]

n⊲⊳

+ [
a
−

b
−←]

[C ← A]

n→

+ [
a
−

b
−→]

[C → A]

n→

+ [
a
−

b
−↔]

[C ↔ A]

n↔

)

(53)

As we observed at the end of section 5, this approximation is non-linear.
Because of this, while linear triples level expressions such as equation (49)
must be true, pair-level approximations to the triples cannot be shown
to satisfy these expressions in general. Consequently, equation (50) when
closed with equation (53) cannot be shown to follow from the closed
version of equation (26). However, given that the triples approximations
are well-conceived, they should perform satisfactorily numerically.

– For the closure of equation (51), we use the less detailed equation (42)
in place of equation (53). This lack of detail will lead to differences in
the models on some networks. Conditions under which the closures are
expected to differ can be determined, but due to the other differences,
this analysis is not relevant.

By comparing the part-asymmetric and symmetric models, it is straight-
forward to write down the conditions under which they are the same. By
comparing equation (46) with equation (51), it is clear that we need γ = 2.
We quantify this condition as Γ = 0 where:

Γ ≡ (2− γ)
Tr(G3) + Tr(G2GT )

‖G2‖ − Tr(G2)
(54)

Here the multiplicative fraction in terms of G is a measure of the number of
closed triples in the network. This factor is included to account for the fact
that for networks with no triangles, the value of γ is not important.

By comparing equations (47) and (52), the other necessary conditions are
seen to be α = 0 and θ = 0 where:

α ≡ |ζ⇒⇒ − ζ⇒⇐| (55)

and:

θ ≡

∣

∣Tr(G3)− Tr(G2GT )
∣

∣

‖G2‖ − Tr(G2)
(56)

where the denominator is included to ensure that θ is between 0 and 1 and
that it is very small for networks with few triangles.

The necessary and sufficient conditions for the symmetric and part-asymmetric
models to be equivalent are:

Γ = 0

α = 0

θ = 0 (57)
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For a network that satisfies the approximations in equation (8), it can be
shown that:

α ≈
n→

n2
(58)

According to this, the condition α = 0 is satisfied for purely symmetric
networks and approximately satisfied for networks with large n.

From the analysis in this section we conclude that deviation between the
symmetric and asymmetric models is likely to occur for asymmetric networks
with small values of n. More generally, significant deviation is expected when
the conditions in equation (57) are not approximately true. Beyond this,
deviation may occur due to the difference between the asymmetric and part-
asymmetric models discussed above. These observations assist in explaining
the numerical results in the next section.

8 Numerical Results

Here we make numerical comparisons between the following four models:

– Mean-Field Model
This model was discussed in section 4 and is composed of equation (24) to-
gether with the closure in equation (25). This model contains no spa-
tial structure information apart from the average number of contacts per
node; n.

– Symmetric Model
This model was defined in section 7 and consists of equation (46) to-
gether with the closure (equation 42) and the completeness relation (equa-
tion (41)). The connection between this model and the symmetric model
commonly found in the literature is discussed for symmetric networks in
section 6.

– Part-Asymmetric Model
This model was discussed in section 7 and consists of equation (51) to-
gether with the closure (equation (42)) and the completeness relation
(equation 41)). This simplified form contains some of the structure of the
asymmetric model.

– Asymmetric Model
This is the full asymmetric model consisting of the differential equa-
tions (24), (26) and the completeness relation (28), together with the
closure approximations from section 3.

To solve these models we need to specify initial conditions. If [I]0 is the
initial number of infected individuals at time zero, then the initial condi-
tion for the susceptible population is [S]0 = N − [I]0. The initial conditions
for the pair quantities are then obtained by the mean-field approximation
(equation (15)).

These four models are compared against each other on four contact net-
works each with 8000 nodes. The networks are generated as follows:

– Network 1(Random)
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An 8000× 8000 matrix of uniformly random numbers between 0 and 1 is
generated. Those elements that are less than or equal to n/N = 6/8000
are changed to have value 1 and all the other elements set equal to zero.
As self interaction is not permitted, all diagonal elements are set equal to
zero.

– Network 2 (Random with triangles)
An 8000 × 8000 random network is generated exactly as for network 1
except with n = 5. Calling this network G, we now construct the network
G + GGT . We put all diagonal elements equal to zero and make any
element with a value greater than 1 equal to 1. This construction is a
direct method of making a network with a higher density of triangles of
transmission. The term GGT turns open triples in the network G into
triangles.

– Network 3 (River)
This network is motivated by considering the structure of river networks.
The main way in which its structure differs from real river networks is that
the “rivers” can move randomly between any nodes instead of moving in a
generally consistent direction towards the sea. We construct it as follows:
Starting with 8000 unconnected nodes, a node X is chosen uniformly at
random from the 8000 nodes; X is connected to a different node Y chosen
uniformly at random form the set of all nodes excluding X ; Y in turn is
connected to another node Z chosen uniformly at random from the set of
all nodes excluding Y and so on until the chain is terminated. For each
link on the chain, a random number between 0 and 1 is generated and if
this number is less than 1/40 then the chain is terminated. In this way,
300 such chains were generated. This produces a network of 300 “rivers”
with a typical length of 40 nodes. When two nodes are connected more
than once, the link in the network matrix has the value 1. This procedure
results in a network with no diagonal elements.

– Network 4 (Small world)
This is motivated by the small world network discussed by Watts & Stro-
gatz [14]. We start with 8000 nodes arranged regularly around a ring. This
structure means that a given node has pairs of nodes equidistant from it
around the ring (one clockwise and the other anticlockwise). We choose
a node and then connect it to its nearest clockwise neighbour. The link
is directed from the original node towards its neighbour. We also connect
the node to its second and third nearest clockwise neighbours. Moving
around the ring in a consistent direction we then repeat this for all 8000
nodes.
We now reconnect 20% of the links so as to introduce long range trans-
mission. Starting from one of the nodes, we take the connection to its
nearest clockwise neighbour and with probability 0.2, we reconnect this
to another node chosen uniformly at random. If a link already exists be-
tween the two nodes, then the original link is left in place. We repeat
this process for all nodes moving in a clockwise sense around the ring.
This procedure is then repeated for the second and then the third nearest
clockwise neighbours. This procedure produces a network with no sym-
metric links and no diagonal elements.
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Fig. 4 Figure illustrating the structure in the four networks.

To give an impression of the structure of these networks, small scale
examples are shown in figure 4. It may also be instructive to consider the
matrix in equation (11), particularly with reference to figure (2). The top six
rows of this matrix are given in equation (59) by M1, M2, M3 and M4 for
networks 1,2,3 and 4 respectively:

M1 = 103 ×















284 0.23 0.23 0
285 0.23 0.23 0
285 0.23 0.25 0
0.19 0 0 0
0.18 0 0 0
0 0 0 0















M2 = 103 ×















2581 267 267 0
2795 267 267 0
1979 267 2.90 0

0 0 0 0
0 0 0 0
0 0 0 0















M3 = 103 ×















19.1 0.01 0.01 0
19.0 0.01 0.01 0
31.1 0.01 0.01 0
0.01 0 0 0
0 0 0 0
0 0 0 0















M4 = 103 ×















32.0 12.3 12.3 0
23.4 12.3 12.3 0
59.7 12.3 0 0
0 0 0 0
0 0 0 0
0 0 0 0















(59)

These matrices provide the detailed structure of the networks at the level of
triples.

The four models were compared against stochastic simulations of epi-
demics on each of the contact networks. The simulations treat τ as the trans-
mission probability per unit time and g as the recovery probability per unit
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time. All epidemic simulations were initiated by a single infected individual
([I]0 = 1).

Notice that the equations for each of the four models can be written in a
non-dimensionalised form by applying the transformation:

t′ = t/g

τ ′ = τ/g (60)

g′ = 1

where t denotes time. This form demonstrates that by varying the single
parameter τ ′, we obtain the full range of behaviours of the equations. To
vary τ ′ we hold g fixed at g = 0.05 and vary τ . A range for τ is determined
by using R0 from mean-field theory as a guide:

Rmf
0 =

β

g
=

nτ

g
(61)

where we have assumed that τ = β/n where β is the contact parameter. We

investigate the range of values 1.1 ≤ Rmf
0
≤ 20 using the end points and

eight equally spaced intermediate ones. This gives τ in the range 0.0505/n ≤
τ ≤ 1/n.

Stochastic simulations of epidemics with R0 > 1 produce either a major
epidemic or result in early stochastic fade out. In the networks considered
here the difference in the final size of the susceptible populations between
the two types of behaviour is obvious. For deterministic differential equation
models there can be no stochastic fade out and if R0 > 1, a major epidemic
must occur. Consequently it is only meaningful to compare the differential
equation models to major outbreaks. We therefore rejected any simulation
that resulted in stochastic fade out. For each value of τ we obtained 200
stochastic simulations of major epidemics, each one initiated at a node se-
lected uniformly at random from the 8000 nodes. In figures 5 to 8, the mean
of the 200 simulations is plotted with error bars indicating a single standard
deviation.

For R0 > 1, the probability of a major epidemic is given by 1 − 1/R0

(see, for example, section 10.3.3 of Renshaw [12]). Using this naively and

approximating R0 by Rmf
0

suggests that for Rmf
0

= 1.1, only 9% of infections
will result in a major epidemic. In practice, on the networks considered here,

the probability of producing an epidemic for the Rmf
0 = 1.1 case is found to

be very much less that 9%. It appears that the real R0 is less than 1 so the

plots in figures 5 to 8 corresponding to Rmf
0 = 1.1 indicate that there is no

epidemic.
The results from the epidemic simulations are plotted against the predic-

tions from each of the four differential equation models (figures 5 to 8). For
the purposes of plotting, particular cuts of the simulation data were taken.
These are:

– a) The full susceptible time series for τ corresponding to Rmf
0 = 4.8.

– b) The full infectious time series for τ corresponding to Rmf
0 = 4.8.

– c) The final size of the susceptible population against τ .
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a) Susceptible time series (tau=0.040)

0 50 100 150
0

500

1000

1500

2000

2500

3000

3500

4000

Time

In
fe

ct
io

us
 N

od
es
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c) Final size of Susceptible Population
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d) Infectious population (time = 50)

Simulation
Asymmetric
Part−Asymmetric
Symmetric
Mean−Field

NETWORK 1

Fig. 5 (Random)This figure shows the simulation results and model predictions
for the random network. The mean of 200 simulations is plotted with an asterix
where the error bars on the plots indicate a single standard deviation. The other
lines indicate the predictions of the four models, but only the mean-field prediction
can be distinguished from the other three. The four graphs are: a)Susceptible time
series for τ = 0.04, g = 0.05, b)Infectious time series for τ = 0.04, g = 0.05, c)Final
size of the susceptible population and d)Infectious population at time interval 50.

Network n→ n↔ α θ Γ
Random 5.97 0.00 0.00 0.00 0.00
Random with triangles 17.29 0.00 0.36 0.12 0.12
River 1.54 0.00 0.63 0.00 0.00
Small world 3.00 0.00 0.21 0.17 0.17

Table 1 Table shows the network properties n→, n↔, α, θ, and Γ for each of the
four networks considered.

– d) The number of infected individuals at time 50 against τ .

In section 7 we discussed some network values that were useful in compar-
ing the different models. These values are given for each network in table 1.
We now discuss the results for each network in turn with reference to the
values in table 1:

– Network 1(Random)We see from figure 5 that (up to the resolution
of the graph) the symmetric, part-asymmetric and asymmetric models
cannot be distinguished. From equation (59) we see that there are very
few closed triples on this network. This explains the near-zero values of θ
and Γ given in table 1. Comparing the results for α, θ and Γ in table 1
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a) Susceptible time series (tau=0.014)
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b) Infectious time series (tau=0.014)
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c) Final size of susceptible population
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d) Infectious population (time = 50)
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NETWORK 2

Fig. 6 (Random with triangles)This figure shows the simulation results and
model predictions for the random network with added triangles. The mean of 200
simulations is plotted with an asterix where the error bars on the plots indicate
a single standard deviation. The other lines indicate the predictions of the four
models. The four graphs are: a)Susceptible time series for τ = 0.014, g = 0.05,
b)Infectious time series for τ = 0.014, g = 0.05, c)Final size of the susceptible
population and d)Infectious population at time interval 50.

with the conditions in equation (57) we see that the symmetric and part-
asymmetric models should be very similar.

– Network 2 (Random with triangles)Figure 6 shows that there is
a clear difference between the asymmetric and part-asymmetric models.
From the discussion in section 7 the difference must be due to the dif-
ference in the expressions for [I ⇒ I] and also the differences in the
triples approximation. It is seen that the asymmetric model is better at
predicting the course of the average epidemic on this network.
The part-asymmetric model outperforms the symmetric model. This is to
be expected because it accounts for some of the asymmetric structure of
the contact network. From table 1 we see that this contact network has
n = n→ = 17.29. Using equation (58) we would estimate α ≈ 0.06. How-
ever, the real value is α = 0.36. This illustrates that the approximations
in equation (8) are not applicable to this network and that even for large
n, α can sometimes be non-zero. This value of α as well as the fact that
θ 6= 0 and Γ 6= 0 explains the discrepancy between the part-asymmetric
and symmetric models.

– Network 3 (River)
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a) Susceptible time series (tau=0.156)
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b) Infectious time series (tau=0.156)
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NETWORK 3

Fig. 7 (River) This figure shows the simulation results and model predictions for
the “river” network. The mean of 200 simulations is plotted with an asterix where
the error bars on the plots indicate a single standard deviation. The other lines
indicate the predictions of the four models. The four graphs are: a)Susceptible
time series for τ = 0.156, g = 0.05, b)Infectious time series for τ = 0.156, g =
0.05, c)Final size of the susceptible population and d)Infectious population at
time interval 50.

Figure 7 shows that there is a difference between the asymmetric and
part-asymmetric models and that the asymmetric model performs slightly
better.
For this network, there are essentially no triangles and we have α = 0.63.
This large value of α explains the difference between the symmetric and
part-asymmetric models. It is clear from figure 7 that the part-asymmetric
model outperforms the symmetric model.

– Network 4 (Small world)This network is part-way between a local
network and a random network. We noted at the end of section 3, that our
present type of differential equation model is often very poor at predicting
epidemics on local contact networks. This network was constructed by
starting from a local network and randomly reassigning 20% of all links.
Had we reassigned all the links we would have obtained a random network
for which these models perform very well. Some discrepancy between the
model predictions and the simulation results is therefore expected and it
is observed in figure 8.
Here the asymmetric and part-asymmetric models are similar. The dif-
ference between the part-asymmetric and symmetric models is due to the
non-zero values of α, θ, and Γ .
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b) Infectious time series (tau=0.080)
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c) Final size of Susceptible Population
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d) Infectious population (time=50)

Simulation
Asymmetric
Part−Asymmetric
Symmetric
Mean−Field

NETWORK 4

Fig. 8 (Small world) This figure shows the simulation results and model pre-
dictions for the asymmetric small world network. The mean of 200 simulations is
plotted with an asterix where the error bars on the plots indicate a single stan-
dard deviation. The other lines indicate the predictions of the four models. The
four graphs are: a)Susceptible time series for τ = 0.08, g = 0.05, b)Infectious
time series for τ = 0.08, g = 0.05, c)Final size of the susceptible population and
d)Infectious population at time interval 50.

9 Discussion

We have developed a mathematical model at the pair level to describe the
spread of epidemics on contact networks. The primary point of departure
from other work in this area is the models applicability to epidemics on
asymmetric contact networks. The model for symmetric contact networks is
a special case of our model.

In this work the derivation of the closure approximation differs from what
has gone before and we believe that this approach provides a degree of clarity
that was not previously available. This new derivation enabled the exten-
sion of the approximations to asymmetric contact networks. The method of
obtaining the closure approximation is a general procedure that is readily
applicable to other pair-level models.

We noted that the closure approximation employed here is obtained using
the assumption that the number of nodes in a given state is dependent only
on the immediate neighbour structure and that higher order dependency is
irrelevant. For some network structures this will be a good assumption but
for others it will fail to produce good results.
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The open network was introduced and we observed that this gives a closed
set of pairs. We discussed the completeness relations that result from having
a closed set. The completeness relations provide a pair level definition for the
open pairs without having to solve the relevant differential equations.

The relationship between the asymmetric and symmetric models was dis-
cussed in detail. As part of this analysis, an intermediate model which we
termed the part-asymmetric model was also discussed. The part-asymmetric
model encompasses a large amount of the asymmetric structure in a greatly
simplified form. These models were compared against each other on four con-
tact networks. The behaviour of the models with respect to each other was
consistent with what was expected from our analysis.

The predictions of the models were also compared against the results of
numerical simulation. This comparison indicated that the asymmetric model
generally has superior predictive quality over the symmetric one. For each
network the predictions of the part-asymmetric model were in between the
predictions of the asymmetric and symmetric models.

We conclude that a pair level model for asymmetric networks can be con-
structed and that it successfully describes epidemics on a number of contact
networks. This model could find applications for diseases on contact net-
works with asymmetric routes of infection such as such as river networks or
transportation networks.
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