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Abstract In many fields of science including population dynamics, the vast state

spaces inhabited by all but the very simplest of systems can preclude a deterministic

analysis. Here, a class of approximate deterministic models is introduced into the field of

epidemiology that reduces this state space to one that is numerically feasible. However,

these reduced state space master equations do not in general form a closed set. To

resolve this, the equations are approximated using closure approximations. This process

results in a method for constructing deterministic differential equation models with a

potentially large scope of application including dynamic directed contact networks and

heterogeneous systems using time dependent parameters. The method is exemplified

in the case of an SIR (susceptible-infectious-removed) epidemiological model and is

numerically evaluated on a range of networks from spatially local to random. In the

context of epidemics propagated on contact networks, this work assists in clarifying

the link between stochastic simulation and traditional population level deterministic

models.

Keywords Master equations · ODE · heterogeneous contact networks · population

dynamics · individual based models · deterministic models · epidemic · pair

approximations

1 Introduction

Mathematical epidemiology is a rapidly evolving field of fundamental importance in

understanding communicable diseases and for identifying strategies for their prevention

and control. Historically, deterministic differential equation models have played a very

important role in its development [16,20,1,5], however they are usually applicable

to very idealised systems in which a large degree of homogeneity is assumed. While
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theoretically valuable for obtaining closed form expressions for threshold quantities

such as the basic reproduction ratio R0 [3,1,12,24] and the basic depression ratio D0

[2], the domain of applicability of any given differential equation modelling approach

remains quite limited.

By contrast, stochastic simulation methods [10] have been successfully employed

in the description of very complicated systems to investigate threshold conditions and

to evaluate the efficacy of methods of disease control [15,9,27]. In general, stochastic

modelling approaches are found to be much more flexible than their deterministic

counterparts. Nevertheless, there have been some promising recent developments in

deterministic modelling that have focussed on the idea that the spread of infection is

due to a network of contacts between individuals. This is a powerful construct because,

if we incorporate the notion of a dynamic network of contacts with variable transmission

strengths, essentially all communicable diseases can be viewed as being propagated in

this way.

Fundamentally, infection is caused by a “contact” between an infectious and a

susceptible individual irrespective of how that contact arises. This idea permits the

description of the population dynamics in terms of pairs of individuals and produces

a very natural extension of mean-field theory that incorporates some of the network

structure [19,25,14,23,28,26]. However, although some attempts have been made to

incorporate network heterogeneities [6,29] and group heterogeneities [8] into these pair-

level models, they remain very idealised.

Motivated by these developments, this paper considers a class of individual based

deterministic models with the potential to incorporate a large amount of heterogeneity

and complexity. In the context of epidemics spread by contact networks, this develop-

ment also helps to clarify the link between stochastic simulation and population level

deterministic models.

We start with the observation that in principle, a complete deterministic description

of an epidemiological system is obtained by integrating the master equations for the

probabilities of the system states. This is impractical for all but the very simplest of

systems because of the large number of equations that arise. However, by dividing the

epidemiological system into smaller subsystems, the number of master equations can

be reduced to a computationally feasible level without loss of accuracy. This comes at

the considerable cost that the reduced set of equations is not closed and is therefore

insoluble. By assuming statistical independence of the subsystems, we obtain a closed

solvable system of equations. In this paper, these ideas are investigated in the case

of the compartmental SIR model [16,1,11] where individuals are represented by three

states: susceptible, infectious and resistant (or removed).

The next section introduces the reduced master equations for an arbitrary system.

Section 3 applies them in the case of an SIR model utilising a closure based on statistical

independence at the level of individuals. Section 4 relates this model to mean-field

theory. Section 5 considers a closure based on statistical independence at the level of

pairs of individuals and section 6 links this with population level pair-approximation

models. Finally the resulting four models are compared with the results of stochastic

simulation on a range of synthetic contact networks.
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2 Reduced Master Equations

Here we consider a general system Γ whose state is denoted by Γα where the index

α is an integer lying between 1 and the total number of possible system states M .

Using round brackets () to denote probabilities (to shorten equations, brackets are used

throughout the paper to denote probabilities because in this context, the distinction

between this and other uses of brackets should be clear), the probability (Γα) that the

system Γ is in state Γα is given by the master equations:

˙(Γα) =

M
∑

β=1

[

Rβα(Γβ) −Rαβ(Γα)
]

(1)

where Rβα denotes the transition rate from state Γβ to state Γα. In principle, the

solution of these equations provides the complete evolution of the probabilities of the

states of the stochastic system Γ . However, this is not feasible for systems of any

significant complexity.

Let us now split Γ into a set of Z coupled subsystems ψi where i is an integer

between 1 and Z. For each subsystem ψi, we can write master equations to describe

the state probabilities:

˙(ψa
i ) =

mi
∑

b=1

[

Rba
i (ψb

i ) −Rab
i (ψa

i )
]

(2)

where the indices a and b denote two of the mi possible states of the ith subsystem and

Ri denotes the matrix of transition rates between states for the ith subsystem and is,

in general, dependent on the states of the other subsystems. For the case where there

are mi = m states available to each subsystem, this results in Z(m− 1) equations (we

only need m − 1 equations per state because of the constraint that the probabilities

must sum to 1;
∑

a
ψa

i = 1). This can be far smaller than the M master equations for

the complete system, but at the cost that these equations are not closed. In the next

section we investigate this in the specific case of the SIR epidemiological model.

3 Individual-based SIR models

For an SIR model applied to N individuals, there are potentially 3N − 1 master equa-

tions. It is usually impractical to integrate these numerically unless N is very small.

Here, an obvious set of subsystems is formed by the individuals themselves. Another

possible set is formed by pairs of individuals. Treating individuals as a set of subsys-

tems, 2N master equations are obtained. Solving this number of equations is feasible

for reasonably large values of N .

Denoting the probability that the ith individual is in a susceptible or infectious

state by (Si) and (Ii) respectively, equation 2 becomes:

˙(Si) = −RSI
i (Si)

˙(Ii) = RSI
i (Si) −RIR

i (Ii) (3)

where here, resistant individuals are assumed to have lifelong immunity and so do not

return to the susceptible class. Birth and death processes are also ignored.
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It is useful to consider all infection events during an epidemic as being due to a

“contact” between an infected and a susceptible individual. Here, contact is taken in

its most general sense incorporating both direct contact and more indirect contacts

such as by environment, vectors, air, water and transportation. These contacts can be

represented by a matrix G where:

Gji =

{

1 if there is contact from individual j to individual i

0 otherwise
(4)

and Gii = 0. It is also convenient to define Tji to be to be the transmission rate from

j to i when individual j is infectious and i is susceptible. In the case of a homogeneous

transmission rate τ we have:

Tji = τGji (5)

Let us now look at the transition rates RSI
i and RIR

i in equation 3. The rate

of becoming resistant (or removed) is usually assumed to be dependent only on the

individual so we can write RIR
i = gi. The rate of becoming infectious is given by the

total infectious pressure on a susceptible individual at a given time. This is:

RSI
i =

N
∑

j=1

Tji

(IjSi)

(Si)
(6)

where (IjSi) is the probability that individual j is infectious and individual i is sus-

ceptible. Equation 3 then becomes:

˙(Si) = −
∑

j

Tji(IjSi)

˙(Ii) =
∑

j

Tji(IjSi) − gi(Ii) (7)

where gi and Tji could be time dependent. Here and in subsequent equations, summa-

tions are assumed to be from 1 to N inclusive unless indicated otherwise.

In its current form, equation 7 is exact but not closed. It can be closed at the

level of individuals by assuming statistical independence in the states of individuals:

(IjSi) = (Ij)(Si). Hence:

˙(Si) = −
∑

j

Tji(Ij)(Si)

˙(Ii) =
∑

j

Tji(Ij)(Si) − gi(Ii) (8)

which is a closed, solvable system of equations. This is referred to as the “individual-

based model” in what follows. In principle, this type of model has the scope to evaluate

on an individual level the time evolution of complex epidemiological systems described

by heterogeneous and time dependent contact networks.

In summary, both the full and reduced sets of master equations give the precise

evolution of the probabilities of being infectious or susceptible during an epidemic.

However, it is usually impractical to solve the full set, and the reduced set is incomplete

and so has no solution. By assuming statistical independence at the level of individuals,

an approximate set of master equations is obtained which is here termed the individual-

based model. The accuracy of the individual-based model is entirely dependent on

the validity of the independence assumption used to derive it. This is investigated

numerically in section 7 by comparison with stochastic individual based models.
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4 Connection with mean-field models

Most differential equation models of epidemiological systems describe population level

dynamics. Here we explore how the individual-based SIR model of the previous section

relates to mean-field population level SIR models.

Denoting the expectation values of the susceptible and infectious population sizes

by [S] and [I] respectively [13,14], these quantities are be related to the probabilities

in the reduced master equations by:

[S] =
∑

i

(Si)

[I] =
∑

i

(Ii) (9)

It follows from equations 8 and 9 that:

˙[S] = −
∑

ji

Tji(Ij)(Si)

˙[I] =
∑

ji

Tji(Ij)(Si) −
∑

i

gi(Ii) (10)

Applying the mean-field assumption (Si) = [S]/N and (Ii) = [I]/N gives the

mean-field SIR model:

[Ṡ] = −β[I][S]

[İ] = β[I][S] − γ[I] (11)

where:

β =
1

N2

∑

ji

Tji

γ =
1

N

∑

i

gi (12)

When the transmission rates are homogeneous (equation 5) and the removal rates are

also homogeneous (gi = g), the mean-field theory becomes:

˙[S] = −τn[I][S]/N

˙[I] = τn[I][S]/N − g[I] (13)

where n is the average number of neighbours per node defined by ‖G‖ = Nn where:

‖G‖ ≡
∑

ji

Gji (14)

By applying the mean-field or probability averaging assumption to the individual-

based model, we effectively smooth out the heterogeneity in the model and treat each

site as identical. In turn, the individual-based model of the previous section follows from

the master equations using the assumption of statistical independence at the level of

individuals. Consequently the mean-field model depends on two assumptions: statistical

independence of individuals and the mean-field assumption. Numerical comparisons of

the mean-field model, individual-based model and stochastic simulation are made in

section 7.
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5 Pair-based SIR models

Both mean-field theory and the individual-based model make the assumption of sta-

tistical independence at the level of individuals. For population dynamics, differential

equation models describing processes at the level of pairs of individuals have been inves-

tigated to avoid this assumption [19,25,14,23,28,26] and, in this section, we consider

an analogous development at the individual level.

The complete reduced master equations for the individual pair dynamics in the

SIR model are:

˙(SjSi) = −
∑

k,k 6=i

Tkj(IkSjSi) −
∑

k,k 6=j

Tki(SjSiIk)

˙(IjSi) =
∑

k,k 6=i

Tkj(IkSjSi) −
∑

k,k 6=j

Tki(IjSiIk) − Tji(IjSi) − gj(IjSi)

˙(RjSi) = −
∑

k,k 6=j

Tki(RjSiIk) + gj(IjSi)

˙(IjIi) =
∑

k,k 6=i

Tkj(IkSjIi) +
∑

k,k 6=j

Tki(IjSiIk) + Tji(IjSi)

+Tij(SjIi) − (gi + gj)(IjIi)

˙(RjIi) =
∑

k,k 6=j

Tki(RjSiIk) + gj(IjIi) − gi(RjIi)

˙(RjRi) = gi(RjIi) + gj(IjRi) (15)

where the notation (AiBjCk) denotes the probability that individual i is in state A,

individual j is in state B and individual k is in state C.

In connection with the discussion in section 2, pairs of individuals form sub-systems

in addition to the individual level subsystems described in equation 7. The problem

now is to find a closed set of equations. Firstly, instead of approximating the probabil-

ity (IjSi) in equation 7 by the independence assumption, the (IjSi) expression from

equation 15 is used. To generate a closed set of equations, the triples probabilities in

this expression must be approximated in terms of pair level and individual level proba-

bilities. It is possible to approximate triples in many ways and full details of the closure

approximations used for the simulations in this paper are given in appendix A. These

approximations are based on the assumption of statistical independence at the level of

pairs. This model is referred to as the pair-based model in what follows.

While the pair-based model does not assume independence at the level of individ-

uals or depend on a mean-field assumption, it does assume statistical independence at

the level of pairs. The accuracy of this model therefore depends on the validity of this

assumption.

The pair-based model for the symmetric contact networks considered in section 7

involves the solution of (3n+ 2)N ordinary differential equations. This is considerably

more than the 2N equations of the individual-based model, but is still numerically

feasible for reasonably large values of N .
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6 Connection with the population level pair-approximation models

In section 4, the individual-based model was related to the mean-field model. Similarly

the pair-based model can be related to its corresponding “mean-field” model, where the

averaged (or mean-field) quantities are pairs instead of individuals. Using the square

bracket notation [13,14] for population level pair equations on undirected contact net-

works, the expectation value for the number of pairs where node i is in state A and

node j is in state B and for which there is a network link from i to j is given by:

[AB] =
∑

ij

Gij(AiBj) (16)

When transmission rates are homogeneous (equation 5) and removal rates are homo-

geneous (gi = g), the i index in equation 7 can be summed to give:

[Ṡ] = −τ [SI]

[İ] = τ [SI] − g[I] (17)

For undirected networks, Gij = Gji so [AB] = [BA]. Furthermore, this symmetry

allows the following notation for population level triples to work unambiguously [13,

14]:

[ABC] =
∑

ijk,k 6=i

GijGjk(AiBjCk) (18)

For symmetric networks with homogeneous transmission and removal rates, the

SjSi, IjSi and IjIi expressions in equation 15 give the following population level

equations when the indices i and j are summed in conjunction with the definitions in

equations 16 and 18:

˙[SS] = −2τ [SSI]

˙[SI] = τ([SSI] − [ISI] − [SI]) − g[SI]

˙[II] = 2τ([ISI] + [SI]) − 2g[II] (19)

For symmetric contact networks with homogeneous transmission and removal rates,

equations 17 and 19 provide a precise description of the expected population dynamics

[19,14,23,26]. For the more general case of asymmetric networks with homogeneous

transmission and removal rates, the sum over the i and j indices in equation 15 produce

a more general set of population level equations for which a more detailed notation is

required [26].

Closure approximations are required to solve these population level equations.

These population level closures can be derived by applying an averaging or “mean-

field” assumption to the closure approximations for the pair-based model in appendix

A. Full details of this are discussed in Appendix B. Equations 17 and 19 together with

the closure approximations are referred to as the “pair-approximation” model in what

follows.

To summarise, four models have been defined; two (mean-field and pair-approximation)

are population level models and two (individual-based and pair-based) are individual

level models. These models can be related to each other by the mean-field assumption

and by the assumption of the statistical independence of individuals. These models are

summarised with respect to their assumptions in table 1.
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Model Name Mean Field Assumption Independence of individuals assumption
Mean-Field Yes Yes

Pair-Approximation Yes No
Individual-Based No Yes

Pair-Based No No

Table 1 Comparison of the mean-field, pair-approximation, individual-based and pair-based
models with respect to the assumptions used to construct them.

7 Numerical results and discussion

Although there is considerable scope for introducing a large amount of complexity

into both the individual-based and pair-based models, these investigations are left for

future work. Here, to make a fair comparison with population level models, only static

undirected contact networks with homogeneous transmission and removal rates are

considered.

A range of networks from random to spatially local are constructed by using a

two dimensional variant of the Watts & Strogatz small-world network [30,22]. A two

dimensional construction is more relevant for epidemiological systems because local

transmission typically occurs on a plane and not in one dimension as in the original

Watts & Strogartz network.

To construct the networks, N individuals (or nodes) are distributed uniformly at

random on the surface of a sphere. Each node is then connected via undirected links to

its m nearest (Euclidean) neighbours. With probability p, each link is then completely

removed and reassigned between two nodes chosen uniformly at random from the

set of pairs of unconnected nodes. Self contact is also not permitted. By varying the

reassignment probability p, it is possible to investigate a range of small-world networks

from spatially local (p = 0) to Erdos-Renyi type random networks (p = 1)[7,22].

For each parameter set, 10,000 stochastic simulations of major outbreaks (defined

here as infecting more than a quarter of the total population) are generated. Each

of these simulations is initiated at the same individual. The infection of this same

individual with all others being susceptible also defines the initial conditions for the

individual-based and pair-based deterministic models. From the fraction F of simula-

tions that produce major outbreaks, a naive estimation of R0 can be obtained from

F = 1 − 1/R0 to give an indicator of the epidemiological nature of the systems being

considered.

Figure 1 shows the comparison of mean-field, pair-approximation, individual-based

and pair-based models for SIR epidemics on a random network (p = 1). Infectious

(figure 1a) and susceptible (figure 1b) time series are shown as well as the variation

with τ of the infectious population at a fixed point in time (figure 1c) and of the

final size susceptible population (figure 1d). Here, m = 6 for which the above network

construction produces an average number of neighbours per node of n = 7.1.

There is clear agreement between the pair-based model predictions and the sim-

ulated epidemics. The pair-approximation model also performs reasonably well here

by keeping within the tolerances of the error bars. However, the individual-based and

mean-field models do not perform as well.

The differences in the models can be understood in terms of the mean-field and

independence assumptions used to construct them. These assumptions are summarised

in table 1. This table shows that the poorer performance of the individual-based and
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Fig. 1 Simulations and model predictions for SIR epidemics on a random network (p = 1)
for which m = 6 and N = 2000. The removal rate is held fixed at g = 0.05. The mean of
10,000 simulations initiated at the same node is plotted with an astrix and the error bars
indicate the 10th and 90th percentiles. Comparison is made with the mean-field (dashed line),
pair-approximation (dotted line), individual-based (dot-dashed line) and pair-based (solid line)
models. The graphs are a) Susceptible time series for τ = 0.022 (corresponding to R0 ≈ 5.4),
b) Infectious time series for τ = 0.022, c) Number of infected individuals at time=50 as a
function of τ ranging from R0 = 0 to R0 ≈ 20. d) Final size of susceptible population as a
function of τ ranging from R0 = 0 to R0 ≈ 20.

mean-field models on the random network is attributable to the assumption of indepen-

dence at the level of individuals. This failure of independence can be partly understood

by observing that the network contacts of an infectious individual are more likely to

be infectious than the network contacts of a susceptible individual; this correlation

between pairs of nodes breaks the independence at the individual level [4]. For random

networks with higher connectivity, the behaviour of the mean-field model improves be-

cause the independence assumption becomes more applicable [4,14]. Numerical evalua-

tion (not reproduced here) confirms that the predictions of the individual-based model

also improve for networks with higher connectivity. In the limit of complete connectiv-

ity (n = N − 1), the individual-based and mean-field models are almost equivalent for

heterogeneous networks (appendix C).

The pair-based and pair-approximation models are also dependent on an inde-

pendence assumption, but this is at the level of pairs of nodes instead of individuals

(appendices A&B). The results in figure 1 indicate that for this random network, this

assumption is accurate.

From table 1 it is evident that the small discrepancy in figure 1 between the pair-

based and pair-approximation models and between the individual-based and mean-

field models is attributable to the averaging or “mean-field” assumption. In general

the heterogeneity that may cause the mean-field assumption to fail originates from
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Fig. 2 Simulations and model predictions for SIR epidemics on a random symmetric network
constructed by an iterative procedure to ensure that each of the 2000 nodes has exactly 6
neighbours. The removal rate is held fixed at g = 0.05. The mean of 10,000 simulations
initiated at the same node is plotted with an astrix and the error bars indicate the 10th and
90th percentiles. Comparison is made with the mean-field (dashed line), pair-approximation
(dotted line), individual-based (dot-dashed line) and pair-based (solid line) models. The graphs
are a) Susceptible time series for τ = 0.022 (corresponding to R0 ≈ 2.2), b) Infectious time
series for τ = 0.022, c) Number of infected individuals at time=50 as a function of τ ranging
from R0 = 0 to R0 ≈ 9.3. d) Final size of susceptible population as a function of τ ranging
from R0 = 0 to R0 ≈ 5.3.

two sources. Firstly there is the hardwired network based heterogeneity which, for this

random network, is primarily due to the variation in the number of neighbours per

node. Secondly there is heterogeneity that is induced by the dynamics of the epidemic.

To investigate the distinction between network heterogeneity and dynamically induced

heterogeneity further, figure 2 considers a randomly connected undirected network

formed with the constraint that every node has exactly 6 neighbours. By design, this

network is completely homogeneous at the level of pairs. Figure 2 show that at the res-

olution of the graph, there is now no discernable difference between the pair-based and

pair-approximation models indicating that at the pair level, the mean-field assumption

works very well. This also suggests that the discrepancy between the pair-based and

pair-approximation models in figure 1 is attributable primarily to network based and

not dynamically induced heterogeneity.

For the mean-field and individual-based models, the high degree of homogeneity in

the network in figure 2 has resulted in very similar predictions, however a small discrep-

ancy still remains for figures 2a,b&c. Although minimised, network heterogeneity may

still play a part in this discrepancy. This is because in spite of the network possessing

complete homogeneity at the pair level and being generally homogeneous because of
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its random construction, there will still be some degree of localised variation at the

triples order or higher.

To evaluate the sensitivity to higher order network heterogeneity, the individual-

based model was systematically initiated on each of the 2000 nodes in the network. The

resulting variation in predictions was found to be very small and contained within the

resolution of the lines for the individual-based model in figure 2. This indicates that

the impact of any residual higher than pair-order localised heterogeneity is minimal

for this network and that consequently the observed difference between the individual-

based and mean-field models must be attributable to the heterogeneity induced by the

dynamics. This heterogeneity will reduce with increasing connectivity in the network

and for the extreme case of a fully connected network (n = N − 1), we have already

noted the near equivalence of the individual-based and mean-field models (appendix

C).

Perhaps the most extreme case of dynamically induced heterogeneity results from a

spatially local network (p = 0). Epidemics on this type of network propagate outwards

as a wave emanating from the first infected node with the wave front roughly marking

a dividing line between the infectious and susceptible populations [20]. Consequently

the homogeneous mixing of infected and susceptible individuals that can justify the

mean-field and independence assumptions does not occur and, in fact, there is very

little mixing of the populations.

The performance of the mean-field, pair-approximation, individual-based and pair-

based models on a locally connected network is illustrated in figure 3. Here, all four

models overestimate the speed of propagation of the epidemic to varying degrees. For

this network, the individual-based model performs better than the pair-approximation

model. This indicates that here, the mean-field assumption is less accurate than the

independence assumption. This contrasts with the low-connectivity random networks

in figures 1 and 2 where the independence assumption leads to greater inaccuracy than

the mean-field assumption.

Clearly the best results on the spatially local network are obtained for the pair-

based model and although not ideal, this provides a reasonable representation of the

stochastic simulations on this network. The remaining discrepancy between the pair-

based model and the stochastic simulation data is attributable to the assumption of

independence at the level of pairs.

Notice from figure 3d that there is no discernable difference between the final size

predictions of the mean-field and individual-based models and between the final size

predictions of the pair-approximation and pair-based models in spite of very distinct

time evolution (figures 3a,b&c). This is relatively unsurprising because final size pre-

dictions are often independent of the detailed space-time evolution of an epidemic

[18,4]. However, for more complex heterogeneous networks this is not true because

the final size of an epidemic depends on the localised cluster in which it is initiated.

In the extreme case of initiating an epidemic at a node that has no neighbours, the

individual-based and pair-based models will always produce a final size of 1, but this

will not influence the predictions of the mean-field and pair-approximation models.

As an example of this, the construction of the random network in figure 1 contains

two nodes that are unconnected to any other node and there will also be small sub-

clusters of nodes that have low-connectivity to the main giant cluster. This goes some

way towards explaining the small discrepancy in the final size predictions between the

individual-based and mean-field models in figure 1d which is not seen in the final size

predictions in figures 2d&3d.
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Fig. 3 Simulations and model predictions for SIR epidemics on a spatially local network
(p = 0) for which n = 6 and N = 2000. The removal rate is held fixed at g = 0.05. The mean
of 10,000 simulations initiated at the same node is plotted with an astrix and the error bars
indicate the 10th and 90th percentiles. Comparison is made with the mean-field (dashed line),
pair-approximation (dotted line), individual-based (dot-dashed line) and pair-based (solid line)
models. The graphs are a) Susceptible time series for τ = 0.056 (corresponding to R0 ≈ 6),
b) Infectious time series for τ = 0.056, c) Number of infected individuals at time=100 as a
function of τ ranging from R0 = 0 to R0 ≈ 20. d) Final size of susceptible population as a
function of τ ranging from R0 = 0 to R0 ≈ 11.6.

Figures 1 to 3 suggest that the accuracy of the four models decreases with increasing

locality. Figure 4 investigates this explicitly by showing the variation of population size

at specific times and for specific transmission rates as a function of the randomisation

parameter p. These are not smooth functions of p because each value of p corresponds

to a different randomly generated network. Two transmission rates are considered

(τ = 0.056) (figure 4a&b) which corresponds to R0 ≈ 6 and τ = 0.02 (figure 4c&d)

corresponding to R0 ≈ 2. For the two values of τ , two time points are chosen, one

part way through the dynamics (figure 4a&c) and a final size result at the end of the

epidemic (figure 4b&d).

The predictions of the mean-field model are seen to be independent of p. This is

because p is a network rearrangement parameter which does not alter the value of ‖G‖

in equation 14. This leaves the predictions of the mean-field model unchanged.

The mean-field and individual-based models do not provide a good match to any

of the simulation results in figure 4.

The failure of the pair-based and pair-approximation models with decreasing p is

seen most clearly for the final size predictions (figure 4b&d). The model predictions of

the pair-based model fall outside of the tolerances of the error bars around p = 0.1.

More detailed simulations on a p = 0.1 network are shown in figure 5.
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Fig. 4 Simulations and model predictions for SIR epidemics on a sequence of small-world
networks ranging from spatially local (p = 0) to random (p = 1) where n = 6 and N = 2000.
Each small world network is generated from the local network in figure 3 by applying different
levels of randomisation p. The removal rate is held fixed at g = 0.05. The mean of 10,000
simulations initiated at the same node is plotted with an astrix and the error bars indicate
the 10th and 90th percentiles. Comparison is made with the mean-field (dashed line), pair-
approximation (dotted line), individual-based (dot-dashed line) and pair-based (solid line)
models. The graphs are a) Infectious population at time=50 for τ = 0.056. b) Final size of
susceptible population for τ = 0.056, c) Infectious population at time=100 for τ = 0.02. d)
Final size of susceptible population for τ = 0.02.

Contrasting figure 5 with figure 3, it is seen that while there is very little difference

between the dynamics of the pair-based and pair-approximation models for p = 0.1,

there is a large difference for the local network p = 0. This divergence of behaviour in

the interval p = 0 to p = 0.1 is also very evident in figure 4a.

8 Concluding remarks

A framework is introduced for the deterministic description of complicated epidemi-

ological systems that represents a departure from previous work because of its focus

on the deterministic evolution of the probability of events at an individual level in-

stead of on population level dynamics. The potential benefits of this approach arise

from its flexibility and scope of application. In particular, the framework encompasses

dynamic and directed heterogeneous contact networks with time varying transmission

and removal rates. These complicated systems could previously only be described by

relatively ad hoc deterministic models or by stochastic simulation.

The advantages of this type of model over stochastic simulation remain to be deter-

mined. Possible benefits may arise from the lack of stochastic variation leading to just
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Fig. 5 Simulations and model predictions for SIR epidemics on a small-world network for
which p = 0.1. The removal rate is held fixed at g = 0.05. The mean of 10,000 simulations
initiated at the same node is plotted with an astrix and the error bars indicate the 10th and
90th percentiles. Comparison is made with the mean-field (dashed line), pair-approximation
(dotted line), individual-based (dot-dashed line) and pair-based (solid line) models. The graphs
are a) Susceptible time series for τ = 0.056 (corresponding to R0 ≈ 5.4), b) Infectious time
series for τ = 0.056, c) Number of infected individuals at time=100 as a function of τ ranging
from R0 = 0 to R0 ≈ 6.7. d) Final size of susceptible population as a function of τ ranging
from R0 = 0 to R0 ≈ 4.7.

one numerical evaluation for each parameters set. This may be helpful for identifying

optimal control strategies by minimising cost functions with respect to, for example,

the size of control zones, rapidity of culling and vaccination efficacy. This type of model

also produces detailed information on the probability of infection for each individual as

a function of time. This may find application in the construction of spatial visualisation

tools for observing the propagation of infection probability in space.

Two types of individual level model were constructed, one assuming statistical

independence at the level of individuals (the individual-based model) and one assuming

statistical independence at the level of pairs (the pair-based model). The performance of

these models was evaluated on a range of contact networks. Perhaps the most extreme

type of network for these models (in view of the independence assumptions used to

construct them) is the spatially local network where each individual is connected to its

spatially nearest neighbours. For this network, the individual-based model is found to

perform badly, although the pair-based model does a reasonable job of describing the

epidemic. This is encouraging because for other networks, both the individual-based

and pair-based models are expected to perform better than for this most extreme type

of network.

In principle, models with greater accuracy could be obtained by assuming indepen-

dence at the triples order or higher, however the number of equations required may
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prevent the practical application of this. Indeed, from an applied viewpoint, one pos-

sible limitation of individual level models, particularly in the case of the pair-based

version, is the large number of ordinary differential equations that have to be solved.

This may cause problems for very large or highly connected systems. For population

level models, approximations at the level of triples may be feasible, although they may

be cumbersome to write down. Population level models also have an advantage over

individual level models when closed-form expressions are required for quantities such

as R0 and the final size of epidemics for simple epidemiological systems.

This paper considers a compartmental SIR model. Further developments would

be needed to incorporate more complex aspects such as time dependent infectivity,

waning immunity and latent states. In general, further work is required to determine

the applicability of this type of model as a practical epidemiological tool and as a more

general tool for evaluating dynamics on networks.

From a theoretical perspective, the construction of individual level deterministic

models assists in understanding the link between stochastic processes on contact net-

works and population level deterministic models. To summarise this link, the master

equations describing the probabilities of infection during a stochastic simulation are

re-expressed in the form of reduced master equations describing subsystems. By apply-

ing the assumption of statistical independence of the subsystems, the individual-based

and pair-based deterministic models are obtained. By applying a mean-field or averag-

ing assumption, these individual level models are then related to the more traditional

population-level mean-field and pair-approximation models. In the context of dynamics

spread on contact networks, this clarifies the theoretical connection between stochastic

simulation and population level deterministic models.

Appendix A: Pair-level closures

In general we approximate a triple probability (AiBjCk) by:

(AiBjCk) ≈
(AiBj)(BjCk)(CkAi)

(Ai)(Bj)(Ck)

Approximations of this form were originally constructed in theoretical physics [17]

and have been used relatively recently to approximate triples quantities in population

level epidemiological and ecological models. This type of expression can be justified by

assuming statistical independence at the level of pairs [21,28,14,23,26].

This approximation applies to any set of three individuals i, j and k. However, for

this work, the triples probabilities of interest are those for which there is a network

link between i and j and also between j and k. For the symmetric contact networks

considered in section 7, these triples are either “closed” for which there is an undirected

link between individuals i and k or “open” for which there is no connection between

i and k. For the closed case, the above expression is used in full. For the open case it

is convenient to introduce the notation (Ck ⊲⊳ Ai) to signify that there is no network

contact between i and k [26]. For the open triples we assume statistical independence

between the unconnected nodes ((Ck ⊲⊳ Ai) = (Ck)(Ai)) so that:

(AiBjCk) ≈
(AiBj)(BjCk)(Ck ⊲⊳ Ai)

(Ai)(Bj)(Ck)
≈

(AiBj)(BjCk)

(Bj)

The use of this expression for open triples means that the pair equations in equation 15

need only be solved for pairs of individuals that have a network link between them.
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Appendix B: Pair-level closures for population-level models

The population level triples [ABC] in equation 15 are approximated by:

[ABC] = Nζ
[AB][BC]

[A][B][C]

(

φ
[CA]

n
+ (1 − φ)

[C ⊲⊳ A]

n⊲⊳

)

where N is the total population size, n is the average number of neighbours per indi-

vidual and :

[C ⊲⊳ A] = [C][A] − [CA]

n⊲⊳ = N − 1 − n

and:

ζ =
‖G2‖ − Tr(G2)

Nn2

φ =
Tr(G3)

‖G2‖ − Tr(G2)

where the notation ‖G2‖ is defined by equation 14. This closure [26] was first suggested

in a slightly different form by Morris and vanBaalen [21,14,28].

We now show that this population level approximation for triples follows from the

approximation in appendix A when the mean-field assumption for pairs is applied.

For a triple (AiBjCk) with links between nodes i and j and between nodes j and

k, we have from Eq 18:

[ABC] =
∑

ijk,k 6=i

GijGjk(AiBjCk)

This can be split into a closed part with a network between i and k and an open part

with no link by:

[ABC] =
∑

ijk

GijGjkGki(AiBjCk) +
∑

ijk

GijGjk(G⊲⊳)ki(AiBjCk)

where G⊲⊳ represents the “open network” of no links [26] and for symmetric networks

is defined by:

(G⊲⊳)ij = 1 −Gij − δij

where δij is the Kronecker delta.

Applying the closure approximation from appendix A gives:

[ABC] ≈
∑

ijk

GijGjkGki

(AiBj)(BjCk)(CkAi)

(Ai)(Bj)(Ck)

+
∑

ijk

GijGjk(G⊲⊳)ki

(AiBj)(BjCk)(Ck⊲⊳Ai)

(Ai)(Bj)(Ck)



17

where here independence for the open pairs (Ck⊲⊳Ai) is not assumed. Applying the

mean-field assumption for individuals (Ai = [A]/N), network pairs (AiBj = [AB]/Nn)

and for the open pairs ((Ck⊲⊳Ai) = [C ⊲⊳ A]/Nn⊲⊳) gives:

[ABC] ≈
∑

ijk

GijGjkGki
[AB][BC][CA]

n3[A][B][C]
+

∑

ijk

GijGjk(G⊲⊳)ki
[AB][BC][C ⊲⊳ A]

n2n⊲⊳[A][B][C]

= Tr(G3)
[AB][BC][CA]

n3[A][B][C]
+

(

‖G2‖ − Tr(G2) − Tr(G3)
) [AB][BC][C ⊲⊳ A]

n2n⊲⊳[A][B][C]

= Nζ
[AB][BC]

[A][B][C]

(

φ
[CA]

n
+ (1 − φ)

[C ⊲⊳ A]

n⊲⊳

)

as expected.

Appendix C: Near equivalence of mean-field and individual-based models

for fully connected homogeneous networks

For a fully connected homogeneous network with homogeneous removal rates, the

individual-based model (equation 10) becomes:

˙[S] = −τQ

˙[I] = τQ− g[I]

where

Q =
∑

ij

(1 − δij)(Ij)(Si)

For an epidemic initiated at a single individual f within a totally susceptible popu-

lation, symmetry requires the infection probability to diffuse identically across the other

N − 1 nodes. Consequently the probability of being susceptible is evenly distributed

over these sites for the entire duration of the epidemic so:

(Si6=f ) =
[S]

N − 1
Sf = 0

The expression for Q then becomes:

Q =
∑

ij

(1 − δij)(1 − δif )
(Ij)[S]

N − 1

=
∑

ij

(Ij)[S]

N − 1
−

∑

ij

δij
(Ij)[S]

N − 1
−

∑

ij

δif
(Ij)[S]

N − 1
+

∑

ij

δijδif
(Ij)[S]

N − 1

=
N [I][S]

N − 1
−

2[I][S]

N − 1
+

(If )[S]

N − 1

The differential equation for (If ) can be solved explicitly to give (If ) = exp(−gt)

where t is the time from the start of the epidemic. Hence:

Q =
(N − 2)

N − 1
[I][S] −

[S]e−gt

N − 1
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The mean-field result for a fully connected network is obtained by putting n = N−1

in equation 13:

˙[S] = −τ
(N − 1)

N
[I][S]

˙[I] = τ
(N − 1)

N
[I][S] − g[I]

which gives Q = [I][S](N − 1)/N .

Provided that N is reasonably large, both the mean-field and individual-based

models have Q ≈ [I][S]. The small difference between the models is attributable to the

explicit treatment of the first infected site in the individual-based model.
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