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Abstract 

The susceptibility of the English and Welsh fish farming and fisheries industry to emergent 
diseases is assessed using a stochastic simulation model. The model dynamics operate on a 
network comprising directed transport and river contacts, as well as undirected local and 
fomite transmissions. The directed connections cause outward transmission risk to be 
geographically more confined than inward risk. We consider reactive, proactive, and hybrid 
methods of control which correspond to a mixture of policy and the ease of disease detection. 
An explicit investigation of the impact of laboratory capacity is made. General quantified 
guidelines are derived to mitigate future epidemics. 
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Introduction 
Aquatic ecosystems have inherent biological and ecological value. In addition, humans rely 
on them for profit, recreation, livelihood, and nutrition (FAO 2004). Aquatic animals are an 
important component of these systems and they suffer from many infectious diseases, 
associated with a broad range of pathogens (viral, bacterial, fungal, protozoal, metazoal) 
many of which have the potential to cause disease epidemics. Viral pathogens affecting 
northwest European fish stocks include several distinct strains of Salmonid Alpha Viruses 
(SAV, responsible for pancreas disease and sleeping disease), Infectious Pancreatic Necrosis 
virus (IPNV), Viral Haemorrhagic Septicaemia virus (VHSV, identified in at least 48 
different marine and freshwater species), and Infectious Haematopoietic Necrosis virus 
(IHNV) (LaPatra et al. 2001; Skall et al. 2005; McLoughlin & Graham 2007; Rodger & 
Mitchell 2007; Stone et al. 2008; Munro et al. 2010). In England and Wales, some bacterial 
diseases affecting in particular salmonids (Salmonidae), include Bacterial Kidney Disease 
(BKD, Renibacterium salmoninarum), Lactococcus garvieae (LG, identified in England in 
2000), and Enteric Redmouth disease (ERM, Yersinia ruckeri) (Tobback et al. 2007; 
Chambers et al. 2008; Algöet et al. 2009). An important parasitical threat is Gyrodactylus 

salaris (GS, Peeler & Thrush 2004). 
The effects of these pathogens can be devastating to fish stocks. For example, 

observed mortality levels of sleeping disease in France reached 22% in the 1990s, whereas 
pancreas disease in Ireland in 1989-1994 resulted in up to 48% mortality in 43 separate 
outbreaks (McLoughlin & Graham 2007; Rodger & Mitchell 2007). VHSV-associated 
mortality in rainbow trout (Oncorhynchus mykiss (Walbaum)) can be up to 100% in fry, and 
30-70% in older fish (Skall et al. 2005). Similarly high proportions have been reported for 
IHNV, with up to 100% mortality in salmonid fry (HattenbergerBaudouy et al. 1995). 
Detrimental subclinical effects may include lethargy and loss of appetite (Damsgård et al. 
1998; Rodger & Mitchell 2007; Algöet et al. 2009). 
 Pathogen-induced fish mortality and suppressed growth also have severe socio-
economic consequences (e.g. Lilley and Roberts 1997; FAO & NACA 2001). For instance, it 
was estimated in 1998 that VHSV caused the western European aquaculture industry circa 
US$ 60 million per year (Giorgetti 1998), whereas Iversen et al. (2005) assessed the direct 
costs of disease for Norwegian fish farming around US$ 150 million annually. Clearly, much 
is to be gained from a better understanding of how these diseases spread, which sites, 
regions, or river catchments are most at risk, which parameters are most influential, and 
which mitigation strategies might be most effective in outbreak control. Here we present our 
efforts to statistically quantify these aspects by means of a large-scale epidemiological 
simulation, based on the actual network configuration of 2,090 English and Welsh fish farms 
and fisheries that stock and rear salmonids. 
 
[Figure 1. Site density per river catchment in England and Wales in 2004] 

 
Materials and methods 
Network nodes and connections 
The epidemiological significance of simulated contact networks is well established (e.g., 
Kiss et al. 2005, 2006ab; Sharkey et al. 2008). Unlike mean-field approximations, each 
network node or site is considered unique, with specific coordinates (here: U.K. Ordnance 
Survey grid), specific connected or unconnected neighbouring nodes, and specific 
transmission paths or links whose associated likelihood differs per type (Kiss et al. 2006b; 
Sharkey 2008). This allows for a more realistic representation of contacts, including spatial 
heterogeneity in the number of links (e.g., scale-free networks), distinction between directed 
and undirected links, the effects of long-range connections (e.g., small-world networks), and 
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emergent properties due to clustering, community association, or fragmentation of network 
parts (Keeling 1999; Sharkey et al. 2006; Green et al. 2009; Munro & Gregory 2009; Jonkers 
et al. 2010).  

The English and Welsh network studied here comprises 2,090 distinct sites, 
comprising 235 fish farm and 1,855 fishery sites, distributed among 155 river catchments of 
very wide size range (Figure 1). Four catchments (Thames, Severn, Trent, and the Yorkshire 
Ouse) contain over one hundred sites each; another 46 catchments have between 10 and 100 
sites, 75 more each hold 2-9 sites, and the remaining 30 contain a single site. These totals 
demonstrate some of this network’s spatial heterogeneity. Moreover, complexity increases 
markedly once the connections between these nodes are taken into account. For the purpose 
of our simulations we distinguish four distinct transmission mechanisms depicted in Figure 
2: directed transport (live fish movement) and directed river transmissions, and undirected 
local and fomite transmissions. 

The analysed contact structure has a number of remarkable features, notably, it is not 
a scale-free network. Histograms of the number of links per site (see Supplement) show that 
almost all sites are highly connected. This is primarily due to the tens of thousands of short-
range, bidirectional connections between nearby sites. Although their transmission likelihood 
is low and decreases sharply with distance, their sheer number creates a dense mesh of 
localised links, theoretically allowing a pathogen to roam from one end of the network to 
another in a long sequence of small steps. Superimposed on this foundation is the transport 
system, which reliably and quickly distributes live hosts and pathogens from less than two 
hundred (fish farm) sources to over two thousand destinations (98.3% of the network). 
Fisheries thus function purely as receivers of transport transmissions, creating a profound 
asymmetry. A second series of more geographically confined conduits is provided by the 
rivers on which many fish farms and fisheries are situated. The majority of these transport 
and river links span great distances, resulting in a network that can be classified as of the 
“small-world” type (Moore & Newman 2000). Thus the (relatively high-likelihood) bridging 
paths between distant local clusters cause the shortest route between any two sites to require 
few intermediary steps on average. 
 
[Figure 2. The four types of transmission considered] 
 
Transport transmission 
Transport by road haulage involves the movement of live, pathogen-carrying fish (including 
potentially pathogen-carrying water or equipment) between two sites (Murray 2006; 
Gustafson et al. 2007). It involves transfer of fingerlings from hatcheries to on-growing sites, 
stocking of fisheries, and occasionally the movement of fish to processing plants (Murray & 
Peeler 2005; Munro & Gregory 2009). This type of (often long-distance) transmission is 
highly dangerous, as the empirical record attests: Skall et al. (2005) identified transports of 
infected farmed fish as the primary means of spread and major cause of VHSV in Europe; 
Green et al. (2009) noted the implication of road transports of live rainbow trout in the U.K.-
wide spread of BKD in 2005. Murray et al. (2002) highlighted the role of live transports (in 
well boats) in the 1998 outbreak of Infectious Salmon Anaemia (ISA) in Scotland, and Peeler 
& Thrush (2004) identified empty fish transporters returning from infected areas as the 
highest risk regarding the introduction of GS from mainland Europe into Britain.  

Under EU directive 2006/88/EC, EU member states are now required to perform risk-
based surveillance of aquatic diseases, and to record live fish movements (Green et al. 2009; 
Munro & Gregory 2009). Fish farmers therefore have a legal obligation to keep records of all 
movements of live fish on and off their sites and to make this information available to the 
competent authority for the control of notifiable fish diseases; for England and Wales this is 



 4 

the Centre for Environment, Fisheries and Aquaculture Science (Cefas). Movements to 
recreational fisheries or open waters for restocking furthermore require consent from the 
Environment Agency (EA) under Section 30 of the Salmon and Freshwater Fisheries Act 
(Anonymous 1975). Cefas maintains these records on the Live Fish Movement Database 
(LFMD). The LFMD was interrogated to determine all destinations of live fish movements 
made in 2004 from each fish farm that was registered on the database in September 2006 for 
holding stocks of salmonid fish (rainbow trout Oncorhynchus mykiss, brown trout Salmo 

trutta and Atlantic salmon Salmo salar) and a contact network was constructed on the basis 
of this trading activity. 
 The epidemiological risk of site-to-site transports of live animals can be explored 
quantitatively through network analysis, as reported for a number of other farmed species 
such as cattle, sheep, and pigs (e.g., Christley et al. 2005; Webb 2005; Bigras-Poulin et al. 
2007). Within the U.K., Munro and Gregory (2009) have identified sites that are vulnerable 
and have a high-risk of spreading infections in the network architecture of Scottish farmed 
salmonid movements in 2004, whereas Thrush & Peeler (2006) developed a stochastic 
simulation model to study pathogen spread involving site-to-site movement. In the present 
study, we used a total of 4,530 recorded transports along 2,750 routes, departing from 194 
distinct sites and servicing almost the entire network (2,055 sites). Given a maximum time 
span of thirty years per simulated outbreak, seasonal fluctuations were ignored when 
computing the likelihood per day of transport transmission, based on the number of annual 
transports T per site: 

2524.365/Tptrans =  

Transports from an infected site are considered to cease immediately upon notification of 
that site. 
 
River transmission 
The second transmission type considered was river transport (2,232 links), comprising 
several distinct mechanisms. Infected fish may release pathogens via urine and reproductive 
fluids, etc. These pathogens may then be swept along by river flow or wild fish may act as 
carriers (Skall et al. 2005; Peeler et al. 2008; Taylor et al. 2010). Additional factors include 
pleasure boat traffic, angling equipment, wind and solar effects, the presence of chemical 
pollutants, suspended solids, or interaction between organisms (Toranzo & Hetrick 1982; 
Murray et al. 2005). These effects are difficult to quantify (see Discussion). Consequently, 
our simulations disregard most of these, concentrating on an empirically-founded, stochastic 
representation of downstream particle flow only, as pathogen spreading through infected 
water or suspended particles is considered more likely in a downstream direction (McAllister 
& Bebak 1997; Sharkey et al. 2006). 

We implemented an algorithm that takes into account the distance along a river 
between two sites (generally larger than the Euclidean distance), the asymmetry of the 
contact network (using downstream links), and stochastic sampling of an empirically derived 
distribution of river stream flow speeds. The river contact network was compiled using a 
customised adaptation of the Intelligent River Network developed by the Centre for Ecology 
and Hydrology (CEH) to generate inter-site distances through the river network for farm and 
fishery locations provided by Cefas. Estimation of river flow speeds initially proved 
problematic, as publicly available data on river resources maintained by the U.K. 
Environment Agency are stored as different flow parameters such as cumecs (cubic meters of 
water per second), which cannot be converted into flow speeds without detailed knowledge 
of depth and shape of the local riverbed at each sampling point. 

Instead we trawled the United States Geological Survey’s water resources (at 
http://waterdata.usgs.gov/usa/nwis, section surface water, daily data) for some 350 river sites 
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with daily means of stream flow speeds. Of these, 37 locations provided over one hundred 
consecutive sampled days each (capped per site at three years of data, to avoid bias due to a 
few anomalously long records), yielding over 25 thousand positive daily means in total. A 
plot of their binned frequencies (Figure 3) reveals a loglinear distribution ranging from 0.05 
to 4.4 m/s, with lowest speeds being most prevalent. Sampling from such a global 
distribution disregards localised effects of gradient, depth, and surface area. However, given 
the gathered flow speeds, a large part of this variability is assumed to be captured in the 
broad observed range, which spans almost an order of magnitude. Other than the 
incorporated measured distances between sites along a river trajectory, we have made no 
attempt to represent seasonality or different river types (e.g., meandering, braided, delta, 
white-, black-, or clearwater, etc.). 

We subsequently determined for each river connection how long a waterborne 
particle might take on average from source to destination. We computed total transit time by 
repeatedly updating the cumulative distance travelled, based on a flow speed drawn 
randomly from the distribution for each 24hr spent in the water, until the destination was 
reached. Thus the simulated flow speeds within the same river would be different for each 
connection (being itself a cumulative composite of sampled daily average velocities). Despite 
some English and Welsh river distances exceeding 100 km (average: 17.1 km), most site-to-
site river intervals computed with this method take less than two days (max: 5 days). This 
suggests that if the sampled rivers can be deemed comparable to U.K. rivers in their flow 
speeds, most fish pathogens should be considered well able to survive these (and longer) 
journeys. In this context, McAllister and Bebak’s (1997) report of detecting significant IPNV 
titre levels almost 20 km downstream from an infected source site is not unexpected. 

The outbreak simulator applied the described repeated stochastic sampling to 
compute θ , the total time (in days and parts thereof) the pathogen spent in transit. We 
furthermore assume that the likelihood of transmission decays exponentially over time by 
dilution and entrapment in substrate or vegetation. Note that this dilution effect is 
independent of pathogen viability (see below). Given an average daily transmission rate 
α (see below), we define river transmission likelihood here as: 

[ ]Rriverp θλα −= exp  

The final scalar Rλ  in this equation is set to unity, which represents a waterborne pathogen 

decay rate of 37.01 ≈e  per day, implying a 3-log10 reduction in virus titre (T99.9) after 7 
days. Laboratory studies report a wide range of such inactivation rates, depending on 
pathogen, water temperature, salinity, and the presence of additional substances. Given 
freshwater at 20ºC, Toranzo & Hetrick (1982) and Barja et al. (1983) estimate a 9-day 
inactivation rate of IPNV versus 14 days for IHN, whereas Murray et al. (2005) adopt an 
hourly decay rate of 10% for ISA (i.e., inactivation after 3 days), and Kocan et al. (2001) 
estimate inactivation of VHSV in 15ºC filtered seawater after 60 hrs at most. Sensitivity of 
results to changes in the adopted transmissibility parameters is discussed below. We stress 
that this generalised approach disregards pathogen-specific dilution effects and inactivation 
rates. 
 
[Figure 3. River stream flow speed distribution and loglinear best fit] 
 
Local and fomite transmission 
The final two transmission types are considered to be undirected, and assume an underlying 
diffusion process, justifying a Gaussian kernel for the decay of risk with distance. They are 
merely incorporated to add some extra realism (see below). As their effects are deemed to be 
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small, we have chosen parameters that result in low initial likelihoods that, moreover, 
decrease sharply with distance from the source. 

Local transmission involves the movements between sites of staff and other people 
(e.g. carrying contamination on their clothing, personal items, or private vehicles), as well as 
local transfer of shared machinery and equipment (nets, containers) (Rodgers & Mitchell 
2007; Brennan et al. 2008). The likelihood per day plocal is considered to decrease 
exponentially with radial area around the source site. Given the Euclidean distance D 
between two sites in meters, average daily transmission rate β  and local scalar Lλ  (see 
below), it is defined: 

( )[ ]
Llocal Dp λβ 2exp −= . 

Given the relatively high site density, this type accounts for the large majority of links. 
However, the transmission likelihood is close to zero for all but the shortest links, and site 
notification upon detection blocks further spread along this route (Anonymous 2007). 
Notification implies a temporary cessation of live fish transports to and from the site, as well 
as general awareness of an infectious agent on the premises, which should reduce subsequent 
local spread by increasing general biosecurity measures. 
 Fomite transmission, the last type of link in our network, represents the 
uncontrollable part of local transmission., with a daily transmission rate γ  and local scalar 

Fλ  (see below), yielding: 

( )[ ]
Ffomite Dp λγ 2exp −= . 

Its daily transmission rate is assumed a factor ten less likely than in local transmission due to 
the haphazard nature of the particle carriers, mainly mammalian predators and scavengers 
(e.g., otters, foxes) and piscivorous birds (e.g., herons, cormorants, mallards, sea gulls; 
McAllister & Owens 1992; Willumsen 1989). Another potential threat in this category is 
posed by eels (Anguilla anguilla), which can migrate short distances over land and may carry 
several fish pathogens, for example VHS and BKD (Chambers et al. 2008; Skall et al. 2005). 
Fomite transmissions are especially relevant because they cease only when the entire fish 
stock is culled and the site disinfected. The lower daily likelihood is thus partly offset by a 
larger window of opportunity, depending on the culling delay (see below). 
 
 
Table 1. The four transmission types 
Transmission 

Type 

Range Sources Receivers Halted 

upon 

Danger 

Rating 

Transport Unlimited 194 2,055 Notification 4 
River Unlimited 596 631 Culling 2 
Local  25 km 2,089 2,089 Notification 1 
Fomite 5 km 1,577 1,577 Culling 1 
 
 
Model parameterisation 
Table 1 lists various properties of the four considered transmission types. To assess the risk 
of epidemics upon this multi-layered contact structure, our quantified probabilities for each 
individual connection incorporated empirical contact data (see above) and various working 
assumptions. Both have their limitations. Firstly, regarding empirical data, transports may 
have been underreported; transmission risk may be underestimated or overlooked (e.g., intra-
company transmissions, Sharkey et al. 2008), and circumstances may have changed after the 
period covered by our data. To maximise the scope of this investigation, we therefore 
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introduced an “outbreak severity” parameter, a global factor with which all transmission 
probabilities were multiplied (range: 1-10). Increasing this multiplier raises the likelihood of 
large outbreaks uniformly; it represents increased contact rates, increased infection risks, or a 
combination of both. For the purposes of risk assessment and the statistical exploration of 
rare extreme events, pushing the network’s epidemic potential by up to an order of 
magnitude beyond our initial estimates creates a safety margin which we expect the real 
network never to exceed. 
 Secondly, regarding working assumptions, daily transmission rates for river, local, 
and fomite connections are deemed to be small, but their actual values are relatively 
unknown. In order to ensure reasonable values, we ran a series of tests exploring a range for 
each parameter, eventually settling on estimates of 005.0=α , 05.0=β , 005.0=γ , and for 

the spatial scalars 610−=Lλ , and 610−=Fλ  (recall that geographical distances are expressed 
in meters). We subsequently performed extensive sensitivity analyses (see Supplement) by 
independently varying T, α , β , γ , and the three λ  scalars by up to an order of magnitude 
larger and smaller than their initial estimates. These tests showed that the two undirected 
transmission types, local and fomite, affected the outbreak size the least, whereas changes in 
river and especially transport likelihoods had much larger effects. Thus simulation results are 
most affected by the two probabilities that are empirically best-constrained. In addition, these 
two types stem from the fewest source sites (see Table 1), suggesting that targeted 
biosecurity should be highly effective in this network. (See Supplement.) 
 
Contact structure analysis 
The network’s contact structure comprises all sites and all potentially infectious links 
between them. This static structure can be subdivided into clusters of interconnected sites, in 
which a pathogen introduced at any cluster member can reach any other, either directly or 
indirectly. Thus a cluster’s size imposes an upper bound on the largest outbreak initiated 
inside it. The more links a network acquires, the higher the likelihood that initially isolated 
components merge into larger ones. This eventually leads to the formation of the so-called 
giant component (GC), which incorporates the majority of sites. A GC extended with its 
sinks (sites that the cluster links into, but not vice versa) is called a giant strongly connected 
component (GSCC), and constitutes a worst-case scenario of epidemic size for a single 
infected premises in the absence of control measures (Kao et al. 2006; Dent et al. 2008). 

One way to test the robustness of the GSCC is by cumulative removal of links from 
the contact structure, leading at some point to a fragmentation of the GSCC into smaller 
clusters that themselves fragment further into isolated sites when even more connections are 
removed. This procedure not only provides insight into the likelihood of large outbreaks; it 
may also identify the most dangerous sites from which a pathogen would be able to reach a 
large part of the network, while most other starting points would leave it trapped in a small 
subpart of the system. Given the quantified likelihood estimates available for transmission 
contacts on the studied network, we initially chose to explore GSCC fragmentation by 
systematically removing those links with the lowest transmission rate. Thus we gradually 
stripped the contact structure of its less likely transmissions, until only the highest-
probability contacts remain. 
 
[Figure 4. Fragmentation of the network] 

 
Figure 4 shows how fragmentation of the network proceeds. At first, almost the entire 

contact structure is part of the GSCC (red solid line), even when up to half of all connections 
are severed. At about 60% of structure removed, small clusters start to form, each comprising 
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less than 10% of the network in size (orange dashed line). At over 80% of structure removed, 
a significant proportion of sites is becoming completely isolated (green dotted line). Above 
90% fragmentation the GSCC eventually vanishes, causing a brief spike in small clusters 
before they themselves also disappear in favour of isolated sites. We repeated this test with 
randomly selected link removal, yielding the same profile but shifted about 20% rightward, 
as more of the dense fabric of (low-likelihood) local connections remained active for longer 
(see Supplement for degree distribution histograms). 

These progressions shows the extreme robustness of the GSCC, highlighting this 
network’s potential to generate large outbreaks. Of particular interest in the first test 
(removing the lowest likelihoods first) are the 409 sites (including 157 of the 235 fish farms) 
that maintain access to the GSCC up to the point where the latter collapses. The large 
majority of these being situated in dense coastal areas, they tend to have exceptionally many 
links, including (relatively high-likelihood) transport and river connections, which likely 
explains their improved access to the GSCC. Increased biosecurity on the outward 
connections of these highly dangerous spreading sites may be able to prevent a network-wide 
epidemic from these sources. However, the studied contact structure remains a single, static 
connectivity snapshot. In order to fully explore the outbreak potential of this network, as well 
as the efficacy of various control policies, we studied spreading dynamics in large-scale, 
stochastic, time-dependent epidemiological simulations. 
 
[Figure 5. The modelled sequence of five site states (circles) is interspersed with four 

delay parameters (rectangles)] 

 

Simulation Properties 
Delay parameters 
The simulator is an automatic event timeline editor driven by stochastics and pre-specified 
parameters. The timeline functions both as a record of past events, instruction queue for 
current events, and storage of future events that may occur unless control measures cause 
their removal prior to execution. The sequence of a site’s possible states is: susceptible — 

infected —infectious — detected (notified) — culled — restocked (= susceptible again). A 
site cannot be re-infected between the stages of infected to restocked. However, in the course 
of a single outbreak, a site may become re-infected after becoming susceptible again upon 
restocking; it may thus partake in spreading dynamics more than once. Furthermore, a site 
infected with any of the aforementioned notifiable fish diseases is unable to recover naturally 
without any intervention, both in reality and in our simulations.  

After the initial infection, inbuilt delays expressed in days (Figure 5) separate each 
next step in this sequence. Latency is the duration between becoming infected and becoming 
infectious to others. The subsequent detection delay ends when authorities are notified that a 
site is infected and some control measures are implemented. The culling delay is the 
subsequent period until extermination and removal of hosts, and site disinfection has been 
carried out, whereas the restocking delay is the imposed ban (fallowing period) before new 
susceptibles are re-introduced on site. We note that this sequence of states is more detailed 
than in traditional SEIR models (susceptible—latent/exposed—infectious—

removed/recovered) where detection induces instantaneous countermeasures. 
Together, all possible combinations of the four delay parameters yield one set of 

2,304 separate cases. At runtime, the simulator generates true delays by treating the tabulated 
values as means to which a truncated Gaussian deviate of ±2 standard deviations is added to 
mimic natural variability (Ogut & Bishop 2007), with one standard deviation equal to 10% of 
the total value. For example, if the culling delay is 10 days, actual simulated durations 
between notification and disinfection will be normally distributed between 8 and 12 days 
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(with a mean of 10 days); for the maximum culling delay of 50 days, actual simulated 
durations would vary from 40 to 60 days. 

Timeouts were imposed to limit computational resources spent on essentially 
endemic outbreaks: the simulated duration was thereto capped at thirty years. Thus any 
outbreak stopped by timeout was classified as an endemic outbreak, regardless of its size. 
Existing literature on outbreak duration tends to focus on individual sites, with some 
estimates ranging from 70 to 141 days on average, and maxima from 168 to 288 days 
(McLoughlin & Graham 2007; Rodger & Mitchell 2007). In combination with the three other 
delay parameters (two of which being of similar magnitude), large simulated outbreaks may 
easily last more than a decade, prompting consideration of a sufficiently large window of 
opportunity. 
 
Basic operation 
The simulator required a spatial description of sites and a list of all unidirectional links 
between source-destination pairs, together with the associated type of transmission. For local 
and fomite links, the Euclidean distance was stored; for river contacts, the distance along the 
river, and for live fish movements the number of transport contacts per year. At startup, these 
data were converted into transmission likelihoods for each connection. Simulation then 
commenced and desired statistics were stored per outbreak and per site. One standard run 
consisted of 10,000 seedings (not all of which necessarily led to larger outbreaks); one 
standard set of all 2,304 delay parameter combinations thus totals 23 million seedings. 

The simulator initiated each outbreak by infecting a randomly-selected site in the 
otherwise pathogen-free network. The epidemic then progressed as a sequence of 
chronological events recording time, type of event, and site(s) involved. Event types include 
infection by any of the four transmission mechanisms (determined randomly according to 
their respective likelihood), movement from a latent state to an infectious state, notification, 
culling, and restocking. Additional response events could for example include the imposition 
or lifting of a national transport ban (see below). Subsequent were processed until the 
epidemic had run its course (no more infections or outstanding cullings) or until timeout (set 
at thirty years). Larger delay parameters may extend an outbreak’s duration, but the effect on 
its size is mixed; longer detection and culling delays extend the window of spreading 
opportunity, but longer latency may give biosecurity measures more scope, whereas longer 
restocking delays will limit available new susceptible sites within the outbreak’s ambit. 
 
Baseline parameters 
In order to assess the relative improvement due to various contingency measures, a baseline 
reference was required. A series of simulations was thereto run of 100,000 seedings each 
without any control measure in place, and with each outbreak allowed to continue for the 
maximum duration of thirty years. In the absence of interventions (see Control Strategies 
below), only two parameters remain that affect the results: outbreak severity and latency 
delay. 

Outbreak severity affects the likelihood of hosts becoming infected, the severity of 
clinical expression, increased transports and other contacts, and less conscientious human 
behaviour. Here it is incorporated as a global transmission likelihood postfactor (range: 1-
10). Initial tests mostly displayed limited outbreaks, so the severity parameter was introduced 
to push network dynamics gradually towards worse-case scenarios, allowing the performance 
of specific control measures to be assessed within a range of conditions from innocuous to 
severe (computational resources permitting). However, we are well aware that reducing such 
a gamut of aspects to a single multiplier is a simplification (see Discussion).  
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Estimates of latency delay, the asymptomatic or carrier stage, are documented for a 
range of fish pathogens. In some species a disease may not express at all (e.g.,VHSV in 
herring, Clupea harengus, and sprat, Sprattus sprattus) or only at a low, chronic level (Skall 
et al. 2005; Taylor et al. 2010). In other cases, the latent stage creates an effective reservoir 
of future problems, resulting in delayed expression or dormancy (Algöet et al. 2009; Smail 
1999). In addition, persistent carrier status may be conferred upon hosts that develop 
immunity after challenge (Munro et al. 2010); animals will then continue to shed pathogen 
into their environment while remaining outwardly healthy. In other examples, McLoughlin 
and Graham (2007) reported subclinical SAV in marine-reared Atlantic salmon, while 
Tobback et al. (2007) estimated that 25% of asymptomatic trout infected with ERM by 
immersion actually carried the pathogen in various organs. 

Other workers have explored latency at the level of individual hosts (e.g., Ogut & 
Bishop 2007 for Chinook salmon (Oncorhynchus tshawytscha)); however, this study 
interprets latency at the site population level. In the simulations, a latency delay range was 
explored from five to two hundred days (Figure 5). As in the case of the severity postfactor, 
the aim was not to mimic any particular pathogen, but to explore the epidemiological 
properties of the English and Welsh network given a range of delay conditions and the type 
of control measures implemented. 
 
Reactive and proactive control strategies 
Three control policies were tested for a variety of relevant parameter settings, namely 
reactive, proactive, and hybrid controls. Reactive controls assumed that the pathogen clearly 
and reliably expresses in the hosts after latency, and following some additional delay these 
clinical signs will be observed, after which further measures are taken. Due to the large 
timescales of the various delays, the available laboratory processing capacity of detections 
was deemed inherently capable of keeping up with the number of sites where the pathogen 
expresses. Thus disease expression drives the response, and the time to detection is directly 
related to the time of infection. 

Contrastingly, proactive controls assumed that the pathogen mostly spreads silently, 
requiring a programme of dangerous contact tracing after the first detection (the only 
infection that is detected reactively). In this case, a list was drawn up of all sites directly 
connected to the infected site, and each was assigned a score based on the danger rating of 
that connection’s transmission type (last column in Table 1; this constitutes a simplification 
in that individual transmission likelihoods are not accounted for). A large number of 
regularly-spaced detection slots were then added to the events timeline, based on a new 
control parameter that defined the number of slots per year (reflecting limited laboratory 
processing capacity). Only when the simulator encountered the next such slot in the timeline 
was a particular site selected for analysis, based on the highest danger score in the queue at 
that time. If this site was also infected, then all its destination sites were added to the queue, 
with those already present having their cumulative score incremented with the appropriate 
danger rating. Thus the queuing order could change with each newly detected infection. 
After a site was processed, it was removed from the queue regardless of the outcome, but it 
could rejoin it again if one of its connected neighbours was later discovered to be infected. 

Given a proactive detection approach, the original detection delay of the first-
identified infected site determined the amount of head start the pathogen obtained prior to the 
engagement of the proactive campaign. In addition, the danger ratings per transmission type 
of the evaluated connections could affect the outcome, as did the laboratory processing 
capacity, here defined as the number of reliable assessments of site infection status that can 
be made within one year. 
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Aside from field observations of gross pathology, most analyses have to be 
performed by specialists under controlled conditions in a dedicated facility. Traditional 
reliable detection involves culturing the suspected pathogen on a suitable medium or cell 
line, which may take weeks to months (e.g., 1-3 weeks for IPNV, up to 10 weeks for BKD; 
Chambers et al. 2008; Munro et al. 2010). For other pathogens (e.g. GS), identification is 
based on examination of morphological features. Histopathology may also provide a 
provisional diagnosis and can be relatively rapid (less than 48 hours) but is dependent on the 
skill of the pathologist. More recent swift methods include immunodiagnostics (serological 
tests for antigens in a host) and molecular genetics (notably polymerase chain reaction) to 
detect and identify part of a pathogen’s nucleic acid sequence. 

Laboratory capacity in the simulations ranged from ten to five hundred conclusive 
site tests per year (likely shared among multiple facilities, although no formal agreements to 
that effect are currently in place). The purpose was not to match current processing capacity 
within England and Wales, but to explore the response of the entire system when this 
parameter is varied by over an order of magnitude. We note that the related constraints of 
limited field staff and pathogen-specific resource requirements were not taken into account. 
 
Hybrid control strategy 
The third, hybrid strategy combines reactive and proactive controls. It can represent either of 
two disease scenarios: an intermediate type of pathogen that expresses clinical symptoms 
sometimes, but too infrequently to enable complete reliance on a reactive control policy, or 
alternatively, a pathogen that does express reliably in hosts (like in the reactive case), with 
contact tracing providing an additional mitigation effort. Since this strategy is labour-
intensive and imposes large demands on laboratory capacity, yet may produce a significant 
number of negative test results for uninfected sites, its efficacy in these situations was 
considered of interest for policy makers deciding on the type of resources to allocate. 

Unlike the proactive case, where contact tracing is the only way to track a silently 
spreading pathogen, the hybrid strategy represents a choices of different emphasis, on either 
the reactive or the proactive part of the strategy. The detection queue was thereto filled on 
the basis of both the (reactive) detection delay and (proactive) dangerous contact tracing. We 
explored different ratios between reactive and proactive detection analyses, in particular to 
determine to what extent additional dangerous contact tracing could prevent an outbreak 
from escaping the initial seeding area. This differs from the more realistic strategy that would 
always process all reactive detections preferentially. Tested ratios are: [1 / 1], [2 / 1], [5 / 2], 
[5 / 1], [10 / 1], and their inverse, yielding nine cases. 

Detection slots were regularly distributed along the timeline as in the proactive case, 
but whenever the simulator processed such a slot, it first incremented a step counter in a 
cyclical array that determined whether to order the queue chronologically (providing the time 
of pathogen expression had already been reached for the top site; if not, a proactive detection 
was performed), or ranked by cumulative danger rating, as in the purely proactive case. 

Given a specified number of reactive and proactive detections per cycle, their slots 
were distributed as evenly as possible. If a site first entered the queue as a destination of a 
reactively detected source, it received an initial danger rating of unity (lowest on the scale); 
its rating could subsequently increase due to the proactive policy. Thus both accumulated 
danger ranking and detected clinical expression could determine the time of laboratory 
processing. 

 
Additional control measures 
The effects of two special control measures were explored. The simplest of these is the 
national transport ban (e.g., the Scottish contingency plan for GS includes scope for such a 
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measure). The day after a pathogen is detected at the first site, all transports are disabled on 
the entire network for thirty days. Moreover, whenever a new site is found to be infected 
while this prohibition is in force, the ban expiry clock is reset to zero. Only when the ban 
duration is completed without any new detections of infected sites are transports allowed 
again, until the next detected infection imposes a new national ban. This measure was tested 
on proactive and reactive control policies. Less drastic interventions (e.g., transport 
restrictions at the catchment level, or within some given radius around a notified site) we 
leave for future work; here the aim was to provide an indication of maximum achievable 
benefit. 

The second additional strategy is a public campaign by authorities to warn site 
owners of a new outbreak (McLaws et al. 2007). Such increased awareness of a particular 
pathogen’s presence in the community was deemed to reduce all subsequent detection delays 
by half, relative to the initial one. The awareness campaign was tested on the reactive policy 
only, as silently spreading pathogens render increased vigilance useless. This policy differs 
from the spreading awareness of human disease as explored by Funk et al. (2009), who 
reduced susceptibility of infection as a function of available, high-quality information which 
itself spread through the network. In fish diseases, however, infection susceptibility of the 
animal hosts was deemed to remain unaffected by the mere awareness among human 
operators of potential pathogen presence. Instead, the likelihood of earlier detection of 
advertised clinical signs seemed a more realistic effect to explore in this context. 

Combining all relevant parameter choices for each control policy and additional 
measures yielded 150 separate cases (Table 2). Each case was explored with a full set of 
delay parameters, requiring about 3.5 billion seedings in total. Within each policy, the 
experimental design is fully balanced. However, computational limitations forced some 
differences in the parameters explored between the three main strategies. For example, in the 
hybrid policy, six choices of laboratory capacity and nine possible combinations of 
proactively and reactively selected sites to analyse yielded 54 permutations, which would 
increase six-fold if the full spectrum of severity had been considered; instead we chose a 
fixed factor of 5 here. 
 
Table 2. Tested control strategies 
Strategy Cases Severity Lab capacity per yr Other parameters 

Reactive 24 1,2,3,4,5,10 Unlimited National Transport Ban 
Awareness Campaign 

Proactive 72 1,2,3,4,5,10 10,20,50,100,200,500 National Transport Ban 
Hybrid 54 5 10,20,50,100,200,500 Proactive / Reactive ratio 
 
 
[Figure 6. Baseline results] 
 
Results 

Outbreak size under different control policies 
The baseline cases (exploring severity and latency delay only) represent a benchmark of 
worst-case scenarios. All outbreaks were unrealistically allowed to continue for the 
maximum duration of thirty years without any intervention. Thus once infected, a site 
remained so until timeout. Given medium-high severity (factor 5), the average outbreak size 
is 132.6 sites, whereas the maximum exceeds three quarters of the network infected. 
However, one could argue more optimistically that given lowest severity, up to three quarters 
of the network is still pathogen-free after thirty years. Severity is by far the most important 
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parameter here; only the largest latency delays have some effect in reducing outbreak sizes 
by slowing down spreading (Figure 6). 

By contrast, all control policies produce much smaller outbreaks. Comparing average 
outbreak sizes under the same medium-high severity condition as before, the reactive 
strategy yields 5.9 sites, and the proactive 10.9, whereas the hybrid (with equal division of 
reactive and proactive detections) performs best with 4.9 sites. The hybrid policy also limits 
the average duration of outbreaks (508 days, against 732 and 860 for reactive and proactive 
controls respectively) and the average number of endemic outbreaks (42.7 per 10,000, 
against 131.4 for the reactive and 146.1 for the proactive strategy). However, limited 
laboratory capacity causes proactive and hybrid controls to perform substantially worse in 
the case of the largest outbreaks, with maximum outbreak sizes of 1114 and 739 respectively 
(when averaged over all six tested laboratory capacity settings), against a mere 195 for the 
reactive policy.  

The reactive policy allowed two additional control methods to be evaluated: a 
national Transport Ban (TB, 30 days plus extensions), and a public awareness campaign 
(AC, reducing detection delays after the first case by half). Averaging response variables 
over one entire set (2,304 times 10,000 seedings, severity factor 5), AC and TB are similarly 
effective in reducing average outbreak size from 5.9 to 2.6 and 2.7 sites respectively. The 
maximum outbreak size is reduced from 195 sites to 85 (AC) and 74 (TB), and the number of 
endemic outbreaks from 131 sites to 54 (AC) and 100 (TB). The outbreak duration is 
unchanged by the TB (736 days against 732 originally), but reduced by the AC (645). Thus 
the TB performs best at the high end of the outbreak spectrum, whereas the AC does better 
overall. 

These two measures can also be applied together, yielding outbreak sizes of 1.9 
(average) and 46 (max.), while the number of endemic outbreaks drops to 41; outbreak 
duration remains as for AC alone (634 days). Given a proactive strategy (all six laboratory 
capacity choices combined; sample size: 6 times 2,304 times 10,000 seedings), the TB again 
reduces outbreak size by more than half, the average from 10.9 to 4.6 sites, the maximum 
from 1114 to 468. Lastly, the average number of endemic outbreaks shrinks from 146 to 118 
while the average outbreak duration remains unchanged. We stress that these values should 
be interpreted merely as relative measures of system response, not as absolute predictions of 
real outbreaks. 

 
Transmission types, site types, and geographic risk 
Concerning transmission paths, the proportional representation of the four types is highly 
uneven (see Supplement). Assessing all severity cases together, between 50 to 60% of 
transmissions in the reactive case were local, with fomites accounting for another 10%, and 
river and transport being responsible for 10-20% and 20%. These percentages are sharp 
peaks in unimodal distributions with thin tails. In the proactive case, the peaks for fomite and 
river transmissions are somewhat broader, but local and transport were bimodal with peaks at 
20 and 50%. Separate unimodal distributions are recovered when results are split by severity, 
which shows that for maximum severity the proportion of transport transmissions rises 
dramatically (to ca. 65% of the total), mostly at the cost of local transmission. This transition 
is possibly due to the much larger typical outbreak sizes for higher severities, which allow 
more of the few, dispersed transport source sites (fish farms) to come into play. A temporal 
explanation (longer-lasting outbreaks allowing more transports to accumulate over time) is 
less likely, as severity was found to have little effect on outbreak duration (see below). 

In terms of site types, the 235 fish farms and 1,855 fisheries should be considered as 
two different entities, both in network architecture and recorded transmissions. All transport 
connections originated at fish farms, and these sites also tend to reside in areas with a higher 
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site density, increasing their local and fomite infection routes. Moreover, nonparametric 
Kruskal-Wallis tests showed that outward transport and inward transport and river 
transmissions represent most of the significant differences between the two site types. From a 
biosecurity perspective, fish farms can thus be seen as high-risk sources, both to other fish 
farms (via transport and river contacts) and to fisheries (via transport), whereas fishery sites 
are primarily at risk as receivers of pathogens. 
 For specific parameter choices, stored transmission totals per site yielded geographic 
risk maps per catchment (see Supplement). Figure 7 shows an example for the proactive 
policy with medium-high severity (factor 5) and medium delays. Most notable is the clear 
distinction between the map of sources (left panel, more concentrated) and that of receivers 
(right panel). Furthermore, although absolute transmissions are lower in the other two 
policies, the same highest-risk catchments are identifiable in all, which do not necessarily 
coincide with high site density (Figure 1). 
 
[Figure 7. Geographic risk distribution per catchment, for the proactive policy.] 
 
Significance of specific parameters 
We investigated which parameters affect which response variables most, and at which level, 
using statistical ANalysis Of VAriance (ANOVA). To exploit its full potential, we adopted a 
balanced design, i.e., within each control policy the number of simulations was equal for 
each combination of parameter levels (full results in Supplement). We then divided seven 
response variables into two “meta-response” groups, and ranked ANOVA-derived parameter 
contributions to a response by size. The first such group expresses the severity of outbreaks; 
it contains average and maximum outbreak size and the number of endemic outbreaks. Given 
reactive controls, this meta-response is most affected by the detection delay, followed by 
severity and (at distance) the AC; remaining parameters had little effect. In the proactive 
case, detection and severity share top ranking, followed by the laboratory capacity, culling 
delay, and TB; restocking and latency delay close the ranks. If applying a hybrid policy, 
laboratory capacity is the most important parameter, followed by the detection delay. Culling 
and latency then provide modest, roughly equal contributions, and the applied 
reactive/proactive ratio is last. The restocking delay again appears to have little effect. 

The second meta-response contains the average outbreak duration, the length of the 
processing queue, and the number of negative test results. The reactive policy yields the 
simplest profile: detection delay is most important, now followed by latency; all other 
parameters have little effect. The proactive strategy ranks laboratory capacity first, followed 
by culling, detection, and severity; remaining parameters contribute little. Lastly, in the 
hybrid case, the culling delay rates highest, followed by equal contributions from detection 
and laboratory capacity. The rota ratio and latency close the ranks. 
 The importance of rapid response in terms of brief detection and culling delays that is 
apparent from these results is itself unsurprising and in agreement with earlier studies (e.g., 
Haydon et al. 1997; Fraser et al. 2004), but also differs from these in several respects. Firstly, 
information is gained when these two delays are distinguished from one another, rather than 
taken together in a single “infectious” state, as in SIR and SEIR models. This is underlined 
by the culling delay being more important (Howard & Donnelly 2000) than detection delay 
in the hybrid policy, but relatively unimportant in the reactive policy. Secondly, neither delay 
is necessarily always the most important factor; in specific circumstances (see above), 
laboratory capacity can be more decisive. Thirdly, balanced ANOVA yields the statistically 
significant estimates of importance of each considered parameter in each studied scenario 
(see Supplement), quantifying their contribution to a number of response variables with 
respect to all others considered, yielding more solid grounds for their assessment. 
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 Finally, the largest outbreaks appear to occur mostly due to the interplay of several 
factors and circumstances. In terms of contact structure, a crucial difference with many other 
epidemiological networks and models is the absence of a large majority of sites with few 
connections. In the most serious outbreaks, the observed dense mesh of links (especially in 
coastal regions) causes contact tracing to be simply overwhelmed with too many potentially 
threatened sites that turn out to test negative, wasting the large majority of laboratory 
capacity. This also implies that some infected sites are processed too late (after having 
already transmitted the pathogen to many neighbours near and far) or are missed entirely 
when the most active infection front temporarily moves elsewhere (causing a shift in queuing 
priorities). The latter situation enabled repeated “flare-ups” of new infection pressure from 
seeding areas that otherwise displayed prolonged reduced transmission activity. 
 A second set of factors concerns transport and river connections, which are directed, 
frequently long-distance (creating the small-world effect), and have a relatively high contact 
likelihood. Transport sources (fish farms) in particular are few, but reside in the densest areas 
and service virtually the entire network. In combination with the more clustered river links, 
the fish farms appear to function as a spreading amplification system. They provide not just 
quick access to distant parts of the network, but their dense interlinking provides numerous 
opportunities for feedback, that is, once a pathogen infects a fish farm, chances rise markedly 
that multiple connected fish farms will reinforce its spreading by repeated mutual infection 
within their sub-network, as well as ensuring distribution among each one’s community of 
dependent fishery sites, which may in turn act as long-term background reservoir. Together, 
these factors conspire to pose enduring challenges for effective control in these worst-case 
scenarios. 
 
Discussion 
The main purpose of this effort was to explore epidemiological network responses in multi-
dimensional parameter space, to identify the most influential factors and countermeasures to 
reduce the severity of disease outbreaks. In this context, an important feature of the studied 
network is the directed nature of river and transport connections, which has clear 
implications for targeted biosecurity measures. In addition, the highly skewed ratio of 
transport sources versus receivers (Table 1) implies that the former may be targeted more 
economically than the latter. 

The balanced design of the simulation experiment ensured the internal consistency of 
results within each of the three main control policies tested. However, the previous section 
should not be interpreted as a scoreboard of competing strategies, since each represents a 
specific situation. The reactive policy applies to pathogens that clinically express themselves 
quickly and reliably, and also assumes that surveillance is adequate and laboratory capacity 
is ample; the proactive policy instead presupposes silent spreading with limited testing 
resources; the hybrid policy resides somewhere inbetween. None is a priori best. 

Likewise, the two additional measures operate along different lines. The public 
awareness campaign (AC) targets the entire network; the associated efficacy assumption of 
subsequent reduction of all detection delays by half is probably too optimistic, and certainly 
a simplification (McLaws et al. 2007; Funk et al. 2009; Fraser et al. 2004). The national 
transport ban (TB) affects almost the entire network in terms of receivers, but targets only a 
small fraction of sources. However, prolonged movement controls would be extremely 
damaging to the industry. Furthermore, ANOVA has shown AC to be a more influential 
instrument than TB when the entire spectrum of outbreak sizes is considered, whereas TB 
appears most effective in reducing the largest outbreaks. Given that the latter are rare, a 
public awareness campaign may therefore be a more acceptable alternative. 
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Caveats 
In assessing the ANOVA results, it is important to distinguish those factors that can be 
controlled, those that cannot, and those that are principally unknown. Outbreak severity 
largely escapes human control (aside from aiming to reduce stress levels in fish populations) 
and can be assayed only retrospectively, or in vitro per species, which lacks some relevant in 

vivo conditions. Numerous real factors may be involved, such as different strains of the 
pathogen, environmental conditions (e.g., water temperature, pH, salinity, pollutants), 
variable susceptibility of different fish species, and the genetic, immune, and physiological 
condition of individual hosts (Feist et al. 2002; McLoughlin & Graham 2007; Tobback et al. 
2007; Chambers et al. 2008; Peeler et al. 2008; Algöet et al. 2009). Their effects and 
interactions are only partially understood and poorly quantified. 
 Latency delay is likewise beyond control and poorly understood, but unlike severity, 
its effects appear limited in our simulations, possibly even beneficial from a control 
standpoint in acting as extra delay on the spreading dynamics, allowing more time for 
biosecurity measures such as contact tracing (Kiss et al. 2005, 2006a). 

Another area of concern involves the various interactions between wild and cultured 
fish. Introducing wild fish as potential carriers adds several complications: they may become 
infected through direct exposure to pathogens released by farmed populations or through 
predation on infected stocked or escaped fish. For example, wild species in the vicinity of 
infected sites can show up to an order of magnitude higher prevalence of that infection than 
elsewhere (e.g. IPNV, Wallace et al. 2008; sea lice, Krkošek et al. 2007). Wild fish can also 
move independently in search of food, mates, and shelter, increasing the risk of exposure and 
subsequent spread of disease. Furthermore, diadromous fish periodically migrate upstream 
and have the potential to introduce infections from the marine environment to freshwater 
populations (Skall et al. 2005; Stone et al. 2008). Wild freshwater species may also act as a 
permanent reservoir of disease, maintained partly through vertical transmission (parent to 
offspring). For example, grayling (Thymallus thymallus) is highly susceptible to LG and 
BKD infections, and the latter was found to be associated with BKD-infected rainbow trout 
farms within the same river catchment (Chambers et al. 2008; Algöet et al. 2009). 
 Cultured populations may themselves also act as pathogen reservoirs. For example, 
the prevalence of BKD is generally higher in cultured fish than in the wild (Nowak & 
LaPatra 2006; Chambers et al. 2008); Gregory et al. 2007 reported IPNV having been 
isolated from a variety of European marine reservoirs (wild fish, mussels, prawns, crabs, 
sediments) in the vicinity of fish farms; Krkošek et al. (2007, 2009) identified prolonged 
exposure of juvenile wild salmon to sea lice as associated with nearby commercial salmon 
farms; and McLoughlin and Graham (2007) considered pancreas disease (SAV) to be 
endemic in most salmon marine sites in Ireland, and in other countries on sites with a history 
of infection. In addition, transmission mechanisms here include discharge of infected water 
from a site, direct contact through freshwater cages, and fish escaping due to a failure in 
containment (i.e. during a flood). We leave these various issues for future work. 
 
Concluding remarks and guidelines 
Despite the listed caveats, our generalised, simplified simulations did yield some robust 
conclusions. Regardless of which policy is pursued, the analyses demonstrated that detection 
delay is the most influential control parameter overall for the studied outbreak dynamics. 
This importance likely also feeds into the success of the public awareness campaign (which 
expedites detection). Clearly, government agencies and the industry alike have valuable roles 
to play here, in constant surveillance, sampling programmes, record keeping, and 
collaboration. The main problem is that the duration in question is difficult to quantify in the 
absence of observed timing of the initial introduction of the pathogen on site. Only in the 
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case of live fish transports, and possibly local spread, may a direct causal connection be 
established in hindsight; the other two transmission types involve numerous factors too 
ephemeral to detect, let alone quantify. What we can do, however, is to approach them 
statistically. The river flow stream analysis is a case in point, revealing rapid transits. 
 Of the remaining delay parameters, the restocking delay appears to be least important. 
The culling delay, by contrast, is an influential control, as is the available laboratory 
capacity, which becomes increasingly significant in larger and longer-lasting epidemics. 
Finally, if pursuing a hybrid strategy, each reactive detection should be processed as soon as 
possible; only spare laboratory capacity should be spent on dangerous contact tracing. 
 We close this discussion with a few quantitative guidelines derived from the 
simulations. We stress that these conclusions are based upon our synthetic, simplified 
representations of reality that incorporate numerous assumptions that may not fully match the 
actual, ever-changing situation. Moreover, these models do not aim to mimic a specific 
pathogen with particular infection characteristics; pathogen-specific simulations, in 
combination with information from other sources, would be required to produce disease-
specific recommendations. However, by exploring parameter space in many orthogonal 
directions, using the most recent available empirical description of the real network, 
obtaining large samples, and tuning multiple scenarios to achieve the entire gamut from 
harmless to devastating outbreaks, we hope that we have captured the essence of this 
network that transcends studies of individual cases and pathogens. 
 The presented guidelines are derived from so-called main effects plots. A main effect 
occurs when a response variable’s mean changes significantly across the levels of a 
considered parameter (see Supplement). Within a progression of discrete parameter levels, 
one can thereby identify the bound beyond which the response would on average exceed its 
overall mean. Thus the criterion in all cases is to restrict responses to better-than-average as 
computed over all observations. Whether these limits are practically acceptable is debatable; 
we also note that actual individual epidemics may still exceed them. The various estimates 
can be distilled into the following general guidelines: 

• keep the detection delay below 200 days (below 100 days in the proactive case, 
where it refers to detection of the first case only); 

• keep laboratory capacity above 100 conclusive site tests per year; 
• keep the culling delay below 20 days (below 10 days in the hybrid case); 
• keep the restocking delay above 200 days. 

Lastly, we reiterate some of the findings stated elsewhere in the text: 
• The detection delay is the most important parameter within human control, followed 

by laboratory capacity and culling delay; 
• no English or Welsh river transit time or associated river distance between two sites 

is beyond a fish pathogen’s potential survival range; 
• fish farms and fisheries are different entities, requiring distinct biosecurity measures; 
• outward and inward transmission risk should be assessed separately. 
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Figure captions 
 
 

 
 
 
Figure 1. Site density per river catchment in England and Wales in 2004 (number of sites per 
thousand hectares of the catchment area) 
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Figure 2. The four types of transmission considered: the likelihood of local and fomite 
connections (undirected) decreases with geographical distance (circles with radius 25 and 5 
km respectively) from a source site (small black circle). Transport and (downstream) river 
links are directed contacts of unlimited range. 
 
 
 
 
 
 

 
Figure 3. River stream flow speed distribution and loglinear best fit; percentage of variation 
explained by the fit: 96.2%. Original sample: 25,088 daily means from 37 U.S. locations 
measured by USGS, binned per 0.1 m/sec (N=44). The shaded (loglinear) area is repeatedly 
sampled to determine riverborne transit times. 
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Figure 4. Fragmentation of the network from a giant, strongly connected component (GSCC, 
giant component plus sink sites), through an intermediate stage of small clusters, down to 
single sites, as a lower bound on transmission likelihoods is gradually raised. Lines denote 
the number of sites that have access to over 90% of the network (red, solid), to less than 10% 
of it (orange, dashed), or that remain completely isolated (green, dotted). 
 

 
 
Figure 5. The modelled sequence of five site states (circles) is interspersed with four delay 
parameters (rectangles), each one of which can adopt a specific range of values. The variable 
period between susceptible and infected state (leftward arrow) depends on stochastics and 
spreading dynamics. Transport and local transmissions from the source site are halted upon 
detection and notification (fat arrow), but river and fomite transmission continue until the 
stock has been culled and the site is disinfected (bottom arrow). Shading indicates pathogen 
presence. 
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Figure 6. Baseline results (average outbreak size on left, maximum outbreak size on right, 
log-log scale) for different choices of latency delay and outbreak severity are mainly affected 
by the latter (36 permutations per plot; 100,000 seedings per run, each allowed to spread for 
30 years without intervention). 
 
 

 
 
Figure 7. Geographic risk distribution per catchment, for the proactive policy. Left: outward 
transmissions. Right: inward transmissions. Colour scale: site transmission totals, averaged 
per catchment, log-transformed, in equal-width bins (number of catchments in brackets). 
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Tables 
 
Table 1. The four transmission types 
Transmission 

Type 

Range Sources Receivers Halted 

upon 

Danger 

Rating 

Transport Unlimited 194 2,055 Notification 4 
River Unlimited 596 631 Culling 2 
Local  25 km 2,089 2,089 Notification 1 
Fomite 5 km 1,577 1,577 Culling 1 
 
 
 
Table 2. Tested control strategies 
Strategy Cases Severity Lab capacity per year Other parameters 

Reactive 24 1,2,3,4,5,10 Unlimited National Transport Ban 
Awareness Campaign 

Proactive 72 1,2,3,4,5,10 10,20,50,100,200,500 National Transport Ban 
Hybrid 54 5 10,20,50,100,200,500 Proactive / Reactive ratio 
 
 


