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1 Abstract

The relationship between system-level and subsystem-level master equations is
investigated and then utilised for a systematic and potentially automated deriva-
tion of the hierarchy of moment equations in a susceptible-infectious-removed
(SIR) epidemic model. In the context of epidemics on contact networks we use
this to show that the approximate nature of some deterministic models such
as mean-field and pair-approximation models can be partly understood by the
identification of implicit anomalous terms. These terms describe unbiological
processes which can be systematically removed up to and including the nth
order by nth order moment closure approximations. These terms lead to a de-
tailed understanding of the correlations in network-based epidemic models and
contribute to understanding the connection between individual-level epidemic
processes and population-level models. The connection with metapopulation
models is also discussed. Our analysis is predominantly made at the individ-
ual level where the first and second order moment closure models correspond
to what we term the individual-based and pair-based deterministic models, re-
spectively. Matlab code is included as supplementary material for solving these
models on transmission networks of arbitrary complexity.

2 Introduction

Epidemic dynamics are driven by processes which are typically stochastic in na-
ture (Bartlett, 1956; Bailey, 1975). Nevertheless the probabilities of these pro-
cesses can often be represented or approximated deterministically by a differen-
tial form of the Chapman-Kolmogorov equation known as the master equation.
This comprehensive set of differential equations describes how the probabilities
of the states of a system evolve in time. They are usually too numerous to
evaluate numerically although they have been shown to be relevant for small
homogeneous epidemic systems (Keeling and Ross, 2008). While numerical so-
lutions remain problematic for systems of any significant size and complexity,
master equations do permit exact stochastic realisations using the Gillespie al-
gorithm (Gillespie, 1976; Renshaw, 1991), effectively regenerating the original
stochastic epidemic processes.



Master equations are most adept at describing exponentially distributed
stochastic processes. This, coupled with the close connection between mas-
ter equations and other deterministic descriptions of epidemics underlies the
almost ubiquitous use of “rates” such as the force of infection and the rate of
removal in the design of deterministic epidemic models (Anderson and May,
1991). Although other distributions can be used in principle, they typically
correspond to non-Markovian master equations and this can present significant
implementation difficulties. It is worth noting that this is a relatively generic
limitation of the deterministic approach.

Several deterministic methods for representing epidemics have been devel-
oped. These include the mean-field models (Kermack and Mckendrick, 1927;
Anderson and May, 1991), pair-approximations (Matsuda et al., 1992; Keel-
ing, 1999; Rand, 1999; van Baalen, 2000; Eames and Keeling, 2002; Murrell
et al., 2004; Sharkey et al., 2006), and metapopulation models (Levins, 1969;
Sattenspiel and Dietz, 1994; Keeling and Rohani, 2008). All of these attempt
to approximate the average time course of an epidemic. Fundamentally, the
average time course is implicit in the master equation, but the specific assump-
tions needed to relate this equation to particular deterministic epidemic models
are not always clear. Identification of the relevant assumptions behind these
classic deterministic models would certainly enhance our understanding of their
domain of applicability and their relationship to the underlying stochastic pro-
cesses. Indeed, the importance of understanding the basic connection between
individual-level processes and population-level deterministic models has been
emphasised several times (e.g. Levin and Durrett, 1996; Bansal et al., 2007).

One obvious approach is to start with the master equation and construct
solvable deterministic models by applying specific assumptions to directly reduce
the dimensionality of the state space. A classic example of this is the Fokker-
Planck (or Kolmogorov-forward) equation (Risken, 1989) forming the theoret-
ical justification for reaction-diffusion equation models of epidemics (Mollison,
1991; Murray, 2003). Another is the van Kampen linear noise approximation to
the master equation (van Kampen, 2007) leading to a perturbative volume ex-
pansion approach (McKane and Newman, 2004; Ovaskainen and Cornell, 2006).
More recently, other more computationally intensive methods of dimensional re-
duction have been investigated (Sharkey, 2008; Keeling and Ross, 2009; Simon
et al., 2010).

In previous work (Sharkey, 2008), a systematic deconstruction of a de-
terministic SIR epidemic model on arbitrary transmission networks was used
to illustrate the connections between the master equation, the network-based
mean-field models and the network-based pair-approximation models. Addition-
ally, the individual-based and pair-based deterministic models were constructed.
Two assumptions connect these four types of model together with the master
equations:- statistical independence and homogeneity. Here we extend this un-
derstanding by showing that implicit in the assumption of independence are
anomalous terms describing unbiological processes. These terms enable us to
understand some of the inaccuracies in network-based deterministic models in
a more analytic way than was previously possible.



A side-product of this analysis is a systematic method for obtaining the
hierarchy of moment equations at the individual level. The closed form of the
first and second order moment equations correspond to the individual-based
and pair-based models respectively. Matlab code is provided as supplementary
material to solve these models on static network-based systems of arbitrary
complexity.

In addition to master equations for systems, master equations for subsections
of systems can also be written down. We refer to these subsections as subsystems
(Sharkey 2008). For the present work we start by making a detailed investigation
of the relationships between these equations. In particular, we show in the
next section that the subsystem master equations follow as a consequence of
the system master equation. We also show (section 4) that conversely, the
master equation of a system can be obtained from the master equations of
its subsystems provided that the subsystems are statistically independent and,
collectively, fully specify the system state. The relevance of this construction
for an epidemic system is then briefly introduced.

Section 5 elaborates on the main context for the present work which is a
fixed-population susceptible-infectious-removed (SIR) compartmental model on
a contact network. It puts this in the context of the general discussion of
subsystems and systems, illustrating how moment equations can be derived as
a consequence of the system master equation. It also highlights the assumption
of pairwise statistical independence which is used to close the first order moment
equations. Section 6 discusses the link between this construction and network-
based mean-field models and metapopulation models.

Sections 7 and 8 use the results of section 4 to generate a better understand-
ing of the problems with the pairwise independence assumption. In particular,
we show that it generates implicit terms with no obvious interpretation and that
these terms allow us to understand the failure of the assumption for certain con-
tact networks. Sections 9 and 10 show how this analysis can be systematically
extended beyond the pair level to all orders.

3 Systems, subsystems and master equations

Following prior work (Sharkey, 2008), we start by considering the state I'* of
an arbitrary system I'. The probability of the system being in state I'* is
numerically equivalent to the expectation value (I'*) where here, I'* represents
a number which has value 1 when the system is in state I'* and zero otherwise.
We will therefore use (I'*) to denote both the probability of the state and/or
its expectation value. In this notation, the master equation for I is:

(To) =Y o*(1%) = 3 o) (1)
E 5

where ¢®? denotes the transition rate from state I'? to state I'® and here and in
what follows, the summations are over all possible system states. Note that this
more conventional index ordering is opposite to that used in Sharkey (2008).



To avoid any ambiguity, the diagonal elements of all transition matrices in this
paper are defined to be zero.

We suppose that within the system I', there exist well-defined smaller sys-
tems which we refer to as subsystems. We denote these subsystems by 1; where
the index ¢ distinguishes one subsystem from another. In the next section we
will assume that the subsystems do not overlap and that they collectively spec-
ify the full system state without ambiguity. Presently we just need to suppose
that at least one subsystem of I' can be identified in an unambiguous manner.
We can now write down a set of master equations for the individual subsystem
states:

(W) = wib(ph) = > wh(y) (2)
b b

where w@® denotes the transition rate from state 1 to state )¢ for the subsystem
;. Here and throughout the paper, summations are assumed to be over all of
the subsystem states available to ;. We also denote system states by Greek
superscripts and subsystem states by Roman superscripts.

Both the system and subsystem master equations must be valid and it is
instructive to determine the conditions under which one can be derived as a
consequence of the other. Let us attempt to obtain equation 2 from equation 1.
We start with the probability of subsystem 1; being in state ¢ which is given
by the sum of the probabilities of the system states for which ; is in state ¢{:

(i) =Y (T Dy (3)

where D§** is a Kronecker-type delta in the states of the subsystems v; such
that it has value 1 if the system state I'* implies the subsystem state 1] and

zero otherwise:
1 if ' = ¢
aa __ 7
Dt = { 0 otherwise (4)
Taking the derivative of equation 3 with respect to time and substituting from

equation 1 gives:

(W) = Y (T*)Dge

@

=> P () D = " oP(re) Dee

af ap

= /(17 Dpe [Z bel — > oPe(re)Dee lz D?b]
af b af b

=> o) Do D’ - " oPre) Do D (5)
bas bap

Swapping the dummy indices a and g in the second term on the right gives:

(W) = 3" 0 (%) DD — 3 oK% D g (©)
bap baf



Note that the quantity >_ 4 oh <F5>D?“Df b gives the total flow of probability
from state 1 to state 1¢. By defining w2’ by:

wit () =Y o*H(r?) DD}’ (7)
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we obtain equation 2 as expected. Using equation 3 we can write the subsystem

transition rates entirely in terms of the system transition rates and system
states:

b s o P DeaD

Wi = o ab (8)

It is no surprise that subsystem master equations are implicit in the system

master equation, but it is valuable to formally relate the two. We return to

this in the context of epidemic models in section 5 and show that this allows us

to formally derive individual-level moment equations from the epidemic system

master equation.

4 Statistical independence of subsystems

In the previous section we showed how to obtain subsystem master equations
from the system master equation. Here we show that the converse problem of
deriving the system master equation from the subsystem master equations can
also be achieved in the specific case where the subsystems are assumed to be
statistically independent.

We assume that the system I' can be subdivided into a set of N subsystems
¥1,%s, ..., each of which is entirely contained within I' and defined such
that the states of the N subsystems collectively specify the state of I' without
ambiguity.

Assuming statistical independence in the states of individual subsystems
gives:

N
(T (01,95 40%) = W s (wi) = [T (9)
i=1
where the subscript ¢ should be taken to differentiate between the subsystem
states. Here the system state dependence on the subsystem states is made
explicit and this is implicitly assumed in equation 10 to equation 12 below.
Differentiating equation 9 with respect to time gives:
. N .
(rey => @i I wH (10)
j=1 ii#]
where the product is assumed to be over all N subsystems apart from j. Sub-
stituting from the individual subsystem master equations (equation 2) gives:

N
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By re-applying equation 9 we get:

Zzw“b (AT b)) = > > why(r (12)
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regenerating the master equation for the full system. Here the states I'? only
differ from the state I'* by the state of individual %; and this is illustrated by
a functional dependence on I'* and wg . We can recast this equation in exactly

the form of equation 1 with a general sum over all system states I'? where we
specify:

wi? if I differs from '’ by (at most) the
o = state of the single subsystem ; (13)
0 otherwise

This definition is equivalent to the following equation:
B Bb _ ab Bb ~af
o DD} = wi" DF DS (14)
which holds for any combination of j,a,b,«, . Here, C}lﬁ is introduced as a
notational convenience such that:

1 if all subsystems except for ¢; (which may change)
remain the same under the transition I'* — T'® (15)
0 otherwise
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Equation 14 is valid when the subsystems are statistically independent, but
it must also be consistent with the definition in equation 7 which is always true.
We can demonstrate consistency by substituting equation 14 into the right-hand
side of equation 7 to give:
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Notice that the identity:
> Dt =1 (17)
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is true for any 4, a, 3 because there is only one system state (which may be I'%)
which is identical to I'? but with ; in state 1¢. We therefore have:

> oA Dee D = Wity (18D (18)
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Applying equation 3 then gives equation 7 as expected.



This derivation of equation 1 from equation 2 represents a relationship be-
tween the subsystem and system master equations provided that the subsystems
are statistically independent. Furthermore, it also provides a derivation of the
master equations of subsections of the full system by replacing equation 9 with
products of some (rather than all) of the subsystem states such as for doublets
and triplets:

Wiyg) = @O )
Widior) = W7 W) (19)

We shall see that this formalism is particularly valuable in understanding deter-
ministic epidemic models and the connection between individuals and the full
epidemic system. In particular, we can use this approach to obtain the moment
equations of epidemic models from approximate subsystem master equations.
In this context we suppose that I' represents a self-contained epidemic system.
While noting that other divisions into subsystems are possible, here and in
what follows, we identify the subsystems ; with individual units (such as peo-
ple, farms, cities etc). According to this specification, the individuals themselves
are systems containing a single subsystem, pairs of individuals are systems con-
taining two subsystems and, in general, a collection of NV individuals is a system
composed of N subsystems. Hence any epidemic system of N individuals con-
tains N subsystems and, furthermore, contains a hierarchy of systems within it
containing between n = 1 and n = N subsystems. The remainder of the paper
elaborates on this application.

5 The SIR epidemic model with pairwise inde-
pendence

The underlying premise of most epidemic models is that infection is spread by
contact between infectious and susceptible individuals. The most comprehensive
method for representing contact structures between individuals is the contact
network (e.g. Newman, 2002; Meyers et al., 2003). These are networks of
transmission routes by which infectious agents may pass from one individual
to another. They may be static for the duration of an epidemic or dynamic
whereby contacts can change in time as the epidemic evolves.

A contact network is conveniently represented as an adjacency matrix G
whose elements G;; have a value 1 if there is a transmission route from an indi-
vidual j to an individual ¢ and 0 otherwise (where the index-ordering convention
from the master equations is replicated to avoid confusion). Additionally self-
contact is not relevant so G;; = 0. It is also convenient to define a transmission
network 7" to be a weighted contact network where the elements T;; represent
the infectious pressure acting on individual ¢ due to an infected individual j.
Frequently, the rates in the matrix T describe a combination of the risk of trans-
mission per contact and the rate of that contact. We can allow T to change
in time provided that the rate of change is slow compared with the contact



rates. When the rate of change of T is so great that it no longer represents an
averaged infectious pressure, the very notion of a contact network becomes lost;
this scenario is outside the scope of the present work but see Volz and Meyers
(2007; 2009) for work in this direction.

Our main interest will be the SIR compartmental model on a generic trans-
mission network T'. Here the subsystems v; (or 4 for brevity) can be in one of the
3 states: Y&e{w?, vl W}, or v¥e{S;, I;, R;} for brevity. The only transitions
which are permitted are infection (S; — I;) and removal (I; — R;).

Assuming an exponentially distributed removal process for individual i with
“rate” g;, we have the following model of infection and removal (Sharkey 2008):

(i) = —ZTij<Sin>
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s

> Tis(Sid;) = 9:41) (20)

where (S;I;) denotes the probability that i is susceptible and that j is infectious
and where the equation for the subsystem state (R;) is implicit in the require-
ment (S;) + (I;) + (R;) = 1. Here, summations are between 1 and the total
population size N and this is tacitly assumed for the summations in the equa-
tions that follow unless explicitly indicated otherwise. These equations are well
known to be exact given the specified transmission and removal rates described.
Nevertheless, it is instructive to see exactly how these moment equations follow
from the linear system master equation.

We consider the epidemic system I" which is composed of N subsystems
which correspond to the individuals connected by a transmission network T'. We
identify the moment equations for the individuals with the subsystem master
equations. For an individual 1;, we first consider the state 1/1? = 5;. From the
last line of equation 5 we have, after performing the sum over b for the SIR
model: ]

($) = =Y P02y DS DY (21)
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The epidemic system I' is assumed to obey a continuous-time Markov process
such that the probability of two subsystem states changing simultaneously is
zero. Consequently ¢7® = 0 whenever I'* differs from I'# by more than the
state of a single subsystem. This sparsity of the transition matrix has been
used by some authors to recast it in a tridiagonal form by a suitable ordering of
the system states (Keeling and Ross, 2008; Simon et al., 2010). In our case, each
system state I' typically has many neighbouring states into which it can jump
corresponding to the number of ways in which its individual subsystems may
change. It is not possible to write this in a tridiagonal form in the general case,
but we can make use of our notational convenience ¢ P defined in equation 15
to perform a similar role. The quantity UﬁO‘D?S D;-B T in equation 21 is zero
unless it corresponds to the system transition where S; becomes I; and no other
subsystem changes state. According to the contact transmission mechanism



discussed above, this rate is given by the sum of the infection rates (or total
infectious pressure) acting on S; in this system state:

o’ DS =y T, DD DY (22)
j

which holds for all «, 8,7. Substituting this into equation 21 gives:
() = =33 Tt DDy Dl P
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Applying equation 17 then leads to:
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Repeating this argument for state I; gives (from equation 5 after the sum
over b):
(Li) =D o (LA)DFID = oP(r) DM DI (25)
af af
Assuming an exponentially distributed removal process for individual ¢ with

“rate” g;, we have:
o? D DT = g, D3 DI (26)

Swapping the dummy indices o and ( in the first term on the right of equation 25
and substituting from equations 22 and 26 then leads to:

(I;) = ZTij<Silj> - gilli) (27)

by following analogous steps to those that led from equation 21 to equation 24.
Population-level versions of these moment equations follow for the case of ho-
mogeneous infection and removal rates (Sharkey, 2008). The reader is also
directed to an alternative derivation in Simon et al. (2010) of the population-
level moment equations from the master equation for the case of homogeneous
transmission and removal rates.

The only non-zero transitions for an individual subsystem in the SIR epi-
demic model are w! S and wlf. Comparison with equations 3, 8, 25 and 27 then
gives the subsystem transition rates:

S,
“f = LT o
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Part of the price paid for writing master equations at the subsystem level
is that they are non-linear. A more serious cost is that these equations do not
form a closed set. However, if we assume pairwise statistical independence in
the subsystems we have:

(Sily) = (Si)(I;) (29)

giving the non-linear equations:
(89 = =3 Ty(S)
() = Y Ty(S)L) - gk (30)

Note that while pairwise statistical independence implies these equations, the
converse is not true. In general these equations are approximate and the inter-
pretation of the quantities (S;) and (I;) as probabilities is only consistent with
the master equation when pairwise independence holds.

Following Sharkey (2008), we refer to equation 30 as the “individual-based
model” in the remainder of this work. We can relate these approximate proba-
bilities to the expected susceptible and infectious populations by [S] = >_.(S;)
and [I] = ), (I;) respectively. Matlab code for solving these equations for arbi-
trary transmission networks is in the supplementary material.

6 Mean-field and metapopulation models

The form of the classic mean-field SIR model follows from the individual-based
model by applying an assumption of homogeneity: (S;) = [S]/N, (I;) = [I]/N,
so that equation 30 becomes:

81 = —mis)
1 = AIIS) -0 (1)

where f = (1/N?)37, Ti; and v = (1/N)}", gi- Defined in this way, this
population-level mean-field model follows from the master equation by apply-
ing the assumptions of pairwise independence and homogeneity (Keeling 1999;
Keeling and Eames 2005; Sharkey, 2008). Here and in what follows we use
the term “mean-field” as a short-hand to refer exclusively to population-level
mean-field models.

It is worth pausing to give these equations some context. Mean-field epi-
demic models are predicated on the law of mass action which is only precisely
applicable in idealised circumstances such as evenly mixed gasses or large, fully
connected contact networks. To some extent mean-field models can be applied
away from these ideals by absorbing some of their inaccuracies into effective
contact and removal rates to give optimal matches to epidemic incidence data.
However, it is well known that the exponential epidemic form that results from
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these models is not generically applicable (e.g. Keeling, 2005) and, further-
more, the connection between the individual-level transmission parameters and
the population-level model parameters becomes obscure. Equation 31 gives us
a slightly different perspective in which we do not lose touch with the individual
processes ([ is still defined in terms of individual transmission rates), but the
model becomes inaccurate due to failures in the independence and homogeneity
assumptions used to obtain it from the master equation. While the focus of this
paper is only on the failure of the independence assumption, it does provide
insights into the failure of the network-based mean-field model even if partially
obscured by the additional assumption of homogeneity.

Metapopulation models are also relevant to our discussion of population-
level models and the mean-field assumption. In particular, we note that the
individual-based model as defined in the previous section is form-equivalent to
some deterministic metapopulation models of epidemics. To investigate this
connection in more detail, let us consider a model with M metapopulations
such that the population dynamics of metapopulation « are:

. M
[Sa] = - Z PaplSallls]
. Mﬁ_
[Ia] = Z Pap [SOéHIﬂ] - 7[104] (32)
f=1

where here, [S,] and [I,] correspond to the number of susceptible and infec-
tious individuals in metapopulation « respectively and p,g is the rate at which
infection is spread from metapopulation 8 to metapopulation « (e.g. Keeling
and Rohini, 2008). Here we have assumed a fixed removal rate v. The so-called
“household” models can also have this form (e.g. Ball et al., 1997; Ball et al.,
2009; Ross et al., 2010) where households are identified with metapopulations
with one mode of infection (here represented by homogeneous mixing) and in-
fection between households (here represented by a fixed contact network) are
distinguished by a separate process or mechanism.

To identify a connection with the individual-based model, it is convenient
to index individuals as «; where the index 7 runs over all N, individuals in
metapopulation a. We can then write the expected populations as:

L) = > (L) (33)

i=1

Let us consider a network 7' of contacts between individuals such that all
individuals within a specific metapopulation « are connected to each other with
strength To,a; = Paa(l = da;a,) and all individuals in different metapopula-
tions a and 3 are connected with strength Ty, 5, = pas. Since the mean-field
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and individual-based models are equivalent in sufficiently large fully connected
populations (Sharkey, 2008), this effectively generates a mean-field model for
the internal metapopulation dynamics. Using the individual-based model and
equation 33, we can now write:

N,

2
?

. No A
[Sa] = z@j 041 Iﬁj>
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Pap[Sallls] + Paa Z<Sai><‘[0¢i> (34)
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recovering the metapopulation model above except for the explicit removal of the
self-interaction terms which becomes negligible in large metapopulations. Sim-
ilarly we can obtain an equation for [I,]. For large populations, the stochastic
error becomes less relevant provided that the epidemic has taken off and the
expectation values [I,] and [S,] can become approximately identified with the
actual population sizes during a single stochastic realisation. So, in the context
of a particular type of static network, we can at least draw a connection with
the form of some metapopulation models.

Clearly when the size of each metapopulation reduces, the probabilistic inter-
pretation in terms of expectation values must return. When each metapopula-
tion has a single individual, the interpretation is entirely probabilistic, similar to
a Levins-type metapopulation model (Levins, 1969) but with a network struc-
ture between “populations”. This connection is particularly apparent in the
context of an SIS epidemic model as observed by Keeling and Ross (2008).

Some care should be taken not to push this discussion beyond its relevant
context. In particular, metapopulation models of epidemics often treat the
movement of individuals from one population into another as the cause of trans-
mission between populations rather than contact between individuals in different
populations. On an individual level this corresponds to a dynamic contact net-
work which is coupled to the infection process. This type of process is clearly
outside the scope of the individual-level models considered in this paper.

7 The anomalous terms at order n = 2

The individual-based model defined in section 5 is consistent with the system
master equation provided that pairwise statistical independence holds. How-
ever, this is often a poor assumption; for example, the nearest neighbours of
infectious individuals are obviously more likely to be infectious than average
which immediately implies correlation between neighbouring sites.

12



In general the individual-based model is inconsistent with the interpretation
of (S;) and (I;) as probabilities because it causes a departure from the master
equation description. Here we show that the assumption of pairwise statistical
independence of the states S; and I; in equation 29 gives rise to terms in the
differential equation for the probability of the doublet state (S;I;) that have no
obvious interpretation. Correction of these “anomalous” terms automatically
induces correlation between pairs of sites, breaking pairwise independence and
regaining consistency with the system master equation.

Before examining this further, we start by observing that the equation for
the doublet state (S;I;) is given by:

(Silj) = > TylSiSilk) — Y Tin(SiliIx) — Thj(Sil;) — g;(Sil;)  (35)
k,k#i k,k#j

where quantities of the form (A; B;C},) represent the probability that 7 is in state
A, j is in state B and k is in state C'. This equation can be shown to follow
in a top-down fashion from the system master equation by a slightly laborious
but straightforward argument along the same lines as for the single subsystem
states in section 5 (see appendix A).

Here our aim is two-fold:- firstly to generate a better understanding of the
failure of pairwise independence by looking at deviations from equation 35 and
secondly to obtain higher order equations such as equation 35 in a systematic
way from the equations for subsystems. The general basis for this analysis is
described in section 4 where we showed that higher order moment equations
can be derived from subsystem master equations provided that we assume that
the subsystems are statistically independent. In the current context we use
pairwise statistical independence to derive the corresponding equation for the
doublet state S;I; from the subsystem master equations.

With pairwise independence, the rate of change of the n = 2 (doublet)
system state is given by:

(SiL;) = (Si)(I;) + (Si)(I) (36)

Pairwise independence implies that the individual-based model becomes an ex-
act representation of the subsystem master equations. Substituting from equa-
tion 30 into the above gives:

(i) = > Tir(S) S {Ie) = > Tinl S I (k) — g5(S) (L) (37)
k k

Careful consideration of the sums in this expression reveals that they contain
terms that refer twice to the same site:

(Silj) = > Tyl S (Si)Ie) = > Tl Si) (1) Ik} — g (Si)(1;)
k ki ko k]
+15:(S:)(S5) (L) — Ti(Ss) {L;)(I;) (38)
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This equation represents the rate of change of the probability (S;I;) provided
that the system states satisfy pairwise independence. More generally it repre-
sents the rate of change of the quantity (S;)(I;) where (S;) and (I;) are defined
as the solution of the individual-based model.

From a process point of view, the first term represents the generation of S;/;
by the infection of site j. The second term represents the destruction of S;I;
by infection of site ¢ and the third term represents the destruction of S;I; by
the removal of site j. However, the fourth term has no relevant process coun-
terpart. Indeed, the term T7;(S;)(S;)(I;) is inconsistent with the assumption of
a compartmental model because it corresponds to a process in which site i is
both infectious and susceptible at the same time. Additionally, the last term is
clearly related to the self-destruction of S;I; caused by the infection of site i by
site j, however its form is not standard.

Comparison with the correct pair-level equation (equation 35) for the rate
of change of the n = 2 system state probability (S;I;) highlights that pairwise
statistical independence is inconsistent with a probabilistic interpretation and
that this inconsistency manifests itself in two terms. The closer (S;)(S;)(I;) is
to zero and the closer (S;)(I;)(I;) is to (S;)(I;), the closer the individual-based
model is to the underlying probabilistic description of the master equation. In
this sense, these two anomalous terms quantify the accuracy of the individual-
based model.

Although equation 38 is incorrect as an equation for (S;I;), it is not far from
the correct form. Furthermore, it is obtained in a systematic way which does
not demand the usual care to ensure that every possible process is accounted
for. If we can systematically go from equations of the form of equation 38 to
the correct equations then this would provide a potentially automated way of
obtaining systems of moment equations. In this instance at least, the process
is straightforward. We take the heuristic but systematic step of replacing the
products of probabilities with combined probabilities:

(SiL;) = > Tl SeSilk) = > TudSiliI) — g;(Sil;)
= =y
+T5i(S:S; i) — T35 (SiL; I;) (39)

Now, the anomalous terms are readily identified as those terms in which the
same site appears twice. Where the states contradict each other, we must set the
probability to zero ((S;S;I;) = 0). Where they are same, they are contracted
((SiI;I;) = (S;I;)) using the fact that the conditional probability of j being
infectious given that j is infectious is 1. This results in equation 35 which we
know to be exact. In section 10 we shall see that this systematic procedure
applies beyond the pair level to all orders of n although it remains a conjecture
that this always gives equations which are consistent with the system master
equation.

The correction of the anomalous terms means that equation 35 is not the
derivative of the product (S;)(I;) since this is given by equation 38. Hence
correction of the anomalous terms can be viewed as automatically breaking
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the pairwise independence assumption and implies correlations between pairs
of sites. To preserve these pairwise correlations and form a closed model at the
pair level, we approximate the triples probabilities by:
<AZBJC]€> _ <A1B]><AZC’€><BJC’€> (40)
(AN (B;){Cr)
This approximation is based on the statistical independence of the dynamics
between pairs and preserves the pair-level correlations induced by the correc-
tion of the anomalous terms. It does not preserve correlations that may occur
at the level of triples which may be implicit in the triplet states in equation 35.
We delay consideration of correlations among triples until section 9. The form
of closure given by equation 40 is discussed in more detail in appendix B and
elsewhere (e.g. Kirkwood 1935; Rand 1999; Singer 2004). In subsequent sec-
tions we show that higher order correlations beyond the pair level can also be
understood as being induced by the correction of higher order anomalous terms.
With this closure approximation, along with a refinement introduced for
computational purposes (see appendix B), together with the pair-based equa-
tions:

(8i8;) = = Tin{SiSile) — > Tu(SiS;Ii)
Pyt k k]
(LL) = > Tw(iSilk) + Y Tl SiliIi) + Tij(SiI;)
k ki Pyt
+T5i(1:S5) — (gi + 95){Li1;) (41)

and equation 20, we obtain a closed system of equations at the individual pair
level which do not contain the two anomalous terms just identified. We refer to
this system as the pair-based model (Sharkey 2008). The differential equations
for (S;S;) and (I;I;) can be formally derived from the master equation in same
way as equation 35 (see appendix A) or obtained by the heuristic approach
introduced in this section. Matlab code is provided in the supplementary ma-
terial for solving the pair-based model on transmission networks of arbitrary
complexity. For the case of homogeneous transmission and removal rates the
population-level pair equations follow from these equations by summing over all
possible pairs and, using assumptions of homogeneity of pairs and of individuals,
the population-level pair-approximation models can also be obtained (Sharkey,
2008).

8 The impact of the n = 2 anomalous terms

It is straightforward to see that the impact of the anomalous terms identified
in the previous section is greater for networks with low connectivity. The two
correct transmission terms in equation 39 contain a sum over k£ which, in con-
junction with the transmission network 7', corresponds to a sum from 1 to p
where p is the number of immediate neighbours with a link towards j in the first
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term and a link towards ¢ in the second. Therefore, the relative significance of
the anomalous terms on the differential equations diminishes as roughly 1/p so
the performance of the individual-based model improves with increasing connec-
tivity. We therefore conclude that the individual-based and pair-based models
converge as the number of neighbours of each individual becomes large. This
is consistent with well-known population-level results on the convergence of the
mean-field and pair-approximation models with increasing network connectivity
(e.g. Keeling 1999).

Notice that the fourth term on the right of equation 39 is only present for
symmetric (undirected) links on the contact network (since it requires a contact
from i to j and we already assume a contact from j to ¢ to carry the infection
dynamics). This term is positive which has the effect of increasing the rate of
increase of (S;I;). This implies a greater exaggeration of the rate of spread of
epidemics on symmetric networks than on asymmetric networks. We can also
make a mathematical argument suggesting that the effect of this term should
be minimised by a large infection to removal rate ratio corresponding to a large
basic reproductive ratio Ry (see appendix C for further elaboration).

The fifth term on the right of equation 39 is present for all networks whether
symmetric or asymmetric. It is a negative term which is smaller than it should
be. This term gives the individual-based model a tendency to exaggerate the
severity of epidemics on all contact networks. In general, the error caused by
this term depends on the approximation (I;) &~ (I;)* which is least accurate
when (I;) = 0.5 and exact when (I;) is zero or one. The impact of this term
can be minimised (but not removed) by a large infection to removal rate ratio
(see appendix C). Notice that both of the anomalous terms act in the same
direction; they both lead to an exaggeration of the spread of an epidemic and
so their effects do not cancel.

For illustrative purposes, these conclusions are demonstrated in figure 1 on a
particular class of random network where every individual has the same number
of incoming and outgoing connections. Although the analysis above is generic,
these random k-regular networks are particularly simple and enable us to un-
derstand much of the epidemic behaviour by consideration of the two terms just
identified.

Figure 1 shows a numerical comparison of the predictions of the individual-
based and pair-based models with the “correct” expected infectious population
obtained by stochastic simulation of the master equation for a set of six ran-
dom k-regular networks. Three of these are undirected networks and three are
directed fully asymmetric networks (similar but finite versions of those con-
sidered by Diekmann et al. (1998)). Also shown are the predictions of the
population-level mean-field model defined in section 6 illustrating the effect of
the assumption of homogeneity. The accuracy of the pair-based model indi-
cates that the errors caused by higher order effects associated with correlations
between triples which are ignored by equation 40 are minimal for these simula-
tions and that the two anomalous terms identified above are at the root of the
observed inaccuracies of the individual-based model.

It is clear from this figure that our qualitative conclusions are supported
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Figure 1: Comparison of the infectious population time series of the mean-
field, individual-based and pair-based models against simulated epidemics on
six random k-regular contact networks where three (a,c,e) are fully symmetric
(undirected) networks, three (b,d,f) are fully asymmetric (directed) networks
and where the number of neighbours per individual in subplots (a,b), (c,d) and
(e,f) are 3, 6, and 25 respectively. The network size N is 2000 in each case.
The mean of 1000 stochastic simulations is plotted and the error bars illustrate
the 5th and 95 percentiles. The removal rate is held fixed at g; = 0.1 for each
simulation where we are using arbitrary units of time. The transmission rate 7
is the same across each link and is chosen such that N8 = kT = 0.5 so that the
mean-field prediction is the same for each network. Each stochastic simulation
is initiated on 5 initial infected sites that do not change. The individual and
pair-based models are initiated on the same 5 sites.
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Figure 2: Comparison of the predictions of the individual-based and pair-based
models with stochastic simulation close to the epidemic threshold. An undi-
rected random 6-regular network is used with network size N = 2000. The
epidemics are initiated with a) 1 infected, b) 5 infected and ¢) 20 infected sites.
The mean of 1000 stochastic simulations is shown with error bars indicating the
5th and 95th percentiles. The removal rate is held fixed at g; = 0.1.

on this class of network; the individual-based model performs badly on the low
connectivity networks but appears to converge towards the pair-based model
with increasing network connectivity, and, with all other aspects being equal, the
performance of the individual-based model is substantially better for asymmetric
networks than for symmetric networks.

All of the simulations considered so far have been initiated with five infected
individuals and using relatively large transmission rates. Figure 2 illustrates
the predictions for the final size of the susceptible population with respect to
transmission rates for an undirected random k-regular network with k£ = 6
(corresponding to figure 1c). Here, low transmission rates around the epidemic
threshold are investigated. Additionally, epidemics are initiated with 1, 5 and
20 infected sites. These plots are consistent with our analysis of the anomalous
terms which suggested that the individual-based and pair-based models are most
consistent when the transmission rate is large and, trivially, when there is no
epidemic (appendix C).

The performance of the pair-based model in describing the average stochastic
simulation is seen to decrease markedly when the epidemic is initiated with a
single individual. This is expected to some extent as a consequence of the
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bimodal response of either stochastic fade out or large epidemics. While the
probability of stochastic fade out is implicit in the individual-based and pair-
based models, additional errors will be present from neglecting higher order
effects. The pair-based model accounts for the leading order errors, but small,
higher order errors exist and are ignored by the approximation in equation 40.
These errors are likely to be very small on a k-regular random network due to
the low level of clustering (see the following two sections), however even a small
error in the probability of an epidemic to take off will have a sizeable impact
on the final size prediction due to the bimodal response. By increasing the
number of initial infected sites, the probability of stochastic fade out is reduced,
effectively returning a unimodal response and removing this error.

For other classes of network, the pair-based model also becomes inaccurate
even without stochastic fade out (Sharkey, 2008). This is also caused by higher
order anomalous terms which we discuss in the next two sections.

9 The anomalous terms at order n = 3

We have constructed a pair-based model which removes the effect of the anoma-
lous terms at the pair level. However, further terms exist at higher orders which
can cause this model to become inaccurate. This is because while equation 40
preserves the correlations between pairs induced by the correction of the n = 2
anomalous terms, it does not preserve any higher order correlations. We can
examine these higher order correlations in more detail by considering triplewise
independence:

(A:B;Ck) = (A)(B;){Ch) (42)

Critically, triplewise independence implies and is implied by pairwise indepen-
dence together with the additional requirement:

(A;B;Cy) = (A;)(B;Ck) = (B;)(AiCy) = (C)(AiBy) (43)

For want of a better notation, we can refer to these additional relationships as
the relative complement of 2wise independence with respect to 3wise indepen-
dence: {3wise\2wise}; that is, the conditions implicit in 3wise independence
which are not in 2wise independence.

With triplewise independence, we can again use the methodology developed
in section 4 to obtain a master equation for the n = 3 system state S;S;1Ij
which occurs in equation 35. Repeating the same procedure as for n = 2 of
applying subsystem independence, differentiating and substituting from equa-
tion 30 (which holds because pairwise independence is implied by triplewise
independence) we obtain:

(SiSile) = > TulSHS)SI) — > TS (Si)Ie) ()

L,l¢{i,5} Ll¢{k,i}
— ) TalS) (S {Ie) (i) — g (i) (S5) (T
Lig{k.j}
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Figure 3: Graphs correspond to the six anomalous terms in equation 44 for the
n = 3 moment equation of the state S;5;I;. Graphs b,c,d and f are already
corrected in the pair-based model. Terms a and e are implicit in the pair-based
model and lead to errors in networks with a high density of sites connected as
3-cycles.

+ T (Si)(S;) (Sk){Li) + Thej (i) (S5) (Sk) (L)
= Ty (Si)(S5) (L) (L) — T5i(Si){(S;) (Ix)(Li)
— T (Si)(S;) (L) (Ii) — Ti5(Si) (S5) (L) (L) (44)

Here the last six terms are readily identified as anomalous by the presence of
duplicated sites. The type of network for which the impact of the anomalous
terms will be greatest is dependent on the precise connectivity between the
sites ¢, 7 and k. In terms of the dynamics, the triple S;S;I; is important
when there is a contact from site k to site j and a contact from site j to site
i. For a triple connected in this way, figure 3 illustrates the type of network
structure corresponding to each of the six anomalous terms. The terms depicted
in graphs b,c,d and f are not new and correspond to pairwise independence and
are removed in the n = 2 moment closure model subject to the use of suitable
pair-approximations which preserve pair-level correlations (see appendix B).
The reoccurrence of these pairwise correlations is expected because pairwise
independence is implicit in triplewise independence. Of particular interest here
are the two new terms (graphs a and e). These distinguish an n = 3 moment
closure model which accounts for correlations between triples from the n =
2 moment closure model which only accounts for correlations between pairs.
They are a consequence of the independence assumption {3wise\2wise} and
correspond to closed triples.

The process of correcting this equation is entirely systematic and identical
to the n = 2 case. We first replace the products with combined probabilities.
The anomalous terms are then identified by the presence of duplicated sites.
These terms are removed if the states are contradictory or contracted if they
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are the same. This results in the n = 3 moment equations:

(SiSilk) = Y. Tul(SiS;Seh)— Y Tu(SiSiliIL)
Lig{i,g} Li¢{k,i}
- > TalSiS;IL) — g(SiS;Ix)
Lig{k.5}
— T(SiS; 1) — Tir (S:S;1x) (45)

This correction induces both correlations between pairs (graphs b,c,d and f)
as well as new correlations at the triple level (graphs a and e). The errors
resulting from these new anomalous terms cannot be removed at the pair level.
Consequently, inaccuracy is expected in the pair-based model for networks with
closed triples even when there is no clustering present at higher order. See
Keeling (1999, figure 2) for an observation of this effect as well as the results
at the end of section 10 on a network composed of a single closed triple (or
3-cycle). Here and in what follows we use the graph theory terms “path” and
“cycle” to encompass weakly connected paths and cycles.

The two new anomalous terms act to increase the rate of increase of (S;5; 1))
which in turn increases the rate of increase of (S;I;) via equation 35. These
terms therefore lead the pair-based model to exaggerate the spread of an epi-
demic as in the case of the terms at the previous order. However, it is not
always the case that the anomalous terms act to exaggerate the rate of spread
of an epidemic. Repeating the analysis for the other triple (S;I;I) occur-
ring in equation 35, we find the two anomalous terms Ty, (S;)(I;){Sk)(l;) and
—T;,(Si) (L) {(Ix){Ix) which both act to increase the rate of increase of (S;I;I})
which in turn leads to a reduction in the predicted rate of spread of the epi-
demic. Hence, terms at higher order do not always act in the same direction and
their effects may cancel. Nevertheless, experience suggests that the pair-based
model normally exaggerates the spread of an epidemic suggesting that if higher
order anomalies can be ignored, the anomalous terms associated with the triplet
state S;5;1; dominate over those associated with the triplet state S;I;1}.

With a suitable closure approximation for 4-tuples that preserves correla-
tions between triples, a model can be constructed where these anomalous terms
at the triple order are not present (see Bauch, 2005, House et al., 2009 and Ap-
pendix B for work in this direction). By proceeding instead to n = 4 moment
equations and repeating the same procedure as above, 4-cycle graphs are uncov-
ered contributing yet further anomalies on networks with this type of clustering
such as square lattices.

For the individual-based model the leading order anomaly corresponds to
essentially ubiquitous processes between two individuals. For the pair-based
model the leading order anomalous terms correspond to 3-cycles with further
anomalies from higher order n-cycles. However, these higher order errors only
become relevant for networks with some type of clustering supporting existing
intuition that the pair-level models work best for networks with little clustering
(e.g. Keeling and Eames, 2005). The ubiquity of the leading order pair-level
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Figure 4: Evaluation of the final size prediction of the individual-based and
pair-based models on a ring graph with nearest neighbour connectivity for trans-
mission rates across each link varying from 7 = 1 to 7 = 90. The removal rate
is held fixed at g; = 0.1 and the network size is N = 2000. All epidemics
are initiated with a single infected individual and comparison is made with the
mean of 10,000 stochastic simulations with error bars indicating the 5th and
95th percentiles.

terms explains why pair-based models are a substantial improvement over the
individual-based models for all networks with low connectivity.

To support our analysis, figure 4 shows the final size of the susceptible pop-
ulation for a ring graph in which each individual is arranged around a ring and
connected to its two nearest neighbours. This network has no cycles except at
the order of the network itself. It is clear from this figure that the pair-based
model is essentially exact as we would expect in spite of the epidemics being
initiated by a single infectious individual.

10 Systematic identification of higher order anoma-

lous terms and the behaviour as n approaches
N

We now extend this analysis to the heuristic derivation of moment equations
of arbitrary order via the systematic identification of higher order anomalous
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terms by repeating the procedure used for n = 2 and n = 3. Recall that we
assume statistical independence at order n and that this incorporates all anoma-
lous terms at order n and below. This assumption of statistical independence
allows us to use the method outlined in section 4 for generating the equations.
However, this is methodological and our interest is only in the nature of the new
anomalous terms at order n which are not incorporated in an n — 1 moment
closure model. This corresponds to the impact of the statistical independence
assumption {nwise\(n — 1)wise}.

We consider the master equation for the probability of the state of a system
A composed of n < N subsystems of the complete epidemic system I'. Following
the steps that led to equation 10 for the complete system, we have for A:

Aoy ="y T ey =" e (46)

j=1 §i#] j=1

where the product is over all n subsystems except for j. For the SIR model, 9§
can be susceptible, infectious or removed. Let us consider a term in the sum-
mation such that ¢§ = S;. Substituting from the subsystem master equations
with pairwise statistical independence (equation 30) gives:

XY ==, (47)
k

where
e = Tin(Si)(Te) T 8 = Tiw(Te) [ [ (05) (48)
iyi] i
When % = I; we obtain:

X =D i = i) [T ) =3 nfi - g,(A%) (49)
k k

1,177

When ¢ = R; we obtain:
Aj = g;(A%) (50)

There are two possibilities for each term 7%

1. Firstly the site k£ may be external to the system A and is therefore not
one of the sites covered by the index i. In this case, we obtain a term
describing a system of size n + 1 and see that the master equation for
A can depend on terms at an order one higher that the system itself.
After applying our heuristic step of replacing products of probabilities with
actual probabilities, this term is T (Ix¥§5...4%). This is the general case
of the observation that the pair-based equations contain terms at order
n = 3 (the first two terms on the right of equation 39). This is also where
the higher {n + lwise\(n)wise} correlations appear.

23



2. Alternatively, k may belong to the set of sites 1 to n. Suppose firstly that
the system state A specifies i to be an infectious state; f = I;. In
this case:

5 = Tie(Te)(Ie) ] 8) — Ti(bf..) = T (A®) (51)
iitk

where the systematic correction of contracting similar states is applied.
This is precisely the correction procedure used for the specific cases n = 2
and n = 3. Now suppose that 1} = Sj:

% = Tie(Ie) (S) ] (wf) — 0 (52)
ivitk

where the term is again systematically corrected as in then =2 and n = 3
cases. Similarly, we obtain zero when 9{ = Ry.

So in general, the process of correction appears systematic and the same as for
n = 2 and n = 3 at all orders for this SIR model leading to the possibility
of using this method to automatically generate systems of moment equations.
We should note that this does not constitute a proof that the procedure always
generates the correct equations, although it seems reasonably clear that this is
the case for the present context of an SIR epidemic model.

This description neatly highlights the transition from the individual-level
equations (equation 20) via a sequence of increasingly large moment equations
to the complete master equation. Where n is small with respect to the full
independent system size N, most of the terms are of type 1 containing terms at
order n + 1 (e.g. equation 39). As n approaches N, most terms are of type 2
(at order n). Finally, in the case n = N, all terms are at order n (there are no
external individuals) resulting in the complete self-contained master equation
of the full system (or at least of its independent giant components) with no
requirement for closure approximations.

For a particular moment equation at order n to be relevant to the dynamics,
it must arise from a moment equation at order n — 1 which in turn arises from a
moment equation at order n — 2, continuing until the individual-level equations
(equation 20) are reached. This forms a weakly connected subgraph with n
nodes and consequently the dynamics only depend on equations describing the
states of these particular subgraphs. It is readily seen that these subgraphs
must be acyclic since cycles do not need to be evaluated at a higher order.

At each order n, our procedure will produce anomalous terms from the pair
level up to n by systematically joining two individuals within the subgraph
subject to the transmission network 7. However, provided that a consistent
closure approximation is used to absorb the correlations at each order, the
terms corresponding to cycles at order n — 1 and less are already accounted for
by lower order moment closure models (as in the n = 3 example in section 9).
It is only the n-cycles which distinguish the nth order moment closure model
from the (n — 1)th order model. At order n, these terms join together the
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end nodes of a simple path of length n between two individuals which we shall
identify by ¢ = 1 and ¢ = n. In the context of equations 51 and 52, these terms
correspond to (k =1, j = n) or (k =n, j = 1). Hence at each order n, the
equation for each n-tuple state has at most two anomalous terms which are not
accounted for in the previous order moment closure model (subject to the use
of a consistent closure approximation (Appendix B)). We saw examples of this
in the two anomalous terms in equation 39 and in graphs a and e in figure 3.

In section 8 we argued that the order 1 and order 2 moment closure mod-
els should converge as the number of neighbours per individual becomes large.
Since there are only two new anomalous terms per order (subject to there being
cycles at that order), we expect that order n moment closure models converge
to order n — 1 moment closure models as approximately the reciprocal of the
number of terms at each order. At order n we have a summation over j (from
equation 46) and a summation over k from equations 47 and 49. Hence, given
closure approximations which preserve correlations at each order, the moment
closure models converge towards each other with increasing n and with increas-
ing network connectivity.

In spite of this result, we should be aware that high order cycles can some-
times have a noticeable impact in extreme circumstances as we now show. For
the simulations on the N = 2000 ring graph shown in figure 4, it is clear that
the higher order N = 2000 cycle did not have an observable effect. Figure 5a
shows the final susceptible size predictions on a one-dimensional lattice with
nearest neighbour connectivity with size varying from N = 2 to N = 20. The
transmission rate across each link is scaled with network size as 7 = N/5 to
ensure that on average, most of the population are infected. This network has
no higher order cycles and the predictions of the pair-based model are exact
even though epidemics are initiated with a single infected individual. A ring
graph can be constructed from the one-dimensional lattice by connecting the
end nodes together and this introduces a cycle at order N. Figure 5b shows sim-
ulations on the equivalent ring graph and illustrates a small discrepancy between
the stochastic simulations and the pair-based model which we must attribute to
this N-cycle. The “ring” graph of two nodes remains exact as it is unchanged
from the one dimensional lattice. At 3 nodes, the network constitutes a single
triangle and the small discrepancy is consistent with our conclusions in section 9
that closed triples will cause errors in the pair-based model. We also observe
that under some circumstances, even when the first order of clustering is very
high (here up to 20), the errors at this order (which are implicit in {3wise\2wise}
statistical independence) can cascade down to have an impact on the pair-based
model.

11 Discussion and conclusions
A central focus of this work was to develop a better understanding of the con-

nection between stochastic simulation and deterministic models of epidemics
propagated on contact networks. In general, the average behaviour of a stochas-
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Figure 5: Evaluation of the final size predictions of the individual-based and
pair-based models for a one-dimensional lattice with nearest neighbour connec-
tivity and a ring lattice with nearest neighbour connectivity. Networks varying
from N = 2 to N = 20 are considered. The transmission rate across each link is
scaled with N as 7 = N/5 to ensure that a significant proportion of the network
is infected in each case. The removal rate is g; = 0.1. Comparison is made with
the mean of 10,000 stochastic simulations with error bars indicating the 5th and
95th percentiles. All epidemics are initiated by a single infected individual.

26



tic epidemic system is, given initial conditions, a system characteristic with a
fully deterministic time course. It is this average behaviour which deterministic
models normally attempt to replicate. For certain classes of contact network,
deterministic models can be obtained in a reasonably systematic way with well
understood assumptions (e.g. Diekmann et al., 1998; Volz, 2008; Simon et
al., 2010) but in the general case, the precise deterministic representation of a
standard SIR epidemic on an arbitrary contact network of size IV requires the
solution of 3% — 1 equations. This normally necessitates the use of approxima-
tions.

Here we investigated a particular class of approximate deterministic individual-
level moment closure models of epidemics propagated on arbitrary contact net-
works (Sharkey, 2008). We showed that a theoretical basis for these models can
be provided by relationships which we derived between the master equations for
arbitrary systems and those for their subsystems. This leads to sets of moment
equations which are fully consistent with the master equations, and hence with
stochastic simulation of the master equations.

We used closures of these moment equations which relied on assuming statis-
tical independence at some order. The assumption of statistical independence
can lead to a departure from the master equation description and to discrep-
ancies with the expectation values of the stochastic epidemic variables. Our
analysis focused on understanding the breakdown of these assumptions and on
the resulting inaccuracies in the epidemic models. In particular, we showed
that the failure of these individual-level moment closure models can be directly
attributed to anomalous terms describing unbiological processes acting around
closed loops in the contact network. This directly relates the errors in the mod-
els to networks with some degree of clustering (defined as low order cycles). This
observation is well known in the population-level context of pair-approximation
models (e.g. Keeling and Eames, 2005), although this gives a more systematic
procedure for identifying, quantifying and correcting these anomalies.

These individual-level models exist in the domain between stochastic simula-
tion (agent-based models) and population-based deterministic epidemic models;
indeed, they can sometimes be viewed as an intermediate step between the two
with the population-based models obtained from additional assumptions of ho-
mogeneity (Sharkey, 2008). Consequently, our conclusions at the individual level
provide insights into the network-based population-level models. In this sense,
the analysis is relevant to a range of commonly used epidemic models including
network-based mean-field and pair-approximation models.

We considered a hierarchy of individual-level moment closure models which
were closed at each order n by a Kirkwood-type closure (Kirkwood, 1935; Rand,
1999; Singer, 2004). We assumed that the Kirkwood-type closure preserves
all correlations at order n and below but ignores correlations associated with
{(n + 1)wise\nwise} statistical independence, by which we mean the conditions
implicit in (n+1)wise independence which are not also implicit in nwise indepen-
dence. We showed that this type of statistical independence implies anomalous
terms describing unbiological processes acting around loops or cycles in the net-
work with path-length n+1 as well as implicit higher order errors. In this sense,
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the anomalous terms quantify the errors associated with the closure approxi-
mation at each order and their analysis provides insights into the departure of
these models from the underlying master equation. Correction of the anomalous
terms at order n breaks the assumed independence which induces correlations
and leads to more accurate models at order n + 1.

Our choice of moment closure had the objective of preserving the correla-
tions that are induced at each order by the correction of anomalous terms while
ignoring higher order correlations. In this sense, closures based on statistical in-
dependence emerge as the obvious ones to use in this context. Many alternative
closure approximations have been proposed to give improved results on specific
classes of network by incorporating higher order effects (e.g. van Baalen, 2000).
However, these do not fall naturally into the current context where we attempt
to identify and isolate the cause of the errors at each order.

The lowest order moment closure models at orders n = 1 and n = 2 leads
to the generation of what we termed the individual-based and pair-based de-
terministic epidemic models respectively. These models allow deterministic de-
scriptions of epidemics at an individual level on transmission networks of arbi-
trary complexity. Code for solving these models is provided as supplementary
material.

We showed that the individual-based model is fully consistent with the mas-
ter equation of the stochastic system except for the single assumption of pairwise
statistical independence. We traced the leading order errors in this model to the
anomalous terms 7};(S;)(S;)(I;) and —T;;(S;)(I;)(I;) appearing in the equation
for the doublet state probability (S;I;). The first of these describes a process in
which individuals are in two states at the same time, directly contradicting the
premise of a compartmental model. The second term is also inconsistent with
the master equation description. These terms can be systematically corrected
which induces correlations and leads to the pair-based models. As such, they de-
scribe the difference in behaviour between the individual-based and pair-based
models as well as providing the leading order departure of the individual-based
model from the average stochastic realisation of the master equation.

Analysis of these two terms therefore provides insights into the circumstances
for which the individual-based model fails to produce good results. We showed
that they qualitatively account for the observed behaviour of these models on
networks for which higher order effects are relatively small (where pair-based
models are accurate). Many of these behaviours are well known in the context of
population-level models, although complicated by the additional assumption of
homogeneity. However, the current approach permits an arguably more analytic
understanding of the population-level correlations. Indeed, the error associated
with the term —T;;(S;)(I;)(I;) has not been explicitly identified previously. We
also identified terms at higher order giving further understanding of the types
of network for which the deterministic population-level models fail.

While the error associated with the term —T;;(S;)(I;)(I;) is present for all
networks, the term 7};(S;) (S;)(I;) only creates errors on symmetric (undirected)
links. Consequently, with all other aspects the same, the individual-based model
should perform better on directed networks. We confirmed this by simulation
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(figure 1). This result is directly related to the frequently made point that
during the course of an epidemic, any infectious individual must have at least
one non-susceptible neighbour to have infected it. On a symmetric network,
this reduces the number of potential susceptible contacts, slowing the progress
of the epidemic and creating correlations between individuals (e.g. Diekmann
et al., 1998; Eames and Keeling, 2002; May, 2006). We can see this connection
by noting that the first term in equation 39 represents the creation of S;I; by
a prior contact with another infectious individual k£ within the triple structure
S;S;11. Since k cannot be the same site as 4, this reduces the number of possible
susceptible neighbours available to j. Part of the failure of the individual-based
model on symmetric networks is then precisely because it allows site k£ and site
i to overlap in the anomalous term 7};(S;)(S;)(f;). This insight is therefore
not new, but it does enable the error to be uncovered and represented in a
systematic way.

We found that the errors associated with these two anomalous terms do not
cancel, but rather act in the same direction to over-estimate the severity of
an epidemic. We therefore expect that the individual-based model will always
predict a bigger epidemic than the pair-based model and provided that these
leading order errors dominate, the individual-based model will exaggerate the
severity of an epidemic. Additionally, the relative significance of these two
anomalous terms increases when the number of neighbours per individual is
small. Consequently the individual-based model is more accurate for networks
with many connections per individual. Again, this replicates understanding at
the population level (e.g. Keeling, 1999), but arguably makes this result more
general and provides a different perspective. We also argued that the impact of
these two terms is greatest for epidemics which propagate slowly with a basic
reproductive ratio greater than but close to 1 implying that the individual-
based and pair-based models should be in better agreement with increasing
basic reproductive ratio.

The leading order anomalous terms can be corrected which, together with a
suitable closure approximation based on {3wise\2wise} statistical independence
leads to the pair-based model. We demonstrated in section 10 that this process
of identifying and correcting the anomalous terms is systematic at all orders;
anomalous terms are first identified as those having repeated sites and are then
contracted if the site states are the same or removed otherwise. The construction
of higher order models such as the pair-approximation or pair-based models has
traditionally involved the identification of all possible processes contributing to
the rate of change of a quantity such as the S;I; pair. Ensuring that all of
the possible processes are accounted for can be difficult and requires careful
bookkeeping (van Baalen, 2000). Here, in the context of the SIR epidemic
model, we have a systematic method for obtaining these equations. This may
therefore enable the automated generation of systems of moment equations at
any order. It seems reasonable, at least in the context of the SIR epidemic model
that this procedure always leads to the correct moment equations although we
did not prove this.

The pair-based model contains further anomalous terms describing unbio-
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logical processes acting around triangles (or 3-cycles). Although we found that
the n = 2 order terms always act in the same direction to exaggerate the rate
of spread of an epidemic, at order n = 3, the terms can act in opposing direc-
tions which can reduce their net effects. Nevertheless, experience suggests that
the pair-based model still exaggerates the spread of epidemics suggesting the
dominance of the terms increasing the rate of spread.

The process of generating the higher order models is systematic. In prin-
ciple, a model can be constructed without the n = 3 order anomalous terms,
but then assumes {4wise\3wise} statistical independence which corresponds to
anomalous terms describing unbiological processes acting around 4-cycles and
higher. In general we create an nth order moment equation model which de-
pends on {(n + 1)wise\nwise} statistical independence with leading order errors
corresponding to unbiological processes acting around (n + 1)-cycles. Moment
closure models at order n can remove anomalous terms at order n and below.

In practice we note that individual-based moment closure models beyond
the pair level are likely to be prohibitively complex and computationally expen-
sive. However, consideration of the general case is interesting from a theoretical
perspective. A novel point of this construction is that it allows us to understand
the convergence of the moment closure models to the complete master equation
description in the limit as n approaches the system size N. Additionally, we
can see that each moment equation contains at most two anomalous terms cor-
responding to the two ways in which the end sites of a simple network path of
length n can be closed to form an n-cycle (section 10). As a result, we found
that the relative number of anomalous terms decreases at each order making the
n — 1th order moment closure model converge to the nth order moment closure
model with increasing n. Nevertheless, we observed for the example of a ring
graph that even very high order cycles can sometimes result in noticeable errors
(figure 5b).

Our analysis of correlations is limited to contact networks which do not
change rapidly in time with respect to the contact frequencies across network
links. For networks whose links are very dynamic, the notion of a contact net-
work becomes lost as infection is effectively permitted to travel directly between
any two individuals. It is clear that the impact of the anomalous terms is reduced
because the number of network contacts per individual is essentially increased
(while their strength is decreased). While detailed analysis of this situation
is outside the scope of the present work, for random networks, convergence to
the mean-field model with increasingly rapid network dynamics is discussed in
detail by Volz and Meyers (2007; 2009). This issue is also addressed in the
context of a triple-approximation model by House et al. (2009). Additionally,
metapopulations models frequently consider the movement of individuals from
one population to another as the cause of transmission. At the individual level
this corresponds to an extreme case of a dynamic network which is coupled to
the infection process.

Finally, we found that the best agreement between the individual-level mod-
els and stochastic simulation was usually when epidemics are initiated with a
reasonably large number of infected sites (figure 2). We argued that this is
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because the chance of stochastic fade out of the epidemic is reduced. However,
the probability of stochastic fadeout is intrinsically incorporated into the master
equation description and therefore the moment closure models incorporate this
as well, although in an approximate way. The significant error that we observed
when the probability of stochastic fade out is not negligible is attributable to
errors in predicting this probability. Even small errors can translate into a sig-
nificant distortion of the average epidemic due to the bimodal response of either
very small or very large outbreaks. For the example of a one-dimensional lat-
tice for which the pair-approximation model is exact, no errors were observed,
irrespective of the number of initial cases or the rate of transmission (figure 5a).

In conclusion, the analysis presented here enables a better understanding of
deterministic models of epidemics on contact networks and their relationship to
the master equation. It shows that the correlations at each order can be asso-
ciated with cycles in the network of the same order and that this quantifies the
departure from the master equation. This provides a more analytic perspective
on the role of clustering in the behaviour of epidemic dynamics.
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13 Appendix A. Derivation of the S5;/; moment
equations from the system master equation

We can determine the equation for the probability of the pair state S;I; by a
straightforward extension of the argument for singlet states in section 5. We
first write down the probability for the doublet state:

(Sil;) =Y (L") DD’ (53)

«

Differentiating with respect to time and substituting from equation 1 gives:

(SiL;) = > o (D Dyt =3 0P re) Do D!
af ap
- Serwipey | Sor| S0
af a b

= o (r*) Dy D§t [Z Df“] [Z be]
af a b

@ « a b
= Yo%) DDy D) D}
afBab
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= > o) DS Dy DI DY (54)
aBab

Doing the sum on a and b (accounting for the fact that only one of them can
change at a time with non-zero transition rate) gives:

(S:;) = Y o°M(rP)DeS DY DI DS
ap
=Y " oPry ey D DI
af
=Y " oPr) DDy D DI (55)
ap

By implementing the transition processes at the system level we get:

af pnaS nal nBS KBS _ as nal nBS nBS pBI ~ap
o’ DYDY DI DY = YT DY DI DI DS
k
a Mo « I I a « I I ~o
oPe DS DY DM DI = N "1y DS DY DY DY DR P
k
a nasS Ho S R asS Ha S R Ba
oPe DS DM DI DI = g; D¢ DX DPE DI (56)

Substituting into equation 55 gives:
<S{Ij> = Z Z Tjk<1“,3>D?SD?IDESD]@SD£ICJQB

aB k

=N Tu(r) DS Dy DY DY DRl ¢
aB k

— Z g; <Fa>D?SD?ID;BSD;QRCjﬁa
af

SN DN S
k B a

= "1y (@) DDt N Dy D D e
k a B

—g; ) (T)D5' Y DD DN (57)
o E

We now use a similar identity to equation 17:

> DDt D¢t = DI (58)

(e

This is clearly true when D? ® = 0. From equation 17, there must be a single
state I'* for which D;-”‘C;-“B = 1. For this state, when D?b = 1, this also
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implies that Df‘b = 1 because 9; does not change state during this transition,
establishing the identity. Applying this to equation 57 gives:

' S S I
(Sil;) = > Ty Y (DD DI =N "1y Y (1) Dy Dy DRt
% 3 % o
—g; > _(T*) D9 D§t

e

= D TidSiSili) = D Tn(Sili i) — g;(Sil;)
k k

D Tin(SiSiTk) = > Taw(SiliIx) — Toy(Sily) — g;(Sil;) (59)
k. ki k kA

where the specification that k # i in the first term of the last line is superfluous
since this probability is zero but is required when we consider approximations of
this probability. This completes the derivation of equation 35 from the system
master equation.

14 Appendix B. General Kirkwood-type closure
approximation

The Kirkwood-type closure approximation for the probability (A4;B;C}) is given
by (Kirkwood, 1935; Rand, 1999; Singer, 2004; Sharkey, 2008):

(A4;B;)(B;Cy)(CrA;)
(A:)(B;)(Ck)

When there is no link (in either direction) between two of the subsystems such
as between C}, and A;, we call this an open triple. To avoid evaluating a separate
differential equation for this open pair, we use statistical independence to reduce
the above approximation to:

(A;B;Cy) = (60)

(AiB;)(B;Ck)
(A;B;Ch) B (61)
These two forms are the closure approximations used in the pair-based model
(see supplementary material).
To close triple-level equations, we require an approximation of the generic
4-tuple probability (A,B;CyD;). A natural extension of the Kirkwood closure
is a Fisher-Kopeliovich-type closure (Fisher and Kopeliovich, 1960):

(A B;Cy)(B;CrDy)(Cv D1 Ag) (D1 A; Bj)(As) (By)(Ch) (Dy)
(A;B;)(AiCy)(AiDy)(B;Cy)(B; Di)(Cr Dy)

(A;B;CyDy) = (62)

Simplifications can also be made here by assuming statistical independence
(analogous to equation 61) resulting in a “motif-based” approach (House et
al., (2009)).
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We can easily generalise this (Singer, 2004) and approximate the probability
of the states of the n subsystems A = {1, 19, ...¢0,,} by:

n—1
wy =TI [T wieg.pp)co (63)

d=1 1<i1<izx<-<ig<n

Again, simplifications could be made in principle by applying independence
assumptions across unconnected sites, but the resulting number of motifs would
probably make this impractical.

We conjecture (although have not attempted to prove) that the correlations
induced by the removal of anomalous terms at each order are fully preserved by
this form of closure.

15 Appendix C. Analysis of the n = 2 anomalous
terms with respect to rates of transmission
and removal

The equations of the individual-based model cannot be solved analytically. How-
ever, if we assume that the infectious pressure acting on an individual during
its infection and removal is approximately constant, we can solve the equations.
We suppose that the infectious pressure acting on an initially susceptible indi-
vidual behaves as the Heaviside function kH (t — to), switching on at some time
t = tg with a constant “averaged” force of infection . This effectively treats
the individual as existing in a constant sea of infectivity for the duration of its
dynamics and decouples the behaviour of the individual from the rest of the
network. The individual-based model then becomes:

(S;) = —kH(t—1t0)(S;)
KH(t —t0)(S:) — g{Ii) (64)

/\
o~
=2

Rewriting this in terms of the dimensionless parameters w = k/g, T = gt gives:

dilfﬁ = —wH(T - 70)(S)
dﬁl? wH (1 — 70)(Si) — (1i) (65)

For simplicity we let 79 = 0 (not to be confused with the start of the epidemic)
and solve these equations to give:

(1) = (e —e7) (66)

We can use this to investigate the impact of the anomalous terms T7;(S;)(S;)(I;)
and —T;;(S;){I;}{I;) in equation 38. It is clear that (I;) becomes zero when
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w — 0. This rather uninteresting scenario corresponds to no infection and in
this case both anomalous terms are clearly zero at all times. Note that w is
the ratio between infection rate and removal rate and is therefore effectively the
basic reproductive ratio Ry. On a network-wide scale, Ry < 1 will also imply
(I;) = 0 for most individuals in the system.

More generally, for the term T};(S;)(S;)(l;), while we cannot comment on
the state of the node j, the parts of the expression involving the node i provide a
weighting factor for the errors contributed by this term. The overall contribution
from this factor is then:

e 1
| s = 5 (67)
provided that w # 0 and w # 1. This term is then clearly minimised by large w.

The error from the term —7;;(S;)(I;)(I;) relates to the accuracy of the

approximation (I;) &~ (I;)2. The error contributed from this term is then related

to:
w

o0
2

| =i = 1- (63)
provided that w # 0 and w # 1. This has a minimum value of 1/2 as w — oc.
Hence this term is minimised by x >> ¢ but not removed altogether. We note
that this is implicitly tied to the use of an exponentially distributed removal
process and that a more realistic removal process would not necessarily cause
this residual. Additionally, very rapid infection and a low removal rate will likely
lead to the situation in which the value of (S;) becomes zero before the approxi-
mation breaks down in the removal phase thus minimising the contribution from
the anomalous term.

Although the assumption of a constant sea of infection is somewhat contrived
and certainly inaccurate, it enabled us to make some analytic progress. There
is no immediately obvious reason why the qualitative conclusions we obtained
should change for a more dynamic infectious pressure.
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