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In this small paper we give an outline of results obtained by the author in lattice geometry
(including theory of multidimensional continued fractions) and theory of energies functionals of
knots and graphs.

1. Multidimensional continued fractions

1.1. Introduction. The problem of generalizing ordinary continued fractions to the higher-
dimensional case was posed by C. Hermite [17] in 1839. A large number of attempts to solve this
problem lead to the birth of several different remarkable theories of multidimensional continued
fractions. We consider the geometrical generalization of ordinary continued fractions to the
multidimensional case presented by F. Klein in 1895 and published by him in [30] and [31].

Consider a set of n+1 hyperplanes of Rn+1 passing through the origin in general position.
The complement to the union of these hyperplanes consists of 2n+1 open orthants. Let us choose
an arbitrary orthant.

Definition 1.1. The boundary of the convex hull of all integer points except the origin in the
closure of the orthant is called the sail. The set of all 2n+1 sails of the space Rn+1 is called the
n-dimensional continued fraction associated to the given n+1 hyperplanes in general position in
(n+1)-dimensional space.
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Two n-dimensional continued fractions are said to be equivalent if there exists a linear trans-
formation that preserves the integer lattice of the (n+1)-dimensional space and maps the sails
of the first continued fraction to the sails of the other.

Multidimensional continued fractions in the sense of Klein have many connections with other
branches of mathematics. For example, J.-O. Moussafir [40] and O. N. German [16] studied the
connection between the sails of multidimensional continued fractions and Hilbert bases. In [49]
H. Tsuchihashi found the relationship between periodic multidimensional continued fractions
and multidimensional cusp singularities, which generalizes the relationship between ordinary
continued fractions and two-dimensional cusp singularities. M. L. Kontsevich and Yu. M. Suhov
discussed the statistical properties of the boundary of a random multidimensional continued
fraction in [32]. The combinatorial topological generalization of Lagrange theorem was obtained
by E. I. Korkina in [34] and its algebraic generalization by G. Lachaud [37].

V. I. Arnold presented a survey of geometrical problems and theorems associated with
one-dimensional and multidimensional continued fractions in his article [6] and his book [3]).
For the algorithms of constructing multidimensional continued fractions, see the papers of
R. Okazaki [42], J.-O. Moussafir [41] and the author [22].

E. Korkina in [33] and [35] and G. Lachaud in [37], [38], A. D. Bruno and V. I. Parusnikov
in [11], [44], and [45], the author in [20] and [21] produced a large number of fundamental domains
for periodic algebraic two-dimensional continued fractions. A nice collection of two-dimensional
continued fractions is given in the work [10] by K. Briggs.

1.2. Polygonal faces of continued fractions. It follows from the definition that multidi-
mensional continued fractions are polyhedral (finite or infinite) surfaces. Here arises a question
of a good face description for such polyhedral surface. One-dimensional faces, i.e. segments,
are integer-linear equivalent iff the number of their integer inner points coincide. So the one-
dimensional faces are in a natural one-to-one correspondence with positive integers.

For the two-dimensional faces it was known that any convex polygon is a face of some continued
fraction on unit integer distance to the origin. I have found the list of all convex polygons that
can be on integer distance to the origin greater than one.

By (a1, . . . , ak) in Rm for k < m we denote the point (a1, . . . , ak, 0, . . . , 0). It turns out that it
is possible to implicitly describe all integer-affine classes of multistory completely empty convex
three-dimensional marked pyramids.

Theorem 1.2. [24] Any multistory completely empty convex three-dimensional marked pyramid
is integer-affine equivalent exactly to one of the marked pyramids from the list ”M-W”.

It was known only the following statement on compact two-dimensional faces contained in
planes on the integer distance to the origin greater than one. Such faces are either triangles or
quadrangles (see the work [3] by J.-O. Moussafir).

1.3. Gauss-Kuzmin face distribution and Möbius measure. For the first time the state-
ment on statistics of numbers as elements of ordinary continued fractions was formulated by
K. F. Gauss in his letters to P. S. Laplace (see in [15]). This statement was proven further by
R. O. Kuzmin [36], and further was proven one more time by P. Lévy [39]. Further investigations
in this direction were made by E. Wirsing in [50]. (A basic notions of theory of ordinary contin-
ued fractions is described in the books [18] by A. Ya. Hinchin and [3] by V. I. Arnold.) In 1989
V. I. Arnold generalized statistical problems to the case of one-dimensional and multidimensional
continued fractions in the sense of Klein, see in [5] and [4].
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The list
”M-W”

Parameters Coords.
of the
vertex

Coordinates of
the base

Integer-affine type
of the base

Ma,b b≥a≥1 (0, 0, 0) (2,−1, 0),
(2,−a−1, 1),
(2,−1, 2), (2, b−1, 1)

(0,−1)

(0, 1)

(−a, 0) (b, 0)

T ξ
a,r a≥1, r≥2,

0<ξ≤r/2,
gcd(ξ, r)=1

(0, 0, 0) (ξ, r−1,−r),
(a+ξ, r−1,−r),
(ξ, r,−r) (0, 0) (a, 0)

(0, 1)

Ub b≥2 (0, 0, 0) (2, 1, b−1), (2, 2,−1),
(2, 0,−1)

(0,−1)

(0, 1) (b, 0)

V (0, 0, 0) (2,−2, 1),
(2,−1,−1),
(2, 1, 2)

(−1, 0)

(0,−2)

(2, 1)

W (0, 0, 0) (3, 0, 2), (3, 1, 1),
(3, 2, 3)

(−1,−1) (1, 0)

(0, 1)

One-dimensional case was studied in details by M. O. Avdeeva and B. A. Bykovskii in the
works [1] and [2]. In two-dimensional and multidimensional cases V. I. Arnold formulated many
problems on statistics of sail characteristics of multidimensional continued fractions such as an
amount of triangular, quadrangular faces and so on, such as their integer areas, and length of
edges, etc. A major part of these problems is open nowadays, while some are almost completely
solved.

M. L. Kontsevich and Yu. M. Suhov in their work [32] proved the existence of the mentioned
above statistics. I wrote explicitly a natural Möbius measure of the manifold of all n-dimensional
continued fractions in the sense of Klein and introduced the corresponding integral formulae for
the statistics (see [27] for more details).

1.4. Algorithmic aspects for algebraic multidimensional continued fractions. A multi-
dimensional periodic algebraic continued fraction is a set of infinite polyhedral sails, that contain
an infinite number of faces. The quotient of any sail under the Dirichlet group action is isomor-
phic to an n-dimensional torus. The algebraic periodicity of the polyhedron allows to reconstruct
the whole continued fraction knowing only the fundamental domain. Moreover, any fundamental
domain contains only a finite number of faces of the whole algebraic periodic continued fraction.
Hence we are faced with the problem of finding a good algorithm that enumerates all the faces
for this domain.

There were no algorithm for constructing multidimensional continued fractions until T. Shin-
tani’s work [46] in 1976. Let F be a totally real algebraic field of degree n. We take all different
embeddings of F into R and denote them by ϕi, i = 1, . . . , n (there are exactly n different
embeddings, since F is totally real). Consider the following embedding of F into Rn. For an
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arbitrary element x of F we suppose

x → (ϕ1(x), ϕ2(x), . . . , ϕn(x)).

T. Shintani considered the action of the group of all totally positive elements for the ring of
integers of F (by component-wise multiplication by totally positive integers x+) on Rn

+ for the
described embedding of F . He proved that the fundamental domain for this action is the union
of a finite number of simplicial cones of special type. (Note that if we take some other order for
the embeddings ϕi′ , then the fundamental domains will be integer-linear equivalent to the fun-
damental domains for the embeddings considered above.) The statement of T. Shintani and its
proof is actually the basis for the construction of one-dimensional continued fractions. Following
T. Shintani’s work, E. Thomas and A. T. Vasques obtained several fundamental domains for the
two-dimensional case in [48]. Finally, R. Okazaki presented a method that permits to construct
fundamental domains for fields of arbitrary degree in his article [42]. E. Korkina in [33], [35] and
G. Lachaud in [37] produced an infinite number of fundamental domains for periodic algebraic
two-dimensional continued fractions. The method used for constructing fundamental domains
of multidimensional continued fractions in these papers was inductive. The method produces
the fundamental domain face by face, verifying that each new face does not lie in the same orbit
with some face constructed before. Applying the method, one can find the fundamental domain
in finitely many steps.

Later on J. O. Moussafir developed an essentially different approach in his work [41]. It works
for an arbitrary (not necessary periodic) continued fraction and computes any bounded part
of an infinite polyhedron. The approach is based on deduction. One produces a conjecture on
the face structure for a big part of the continued fraction, then it remains to prove that any
conjectured face is indeed a face of the part. This method can be also applied to the case of
periodic continued fractions.

Finally, we described a new advanced deductive construction adapted especially to fundamen-
tal domains of periodic continued fractions. The construction involves a method for conjecturing
the structure of the fundamental domain and an algorithm testing whether the conjectured do-
main is indeed fundamental. The main advantage of the algorithm is the following: the number
of ”false” vertices of our approximation is much smaller than the number of ”false” vertices of
the approximation in the method of J. O. Moussafir (so that the computational time is consid-
erable reduced). This algorithm substantially uses the periodicity of the continued fraction and
hence it is impossible to apply it to non-periodic continued fractions.

For the two-dimensional case I have proven the following statement.
Suppose we have a conjecture on the structure of the fundamental domain for some sail of a

two-dimensional periodic continued fraction. Let this domain contain N faces of all dimensions.
The test of the conjecture (the algorithm) requires no more than CN4 additions, multiplications
and comparisons of two integers, where C is a universal constant that does not depend on N .

All previous verification algorithms work exponential time with respect to N .
Using the present algorithm, the author both generalized almost all known simple examples

and series of examples of fundamental domains constructed before, and found a lot of new
examples and series (see [20] and [21]). Using these examples, the author found the complete
list of all two-dimensional periodic continued fractions constructed by matrices of small norm
(| ∗ | ≤ 6) up to the integer-linear equivalence relation, see [21]. By the norm of a matrix, here
we mean the sum of the absolute values of all its coefficients.
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1.5. Simplest continued fractions. The problem of investigation of the simplest n-dimen-
sional continued fraction for n ≥ 2 was posed by V. Arnold. The answer for the case of n = 2 can
be found in the works of E. Korkina [35] and G. Lachaud [38]. I have studied the case of n = 3
in [23]. I constructed three examples of three-dimensional continued fractions that for many
reasons (such as additional symmetries, simplicity of the fundamental domains, characteristic
polynomials of special types) seems to be the simplest examples tree-dimensional continued
fractions.

Denote by Aa,b,c,d the following integer operator



0 1 0 0
0 0 1 0
0 0 0 1
a b c d


 .

On Figure 1 we show one of the fundamental domains for each of the operators A1,−3,0,4, A1,−4,1,4,
and A−1,−3,1,3. We indicate with dotted lines how to glue the faces to obtain the combinatorial
scheme of the described fundamental domains.

T11 T12

T13T14
T15

T16

T17

A1,−3,0,4

T21 T22 T25

T26T24T23

A1,−4,1,4

V32

V36
V35

V31

V30

V33

V37

V34

A−1,−3,1,3

Figure 1. Three examples of three-dimensional continued fractions.

2. Lattice-regular polygons and polytopes

The second aim of my study in lattice geometry was to investigate symmetric convex polytopes
in all dimensions (see [25]).

The study of convex lattice polytopes is actual in lattice geometry (see, for example [8], [9],
[19], [47]), in geometry of toric varieties (see [14], [28], [43]) and multidimensional continued
fractions (see [3], [35], [24], [38], [41]).

Consider an n-dimensional real vector space. Let us fix a full-rank lattice in it. A convex
polytope is a convex hull of a finite number of points. A hyperplane π is said to be supporting for a
(closed) convex polytope P , if the intersections of P and π is not empty, and the whole polytope
P is contained in one of the closed half-spaces bounded by π. An intersection of any polytope P
with any its supporting hyperplane is called a face of the polytope. Zero- and one-dimensional
faces are called vertices and faces.



6 OLEG KARPENKOV

Consider an arbitrary n-dimensional convex polytope P . An arbitrary unordered (n+1)-tuple
of faces containing the whole polytope P , some its hyperface, some hyperface of this hyperface,
and so on (up to a vertex of P ) is called a face-flag for the polytope P .

A convex polytope is said to be lattice if all its vertices are lattice points. A lattice polytope
is called lattice-regular if for any two its face-flags there exist a lattice-affine transformation
preserving the polytope and taking one face-flag to the other.

Definitions and formulation of the main result of my paper [25]. Let us fix some
basis of lattice vectors ei for i = 1, . . . , n generating the lattice in Rn. Denote by O the origin
in Rn.

Consider arbitrary non-zero integers n1, . . . , nk for k ≥ 2. By gcd(n1, . . . , nk) we denote the
greatest common divisor of the integers ni, where i = 1, . . . , k. We write that a ≡ b(mod c) if
the reminders of a and b modulo c coincide.

Let Q be an arbitrary lattice polytope with the vertices Ai = O + vi (where vi — lattice
vectors) for i = 1, . . . , m, and t be an arbitrary positive integer. The polygon P with the
vertices Bi = O + tvi for i = 1, . . . , m is said to be the t-multiple of the polygon Q.

Definition 2.1. A lattice polytope P is said to be elementary if for any integer t > 1 and
any lattice polytope Q the polytope P is not lattice-congruent to the t-multiple of the lattice
polytope Q.

We will use the following notation.
Symplices. For any n > 1 we denote by {3n−1}L

p the n-dimensional symplex with the
vertices:

V0 = O, Vi = O+ei, for i = 1, . . . , n−1, and Vn = (p−1)
n−1∑

k=1

ek + pen.

Cubes. Any lattice cube is generated by some lattice point P and a n-tuple of linearly
independent lattice vectors vi:

{
P +

n∑

i=1

αivi

∣∣∣0 ≤ αi ≤ 1, i = 1, . . . , n
}

We denote by {4, 3n−2}L
1 for any n ≥ 2 the lattice cube with a vertex at the origin and generated

by all basis vectors.
By {4, 3n−2}L

2 for any n ≥ 2 we denote the lattice cube with a vertex at the origin and generated
by the first n−1 basis vectors and the vector e1 + e2 + . . . + en−1 + 2en.
By {4, 3n−2}L

3 for any n ≥ 3 we denote the lattice cube with a vertex at the origin and generated
by the vectors: e1, and e1 + 2ei for i = 2, . . . , n.

Generalized octahedra. We denote by {3n−2, 4}L
1 for any n ≥ 2 the lattice generalized

octahedron with the vertices O ± ei for i = 1, . . . , n.
By {3n−2, 4}L

2 for any positive n we denote the lattice generalized octahedron with the vertices
O ± ei for i = 1, . . . , n−1, and O ± (

e1 + e2 + . . . + en−1 + 2en

)
.

By {3n−2, 4}L
3 for any positive n we denote the lattice generalized octahedron with the vertices

O, O − e1, O − e1 − ei for i = 2, . . . , n, and ei for i = 2, . . . , n.
A segment, octagons, and 24-sells. Denote by {}L the lattice segment with the vertices

O and O + e1.
By {6}L

1 we denote the hexagon with the vertices O ± e1, O ± e2, O ± (e1 − e2).
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 · · ·

{}L

{3}L
1

{3}L
2

{6}L
1

{6}L
2

{4}L
1

{4}L
2

{3, 3}L
1

{3, 3}L
2

{3, 3}L
4

{3, 4}L
1

{3, 4}L
2

{3, 4}L
3

{4, 3}L
1

{4, 3}L
2

{4, 3}L
3

{3, 3, 3}L
1

{3, 3, 3}L
5

{3, 3, 4}L
1

{3, 3, 4}L
2

{3, 3, 4}L
3

{3, 4, 3}L
2

{3, 4, 3}L
1

{4, 3, 3}L
1

{4, 3, 3}L
2

{4, 3, 3}L
3

{34}L
1

{34}L
2

{34}L
3

{34}L
6

{33, 4}L
1

{33, 4}L
2

{33, 4}L
3

{4, 33}L
1

{4, 33}L
2

{4, 33}L
3

{35}L
1

{35}L
7

{34, 4}L
1

{34, 4}L
2

{34, 4}L
3

{4, 34}L
1

{4, 34}L
2

{4, 34}L
3

{36}L
1

{36}L
2

{36}L
4

{36}L
8

{35, 4}L
1

{35, 4}L
2

{35, 4}L
3

{4, 35}L
1

{4, 35}L
2

{4, 35}L
3

· · ·

· · ·

· · ·

Figure 2. The adjacency diagram for the elementary lattice-regular convex lat-
tice polytopes.

By {6}L
2 we denote the hexagon with the vertices O ± (2e1 + e2), O ± (e1 + 2e2), O ± (e1 − e2).

By {3, 4, 3}L
1 we denote the 24-sell with 8 vertices of the form

O ± 2(e2 + e3 + e4), O ± 2(e1 + e2 + e4), O ± 2(e1 + e3 + e4), O ± 2e4,

and 16 vertices of the form

O ± (e2 + e3 + e4)± (e1 + e2 + e4)± (e1 + e3 + e4)± e4.

By {3, 4, 3}L
2 we denote the 24-sell with 8 vertices of the form

O ± 2(e1 + e2 + e3 + e4), O ± 2(e1 − e2 + e3 + e4),
O ± 2(e1 + e2 − e3 + e4), O ± 2(e1 + e2 + e3 − e4),

and 16 vertices of the form

O ± (e1 + e2 + e3 + e4)± (e1 − e2 + e3 + e4)± (e1 + e2 − e3 + e4)± (e1 + e2 + e3 − e4).

Theorem on enumeration of convex elementary lattice-regular lattice polytopes.

Theorem 2.2. [25] Any elementary lattice-regular convex lattice polytope is lattice-congruent to
some polytope of the following list.

List of the polygons.
Dimension 1: the segment {}L.
Dimension 2: the triangles {3}L

1 and {3}L
2 ;

the squares {4}L
1 and {4}L

2 ;
the octagons {6}L

1 and {6}L
2 .

Dimension 3: the tetrahedra {3, 3}L
i , for i = 1, 2, 4;

the octahedra {3, 4}L
i , for i = 1, 2, 3;

the cubes {4, 3}L
i , for i = 1, 2, 3.

Dimension 4: the symplices {3, 3, 3}L
1 and {3, 3, 3}L

5 ;
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the generalized octahedra {3, 3, 4}L
i , for i = 1, 2, 3;

the 24-sells {3, 4, 3}L
1 and {3, 4, 3}L

2 ;
the cubes {4, 3, 3}L

i , for i = 1, 2, 3.
Dimension n (n>4): the symplices {3n−1}L

i where positive integers i are divisors of n+1;
the generalized octahedra {3n−2, 4}L

i , for i = 1, 2, 3;
the cubes {4, 3n−2}L

i , for i = 1, 2, 3.
All polytopes of this list are lattice-regular. Any two polytopes of the list are not lattice-

congruent to each other.

{3, 3}L
1 {3, 3}L

2 {3, 3}L
4 {3, 4}L

1 {3, 4}L
2 {3, 4}L

3

{4, 3}L
1 {4, 3}L

2 {4, 3}L
3

Figure 3. Three-dimensional lattice-regular polytopes.

On Figure 2 we show the adjacency diagram for the elementary lattice-regular convex lattice
polygons of dimension not exceeding 7. Lattice-regular lattice three-dimensional polygons of
different (nine) types are shown on Figure 3.

3. Basic notions of integer trigonometry

3.1. Introduction. Consider a two-dimensional (or even n-dimensional) oriented real vector
space and fix some full-rank lattice in it. In [26] we investigates geometry of lattice in the
following sense. Objects of this geometry are lines containing lattice points, polygons with
lattice vertices, rays and so on. A natural transformation group here is the group of affine lattice
preserving transformations of the plane.

It turns out that ’discrete’ lattice geometry is as rich as ’continuous’ Euclidean geometry.
In the work [26] I developed the trigonometric theory for lattice geometry. We define lattice

tangent to be equal to special Hirzebruch-Jung continued fraction. These continued fractions has
never been considered as trigonometric functions before. We proved the formulas for summation
of lattice tangents, found a lattice analog for the Euclidean theorem on sum of angles in the
triangle, obtained the description of lattice triangles. To establish all the listed results we found
an elegant generalization of the classical geometrical interpretation of continued fractions with
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integer positive elements to the case of continued fractions with integer (not necessary positive)
elements.

Now we formulate one of the results of the my work [26].

3.2. Integer triangles. The study of lattice angles is an essential part of modern lattice geom-
etry. Invariants of lattice angles are used in the study of lattice convex polygons and polytopes.
Such polygons and polytopes play the principal role in Klein’s theory of multidimensional con-
tinued fractions (see, for example, the works of F. Klein [30], V. I. Arnold [3], E. Korkina [35],
M. Kontsevich and Yu. Suhov [32], G. Lachaud [38]).

In this subsection we describe lattice triangles up to the lattice-affine equivalence relation.
The classification problem of convex lattice polygons becomes now classical. There is still no a
good description of convex lattice polygons. It is only known that the number of such polygons
with lattice area bounded from above by n growths exponentially in n1/3, while n tends to
infinity (see the works of V. Arnold [7], and of I. Bárány and A. M. Vershik [9]).

Lattice polygons and polytopes of the lattice geometry are in the limelight of complex pro-
jective toric varieties (see for more information the works of V. I. Danilov [12], G. Ewald [13],
T. Oda [43], and W. Fulton [14]). For instance, the result of this subsection gives the cor-
responding global relations for the toric singularities of projective toric varieties associated to
integer-lattice triangles.

Necessary definitions. For any positive integer n and a point A(x, y) denote by nA the
point with the coordinates (nx, ny). A polygon nA0 . . . nAk is called n-homothetic to the polygon
P = A0 . . . Ak and denoted by nP . Polygons P1 and P2 are said to be integer-homothetic if there
exist positive integers m1 and m2 such that m1P1 is integer-equivalent to m2P2.

Let us expand the set of rationals with operations + and 1/∗ by the element ∞ end denote
this expansion by Q. We say that q ±∞ = ∞, 1/0 = ∞, 1/∞ = 0 (the expressions ∞±∞ are
not defined).

For any finite sequence of integers (a0, a1, . . . , an) we associate an element

a0 + 1/(a1 + 1/(a2 + . . .) . . .)) ∈ Q
and denote it by ]a0, a1, . . . , an[. If the elements of the sequence a1, . . . , an are positive, then the
expression for q is called the ordinary continued fraction.

Proposition. For any rational there exists a unique ordinary continued fraction with odd
number of elements.

Let us consider for qi ∈ Q, i = 1, . . . , k the ordinary continued fractions with odd number of
elements: qi =]ai,0, ai,1, . . . , ai,2ni [. Denote by ]q1, q2, . . . , qk[ the element

]a1,0, a1;1, . . . , a1,2n1 , a2,0, a2,1, . . . , a2,2n2 , . . . ak,0, ak,1, . . . , ak,2nk
[∈ Q.

Integer tangents. An integer length of the segment AB (denoted by l`(AB)) is the ratio of
its Euclidean length and the minimal Euclidean length of integer vectors with vertices in AB.
An integer (non-oriented) area of the polygon P is the doubled Euclidean area of the polygon,
it is denoted by lS(P ).

Consider an arbitrary integer angle ∠ABC. The boundary of the convex hull of the set of all
integer points except B in the convex hull of the angle ∠ABC is called the sail of the orthant.
The sail of the angle is a finite broken line with the first and the last vertices on different
edges of the angle. Let us orient the broken line in the direction from the ray BA to the ray
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BC and denote its vertices: A0, . . . , Am+1. Denote ai = l`(AiAi+1) for i = 0, . . . , m, and also
bi = lS(Ai−1AiAi+1) for i = 1, . . . ,m. The following rational is called the integer tangent of the
angle ∠ABC:

]a0, b1, a1, b2, a2, . . . , bm, am[, we denote: ltan∠ABC.

Formulation of the theorem. In Euclidean geometry on the plane the existence condition
for the triangle with given angles can be written with tangents of angles in the following way.
There exists a triangle with angles α, β, and γ iff tan(α+β+γ) = 0 and tan(α+β) /∈ [0; tanα]
(without lose of generality, here we suppose that α is acute). Let us show the integer analog of
the last statement.

Theorem 3.1. [26] a). Let α0, α1, and α2 be an ordered triple of integer angles. There exists an
oriented integer triangle with the consecutive angles integer-equivalent to the angles α0, α1, and
α2 iff there exists j ∈ {0, 1, 2} such that the angles α = αj, β = αj+1(mod 3), and γ = αj+2(mod 3)

satisfy the following conditions:
i) ] ltanα,−1, ltanβ,−1, ltan γ[ = 0; ii) ] ltanα,−1, ltanβ[ /∈ [0; ltanα].

b). Two integer triangles with the same sequences of integer tangents are integer-homothetic.

Note that for the conditions of the theorem one should take ordinary continued fractions with
odd number of elements for tangents of angles. Let us illustrate the theorem with the following
particular example:

α β

γ ltan α = 3 = ]3[;
ltan β = 9/7 = ]1, 3, 2[;
ltan γ = 3/2 = ]1, 1, 1[.

i) ]3,−1, 1, 3, 2,−1, 1, 1, 1[ = 0;
ii) ]3,−1, 1, 3, 2[ = −3/2 /∈ [0; 3].
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4. Short description of my main scientific interests in
theory of energies functionals of knots.

1. Ordinary energy functionals. The study of knot energies was initiated by the work of
Moffatt (1969) [12], and was developed by him in [13] following Arnold’s work [2].

A functional on the space of all knots is said to be an energy functional if it is bounded
below, C1-continuous, and tends to infinity while the knot tends to the “knot” with a point of
a double transversal self-intersection. Gradient flows of such functionals bring arbitrary knots
to some so-called perfect critical knots. Besides, for some energies it is conjectured, that the
corresponding perfect critical knots are unique for any connected component of the space of all
knots. So there is a hope that the set of perfect knots is a complete knot invariant.

The first discrete energy of knots were produced by W. Fukuhara in 1988, for the details see
his work [4]. Many articles were dedicated to general theory of knot energies: [1], [6], [14]. In [8]
I found an integral equations on knots with critical functionals of energies, for some certain class
of energies. I introduce Mm-energy of knots in [9]. This energy is good for numerical calculation
of geometrical shapes of critical knots.

2. Möbius energy. One of the most beautiful and significant energy functionals is Möbius
energy. Möbius energy was discovered by J. O’Hara [5] in 1991. Further investigations of Möbius
energy properties were made by M. H. Freedman, Z. -H. He, and Z. Wang in [3]. Particularly, the
authors introduced variational principles for Möbius energy and found some upper estimates for
the minimal possible energy of knots with the given crossing number in their work. Conformal
properties of Möbius energy allow us to calculate explicitly some critical values for toric knots,
see the work [11]. In my work [10] the notion of Möbius energy is generalized to the case of the
embedded graphs.

3. A few words about tensegrities. At this moment I am involved i the project on
tensegrities.

Take a graph in a Euclidean space and replace some of its edges by strings and the others by
rods. Such rod-string configuration is called a tensegrity if it is rigid. Tensegrities are a natural
generalization of hinge mechanisms. Their first appearance was in art architecture, in 1968,
when Kenneth Snelson erected his 60 feet high Needle Tower. Tensegrities are also used in the
study of biological structures [7], engineering, theory of deployable constructions, etc. B. Roth
and W. Whiteley founded the mathematical theory of tensegrities [15].
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Assume we have fixed a combinatorial graph structure and are now considering the configura-
tion space of all tensegrities corresponding to the graph. It turns out that the configuration space
admits a structure of a smooth manifold. Two tensegrities are said to be similar if the set of rod
edges of the first tensegrity coincides with the set of rod edges of the second. The configuration
space of all tensegrities for a given graph consists of a certain number of connected components
corresponding to similar tensegrities. These components are separated by special strata. The
latter are responsible for structural transitions and may be distinguished by their types. We
make efforts to detect and classify these strata starting with basic planar configurations.
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[3] M. H. Freedman, Z.-H. He, and Z. Wang Möbius energy of knots and unknots, Ann. of Math. (2)139 (1994),
no. 1, pp. 1–50.

[4] W. Fukuhara, Energy of a knot, The fête of topology, Academic Press, (1988), pp 443–451.
[5] J. O’Hara, Energy of a knot, Topology 38(1991), no. 2, pp. 241–247.
[6] J. O’Hara, Family of energy functionals of knots, Topology Appl. 08(1992), no. 2, pp. 147–161.
[7] D. E. Ingber, Cellular tensegrity:defining new rules of biological design that govern the cytoskeleton, Journal

of Cell Science, 104(1993), pp. 613–627.
[8] O. Karpenkov, Energy of a knot: variational principles Russian J. of Math. Phys. 9(2002), no. 3, pp. 275–287.
[9] O. Karpenkov, Energy of a knot: some new aspects, Fundamental Mathematics Today, IUM, MCCME, 2003,

pp. 214–223.
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