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INTRODUCTION.

A lot of properties of ordinary continued fractions has multidimensional analogies. For
instance, H. Tsuchihashi [7] showed the connection between periodic multidimensional
continued fractions and multidimensional cusp singularities. The relation between sails
of multidimensional continued fractions and Hilbert bases is described by J.-O. Moussafir
in the work [6].

In his book [1] dealing with theory of continued fractions V. I. Arnold gives various
images of the sails of so-called two-dimensional generalized golden ratio continued fraction.
In the article [5] E. I. Korkina studied the sales for the simplest two-dimensional continued
fractions of cubic irrationalities, whose fundamental region consists of two triangles, three
edges and one vertex.

We consider the same model of the multidimensional continued fraction as considered
by the authors mentioned above. In the present work we obtain examples of new tori
triangulation of the sails for two-dimensional continued fractions of cubic irrationalities
for some special families possessing the fundamental regions with more complicated struc-
tures.

In §1 we give the necessary definitions and notions. In §2 we investigate the properties
of two-dimensional continued fractions constructed with Frobenius operators, further we
discuss the relation between the equivalence classes of tori triangulations and cubic exten-
sions of the field of rationals. (The detailed analysis of the properties of cubic extensions
for the rational numbers field and their classification is realized by B. N. Delone and
D. K. Faddeev in the work [3].) In §3 we describe new examples of tori triangulations.

The author is grateful to professor V. I. Arnold for constant attention for this work and
useful remarks.

1. DEFINITIONS.

Points of the space R¥ (k > 1) whose coordinates are all integers are called integer
points.

Consider a set of n+1 hyperplanes passing through the origin in general position in the
space R"*t!. The complement to these hyperplanes consists of 2"*! open orthants. Let us
choose an arbitrary orthant.
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The boundary of the convex hull of all integer points except the origin in the closure of
the orthant is called the sail.

The union of all 2"*! sails defined by these hyperplanes of the space r is called
n-dimenstonal continued fraction constructed according to the given n + 1 hyperplanes in
general position in n + 1-dimensional space.

Two n-dimensional sails (continued fractions) are called equivalent if there exists a linear
integer lattice preserving transformation of the n+1-dimensional space such that it maps
one sail (continued fraction) to the other.

To construct the whole continued fraction up to the equivalence relation in one-dimen-
sional case it is sufficiently to know some integer characteristics of one sail (that is to say
the integer lengths of the edges and the integer angles between the consecutive edges of
one sail).

n+1

Conjecture 1. (Arnold) There exists the collection of integer characteristics of the sail
that uniquely up to the equivalence relation determines the continued fraction.

Let A € GL(n + 1,R) be an operator with real distinct roots. Let us take the n-
dimensional subspaces that spans all possible subsets of n linearly independent eigenvec-
tors of the operator A. As far as the eigenvectors are linearly independent, the obtained
n—+1 hyperspaces are n+1 hyperspaces in general position. The multidimensional contin-
ued fraction is constructed with respect to these hyperspaces.

Proposition 1.1. Continued fractions constructed by some arbitrary operators A and B
of the group GL(n + 1,R) with distinct real irrational eigenvalues are equivalent iff there
exists an integer operator X with the unit determinant such that the operator A obtained
from the operator A by means of the conjugation by the operator X commutes with B.

Proof. Let the continued fractions constructed by the operators A and B of the group
GL(n+1,R) with distinct real irrational eigenvalues are equivalent, i. e. there exists linear
integer lattice preserving transformation of the space that maps the continued fraction of
the operator A to the continued fraction of the operator B (and the orthants of the first
continued fraction maps to the orthants of the second one). Under such transformation
the operator A conjugates by some integer operator X with the unit determinant. All
eigenvalues of the obtained operator A are distinct and real (since the characteristic
polynomial of the operator is invariant). As far as the orthants of the first continued
fraction maps to the orthants of the second one, the sets of the eigen directions for the
operators A and B coincides. Thus, the given operators are diagonalizable together in
the same basis and hence they commutes.

Let us prove the converse. Suppose that there exists an integer operator X with the
unit determinant such that the operator A obtained from the operator A by means of
the conjugation by the operator X commutes with B. Note that the eigenvalues of the
operators A and A coincide. Therefore, all eigenvalues of the operator A (just as for the
operator B) are real, distinct, and irrational. Let us consider a basis such that the operator
A is diagonal in it. Simple verification shows that the operator B is also diagonal in this
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basis. Hence, the operators A and B define the same orthant decomposition of the n+1-
dimensional space and the operators corresponding to this continued fractions coincide.
It remains to note that a conjugation by an integer operator with the unit determinant
corresponds to the linear integer lattice preserving transformation of the n+1-dimensional
space. L]

Further we consider only continued fractions constructed by invertible integer operators
of the n+1-dimensional space such that their inverse are also integer. The set of such
operators form the group denoted by GL(n + 1,Z). This group consist of the integer
operators with the determinants equal +1.

The n-dimensional continued fraction constructed by an operator A € GL(n + 1,7Z)
with irreducible characteristic polynomial over the field of rationals and real eigenvalues
is called the n-dimensional continued fraction of (n+1)-algebraic irrationality. The cases
of n = 1,2 correspond to one(two)-dimensional continued fractions of quadratic (cubic)
irrationalities.

Let the characteristic polynomial of the operator A be irreducible over the field of ra-
tionals and its roots be real and distinct. Consider the integer lattice preserving operators
with the unit determinants commuting with A. These operators form an Abelian group.
It follows from Dirichlet unity elements theorem (see. [2]) that this group is isomorphic to
Z™ and that its action is free. The factor of a sail under such group action is isomorphic
to n-dimensional torus. (For the converse see [4] and [7].) The polyhedron decomposition
of n-dimensional torus is defined in the natural way, the affine types of the polyhedra are
also defined (in the notion of the affine type we include the number and mutual arrange-
ment of the integer points for the faces of the polyhedron). In the case of two-dimensional
continued fractions for cubic irrationalities such decompositions are usually called torus
triangulations.

By a fundamental region of the sail we call a union of sail faces that contains exactly
one face from each equivalence class.

2. CONJUGACY CLASSES OF TWO-DIMENSIONAL CONTINUED FRACTIONS FOR CUBIC
IRRATIONALITIES.

Two-dimensional continued fractions for cubic irrationalities constructed by the opera-
tors A and — A coincide. So, the study of continued fractions for integer operators with the
determinants equal 41 reduces to the study of continued fractions for integer operators
with the unit determinants (i. e. operators of the group SL(3,Z)).

An operator (or a matrix) with the unit determinant

0 1 0
Apn= 0 0 1 ,
1 —m —n

where m and n are arbitrary integers is called a Frobenius operator (matriz). Let us
note the following: if the characteristic polynomial x4, (¢ is irreducible over the field Q
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than the matrix for the left multiplication by the element x operator in the natural basis
{1, 2,22} in the field Q[z]/ (X4, .(z)) coincides with the matrix Ay, .

Let the eigenvectors of an arbitrary operator A € SL(3,Z) be distinct real and irra-
tional. Let e; be some integer nonzero vector, e; = A(e1), e3 = A%(e;). Then the matrix
of the operator A in the basis (e, ea, ces) for some rational ¢ will be Frobenius. However
the transition matrix here could be non-integer and the corresponding continued fraction
is not equivalent to initial one.

Example 2.1. The continued fraction constructed by the operator

1 2 0
A= 0 1 2 |,
—7 0 29

s not equivalent to the continued fraction constructed by any Frobenius operator with the
unit determinant.

Here arises the following interesting question. How often the continued fractions that
don’t correspond to Frobenius operators can occur?

In any case, the family of Frobenius operators possesses some useful properties that
allows us to construct the whole families of nonequivalent two-dimensional periodic con-
tinued fractions at once. That is extremely actual itself.

It is easy to obtain the following statements.

Statement 2.1. The set Q of operators Apn having all eigenvalues real and distinct is
defined by the inequality n?*m? — 4m3 + 4n® — 18mn — 27 < 0. For the eigenvalues of the
operators to be irrational it 1s necessary to subtract extra two perpendicular lines in the
integer plane: A, _, and A, 412, for all a € Z.

Statement 2.2. For any integers n and m, the two-dimensional continued fractions for
the cubic irrationalities constructed by the operators Apn and A_, _n are equivalent.

Further we will consider all statements modulo this symmetry.

Remark. Example 2.3 below shows that some periodic continued fractions of the set {2
are equivalent.

Let us note that there exist nonequivalent two-dimensional periodic continued fractions
constructed by operators of the group GL(n + 1,R) whose characteristic polynomials
define isomorphic extensions of the rational numbers field. In the following example the
operators with equal characteristic polynomials but distinct continued fractions are shown.

Example 2.2. The operators (A_1,2)3 and A_4 11 have distinct two-dimensional continued
fractions (although their characteristic polynomials coincides).

At the other hand similar periodic continued fractions may correspond to operators
with distinct characteristic polynomials.

Example 2.3. The operators Agy_a and A_y, _q> are conjugated by the operator in the
group GL(3,Z) and hence the periodic continued fractions (including the torus triangula-
tions) corresponding to the operators Ag_q and A_s, o> are equivalent.
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Let us also note that triangulations for distinct cubic extensions of the field Q are
always nonequivalent.

3. TORUS TRIANGULATIONS AND FUNDAMENTAL REGIONS FOR SOME SERIES OF
OPERATORS A, p,

Here we calculate torus triangulations and fundamental domains for several infinite
series of Frobenius operators. In this paragraph we consider only the sails containing the
point (0,0, 1) in its convex hull.

The ratio of the Euclidean volume of an integer k-dimensional polyhedron in n-dimen-
sional space to the Euclidean volume of the minimal symplex in the same k-dimensional
subspace is called the integer k-dimensional volume of the polyhedron (if £ = 1 — the
integer length of the segment, if K = 2 — the integer area of the polygon).

The ratio of the Euclidean distance from the given integer hyperplane (containing an
n—1-dimensional integer sublattice) to the given integer point to the minimal Euclidean
distance from the hyperplane to integer points in the complement of this hyperplane is
called the corresponding integer distance.

By the integer angle between two given integer rays (i.e. rays that contain more than one
integer point) with the vertex at the same integer point we call the value S(u,v)/(|u|-|v|),
where u and v are arbitrary integer vectors passing along the rays and S(u, v) is the integer
volume of the triangle with edges v and v.

Remark. Our integer volume is always integer (in standard parallelepiped measuring
the value will be £! times less). The integer k-dimensional volume of the symplex equals
the index of the lattice subgroup generated by its edges having the common vertex.

Since the integer angles of any triangle with all integer vertices can be uniquely restored
by the integer lengths of the triangle and its integer volume we will not write the integer
angles of triangles below.

Conjecture 2. The specified invariants distinguish all nonequivalent torus triangulations
of two-dimensional continued fractions for the cubic irrationalities.

In the formulations of Propositions 3.1—3.5 we say only about homeomorphic type for
the torus triangulations although in the proof we give the description of the fundamental
regions that allows to calculate any other invariant including affine types of the faces.
(As an example we calculate integer volumes and distances to faces in Propositions 3.1
and 3.2.) The examples of affine structure of triangulation faces are shown on the figures
of the propositions.

Proposition 3.1. Let m = b—a—1, n = (a+2)(b+1) (a,b > 0), then the torus triangula-
tion corresponding to the operator Ay, is homeomorphic to the following one:
D c
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(on the figure b = 6).

Proof. The operators
Xap = Anln, Yop = Anl(Anly — (0+1)1)

m,n’

commutes with the operator A,,, without transposing of the sails (note that the operator
Ay, », transposes the sails). Here I is the identity element of the group SL(3,Z).

Let us describe the closure for one of the fundamental regions obtaining by the factoring
of the sail over the operators X,, and Y, ;. Consider the points A = (1,0,a+2), B =
(0,0,1), C = (b—a—1,1,0) and D = ((b+1)?,b+1,1) of the sail containing the point
(0,0,1). Under the operator X,; action the segment AB maps to the segment DC' (the
point A maps to the point D and B to C). Under the operator Y, ; action the segment
AD maps to the segment BC' (the point A maps to the point B and D to C). The integer
points ((b+1)i,4,1), where ¢ € {1,...,b} belong to the interval BD.

As can be easily seen, the integer lengths of the segments AB, BC, CD, DA and
BD equal 1, 1, 1, 1 and b+1 correspondingly; the integer areas of both triangles ABD
and BCD equal b+1. The integer distances from the origin to the plains containing the
triangles ABD and BCD equal 1 and a+2 correspondingly.

The operators X, and Y, ; map the sail to itself, since all their eigenvectors are positive
(or in this case it is equivalent to say that values of their characteristic polynomials
on negative semi-axis are always negative). Furthermore these operators generates the
group of integer operators mapping the sail to itself. This follows from the fact that the
triangulation obtaining by the factoring the sail over this operators contains the unique
vertex (zero-dimensional face). Hence the torus triangulation has no smaller subperiod.

O

Let us show that all vertices for the fundamental domain of the arbitrary periodic
continued fraction can be chosen of the closed convex hull of the following five points: the
origin; A; X (A); Y(A) and XY (A4), where A is the arbitrary zero-dimensional face of the
sail, and the operators X and Y generates the group of integer operators mapping the
sail to itself.

Consider a tetrahedral angle with the vertex at the origin and edges passing through
the points A, X(A), Y(A), and XY (A). The union of all images for this angle under
the transformations of the form X™Y™, where m and n are integers, covers the whole
interior of the orthant. Hence all vertices of the sail can be obtained by shifting by
operators X™Y™ the vertices of the sail lying in our tetrahedral angle. The convex hull
for the integer points of the form X™Y"(A) is in the convex hull of all integer points
for the given orthant at that. Therefore, the boundary of the convex hull for all integer
points of the orthant is in the complement to the interior points of the convex hull for the
integer points of the form X™Y"(A). The complement is in the unit of all images for the
convex hull of the following points: the origin, A, X(A4), Y(A), and XY (A), under the
transformations of the form X™Y™, where m and n are integers.

It is obviously that all points of the constructed polyhedron except the origin lie in the
concerned open orthant at that.
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Proposition 3.2. Let m = —a, n = 2a+3 (a > 0), then the torus triangulation corre-
sponding to the operator Ap,n is homeomorphic to the following one:
D C D c
E.
A a=20 B A a>0 B

Proof. Let us choose the following generators of the subgroup of integer operators mapping
the sail to itself:

Xo=A2: Y= (20— A;L)n

As in the previous case let us make the closure of one of the fundamental regions of
the sail (containing the point (0,0,1)) that obtains by the factoring over the operators
X, and Y,. Let A = (0,0,1), B = (2,1,1), C = (7,4,2) and D = (—a,1,0). Besides
this points the vertex E = (3,2,1) is in the fundamental region. Under the operator X,
action the segment AB maps to the segment DC (the point A maps to the point D and
B — to C). Under the operator Y, action the segment AD maps to the segment BC' (the
point A maps to the point B and D — to C).

If @ = 0 then the integer length of the sides AB, BC, CD and DA equal 1, and the
integer areas of the triangles ABD and BCD equal 1 and 3 correspondingly. The integer
distances from the origin to the plains containing the triangles ABD and BCD equal 2
and 1 correspondingly.

If @ > 0 then all integer length of the sides and integer areas of all four triangles equal 1.
The integer distances from the origin to the plains containing the triangles ABD, BDE,
BCE and CED equal a+2, a+1, 1 and 1 correspondingly.

Here and below the proofs of the statements on the generators are similar to the proof
of the corresponding statements of Proposition 3.1. 1

Proposition 3.3. Let m = 2a—5, n = Ta—5 (a > 2), then the torus triangulation
corresponding to the operator A, , is homeomorphic to the following one:

D c

(on the figure a = 5).

Proof. Let us choose the following generators of the subgroup of integer operators mapping
the sail to itself:

Xo =240 +7; Y,=A2 .
Let us make the closure of the fundamental regions of the sail (containing the point
(0,0, 1)) that obtains by the factoring over the operators X, and Y,. Let A = (—14,4, —1),
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B = (-1,1—a,7a?~10a+4), C = (1,5—7a,49a?—72a+30) and D = (0,0,1). Under the
operator X, action the segment AB maps to the segment DC' (the point A maps to the
point D and the B — to C'). Under the operator Y, action the segment AD maps to the
segment BC (the point A maps to the point B and D — to C). Besides this points the
vertices £ = (—1,0,2a—1) and F = (0, —a, 7a®*—5a+1) are in the fundamental region.
The interval BE contains a—2 integer points, the interval DFF — a—1, AD and CB —
one point for each. 1

Proposition 3.4. Let m = a—1, n = 34+2a (a > 0), then the torus triangulation corre-
sponding to the operator Ap,n is homeomorphic to the following one:

(on the figure a = 4).

Proof. Let us choose the following generators of the subgroup of integer operators mapping
the sail to itself:

Xo= @I+ A )% Yo=A472.

Let us make the closure of one of the fundamental regions of the sail (containing the
point (0,0,1)) that obtains by the factoring over the operators X, and Y,. Consider
the points A = (1,—2a—3,4a*+11a+10), B = (0,0,1), C = (—4a—11,2a+5, —a—2),
and D = (—a—2,0,a*+3a+3). Besides this points, the vertices £ = (—2,1,0), F =
(—2a—3,a+1,1) and G = (0,—1—a,2a*+5a+4) are in the fundamental region. The
intervals BG and DF' contains a integer points each. Interior of the pentagon BEFDG
contains exactly (a+1)? integer points of the form: (—j, —i+j, (2a+3)i—(a+2)j+1), where
1 <i<a+l,1 < j < 2i—1. Under the operator X, action the segment AB maps to
the segment DC' (the point A maps to the point D and B to C). Under the operator
Y, action the broken line AGD maps to the broken line BEC (the point A maps to the
point B, the point G maps to the point E, and the point D — to the point C). 1

Proposition 3.5. Let m = —(a+2)(b+2)+3, n = (a+2)(b+3)—3 (a > 0, b > 0), then the
torus triangulation corresponding to the operator Ay, is homeomorphic to the following
one:

D C D C
F E F FE
A a=0 B A a>0 B

(on the figure b = 5).
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Proof. Let us choose the following generators of the subgroup of integer operators mapping
the sail to itself:
Xop = ((0+3)] — (b+2)A, VA2 Yoo =40

m,n?

Let us make the closure of one of the fundamental regions of the sail (containing the
point (0,0, 1)) that obtains by the factoring over the operators X, ; and Y, ;. Let the points
A = (b®°+3b+3,0°+2b—a+1, a*b+3a®+4ab+b*+6a+5b+4), B = (b2+5b+6, b*+4b+4), C =
(—ab—2a—2b—1,1,0) and D = (0,0,1). The interval BD contains b+1 integer points.
Besides this points the vertices E = (b+4,b+3,b+2), F = (b+2,b+1,a+b+2) and G =
(1,1,1) are in the fundamental region. Under the operator X, , action the segment AB
maps to the segment DC (the point A maps to the point D and the point B — to the
point C). Under the operator Y,; action the broken line AF'D maps to the broken line
BEC (the point A maps to the point B, the point F' maps to the point F, and the point
D — to the point C). O

Note that the generators of the subgroup of operators commuting with the operator
A, n, preserving the sails can be expressed with the operators A,, , and o + ,BA;L}H, where
« and 3 are nonzero integers.

It turns out that in general case the following statement holds: the determinants of the
matrices for the operators al + ,BA;L}H and ol + ,BA;erk B.nike 8T€ €quivalent. In particular,
if the absolute value of the determinant of the matrix for the operator af + ,BA;L{,L is unit,
then the absolute value of the determinant of the matrix for the operator o + ,BAT_nlJrk Btk
is also unit for an arbitrary integer k.

Seemingly, torus triangulations for the other sequences of operators A, +8sno+as, Where
s € N, (besides considered in the propositions 3.1—3.5) have much in common (for ex-
ample, number of polygons and their types).

Note that the numbers o and § for such sequences satisfy the following interesting
property. Since

ol + BA7L,| = 0 + a?Bm — af’n + B,

we have the following. There exist integers n and m such that |o®+a?8m—afB?n+ 33| =1
iff a® — 1 is divisible by 8 and 8% — 1 is divisible by «, or o + 1 is divisible by 8 and
B3 + 1 is divisible by «.

For instance, the corresponding pairs (a, 8) for 10 > o > § > —10 (besides described
in the propositions 3.1—3.5) are listed here: (3,2), (7,—-2), (9, —2), (9,2), (7,—4), (9,4),
(9,5), (9,7).

In conclusion we show the table with squares filled with torus triangulations of the
sails constructed in this work whose convex hulls contain the point with the coordinates
(0,0,1) (see Fig. 1). The torus triangulation for the sail of the two-dimensional continued
fraction for the cubic irrationality, constructed by the operator A,, , is shown in the square
sited at the intersection of the n-th string and the m-th column. If one of the roots of
characteristic polynomial for the operator equals 1 or —1, then we mark the square (m,n)
with the sign % or # respectively. The squares that correspond to the operators which
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8 N
7 N #
6 N # €
5 N # [
4 NN # [
3| N#[
2| | #% NS
! : #N N
0 = 1# NINEY
N
5

8 10 11 12 13 14 15 16

FIGURE 1. Torus triangulations for operators A, .

characteristic polynomial has two complex conjugate roots we paint over with light gray
color.
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