ENERGY OF A KNOT: SOME NEW ASPECTS.

OLEG KARPENKOV

1. INTRODUCTION

Let S' = R/(27Z) be the circle and 7 : S — R® be a smooth knot. We will assume that 7(t)
is the arc length parametrization. Denote by D(t1,?5) the length of the minimal sub arc between ¢,
and t, on the circle. Let | * | denote the absolute value of vectors in R3.

Following [1], we denote by

B(r) = Ey(r) = [ [ #(r(t) = r(t2)]. Dt o))t
Slx st
the energy of the knot 7, where f(p, «) satisfies the following conditions:
1) f(p,a) € CYY(U), where U = {(p,@)|0 < p < a,a < 7};
2) there exist the following limits:
0 0
lim  f(p,a), lim M, lim M.
(p,0)EU (p,a)€U 5,0 (pa)eU 8p

p—0,p/a—1 p—0,p/a—1 p—0,p/a—1

Almost all energies are not homothety invariant, so we will consider only knots of length 2.

The energy of a knot is not an invariant of the topological class of this knot. If we make a smooth
perturbation of a knot, its energy smoothly changes. We will consider energies with the following
important properties. The energy is always positive. When a knot crossing tends to a double point,
the energy tends to infinity. So every topological class of knots has a representative with the minimal
value of energy. This knot is called a normal form of the class. It is unknown whether each class has
a unique normal form or not, i.e., whether the normal form for some energy is an invariant of the
topological class or not. The normal forms satisfy the variational equations considered below.

Some energies have a physical meaning. For example f = 1/(|7(t1) — 7(t2)]) is the energy of a
charged knot. Unfortunately, this energy is always infinite. As long as the charged knot does not
break there must be some other forces which save the knot. Let us consider a model of such a

restriction: )
(D*(t1,t2))

|7 (t) = 7(t2)|
For this energy we will develop our variational principles.

The study of knot energies began with the work of Moffatt (1969) [6], and was developed by him
in [7] following Arnold’s work [2]. The first steps in studying properties of the energies of knots were
made by O’Hara [8, 9, 10] and the first variational principles for polygons in space were studied by
Fukuhara [4].

The paper is organized as follows. We start in Section 2 with the definitions and formulations of
the variational principles. We show that any extremal knot 7 satisfies certain variational equations
and discuss the corollaries of this variational principles. In Section 3 we represent Mm-energy. The
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definition of this energy differs with one regarded above. Nevertheless besides its own properties
Mm-energy has some similar with Mobius energy properties. In Section 4 we consider Mobius energy
of a knot. We prove some inequality for the energy of a normal form of the connected sum of two
knots.

The author is grateful to professor A. B. Sossinsky for constant attention to this work.

2. VARIATIONAL PRINCIPLES AND COROLLARIES

In this section we will work mostly with knots of fixed length 27. So let S* = R/(27Z) be the
circle and let 7 : S* — R® denote some smooth knot of length 2. Let 7(¢) be the arc length
parametrization.

By k(t) we denote the curvature at ¢t and R(t) = 1/k(t), the radius of curvature at ¢.

Definition 2.1. Given a smooth knot 7 : S* — R3 and a point t; € S, a locally perturbed knot is a
knot (denoted by 7, ) such that

a) |T(t) — T (t)] < % if D(to,t) < e and 7(t) = 7, .(t) if D(to,t) > &;

b) |k(t) — ki (t)| < € for D(to,t) < ¢;

C) Tige(to + A) = Tige(to) + Mg e (to) + (A2/2) 74 2 (to) + 0(€?) if D(to, o+ ) < e.

Note that at the points £y — ¢ and tq + € the curvature is not restricted.

The length of the knot 7, . can change, but we regard knots of length 27 only. One of the ways
to solve this problem is to consider the restriction of the set of locally perturbed knots to the set
of knots of constant length 27, but this definition is unsatisfactory. Indeed, let a knot 7 in some
neighborhood of the point ¢3 be a piece of a straight line. Then the set of locally perturbed knots at
the point ¢y of length 27 consists of the knot 7 only.

We will extend this set in the following way.

Definition 2.2. Let the length of 7, . be (1 + §)2n. The locally perturbed length 2w knot 7y, - is the
knot obtained from 7, . by homothety with coefficient 1/(1 + 0) and center at the origin. We also
say that the knot 7 is associated with the knot 7.

Consider any 73, .. We will show later that § = ¢;e® + o(e®). Thus by Definition 2.1 we have
|Tto.c (t1) — Taoe(2)| = |T(t1) — T(t2)| + ca(ty, t2)e” + o(€?)
if D(tg,t1) < e or D(tg,t2) < e. Then we may conclude that
E(r,) = E(1) + c38® + 0(e®) and  E(7,.) = B(1) + cue® + 0(£?).

The coefficients c; and ¢4 of the term £ will be called the variation and denoted by Var(m,.) and
Var(7, ) respectively.
Now all is prepared for the definition of a locally extremal point of a knot.

Definition 2.3. Any to € S' is called locally extremal point of 7 if Var(7,.) = 0 for each locally
perturbed knot 7, . of length 27.

Definition 2.4. The knot 7 is said to be locally extremal if all its points are locally extremal.

Let us find necessary and sufficient conditions for the point £y be locally extremal. We denote the
vector product of two vectors a and b by [a,b]. By (a,b,c) we denote the mixed product (oriented
volume) of the vectors a, b and c. Let 7(¢) be the velocity vector and 7(t) be the acceleration vector.
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FIGURE 1. The geometric interpretation of 1 (tg,t) and ¢(tg,t).

Now we define the functions U (g, ¢) and ® (%, ).

7(to) 7(to) 7(t)=T(to) ip o ‘
U (tg, t) = (I%(tg)\’ EOk |T(t)—7(t2)\> , if 7(to) # 0;
’ r(B)=r(to)  #(to) e
(\T<t)—7<t2>|’ ED] ,if 7(to) = 0.
P(to)  T(t)=r(to) [ #(to) F(to) s _
(I)(t(], t) = (|T(t2)\’ \T(t)—q—(tg)|7 [\%(tE)P |T(t2)‘:|) s if T(to) 7§ O,
0 if #(t) = 0.

Note that |7(to)| =1 and |7(t) — 7(to)| # 0 if t # to. Thus ¥ and & are well defined.

We also remark that U(ty, t) = sint(to, t), where 1(y, t) is the angle between the vector 7(t) —7(t¢)
and the oriented plane spanning of 7(¢g) and 7(¢y). The function ® has a similar representation:
®(tg,t) = sinP(tg,t), where @(to,t) is the angle between the vector 7(t) — 7(¢o) and the oriented
plane spanning of 7(ty) and [7 (o), 7(to)]. (See Fig. 1). These angles can be either positive or
negative.

Theorem 2.1. Let 7 be a smooth knot. The point ty is a locally extremal point of T if and only if
the following conditions hold:

Vi(to) = %(t(])(zlfgu%(to)@(to,t)%)dt— %//(2f+D(t1,t2)%+

St Slx gl
0 )
I7(t1) —r(tg)%)dtldtgm / / %dtldQ) _ 0.
A
4 of
= — =0.
Va(to) 3R(t0)/ap (to, t)dt = 0
S

Here A C S' x S! is the set of points (t1,t2) such that D(t1,ts) = D(t1,t0) + D(to, t2).

The proof of Theorem 2.1 see in [5].
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Corollary 2.1. A knot 7 is locally extremal if and only if almost all of its points are locally extremal,
i.€.,

/(Vf(t) + Vf(t))dt = 0.
S1
In [1] it is shown that the circle is not always the global maximum, or the global minimum for

the energy considered. However the circle is a locally extremal knot for any energy E satisfying the
conditions 1), 2) of the Introduction.

Corollary 2.2. The circle is always a locally extremal knot.

The proof of Corollary 2.2 is given in [5].
Now let us say a few worlds about Mobius energy which is (in the version from [3])

1 1
fu = - :
|T(t1) — T(t2)|2 DQ(tl, tz)
It has many remarkable properties (see [8] and [3]). Mdbius energies of homothetic knots are equal.
This energy is invariant for M6bius transformations (see also Section 4). The variational equations
and the gradient flow equation of Mo6bius energy was studied in [3].

Unfortunately, for Mobius energy, the variation Var is always infinite, and this mean that we can
not perturb the knot in the way considered above.

The main property of Mobius energy is as follows. When a knot crossing tends to a double point,
the energy tends to infinity. The energy is always positive. So every topological type of knot has a
representative with minimal value of energy, some normal form.

Notice that the main part of Mdbius energy is 1/|7(¢;) — 7(¢2)|?>. The other part 1/D?(t,t5) is
only a normalization that makes the integral convergent. So let us make another normalization of the
“main part” of Mobius energy. In this case we often lose the invariance for Mobius transformations.
Let us consider the following energy:

f . D3 ('Ia y)
|7 (), T(y)[*
It is easily seen that this energy on one hand has the above property and on the other we can use
our variational principles. Note also that such an energy is the same for homothetic knots.

Corollary 2.3. We present Vi and V5 for this energy:

Vi(te) = 3R2(t0) <4[(—|T(g(;;(;§)| (1 — 2D]§§f2)@(to,t))>dt—
// I7(t2 t2,t1()t1)| dtldt2+6// I7(t: 2’t1()t1)| dtldta)

|7(t1) — 7(t

|
Vt U (ty, t)dt.
(0 3Rt0/ to, (0,)

3. DEFINITION AND SOME BASIC PROPERTIES OF MM-ENERGY

In this section we define the Mm-energy of a knot. The nature of this energy differs from the
energies considered in the previous sections.

Let us fix some point t3 on the circle and define the real number fy,,(to). Consider the map
pr, + ST — R such that p, (t) = |7(t) — 7(ty)|- Let us note that the map 7 is smooth. Hence p;, is
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APt (tM)

to t, tmy  tMa  tma M bmg tar,  to + 27

FIGURE 2. The function py,.

also smooth except for one point #y. If the number of maximums and minimums is finite, then we

define the function fy,, as follows:
> iy 2

fum(to) = ——— + —
" Pto (tM) o €UL Pto (tmz) tar. €U Pto (th)
i J

where %,/ is one of the points where the function p;, achieves its global maximum; Uy is the set of all
points of the circle, except the point ¢y, where the function p;, has local minimums; U, is the set of
all points of the circle, except the point ¢,,, where the function py, has local maximums (see Fig. 2).
Here we suppose ty < t, < tg + 27. In the case of an infinite number of maximums and minimums
we make a small smooth perturbation p;, so that the number of minimums and maximums becomes
finite. Now we can calculate the value of me(tO) for the function py, as it was made before. Finally
we define the fus,(t9) as the limit of me(tg) in the C*°-topology.
Now we define the Mm-energy.

Definition 3.1. We call Mm-energy of the given knot the following number:
Epim(r) = / Farm (1)1,
Sl

if the integral converges.

Remark 3.1. Consider some small smooth perturbation of a knot. Then for any point ¢, of the circle
the function p,, is also perturbed in a smooth way. At a generic point four possible modifications
in the sums of f;,, can occur: small changes of the values of the maximums and minimums; the
death of one maximum and of the neighboring minimum; conversely, the birth of one maximum
and minimum at some point; a local maximum close to the global maximum can become the global
maximum. In all these cases the variation of the resulting fs,, is small. This is the reason why the
Mm-energy depends on small perturbations of knots continuously.

Further we formulate the basic properties of Mm-energy.
Proposition 3.1. The Mm-enerqy is greater than or equal to 2.

Consider the sum

fumlte) = ——+ 3 ——— 3

Pto (tM) o €UL Pto (tmz) tar. €Us Pto (th)
i J

We can fix the ordering of the minimums and the maximums in the standard way:

t0<tM1<tm1<---<th<tmk<tM<tmk+1<th+1<---<tmn<tMn<t0+27T-
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Then we have

k 1 1 1
me(tO) - iz:(;<pt0 (tmz) - Pto (th)) + 12164‘:1<pt0 ptO (tMZ))z
o Pro(tar) = pro(tar)

Finally, note that the length of the knot is 27, hence the function py, (t/) is smaller than or equal to

7. Therefore . ) )
BT /me dt</ dtg/—dt:—wzz
pi(tar,) s s

Sl

This completes the proof of Proposmon 3.1.
Proposition 3.2. The Mm-energy is an invariant of homothety.

Suppose 7 is a knot of length 27 and 7 is a homothetic knot of length 2/7, where [ is the coefficient
of homothety. Then di = ldt and p(f) = lp(t) for any ¢, and so fam () = me( )/l. Thus we obtain

Enim (7 / Frm(@)di = / Saim (), 1y / Frim@)dt = By (7).

Proposition 3.2 is proven.
So we can consider knots without any restriction on their lengths.

Proposition 3.3. When two branches of the knot tends to a double crossing, the Mm-energy tends
to infinity.

Consider a smooth family {7\|A € [0, 1]} such that 7, is a smooth knot with double crossing and
Tx, A 7# 0 is a smooth knot without any double crossing. For every ¢ we can choose a sufficiently small
A satisfying the following conditions: there exist two points #; and ¢, with |[t; — #3| < £* such that
the functions p;, and p;, have global minima at the points ¢, and ¢; correspondingly; and the ball
B. , of radius ¢ with center at the midpoint p of the segment [75(¢;), 7a(Z2)] has only two connected
components of a knot 7, inside.

The family is smooth, hence the curvature of all knots is bounded by some N. If ¢ < 1/N, then
every point t of the knot 7, inside the ball B, ;, has one extremum (i.e., the global minimum) of
the function p; inside the ball B, ,, and every point ¢ of this knot inside the ball B, , has no more

than one extremum (i.e., the global minimum) of p; inside the ball B, ,. Let us estimate the energy
inside the ball B, .

(MR}

=
2 |3 e &

2
:41n(t—|—%) =4In2—2 >4In-.

EMm(T)\r\IBE’p) >4 5

2

X}
o | kS
)

2

The other terms (we ignore the global minimum of p;) of the function fy,, changes in a smooth way,
hence the Mm-energy grows to infinity.

Therefore Mm-energy separates knots from different topological classes.

The following property is an essential property of Mm-energy.

Proposition 3.4. The Mm-enerqy is well defined for piecewise smooth knots with obtuse angles.

If some point ¢ is “near” the angle then the function p; is monotone function in some neighborhood
of the vertex of an angle and hence there are no minima or maxima of p; in this neighborhood.
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o O, 1

FIGURE 3. Mm-energy of this knot is 21n(%*/§) .

In particular, the Mm-energy is well defined for piecewise linear knots with obtuse angles. So
we can consider piecewise linear approximations of smooth knots and take the restriction to the set
of piecewise linear knots. This property allows us to develop computer experiments in calculating
normal forms for Mm-energies of topological classes of knots and the values of Mm-energies for this
normal forms.

Now we calculate Mm-energy for some knots. First we find the Mm-energy of the circle 7

1
Ervm(10) = /ﬁdt = .
Sl
Unfortunately the circle is not the normal form for the class of trivial knots. An example of the
trivial knot with Mm-energy less than 7 is shown on Figure 3. This knot is a union of two arcs of

the circle. Direct calculations shows that the Mm-energy of this knot is 2 ln(”g—‘/g) ~ 3.070607 < .
Computer experiments provide upper bounds for the Mm-energies of the normal forms for some
topological classes (see the table behind).

CLASSES OF KNOTS THE UPPER BOUNDS FOR
THE ENERGIES OF NORMAL FORMS

the class of the circle 3.044012

the class of the trefoil 13.152759

the class of the figure-eight 19.450447

the class of 5, 26.498108

the class of 59 27.168222

the class of 6, 34.469191

the class of 6, 35.466138

the class of 6 37.683129

the class of the connected 25.734616

sum of right and left trefoils

the class of the connected 26.748901

sum of two right trefoils

4. MOBIUS ENERGY OF THE CONNECTED SUM OF KNOTS.

In this section we consider only the standard Mobius energy

B(r) = // Sudtrdty = //(lT(tl) —17(152)|2 - DQ(tllab))dtldtQ'

S1x 81 Slx st
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Denote the topological class of the knot 7 by [r] and the minimal energy for the class [7] (the
energy of the normal form of this class) by Ej;. Let also [1; 4 73]; denote all possible classes for the
connected sums of the classes [r1] and [r3]. From now we fix the orientations of the summands
and 7. This mean that we choose some class of the connected sum 1.

We give some restriction for the energy of the normal form of the connected sum.

Theorem 4.1. Let [11] and [13] be classes of knots. Then the following inequality holds:
B 1r0); < Ejp) + By — 4.

In the proof of the Theorem 4.1, we use a nice property of Mobius energy. Mobius energy is
invariant for Mobius transformations. Here we recall the theorem from [3].

Theorem 4.2 (Freedman, He, Wang). Let 7 be a knot in R* and let T be a Mébius transformation
of R® U {oc}. The following statements hold:

(1) if ToT CR?, then E(T o) = E(7);

(#) if T o T passes through oo, then E(T o1) = E(1) — 4.

Let £ < m; then we define the function y. : [-7,7) — R as follows:
1 )< 5
1-dep((M-2)7) 5<%
sexp((4- 1)) <l <e
0 Lt > e

Further we will consider a function y. as the function defined on the circle.

Let 7 be a C] knot (i.e., there exist the derivative of 7 and this derivative belongs to Lipschitz class),
to a point of this knot and r the radius of curvature at the point #;. Then in a small neighborhood
of ty in some orthogonal coordinates 7 can be expressed

7(t) :<rsin(t_t0>, TCOS(t;t(])—f—f(t—t(]), g(t—t0)>,

T

Xe =

where f(t —to) = o((t — t9)?) and g(t — to) = o((t — ty)?). Now we are ready to define 7..
n)=r0-(0. Fe— et -t ot-thxt-).

Lemma 4.1. For any 6 > 0 there exists some small € > 0 such that |E(1) — E(7.)| < 0.
Direct calculations show that x.(¢) < O(¢7!) and x”(¢) < O(¢?). Thus we can obtain

fx: <O(£%)0(1) = O(%);
gxe < 0(°)0(1) = O(%);
(fxe) = f'xe + fxL < O0(e?)O(1) + O(e*)O(e 1) < O(e?);
(9xe)" = g'x + 9xt < 0(%)0(1) + O(*)O(e ) < O(e?);

Therefore the knot 7 is the limit in the C|-topology of the knots 7. as € tends to 0. Mdbius energy
is a smooth functional from the set of C| knots in the C-topology (see [3] for the proof of this fact).
Hence we can find an ¢ satisfying the condition of the lemma.

Lemma 4.1 is proven.

Now we consider some class of smooth maps v : R — U C R?® without self-intersections, where
U is described below. Consider some straight line ¢ and two point O; and O, on it. We denote the
distance between Oy and O, by [. Let ry and r5 be two positive real numbers such that r{ +r; < [.
We define U as the union of two open balls By and By of radii r; and ry centered at O, and Oy and of
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/ \ 4 \
\ ) ] 70, I
\ / \ /
N Ve N s
""" () ------ e Q) e | e Q) -

F1GURE 4. The long double knot ~.

the straight line £. The map 7 sends bijectively some segment and two rays to the set £\ (B U By).
Inside the balls the map 7 is smooth and has no any self-intersections. We denote the map restricted
to By and By by v, and v, (see Fig. 4). Let also v(¢) be a unit length parametrization.

Definition 4.1. We call a map from the class described above a long double knot.

Consider some one-parametric family of long double knots ~(1) with fixed radii of the balls r; and
r9, and the fixed functions 7; and ~,. The parameter of this family is [ = |Oy — O1| > r1 + ro.
Denote by ¢; and ¢y the length of the curves +; and 5. Let also v~ be the long double knot with
the function v; in the first ball and the straight segment in the second. Similarly, let 4+ be the knot
with the function 7, in the second ball and the straight segment in the first. We denote by €2, the
preimage of the central segment, and by €2, and €23 the connected components of R\ €2y (see fig. 4).

Lemma 4.2. For any ¢ > 0 there exists an | > ry + ro such that
E(v()) <E(y7)+ E(y") +e.

st =( [ [ ] o

QlUQQ QlUQQ QlUQQ x Q3 Q3>< QlUQQ Q3 %03

// fudtidts + // fardtydty — / fardtydto+

Note that

(21UN2) % (Q1UN3) (Q22U03) % (22UN3) Q2%
/fMdtldt2+// fadtidty <
Q1 %03 Q3 x 0
E(’y‘)+E(7+)—0+// fMdtldtQJr// fardtdts.
Q1 %03 Q3 xNq

Let us estimate the last two integrals.

7‘17[/2 +oo
1 1
dt dt, = dt dt, M < ( _ )dt dty =
//fM e //fM e / / (th —to—q1 —q2)?  (t1 — t9)? .
Q1 xQ3 Q3 xQq —oC 1/2—1‘2
In o ) =m(1+ e ]
l—ri—ro—q — @ l—ri—19 —q1 — @2

Therefore for any € > 0 the desired [ exists. Lemma 4.2 is proven.

Now we prove Theorem 4.1.

Let 7y and 75 be the normal forms in the classes [r;] and [r3]. Take any 6 > 0. We fix some ¢; and
t5. By Lemma 4.1 there exist two knots 7. and 75, with the small arcs in some neighborhood of this
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two points, such that
|E(1,) — E(1)] <6 and |E(r,)— E(1)] <.
Consider the Mobius transformations 77 and 7, sending the points ¢; and ¢, of the knots 7. a 7,
to infinity. The arcs in the neighborhood of ¢; and ¢, map to the rays of the same straight line.
Therefore we can combine 7} o 7y, and T3 o 75, to obtain the long double knot.
By Theorem 4.2 we have:

E(TIOTIE) :E(TIE)—4 and E(TQOTQE) :E(TQE)—4.

Further, by Lemma 4.2, using the long knots E(T;o7y.) and E(T>07,,) we construct the long double
knot v so that

E(v) < E(Tiom,)+ E(Tyom,)+0.
Finally, consider a Mdbius transformation 7" which maps the long double knot ~ to the knot T o 7.
This knot belongs to the class [1; 4+ 73];. We use Theorem 4.2 again to obtain the following:

Eirgr), <E(Ton)=E(y)+4<E(Tiomn,)+E(Tyom,)—4+0=
E(Tls) + E(TQE) — 4+ )= E(Tl) + E(7—2) — 4+ 34.

The inequality
Eiryir); < E(T o) < E(1) + E(1p) — 4+ 36

holds for any ¢ < 0. This proves Theorem 4.1.
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