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MEAN VALUE PROPERTY FOR NONHARMONIC FUNCTIONS

TETIANA BOIKO, OLEG KARPENKOV

Abstract. In this article we extend the mean value property for harmonic functions to
the nonharmonic case. In order to get the value of the function at the center of a sphere
one should integrate a certain Laplace operator power series over the sphere. We write
explicitly such series in the Euclidean case and in the case of infinite homogeneous trees.
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Introduction

In this article we extend the mean value property for harmonic functions to the case of
nonharmonic functions. Our goals are to study this problem in Euclidean case and in the
case of infinite homogeneous trees.

Mean value property for harmonic function. In what follows we denote by Sd−1(r)
the (d−1)-dimensional sphere in the Euclidean space R

d with radius r and center at the
origin. Let Vol(Sd−1(x)) be its volume and let dµ be the standard surface volume measure
on each of the spheres.
Recall the classical mean value property for a harmonic function f :

f(0) =
1

Vol(Sd−1(r))

∫

Sd−1(r)

fdµ.
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See [4] for general reference to potential theory.

Mean value property for nonharmonic function in Euclidean space R
d.

In Section 1 we prove the following general formula for analytic functions f under some
natural convergency conditions (see Theorem A):

f(0) =
1

Vol(Sd−1(r))

∫

Sd−1(r)

∞
∑

i=0

αi,dr
2i△ifdµ.

The coefficients αi,d are generated as follows

∞
∑

i=0

αi,dx
2i =

(Ix/2)
d−2

2

Γ
(

d
2

)

J d−2

2

(Ix)
,

where Jq denotes the Bessel function of the first kind and I =
√
−1.

We would like to mention that for harmonic functions all △if = 0 (for i ≥ 1) and hence
we get a classical mean value property.

Mean value property for nonharmonic function for homogeneous trees. Har-
monic functions on trees for the first time were introduced in 1972 by P. Cartier in [1].
In Section 2 of this article we show the generalized version of Poisson-Martin integral
representation for holomorphic functions to the case of non-harmonic functions (under
certain natural convergency conditions). For a general theory of harmonic functions on
graphs and, in particular, trees we refer to [2, 3, 5].
Consider a homogeneous tree of degree q + 1 which we denote by Tq. We prove the

following formula (see Theorem B and Corollary 2.3):

f(v) =
q

q + 1

∫

∂Tq

[

∞
∑

i=0

(

(q + 1)i
(

γi(∞) + q∞γi(−∞)
)

△if(t)

)]

v

dt,

where

(1) γi(n) = ci,in
i + . . .+ ci,1n+ ci,0,

whose collection of coefficients ci,j (for a fixed i) is the solution of the following linear
system

(2) A









ci,i
...
ci,1
ci,0









=









0
...
0
1
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where

A =

















0 . . . 0 2
1i(1 + (−1)iq1) . . . 11(1 + (−1)1q1) 10(1 + (−1)0q1)
2i(1 + (−1)iq2) . . . 21(1 + (−1)1q2) 20(1 + (−1)0q2)

...
. . .

...
...

(i−1)i(1 + (−1)iqi−1) . . . (i−1)1(1 + (−1)1qi−1) (i−1)0(1 + (−1)0qi−1)
ii(1 + (−1)iqi) . . . i1(1 + (−1)1qi) i0(1 + (−1)0qi)

















.

Here we consider the integration in the following sense

∫

∂Tq

[

∞
∑

i=0

λi(∞)△if(t)

]

v

dt = lim
n→∞





n
∑

i=0

λi(n)
∑

w∈Sn(v)

△if(w)



 ,

where Sn(v) is the set of all vertices at distance n to the vertex v.

1. Generalized mean value property in R
n

In this section we we show how to generalize the mean value property in R
n to the case

of nonharmonic functions. Without loss of generality we study the value at the origin and
take the integrals over the spheres centered at the origin. In Subsections 1.1 and 1.2 we
introduce some preliminary general notions and definitions. Further in Subsection 1.3 we
formulate and prove the main results concerning the mean value property in R

n.

1.1. Operator on R
1 associated to the d-dimensional Laplace operator. Consider

the Laplace operator △ on R
d. In polar coordinates one can write

△(f) = △r(f) +
1

r2
△Sd−1f, where △r(f) =

1

rd−1

∂

∂r

(

rd−1∂f

∂r

)

,

the radial part, and △Sd−1 is the Laplace–Beltrami operator on the (d−1)-sphere. Let us
associate to the Laplace operator △ the following operator on a real line:

△̃d(g) =
∂

∂x

(

xd−1 ∂

∂x

(g(x)

xd−1

))

.

Proposition 1.1. For an analytic function f it holds
∫

Sd−1(x)

△f(v)dµ = △̃d

(∫

Sd−1(x)

f(v)dµ

)

.

Proof. First, notice that for Laplace–Beltrami operator △Sd−1 it holds
∫

Sd−1(x)

h(v)△Sd−1f(v)dµ = −
∫

Sd−1(x)

〈gradh(v), grad f(v)〉dµ,
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where the function grad is the gradient operator on the tangent space to the sphere
Sd−1(x), and 〈v, w〉 is the scalar product of v and w. Therefore, substituting h = 1 we
have

∫

Sd−1(x)

△Sd−1f(v)dµ = 0.

Second, we make the following transformations.

△̃d

(

∫

Sd−1(x)

f(v)dµ
)

= △̃d

(

xd−1

∫

Sd−1(1)

f(xv)dµ
)

=
∂

∂x

(

xd−1 ∂

∂x

(

∫

Sd−1(1)

f(xv)dµ
)

)

=

∫

Sd−1(1)

∂

∂x

(

xd−1 ∂

∂x
f(xv)

)

dµ =

∫

Sd−1(x)

1

xd

∂

∂x

(

xd−1 ∂

∂x
f(xv)

)

dµ

=

∫

Sd−1(x)

△rf(v)dµ =

∫

Sd−1(x)

△f(v)dµ.

This concludes the proof of Proposition 1.1. �

Iteratively applying Proposition 1.1 we get the following corollary.

Corollary 1.2. For an analytic function f on R
d and a nonnegative integer n it holds

∫

Sd−1(x)

△nf(v)dµ = △̃n
d

(
∫

Sd−1(x)

f(v)dµ

)

.

�

1.2. Bessel functions and some important generating functions. Let Jp denote
Bessel functions of the first kind. Recall that the power series decomposition of Jp at
x = 0 is written as

Jp(x) =
∞
∑

k=0

(−1)k(x/2)p+2k

k!Γ(p + k + 1)
.

Let us define two collections of coefficients αi,d and βi,d. Recall that

∞
∑

i=0

αi,dx
2i =

(Ix/2)
d−2

2

Γ
(

d
2

)

J d−2

2

(Ix)
.

Remark 1.3. In case if d = 1 and d = 3 we have the following

sech x =

∞
∑

i=0

αi,1x
2i and x csch x =

∞
∑

i=0

αi,3x
2i.

Set the coefficients βi,d as follows

∞
∑

i=0

βi,dx
2i =

J d−2

2

(Ix)

(Ix/2)
d−2

2

,
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Proposition 1.4. Let k be a nonnegative integer and d be a positive integer. Then it

holds

(i) βk,d =
1

4kk!Γ(p+ k + 1)
;

(ii)
k
∑

i=0

αi,dβk−i,d =

{

1
Γ(d/2)

, if k = 0;

0, if k ≥ 1.

Proof. The first statement follows directly from the power series decomposition for the
function J d−2

2

(Ix). The second statement holds, since by the definition of generating

functions
∞
∑

i=0

αi,1x
2i

∞
∑

i=0

βi,1x
2i =

(Ix/2)
d−2

2

Γ
(

d
2

)

J d−2

2

(Ix)
·
J d−2

2

(Ix)

(Ix/2)
d−2

2

=
1

Γ(d/2)
.

�

1.3. Generalized mean value property. We start with several definitions.

Definition 1. For an arbitrary nonnegative integer d a smooth functions f on R
n, and a

smooth function g on R
1 set

Td(f, r)(v) =
∞
∑

i=0

αi,dr
2i△if(v),

T̃dg(x) =

∞
∑

i=0

αi,dx
2i△̃i

dg(x),

where the generating function for the coefficients αi,d is as above.

For an arbitrary function f : Rd → R we denote by f̃ : R → R the function defined as
follows. For positive x we set

f̃(x) =
1

Vol(Sd−1(x))

∫

Sd−1(x)

f(v)dµ.

For negative x we put f(x) = f(−x). Finally we define

f̃(0) = lim
x→0

(

1

Vol(Sd−1(x))

∫

Sd−1(x)

f(v)dµ

)

= f(0).

Definition 2. We say that a function f is spherically a-analytic at 0 for some a > 0 if
the Taylor series for f̃ at the origin converges to f̃ on the segment [−a, a].

Theorem A. Consider 0 < r < a. Let f : Rd → R be a function that is spherically

a-analytic at 0. Then we have

f(0) =
1

Vol(Sd−1(r))

∫

Sd−1(r)

Td(f)dµ.
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Example 1.5. Let a function ϕ on R
3 satisfy the Poisson’s equation

△ϕ = f

for some harmonic function f . Then it holds

ϕ(0) =
1

4π

∫

S2(1)

(

ϕ(x)− 1

6
△ϕ(x)

)

dµ.

We start the proof of Theorem A with the following lemma.

Lemma 1.6. Let k be a nonnegative integer. Then

T̃d(x
2k+d−1) =

{

xd−1, if k = 0;
0, if n ≥ d.

Proof. First, observe the following

△̃dx
n = (n− d+ 1)(n− 1)xn−2.

Therefore,

△̃i
dx

2k+d−1 = 4i
k!

(k − i)!

Γ(k + d
2
)

Γ(k − i+ d
2
)
xn−2i.

In particular, this means that for i > k we have △̃i
d(x

2k+d−1) = 0. Hence we get

T̃d(x
2k+d−1) =

∞
∑

i=0

αi,dx
2i4i

k!

(k − i)!

Γ(k + d
2
)

Γ(k − i+ d
2
)
xn−2i

= 4kk!Γ
(

k +
d

2

)

x2k+d−1
k
∑

i=0

αi,d
1

4k−i(k − i)!Γ(k − i+ d
2
)

= 4kk!Γ
(

k +
d

2

)

x2k+d−1

k
∑

i=0

αi,dβk−i,d

=

{

xd−1, if k = 0;
0, if k ≥ 0.

The last two equalities follows from Proposition 1.4(i) and Proposition 1.4(ii) respectively.
�

Corollary 1.7. Consider an even analytic function f whose Taylor series taken at 0
converges on the segment [−a, a]. Let also x satisfy 0 < x < a. Then

T̃d

(

xd−1f(x)
)

xd−1
= f(0).

Remark. In fact, if f is not even then a more general statement holds

f(0) =
T̃d

(

xd−1f(x)
)

+ T̃d

(

xd−1f(−x)
)

2xd−1
.
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Proof. Let f be an even function, i.e.,

f(x) =

∞
∑

i=0

cix
2i.

Then from Lemma 1.6 we have

T̃d

(

xd−1f(x)
)

xd−1
=

T̃d

(
∑

∞

i=0 cix
2i+d−1

)

xd−1
=

(
∑

∞

i=0 ciT̃d(x
2i+d−1)

)

xd−1
=

c0x
d−1

xd−1
= c0 = f(0).

We demand the convergence of Taylor series in order to exchange the sum operation with
T̃d in the second equality. �

Proof of Theorem A. By Corollary 1.2 and by the definition of f̃ we have
∫

Sd−1(x)

△nf(v)dµ = △̃n
d

(
∫

Sd−1(x)

f(v)dµ

)

= Vol(Sd−1(1))△̃n
d

(

xd−1f̃(x)
)

.

Since f is spherically a-analytic, the function f̃ satisfies all the conditions of Corol-
lary 1.7. Applying Corollary 1.7 we get

f(0) = f̃(0) =
T̃d

(

xd−1f̃(x)
)

xd−1
=

1

xd−1 Vol(Sd−1(1))

∫

Sd−1(x)

Td(f)dµ

=
1

Vol(Sd−1(x))

∫

Sd−1(x)

Td(f)dµ.

This concludes the proof of Theorem A. �

2. Horocyclic formula for homogeneous trees

In this section we study the situation in the discrete case of homogeneous trees. We
start in Subsection 2.1 with necessary notions and definitions. Further in Subsection 2.2
we formulate the statements regarding the generalization of the Poisson-Martin integral
representation theorem. In Subsection 2.3 we study some necessary tools that are further
used in the proofs of the main result. We conclude the proofs in Subsection 2.4.

2.1. Notions and definitions. Consider a homogeneous tree Tq (i.e., every vertex of
such tree has q + 1 neighbors) and denote its Martin boundary by ∂Tq. If v and w are
connected by an edge we write v ∼ w.

2.1.1. Laplace operator. In this section we consider the standard Laplace operator on the
space of all functions on Tq, which is defined as

△f(v) =

∑

w∼v

f(w)

q + 1
− f(v).
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The composition of i ≥ 1 Laplace operators we denote by △i. Set also △0 the identity
operator.

Remark 2.1. Similarly one might consider majority of weighted Laplace operators. The
statements of this section has a straightforward generalization to arbitrary locally finite
graphs. For simplicity reasons we restrict ourselves entirely to homogeneous trees.

2.1.2. Maximal cones and horocycles. We start with the definition of maximal proper
cones.

Definition 3. Consider two vertices v, w ∈ Tq connected by an edge e. The maximal
connected component of Tq \ e containing v is called the maximal proper cone with vertex

at v (with respect to w). We denote it by Cv−w.

The distance between two vertices v, w ∈ Tq is the minimal number of edges needed to
reach the vertex w starting from the vertex v. For an arbitrary nonnegative integer r and
an arbitrary vertex v we denote by Sr(v) the set of all vertices at distance r to v, we call
such set the circle of radius r with center v. Note that Sr(v) contains exactly (q + 1)qr−1

points.

Definition 4. Let Cv−w be a maximal proper cone of Tq and let n be a nonnegative
integer. The set

Cv−w
n = Cv−w ∩ Sn(v)

is called the horocycle of radius n with center at v (with respect to w).

2.1.3. Integral series. For an arbitrary function f : Tq → R we write

f(Cv−w
n ) =

1

qn

∑

u∈Cv−w
n

f(u).

Definition 5. In what follows we consider the horocyclic integrals defined by the following
expression:

∫

∂Cv−w

[

∞
∑

i=0

λi(∞)△if(t)

]

dt = lim
n→∞

(

n
∑

i=0

λi(n)△if(Cv−w
n )

)

,

where f is a function on the tree, λi are arbitrary functions on the set of positive integers.
Respectively we write

∫

∂Tq

[

∞
∑

i=0

λi(∞)△if(t)

]

v

dt = lim
n→∞





n
∑

i=0

λi(n)
∑

u∈Sn(v)

△if(u)

qn



 .

Here we specify by an index v that the series are taken with respect to the vertex v, since
now it is not reconstructed from the integration domain.
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For instance,
∫

∂Cv−w

[2∞(1+(−∞)3)f(t)]dt = lim
n→∞

(

2n(1−n3)f(Cv−w
n+1 )

)

= lim
n→∞

(

2n(1−n3)
∑

u∈Cv−w
n

f(u)

qn

)

.

Remark. Notice that the limit operation is not always commute with the sum opera-
tion. To illustrate this we mention, that the expression from the limit exists for every
holomorphic function even if the integral at Martin boundary diverges (see Theorem 2.4).
So the notion of integral series extends the notion of integration of functions at Martin
boundary.

2.2. Horocyclic formula. In this subsection we formulate the mean value property for
certain nonharmonic functions.

2.2.1. Horocyclic integrals for horosummable functions. We start with the following defi-
nition.

Definition 6. We say that a functions f is Cv−w-horosummable if

lim
n→∞

(

qnf(Cv−w
2n )

)

= lim
n→∞

(

∑

u∈Cv−w
2n

f(u)

qn

)

= 0.

Theorem B. Consider two vertices v, w ∈ Tq connected by an edge, and let f be a Cv−w-

horosumable function. Then

f(v) =

∫

∂Cv−w

[

∞
∑

i=0

(

(q + 1)i
(

γi(∞) + q∞γi(−∞)
)

△if(t)

)]

dt,

where γi are polynomials as below (see (1)) whose coefficients are the solutions of Sys-

tem (2). In addition, the condition that the horocyclic integral in the right part of the

equation converges to f(v) is equivalent to the condition that f is Cv−w-horosumable.

We prove this theorem later in Subsection 2.4.
Note that it would be interesting to relate the coefficients at terms △i(f) with dis-

cretizations of Bessel functions.

Example 2.2. Let us check Theorem B for the function χv that is zero everywhere except
for the point v and χv(v) = 1. We have

△iχv(C
v−w
n ) =

1

qn

∑

u∈Cv−w
n

f(u) =

{

0, if i < n;
1

(q+1)n
, if i = n.

(notice that Cv−w
n contains exactly qn vertices). Therefore,

∫

∂Cv−w

[

∞
∑

i=0

(

(q + 1)i
(

γi(∞) + q∞γi(−∞)
)

△iχv(t)

)]

dt

= lim
n→∞

an,n△nχv(C
v−w
n ) = lim

n→∞

(q + 1)n
1

(q + 1)n
= 1 = χv(v).
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It is clear from this example that it is not always possible to exchange the sum operator
and the limit operator. For the function χv we have

∞
∑

i=0

lim
n→∞

(

(q + 1)i
(

γi(n) + qnγi(−n)
)

△iχv(C
v−w
n )

)

=

∞
∑

i=0

0 = 0 6= 1 = χv(v).

Let us write a weaker version of Theorem B for the integration over all the Martin
boundary.

Corollary 2.3. Consider a vertex v ∈ Tq, and let f be a Cv−w-horosumable function for

all vertices w adjacent to v. Then

f(v) =
q

q + 1

∫

∂Tq

[

∞
∑

i=0

(

(q + 1)i
(

γi(∞) + q∞γi(−∞)
)

△if(t)

)]

v

dt.

Proof. Let us sum up the expression obtained in Theorem B for all maximal proper cones
with vertex at v. From one hand there are exactly q+1 such horocycles so the sum equals
to (q + 1)f(v). From the other hand each point of the Martin boundary was integrated q
times. Therefore, we get the constant q

q+1
in the statement of the corollary. �

Remark. Note that it is possible to write similar series for arbitrary locally-finite trees,
although the formulas for the coefficients would be more complicated.

2.2.2. Horocycle formula for harmonic functions. We conclude this subsection with the
following more general statement for harmonic functions.

Corollary 2.4. Consider an arbitrary harmonic function h on a homogeneous tree Tq.

Let v be a vertex of Tq and Gv be one of the corresponding horocyclic parts. Then the

following holds:

h(v) =

∫

∂Cv−w

[h(t)]dt+

∫

∂Cv−w

[

q∞
(

h(t)−
∫

∂Cv−w

[h(t)]dt
)

]

dt.

�

Remark. Suppose that h is integrable on ∂Cv−w with respect to the probability measure
on the Martin boundary. Then this integral coincides with

∫

∂Cv−w

[h(t)]dt.

In case if h is not integrable with respect to probability measure, the horocyclic integral
nevertheless exists. In some sense horocyclic integrability is a conditional integrability
with respect to integration over probability measure. Horocyclic integral exists for every
harmonic function h and for every cone Cv−w.
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2.3. Relations on special Laurent polynomial. In this subsection we prove some
supplementary statements. For every integer n we denote

Dn(x) = xn +
qn

xn
.

Note that D0(x) = x0 + q0

x0 .
For every nonnegative integer we set

Sn(x) =
(x− 1)n(x− q)n

(q + 1)nxn
.

We have the following recurrent relation for the defined above Laurent polynomials.

Proposition 2.5. For every integer n we have

S1Dn =
Dn+1 − (q + 1)Dn + qDn−1

q + 1
.

Proof. For every integer n (including n = −1, 0, 1) it holds

S1Dn =
((x− 1)(x− q)

(q + 1)x

)(

xn +
qn

xn

)

=
xn+1

q + 1
− xn +

q

q + 1
xn−1 +

qn

(q + 1)xn−1
− qn

xn
+

qn+1

(q + 1)xn+1

=
1

q + 1

(

xn+1 +
qn+1

xn+1

)

−
(

xn +
qn

xn

)

+
q

q + 1

(

xn−1 +
qn−1

xn−1

)

=
Dn+1 − (q + 1)Dn + qDn−1

q + 1
.

�

The following proposition is straightforward.

Proposition 2.6. For every integer n there exists a unique decomposition

Dn =

n
∑

i=0

an,iSi.

�

Now we are interested in the coefficients an,i. The next statement follows directly from
Proposition 2.5.

Corollary 2.7. For every positive integer i and every integer n it holds

an,i−1 =
an+1,i − (q + 1)an,i + qan−1,i

q + 1
.

Additionally in the case i = 0 it holds

0 = an+1,0 − (q + 1)an,0 + qan−1,0.
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Proof. By the definition we have

S1Sk = Sk+1.

Propositions 2.5 and 2.6 imply

n+1
∑

i=1

an,i−1Si = S1Dn =
Dn+1 − (q + 1)Dn + qDn−1

q + 1

=
1

q + 1

(

n+1
∑

i=0

an+1,iSi − (q + 1)
n
∑

i=0

an,iSi + q
n−1
∑

i=0

an−1,iSi

)

.

Collecting the coefficients at Si we get the recurrence relations of the corollary. �

Definition 7. For a positive integer k we define the linear form Lk in 2k+1 variables as
follows

Lk(y1, . . . , y2k+1) =

n
∑

i=−n

ci,nyi,

where ci,n are defined as the coefficients of Sn, i.e., from the expression

Sn(x) =
(x− 1)n(x− q)n

(q + 1)nxn
=

n
∑

i=−n

ci,nx
i.

Proposition 2.8. For every nonnegative integer i and every integer n we have

Li(an−i,i, an−i+1,i, . . . , an+i,i) = 0.

Proof. We prove the proposition by induction in i.

Base of induction. For the case i = 0 the statement holds by Corollary 2.7.

Step of induction. Suppose that the statement holds for i − 1. Let us prove it for i. We
have

Li(an−i,i, . . . , an+i,i) = 0.

By Corollary 2.7 and linearity of Li we have

Li(an−i,i, . . . , an+i,i)

= Li

(an−i+1,i+1−(q+1)an−i,i+1+qan−i−1,i+1

q+1
, . . . ,

an+i+1,i+1−(q+1)an−i,i+1+qan−i−1,i+1

q+1

)

=
1

q + 1

(

Li(an−i+1,i+1, . . . , an+i+1,i+1)− (q + 1)Li(an−i,i+1, . . . , an+i,i+1)

+ qLi(an−i−1,i+1, . . . , an+i−1,i+1)
)

= Li+1(an−i−1,i+1, an−i,i+1, . . . , an+i,i+1, an+i+1,i+1).

Therefore, by induction assumption we have

Li+1(an−i−1,i+1, an−i,i+1, . . . , an+i,i+1, an+i+1,i+1) = Li(an−i,i, . . . , an+i,i) = 0.

This concludes the proof of the induction step. �
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Corollary 2.9. For every fixed nonnegative integer k we have the

an,k = Pk(n) + qnP̂k(n),

where Pk(n) and P̂k(n) are polynomials of degree at most k. �

We skip the proof here. This is a general statement about linear recursive sequences
whose characteristic polynomial has roots 1 and q both of multiplicity n.

Example 2.10. Direct calculations show that in case q = 2 we have

an,0 = 1 + 2n,

an,1 =
31

1!
(−n + 2nn),

an,2 =
32

2!

(

n2 + 3n+ 2n(n2 − 3n)
)

,

an,3 =
33

3!

(

− n3 − 9n2 − 26n+ 2n(n3 − 9n2 + 26n)
)

,
. . .

Let us prove a general theorem on numbers an,i.

Theorem 2.11. For every admissible k and n it holds

an,k = (q + 1)k
(

γk(n) + qnγk(−n)
)

,

where the coefficients of γk are defined by System (2).

We start the proof of Theorem 2.11 with the following two lemmas.

Lemma 2.12. For every nonnegative integer k and every n we have

P̂k(−n) = Pk(n).

Proof. For every integer x we have

D−n = x−n +
q−n

x−n
=

1

qn

( qn

xn
+ xn

)

=
Dn

qn
.

By Proposition 2.6 the coefficients an,i and a−n,i are uniquely defined, therefore,

an,k = qna−n,k.

Let us rewrite this equality in terms of polynomials Pk and P̂k:

Pk(n) + qnP̂k(n) = qn(Pk(−n) + q−nP̂k(−n)),

and hence

Pk(n) + qnP̂k(n) = P̂k(−n) + qnPk(−n).

Since this equality is fulfilled for every n we have P̂k(−n) = Pk(n). This concludes the
proof. �

Lemma 2.13. For every nonnegative k it holds

Pk(k) + qkPk(−k) = (q + 1)k
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Proof. We prove the proposition by induction in k.

Base of induction. For the case k = 0, 1 we have

P0(0) + q0P0(0) = a0,0 = 1 and P1(1) + qP1(−1) = a1,1 = q + 1.

Step of induction. Let Pk(k) + qkPk(−k) = (q + 1)k. Then

(q + 1)k = Pk(k) + qkPk(−k) = ak,k =
ak+1,k+1 − (q + 1)ak,k+1 + qak−1,k+1

q + 1
=

ak+1,k+1

q + 1

=
Pk+1(k+1) + qk+1Pk+1(−k−1)

q + 1
.

The third equality follows from the recursive formula of Corollary 2.7. Hence

Pk+1(k+1) + qk+1Pk+1(−k−1) = (q + 1)k+1.

This concludes the step of induction. �

Proof of Theorem 2.11. From Lemma 2.12 we know that P̂k(−n) = Pk(n). In addition, by
Corollary 2.9 the degree of Pk equals to k, and hence it has k+1 coefficient. The coefficients
of the polynomial Pk are uniquely defined by the conditions for aj,k for j = 0, . . . , k:

Pk(j) + qjPk(−n) = 0 for j = 0, . . . , k − 1, and Pk(k) + qkPk(−k) = (q + 1)k.

The expression for k follows from Lemma 2.13. We consider these equalities as linear
conditions on the coefficients of the polynomial Pk

(q+1)k
. These conditions form a linear

system, which coincides with System (2) (substituting k to i).

We should also show that the determinant of the matrix in System (2) is nonzero. We
prove this by reductio ad absurdum. Suppose the determinant of the matrix is zero. Thus,
it has a nonzero kernel. Therefore, there exists an expression

R(n) = r(n) + r(−n)qn,

where r(n) is a polynomial of degree k having at least one nonzero coefficient, satisfying

R(−k) = R(−k + 1) = . . . = R(k) = 0.

Let R(k+1) = a. Let us find the value R(−k−1). From one hand, our sequence satisfy the
linear recursion condition determined by the coefficients of the polynomial (x−1)k(x−q)k,
and hence

R(−k − 1) = − a

qk+1
.

From another hand,

R(−k − 1) = r(−k − 1) + r(k + 1)q−k−1 =
r(k + 1) + r(−k − 1)qk+1

qk+1
=

a

qk+1
.

This implies that a = 0, and hence R(k + 1) = R(−k − 1) = 0.
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Therefore, the linear recursive sequence R(n) determined by the coefficients of the
polynomial of degree 2k + 3 has 2k + 3 consequent elements equal zero. Hence R(n) = 0
for any integer n, which implies that all the coefficients of r(n) equal zero. We come to
the contradiction. Hence the determinant of the matrix in System (2) is nonzero.

So both the coefficients of Pk

(q+1)k
and the coefficients of γk are solutions of System (2).

Since System (2) has a unique solution, the polynomials Pk and (q + 1)kγk coincide.
Therefore, by Lemma 2.12 it holds

an,k = Pk(n) + qnP̂k(n) = Pk(n) + qnPk(−n) = (q + 1)k
(

γk(n) + qnγk(−n)
)

.

This concludes the proof of Theorem 2.11. �

Observe the following corollary.

Corollary 2.14. For every integer k > 0 we have Pk(0) = 0, and P0(1) = 1. �

2.4. Proof of Theorem B. Finally we have all necessary tools to prove of Theorem B.
We start with the following lemma.

Lemma 2.15. Let f be a function on Tq and v, w be two vertices of Tq connected by an

edge. Then for every nonnegative n it holds

f(v) + qnf(Cv−w
2n ) =

n
∑

k=0

(

(q + 1)k
(

γk(n) + qnγk(−n)
)

△kf(Cv−w
n )

)

.

Proof. For 0 < k ≤ n set

D̂k,n = f(Cv−w
n−k ) + qkf(Cv−w

n+k ),

Ŝk,n =
k
∑

i=−k

ci,kf(C
v−w
n+i ),

where the coefficients ci,k are generated by

Sk =

(

(x− 1)(x− q)
)k

(q + 1)kxk
=

k
∑

i=−k

ci,kx
i.

Notice that all linear expressions over Sk and Dk are identically translated to the linear
expressions over Ŝk,n and D̂k,n. Then from Proposition 2.6 it follows

f(v) + qnf(Cv−w
2n ) = D̂n,n =

n
∑

k=0

an,kŜk,n,

where the coefficients an,k as in Theorem 2.11, i.e.,

an,k = (q + 1)k(γk(n) + qnγk(−n)),

where the coefficients of γk are defined by System (2). In addition note that

Ŝk,n = △k(Cv−w
n ).



16 TETIANA BOIKO, OLEG KARPENKOV

Therefore, we obtain

f(v) + qnf(Cv−w
2n ) =

n
∑

k=0

(

(q + 1)k
(

γk(n) + qnγk(−n)
)

△kf(Cv−w
n )

)

.

This concludes the proof. �

Proof of Theorem B. From Lemma 2.15 we have

f(v) + qnf(Cv−w
2n ) =

n
∑

i=0

(

(q + 1)i
(

γi(n) + qnγi(−n)
)

△if(Cv−w
n )

)

.

Hence,
∫

∂Cv−w

[

∞
∑

i=0

(

(q + 1)i
(

γi(∞) + q∞γi(−∞)
)

△if(t)

)]

dt

= lim
n→∞

n
∑

i=0

(

(q + 1)i
(

γi(n) + qnγi(−n)
)

△if(Cv−w
n )

)

= lim
n→∞

(

f(v) + qnf(Cv−w
2n )

)

= f(v) + lim
n→∞

(

qnf(Cv−w
2n )

)

= f(v).

Therefore, the integral converges to f(v) if and only if the sequence
(

qnf(Cv−w
2n )

)

converges
to zero as n tends to infinity. This means that f is Cv−w-horosumable. This concludes
the proof. �
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Society (EMS), Zürich, 2009. Generating functions, boundary theory, random walks on trees.

Tetiana Boiko, TU Graz, 30/III, Steyrergasse, 8010, Graz, Austria
E-mail address : boiko@math.tugraz.at

Oleg Karpenkov, University of Liverpool, Mathematical Sciences Building, Liverpool
L69 7ZL, United Kingdom

E-mail address : karpenk@liv.ac.uk


