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EULER ELASTICAE IN THE PLANE AND THE

WHITNEY–GRAUSTEIN THEOREM

S. AVVAKUMOV, O. KARPENKOV, A. SOSSINSKY

Abstract. In this paper, we apply classical energy principles to Euler elasticae, i.e.,
closed C2 curves in the plane supplied with the Euler functional U (the integral of the
square of the curvature along the curve). We study the critical points of U , find the
shapes of the curves corresponding to these critical points and show which of the critical
points are stable equilibrium points of the energy given by U , and which are unstable.
It turns out that the set of stable equilibrium points coincides with the set of minima of
U , so that the corresponding shapes of the curves obtained may be regarded as normal
forms of Euler elasticae. In this way, we find the solution of the Euler problem (set in
1744) for plane closed elasticae. As a by-product, we obtain a “mechanical” proof of the
Whitney–Graustein theorem on the classification of regular curves in the plane up to
regular homotopy (in the particular case of C2 curves). Besides mathematical theorems,
our work includes a computer graphics software which shows, as an animation, how any
plane curve evolves to its normal form under a discretized version of gradient descent
along the (discretized) Euler functional.

Introduction

The aim of this paper is to test how the energy functional approach works on the moduli
space of all regular C2 curves in the plane R

2 in the case of the Euler functional

U(γ) =

∫ 2π

0

(
κ(γ(s))

)2
ds,

where γ : S1 → R
2 is a curve of length 2π, s is the arclength parameter, and κ(γ(s) is the

curvature of γ at the point s. Thus we view regular homotopy classes of regular plane curves
through the prism of the Euler functional.

Let us start with a general remark. Suppose that one has a configuration space S that is split
in several connected components and the main task is to check if two elements of S are in the

same connected component.
Then there are two main strategies to do this: combinatorial and mechanical. The combi-

natorial strategy is based on finding a (hopefully complete) invariant distinguishing connected
components. The mechanical strategy is as follows: one finds an appropriate functional (which is
sometimes called energy); then gradient or descent flow on S is performed along the functional
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and the problem is reduced to comparing local minima of this flow (these minima are called
normal forms). For smooth enough moduli spaces S and an appropriate choice of energy func-
tionals, the gradient flows corresponding to these energies take almost all (except for a measure
zero set) configurations of S to the corresponding local minima.

A good example where both strategies are applied is the theory of knots and links. The
combinatorial approach is broadly studied in classical knot theory, where many beautiful in-
variants have been devised (Alexander and Jones polynomials, Vassiliev invariants, Khovanov
homology, etc.). The mechanical strategy, i.e., the idea of defining energy functionals for knots
is due to H. K. Moffat [13]. It was further developed by W. Fukuhara [6], J. O’Hara in [14],
[15], [16], [17], M. H. Freedman with various co-authors in [4], [5] [2], by D. Kim, R. Kusner
in [11], O. Karpenkov in [8], [9], etc. Some aspects of the intermediate step between classical
and mechanical approaches is discussed in [7]. In practice, the energy techniques work well, but
the mathematical justification of theoretical questions appears too complicated to be resolved
at the present time. For instance, it is not proven that the unknot has a unique local minimum
with respect to the famous Möbius functional invented by O’Hara.

In this paper, rather than applying the energy techniques to knots and links, we test the
mechanical approach on regular curves in the plane, which are simpler objects than knots (to
which we intend to return in subsequent publications). The combinatorial approach to the study
of regular curves in the plane yields the classical Whitney–Graustein theorem, which provides
a classification of curves up to regular homotopy by means of a simple complete invariant – the
Whitney index or winding number, which is the number of revolutions effected by the tangent
vector to the curve at a mobile point when the mobile point goes once around the curve. Here
we discuss the mechanical approach to the study of regular plane curves of class C2 using the
Euler functional U (the integral along the curve of the square of the curvature) and describe
the corresponding normal forms with respect to U . It turns out that each regular homotopy
class has a unique normal form (Theorem 2.2) and the normal form is a complete invariant of
regular homotopy classes. In the case of a nonzero Whitney index, the normal form is a circle
passed once or several times, otherwise it is Bernoulli’s closed ∞-shaped elastica (the figure eight
curve). These normal forms are obtained by gradient descent along values of U in the space of
curves. Computer animations of the discretization of this process (created by the first-named
author) are available at [1].

This paper is organized as follows. We start in Section 1 with the necessary definitions and
preliminaries. In Section 2, we formulate the main results of this paper (Theorems 1.3 and
2.2) on normal forms of regular curves. In Section 3, we describe the algorithm on which the
animations are based. Finally, in Section 4, we give technical details and proofs.

In more detail, Section 4, in which critical points of the Euler functional U are studied,
consists of five subsections. In Subsection 4.1, we discuss the relationship of critical points to
the simple pendulum. We study differentiability questions of critical curves in Subsection 4.2.
In Subsection 4.3, we prove that all critical curves are either circles passed once or several
times or Bernoulli’s closed elastica passed once or several times. We construct a deformation
of critical Bernoulli’s closed elastica (passed more than once) reducing the value of Euler’s
functional in Subsection 4.4. Finally, we conclude the proofs of Theorem 1.3 and Theorem 2.2
in Subsection 4.5.
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1. Preliminaries

1.1. Gauss representation of regular curves. A plane closed curve γ : S1 → R
2 is regular

if it possesses a nonzero derivative (tangent vector) at each point γ(t).
For a regular curve γ, we consider a function α : [0, 2π] → R such that

γ̇(t) = (cosα(t), sin α(t)).

We then say that α is a Gauss representation of γ. (Here and later by ġ we denote the derivative
∂g/∂t.) Notice that a pair of curves having the same Gauss representations coincide after a
translation by some vector.

In the Gauss representation, we have κ = α̇ and hence the Euler functional is as follows:

U(α) =

2π∫

0

α̇2dt.

Proposition 1.1. A continuous function α is a Gauss representation of some regular curve if

the following conditions hold:

(1)

2π∫
0

cosα(t)dt =
2π∫
0

sinα(t)dt = 0;

α(0) = α(2π).

The proof is obvious. �

1.2. Normal forms of regular curves. The functional

2π∫

0

κ2(γ(t))dt,

defined for any plane closed curve of class C2 is called the Euler functional; we denote it by
U . (Notice that in our previous paper [7] we considered a wider class of functionals. The Euler
functional was denoted there by Ux2). A curve supplied with the Euler functional is traditionally
(see e.g. [10] called an Euler elastica.

Definition 1.2. The normal form of a regular plane C2 curve with respect to the Euler functional
is a plane curve for which the value of U is a local minimum.

Notice that unstable equilibrium points for U do not not give normal forms. Gradient descent
reaches such points with zero probability (such an event practically never occurs in real life).

The main result of the present paper is the following theorem.

Theorem 1.3. (i) Any critical regular curve of the Euler functional is either a circle passed

several times or Bernoulli’s ∞-shaped closed elastica passed several times:

.

(ii) A Bernoulli closed ∞-shaped elastica passed several times is not stable.
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(iii) A circle passed once or several times and the Bernoulli closed elastica passed once are

local minima.

This result gives a complete solution of the Euler problem for closed elasticas in the plane.
Note that the same result was obtained independently by Yu.Sachkov (see [19]) by a different,
much more laborious method (involving the Pontryagin maximum principle).

2. The Whitney–Graustein theorem via Euler elasticas

Definition 2.1. TheWhitney index of a regular plane curve γ is the degree of the corresponding
Gauss map, taken with a sign (i.e., the number of clockwise rotations effected by the tangent
vector when its origin travels once around the curve). We denote it by ω(γ).

For a Gauss representation α of γ, the following obviously holds:

ω(γ) =

∫

γ

α(t)dt.

We recall the classical statement of the Whitney–Graustein theorem: Regular plane curves

are classified up to regular homotopy by their Whitney index, i.e., two regular plane curves are

regularly homotopic if and only if they have the same Whitney index.

The following statement immediately follows from Theorem 1.3 below and the fact that the
normal form curves appearing in Theorem 1.3 have Whitney indices 0,±1,±2, . . . , ±n, . . . re-
spectively.

Theorem 2.2. (On Euler normal forms.) Two regular plane curves of class C2 are regularly

homotopic if and only if they have the same normal form with respect to the Euler functional U .

Remark 2.3. It is not hard to construct different descent flows, we omit the related analysis. The
software [1] described in the next section gives a practical, fast (a few seconds for reasonably
simple curves), and very visual method for determining the regular homotopy type of a plane
curve: one simply observes the evolution of the curve until it reaches its normal form, which
determines the regular homotopy type. In general it would be interesting to have a constructive
proof that such flows always end up in a smooth critical realization. The second question which
we do not touch here is the rigorous construction of the gradient flow.

3. Normal forms via computer animations

In this section we describe our computer software, which shows how a given curve evolves to
its normal form, and describe the underlying algorithm.

The software may be downloaded from [1]. It is a user friendly interactive animation and can
be viewed on any PC running with Windows XP (or any later version). Once the program (exe
file) is downloaded and activated, the user simply draws the required curve on the screen with
the mouse (or by means of the touch pad). The curve begins to evolve, progressively changing
its shape until it arrives to its normal form – a circle of radius ρ, ρ/2, ρ/3, . . . , or a Bernoulli
∞-shaped curve of length 2πρ. The evolution of the curve in the animation to its normal form
takes a minute or a few minutes for moderately complicated curves.
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The descent algorithm, which is an iterative process, can be briefly described as follows.
First, the computer transforms the input curve into a closed polygonal line (usually with self-
intersections) with edges ei of the same (tiny) length and vertices vi, where ei = [vi−1, vi],
i = 1, . . . N ; here N is a parameter of our program.

The discrete version of our functional is

Û :=
∑

i

tan2(αi/2),

where αi is the angle between the continuation of the edge ei and the edge ei+1.
At each step of the algorithm, for each vertex vi, two “forces” (vectors) si and ri are computed.

The vector si (the straightening out force) is calculated according to the formula

si = −C1

( ∂

∂xi
+

∂

∂yi

)(
Û
)
,

where vi = (xi, yi) and C1 is a positive constant; here the partial derivatives ∂Û/∂xi and ∂Û/∂yi
are calculated approximately as finite differences.

The vector ri (the resilience force) is calculated according to the formula

ri := C2(vi+1 − vi)(|vi+1 − vi| − di) +C2(vi−1 − vi)(|vi − vi−1| − di−1),

where C2 is a positive constant, |v| is the Euclidean norm of the vector v, and di is the Euclidean
distance between the vertices vi and vi+1 at the initial moment.

Then each of the points vi is shifted by the vector si + ri, a new polygonal line is obtained,
and the algorithm goes on to the next step.

The constants C1 and C2 are parameters of our program and are chosen so that the lengths of
the edges, as well as the total length of the curve, do not change significantly during the descent
process.

The iteration process continues endlessly (there is no termination command in the program).
However, after a short interval of time, not more than a few minutes in all our experiments
(performed with N = 100), the modifications in the shape of the curve become invisible to the
naked eye. We then consider the iteration process as terminated and regard the shape of the
obtained curve as the normal form of the input curve. In all our experiments, the obtained curve
was always one of the normal forms predicted by Theorem 1.3.

Note that this result is not a mathematical theorem, but an experimental fact. We intend to
return to its mathematical justification in subsequent publications.

4. Critical points of the Euler functional

In this section, we study critical points of the Euler functional U and prove our main result
(Theorem 1.3) and from it derive the proof of Theorem 2.2.

First, we study the case of twice differentiable Gauss representations, for which the question
is reduced to the equation of the simple pendulum. Secondly, we show that all critical values
of the Euler functional indeed possess twice differentiable Gauss representations. The most
complicated case is the case of zero Whitney index: the critical points are the Bernoulli’s closed
∞-shaped curves passed several times. We explicitly construct deformations of these closed
elasticae passed several times that reduce the energy (which proves that these critical curves are
not local minima). In addition, we prove that there are no simple closed curves satisfying the
equation of the simple pendulum other than circles.
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4.1. The first variation of Euler functional at a critical elastica. Let γ be a smooth
enough regular plane curve with Gauss representation α.

Consider a variation α + hβ with a small parameter h. First, since we vary a closed curve,
the variation α + hβ infinitesimally satisfies conditions (1) above, i.e., the derivative d

dh of the
corresponding integrals equals zero, which is equivalent to

(2)

2π∫
0

sin(α(t))β(t)dt =
2π∫
0

cos(α(t))β(t)dt = 0,

β(0) = β(2π).

Secondly, for the case in which α is a critical elastica, the first variation is zero. Hence

(3)

2π∫

0

α̇β̇dt = 0,

which is equivalent to

(4)

2π∫

0

αβ̈dt = 0.

Now we have an equation for critical points even if the Gauss representation is only continuous.

There is another equivalent representation of the equation for the first variation

2π∫

0

α̈βdt = 0.

The last equation holds for any variation β satisfying Equations (2), therefore, we have the
following statement.

Corollary 4.1. Let γ have a twice differentiable Gauss representation α. Suppose that γ is

critical for the Euler functional. Then there exist constants C1 and C2 such that α satisfies

(5) α̈ = C1 cosα+ C2 sinα.

Remark 4.2. If C1 = C2 = 0 then we have the equation of circles: α̈ = 0. If at least one of the
constants C1 and C2 is not equal to zero, then after an appropriate Euclidean transformation,
we obtain the equation for the simple pendulum

α̈+ ω2 sinα = 0

for some nonnegative constant ω.

4.2. Smoothness of critical elasticae. Let us prove the smoothness of critical elasticae. The
proof of this assertion is traditionally missing in the literature, it is usually supposed that the
curve is smooth enough.

Proposition 4.3. The Gauss representation of a critical elastica is twice differentiable at any

point.

We prove the assertion of the proposition in three steps. First, we show that the Gauss
representation is continuous. Secondly, we show that it is continuously differentiable. Finally,
we prove that it is twice differentiable.



EULER ELASTICAE IN THE PLANE AND THE WHITNEY–GRAUSTEIN THEOREM 7

4.2.1. Continuity of the Gauss representation.

Lemma 4.4. The Gauss representation of critical elasticas is continuous at each point.

Remark 4.5. If α is not differentiable, we can understand α̇ in the generalized way, as the
difference between the corresponding upper and lower bounds. Similarly, we can consider the
function α as the L2-limit of smooth functions and calculate the derivative α̇ as the L2-limit of
the derivatives of these functions.

Proof. If the assertion of Lemma 4.4 is not true, then there exists a constant C such that for
any ε > 0 there is a t0 such that

t0+ε∫

t0

|α̇|dt > C

(the integral in the left-hand side of the inequality can be infinite). Hence

t0+ε∫

t0

α̇2dt >
C2

ε
.

Therefore, the Euler functional is infinite for this curve. We come to a contradiction. �

4.2.2. Variations β̂a,ε,b,ξ. Denote by δ(x) the generalized Dirac δ-function. By definition, let us
put

β̂a,ε,b,ξ(x) =
1

b− a

x∫

0

y∫

0

δ(z − b− ξ)− δ(z − b)

ξ
− δ(z − a− ε)− δ(z − a)

ε
dzdy

In addition, we extend this function as follows

β̂a,0,b,ξ(x) =
1

b−a

x∫
0

( y∫
0

δ(z−b−ξ)−δ(z−b)
ξ dz − δ(y − a)

)
dy;

β̂a,0,b,0(x) =
1

b−a

x∫
0

(
δ(y − b)− δ(y − a)

)
dy;

Let

βa,ε,b,ξ = β̂a,ε,b,ξ − hα(β̂a,ε,b,ξ),

where hα is the orthogonal projection from the space of L2-functions to the vector space spanned
by the functions cos(α(x)), sin(α(x)) and constant functions.

Lemma 4.6. The function βa,ε,b,ξ is continuous in the L2-norm at all points in which we have

already defined it. �

The proof is straightforward, so we omit it.

Finally, we put β̂a,0,a,0(x) = δ(x− a).
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4.2.3. Orthogonal basis in Hα. Denote by Hα the linear span of the functions cosα, sinα and
constant functions. For an arbitrary choice of α, let us fix an orthogonal basis:

eα,1 = cosα;

eα,2 = sinα+

2π∫

0

sinα(x) cosα(x)dx

2π∫

0

sin2 α(x)dx

cosα;

eα,3 = 1 +

2π∫

0

sinα(x) cosα(x)dx
2π∫

0

cosα(x)dx−
2π∫

0

cos2 α(x)dx
2π∫

0

sinα(x)dx

2π∫

0

sin2 α(x)dx
2π∫

0

cos2 α(x)dx−

(
2π∫

0

sinα(x) cosα(x)dx

)2 sinα+

2π∫

0

sinα(x) cosα(x)dx
2π∫

0

sinα(x)dx−
2π∫

0

sin2 α(x)dx
2π∫

0

cosα(x)dx

2π∫

0

sin2 α(x)dx
2π∫

0

cos2 α(x)dx−

(
2π∫

0

sinα(x) cosα(x)dx

)2 cosα.

The Gauss representation for closed curves is not constant, therefore the denominator of the
second coefficient for eα,2 is nonzero. By the Cauchy-Schwarz inequality for L2-functions, the
denominators of the coefficients of eα,3 are also nonzero. The following statement is straightfor-
ward.

Lemma 4.7. The functions eα,1, eα,2, and eα,3 are smooth bounded nonzero functions. �

As a corollary we have the following.

Corollary 4.8. The function hα(β̂t,ε,u,ξ)(x) is a continuous function that L2-continuously de-

pends on the parameters (t, ε, u, ξ) for an arbitrary 4-tuple of parameters satisfying 0 ≤ t, u ≤ 2π
(including (t, 0, t, 0)). �

4.2.4. Continuous differentiability of the Gauss representation.

Lemma 4.9. The Gauss representation of a critical elastica is continuously differentiable at

each point.

Proof. Let us fix t 6= u, and ξ, and vary ε. From Equation 4 it follows that

α(t+ ε)− α(t)

ε
=

α(u+ ξ)− α(u)

ξ
+ (t− u)

2π∫

0

α(x)(hα(β̂t,ε,u,ξ)(x))
′′dx.

The first summand of the left part does not depend on ε. The second summand is a continuous
function in the ε variable, since α is continuous. Therefore, the limit of the expression in the
right-hand side of the equality exists, i.e., the derivative α̇ exists at t.

Let us fix t, and vary ε. From Equation 4 it follows that

∣∣∣α(t+ ξ)− α(t)

ξ
− α(t+ ε+ ξ)− α(t+ ε)

ξ

∣∣∣ = ε
∣∣∣

2π∫

0

α(x)(hα(β̂t,ξ,t+ε,t+ε+ξ)(x))
′′dx

∣∣∣ < Cε,

where C does not depend on ε and ξ. Therefore,

|α̇(t)− α̇(t+ ε)| < Cε.

Thus, the function α̇ is continuous at t.
�
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4.2.5. Conclusion of the proof of Proposition 4.3. From Proposition 4.9 it follows that the Gauss
representation of a critical elastica is continuously differentiable at each point.

From Equation 3 it follows that

α̇(t+ ε)− α̇(t)

ε
=

2π∫

0

α̇(x)(hα(β̂t,0,t+ε,0)(x))
′dx.

Therefore,

α̈(t) = lim
ε→0

2π∫

0

α̇(x)(hα(β̂t,0,t+ε,0)(x))
′dx.

Corollary 4.8 implies that the function hα(β̂t,ε,u,ξ)(x) L
2-continuously depends on ε. Therefore,

the limit exists. Hence the Gauss representation is twice differentiable. �

4.3. Uniqueness of ∞-shaped normal forms passed once. In this section we briefly analyze
the critical closed elasticae whose Gauss representations satisfy the equation

α̈+ sinα = 0.

It is clear that the elasticae whose Gauss representations correspond to the motions of the
pendulum that makes complete turns are not bounded. If the pendulum does not make a
complete turn, then it is possible to get a closed elastica. All such curves are homotopic to the
figure “∞” curve. We call them ∞-shaped normal forms. The main statement about ∞-shaped
normal forms is as follows.

Proposition 4.10. All ∞-shaped normal forms are homothetic to each other.

In the proof of Proposition 4.10, we essentially used the following general statement.

Proposition 4.11. (On 2-germ similarity.) Consider two C2-curves γ1 : [0, T1] → R
2 and

γ2 : [0, T2] → R
2 with Gauss representations α1 and α2 respectively.

Suppose that the following conditions hold:

• the curves are convex;

• the curves are inscribed in the same angle centered at O;

• the curves have the same starting point: γ1(0) = γ2(0).
Then there exists a pair of points (t1, t2) simultaneously satisfying

α1(t1) = α2(t2) and α̇1(t1) = α̇2(t2).

We start with the following two lemmas.

Lemma 4.12. Consider two C2-curves γ1 : [0, T1] → R
2 and γ2 : [0, T2] → R

2 with Gauss

representations α1 and α2 respectively.

Suppose that the following conditions hold:

• the curves are convex;

• the curves are inscribed in the same angle centered at O;

• the curves have the same starting point: γ1(0) = γ2(0).
• for any pair of points (t1, t2) satisfying α1(t1) = α2(t2) the inequality α̇1(t1) > α̇2(t2) holds.
Then the point γ1(T1) is contained in the interior of the segment with endpoints O and γ2(T2)

(see Figure 1, left).
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γ1(0) = γ2(0)

γ1(T1)

γ2(T2)

O

γ1(0) = γ2(0)

γ1(T̂1)γ2(T̂2)Ô

O

Figure 1. Two curves inscribed at the same angle (left) and their common
tangent line (right).

Proof. Without loss of generality, we assume that the angle in which both curves are inscribed
is defined by the rays y = tanα0, x > 0 and y = − tanα0, x < 0. Let the starting point be on
the left ray. So both α1 and α2 are increasing functions from −α0 to α0.

The condition that for any pair of points (t1, t2) satisfying α1(t1) = α2(t2) the inequality

α̇1(t1) > α̇2(t2) holds implies that

T1∫

0

cosα1(t)dt <

T2∫

0

cosα2(t)dt.

Hence the x-coordinate of α1(T1) is smaller than the x-coordinate of α2(T2). Therefore, the
point γ1(T1) is contained in the interior of the segment with endpoints O and γ2(T2). �

Lemma 4.13. There are no C2-curves satisfying all the conditions of Lemma 4.12.

Proof. We prove this by reductio ad absurdum. Suppose that such curves γ1 and γ2 exist.
On the one hand, by Lemma 4.12 the point γ1(T1) is contained in the interior of the segment

with endpoints O and γ2(T2). On the other hand, the condition α̇1(0) > α̇2(0) implies that there
are some points γ2(t) (with small parameter t) that lie in the same connected component in the
complement of the angle to the curve γ1. Hence, there is a point where γ1 crosses γ2.

Hence there exists a line l which is tangent to both curves γ1 and γ2. Suppose that this
happens at times T̂1 and T̂2 respectively. Let l cross the left ray r at the point Ô (see Figure 1,

right). Notice that in these settings, the point γ2(T̂2) is contained in the interior of the segment

with endpoints Ô and γ1(T̂1). We come to a contradiction with Lemma 4.12 for the curves

γ1 : [0, T̂1] → R
2 and γ2 : [0, T̂2] → R

2, which are both inscribed in the angle with vertex Ô. �

Proof of Proposition 4.11. From Lemma 4.13, it follows that if all the conditions are satisfied,
then there are two pairs (t1, t2) and (t3, t4) such that

{
α1(t1) = α2(t2)
α̇1(t1) > α̇2(t2)

and

{
α1(t3) = α2(t4)
α̇1(t3) < α̇2(t4)

.

Hence, for continuity reasons, there exists a pair (t5, t6) for which we have both

α1(t1) = α2(t2) and α̇1(t5) = α̇2(t6).

�

Lemma 4.14. The duration of the period increases with the amplitude.
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Figure 2. The curves γ1 and γ2 either do not intersect (on the left) or
intersect (on the right). In the last case some of their parts are inscribed in
the same angle.

Proof. This follows directly from the fact that the period T with amplitude α0 is calculated by
the formula:

T = 4ωK
(
sin2

α0

2

)
= 4ω

π/2∫

0

dθ√
1− sin2 α0

2 sin2 θ

(here K(t) is the complete elliptic integral of the first type). The function under the integral
sign increases when α0 increases. �

Proof of Proposition 4.10. We argue by reduction ad absurdum. Suppose that there are two
different closed ∞-shaped solutions of the equation

α̈+ sinα = 0

with amplitudes α1 and α2. Let α2 > α1. Consider the two curves γ1 and γ2 corresponding
to one fourth of the ∞-shaped curves, starting from the point with vertical tangent vector (see
Figure 2).

Let us prove that γ1 and γ2 do not intersect at interior points. Suppose that the converse
is true. If the curves γ1 and γ2 intersect, then there is some line which is tangent to both of
these curves. Therefore, there are some parts of them that are inscribed in the same angle (see
Figure 2, right). On the one hand, by Proposition 4.11 there exists a pair of points (t1, t2)
satisfying simultaneously

α1(t1) = α2(t2) and α̇1 = α̇1(t1) = α̇2(t2).

On the other hand, any solution of the pendulum equation (α̈+ sinα = 0) satisfies

α̇ = ±
√
cosα+ C.

Combining these, we obtain the following:
√

cosα2(t1) + C1 =
√

cosα1(t1) + C1 = α̇1(t1) = α̇2(t2) =
√

cosα2(t1) + C2,

which implies C1 = C2. Hence the curves γ1 and γ2 coincide. We come to a contradiction.
Therefore, the curves γ1 and γ2 do not intersect at inner points.

Since the curves do not intersect and α̇1(0) < α̇2(0), the curve γ1 lies above the curve γ2. On
the one hand, since γ1 is convex, and both ends of both curves are on the OX coordinate axis,
the length of γ1 is not less than the length of γ2. On the other hand, Lemma 4.14 implies that
the length of γ1 is less than the length of γ2. We come to a contradiction. �
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Remark 4.15. The unique ∞-shaped curve is called the Bernoulli closed elastica. Its arc length
representation is closely related to Bernoulli’s lemniscate. In [12] and [21] there are good histor-
ical overviews about elasticae in general, which contain, in particular, good descriptions of this
curve.

4.4. Unstable critical elasticae for the Euler functional. In this subsection, we prove the
following statement.

Proposition 4.16. Bernoulli’s closed elastica passed several times is not stable.

Construction of Γε. Consider the loop of the closed elastica with center O1 at the origin
with nonpositive first coordinate. Construct another loop of Bernoulli’s closed elastica centrally
symmetric to the first one and tangent to the first loop at the point A with first coordinate
−ε/2 and positive second coordinate (see Figure 3, left). Denote the center of the second loop
by O2. Find the point O3 on the OY -axis such that the line O2O3 touches the upper branch of
the elastica at O2 and connect O3 with O2 by a line segment (Figure 3, right).

O1

O2

A

ε

O2

A

O3

Figure 3. Preliminary steps to construct Γε.

Finally, add the symmetric picture about the OY -axis and add one more Bernoulli closed
elastica loop centered at O3, as on Figure 4, left. Denote the symmetric point to O2 by O4.

O2

A

O4

B
O3

O2

A

O4

B
O3

O1

Figure 4. The embedding Γε and its difference from the union of four
Bernoulli’s closed elastica loops.

Remark. The immersion Γε is not C∞-smooth but only C1-smooth. We omit standard
smoothing procedures here.

Proof of Proposition 4.16. Let us briefly estimate the difference in lengths and curvatures
between Γε and the double Bernoulli closed elastica (i.e. the union of the four loops of Bernoulli’s
closed elastica).
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First, we compare the lengths. If we replace two segments O2O3 and O3O4 in Γε by the
curves O1AO2 and O3BO4 constructed via the corresponding parts of Bernoulli’s closed elastica
(Figure 4, right), then the length will be exactly equal to twice the length of the closed elastica.
Notice that the angle O2O1O3 is less than the angle O2O3O1, since all the absolute values of
the derivatives at points of the closed elastica are greater than tan(O2O3O1) almost everywhere.
Thus the length of O1O2 is greater than the length of O3O2. Hence the length of O3O2 is less
than the length of the curve O1AO2. For the same reason, the length of O3O4 is less than the
length of the curve O1BO4. Therefore, the length of Γε is smaller than the length of the double
Bernoulli closed elastica. The curvature of the Bernoulli closed elastica part of Γε (the bold
∞-curve in Figure 5) coincides with the curvatures of the corresponding points on the double
Bernoulli’s closed elastica. The curvature at points on the additional segments are equal to zero.
Since the lengths are smaller and the curvatures at the corresponding points are not greater, for
the total Euler functional we have

U(Γε) < U(Γ0).

Hence, the double Bernoulli’s closed elastica is a saddle point of the configuration space of all
immersions of 0 index.

O2

A

O4

B
O3

Figure 5. The immersion Γε for n-tuple Bernoulli’s closed elasticae.

In the case of an n-tuple Bernoulli closed elastica for n > 2, we add (n − 2)-tuple Bernoulli
closed elasticae to all the immersions of the above construction of the energy reducing defor-
mation for the double Bernoulli closed elastica, as it is shown on Figure 5. The (n − 2)-tuple
Bernoulli closed elastica remains unchanged during the whole deformation. �

4.5. Proof of Theorem 1.3 and Theorem 2.2. In this subsection, we conclude the proofs of
the main theorems.

4.5.1. Proof of Theorem 1.3. (i) By Proposition 4.3, the Gauss representation of any critical
elastica is twice differentiable at any point. By Corollary 4.1 (see also Remark 4.2) all critical
elasticas with twice differentiable Gauss representation are either circles or satisfy the equation
of the simple pendulum. By Proposition 4.10, all critical elasticae whose Gauss representation
satisfy the equation of the simple pendulum are homothetic to Bernoulli’s closed elastica (see
Remark 4.15). The first item is proved.

(ii) We have proved this item in Proposition 4.16.

(iii) The first two items of this theorem imply that each connected component has a unique
stable critical point. Hence these unique critical points are local minima. Recall that in the case
of a nonzero Whitney index, the corresponding curve is a circle passed a number of times equal
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to the Whitney index (the orientation is determined by the sign of the index). If the Whitney
index is zero, then the critical elastica is the Bernoulli closed ∞-shaped elastica. This concludes
the proof of Theorem 1.3. �

4.5.2. Proof of Theorem 2.2. Theorem 1.3 implies that each regular homotopy class of regular
curves contains a unique normal form. �
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