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Abstract

In this paper we discuss several results about the structureof the configuration space
of two-dimensional tensegrities with a small number of points. We briefly describe the
technique of surgeries that is used to find geometric conditions for tensegrities. Further we
introduce a new surgery for three-dimensional tensegrities. Within this paper we formulate
additional open problems related to the stratification space of tensegrities.
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1 Introduction

In this paper we study the stratification spaces of tensegrities with a small number of points.
We work mostly with planar tensegrities. In the case of 4 and 5point configurations we give
an explicit description of all the strata and present a visualization of the entire stratification
space. Further we give a geometric description of the stratafor 6 and 7 points and use the
technique of surgeries to find new geometric conditions adding to the list of already known
ones. In particular, we introduce a new surgery for tensegrities inR3.
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1.1 Configuration space of tensegrities

The first steps in the study of rigidity and flexibility of tensegrities were made by B. Roth
and W. Whiteley in [9] and further developed by R. Connelly and W. Whiteley in [3], see
also the survey about rigidity in [13]. N. L. White and W. Whiteley in [12] started the
investigation of geometric conditions for a tensegrity with prescribed bars and cables. In
the preprint [7] M. de Guzmán describes several other examples of geometric conditions
for tensegrities.

Let us recall standard definitions of tensegrities (as in [2], [4], etc.). See also [10] for a
collection of open problems and a good bibliography.

Definition 1.1. Fix a positive integerd. Let G = (V,E) be an arbitrary graph without
loops and multiple edges. Let it haven verticesv1, . . . , vn.

• A configurationis a finite collectionP of n labeled points(p1, p2, . . . , pn), where
each pointpi (also called avertex) is in a fixed Euclidean spaceRd.

• The embedding ofG with straight edges, induced by mappingvj to pj is called a
tensegrity frameworkand it is denoted asG(P ).

• We say that aload or forceF acting on a frameworkG(P ) in R
d is an assignment

of a vectorfi in R
d to each vertexi of G.

• We say that astressw for a frameworkG(P ) in R
d is an assignment of a real number

wi,j = wj,i (we call it anedge stress) to each edgepipj of G. An edge stress is
regarded as a tension or a compression in the edgepipj . For simplicity reasons we
putwi,j = 0 if there is no edge between the corresponding vertices. We say thatw
resolvesa loadF if the following vector equation holds for each vertexi of G:

fi +
∑

{j|j 6=i}

wi,j(pj − pi) = 0.

By pj−pi we denote the vector from the pointpi to the pointpj .

• A stressw is called aself stressif, the following equilibrium condition is fulfilled at
every vertexpi:

∑

{j|j 6=i}

wi,j(pj − pi) = 0.

• A couple (G(P ), w) is called atensegrityif w is a self stress for the framework
G(P ).

• If wi,j < 0 then we call the edgepipj acable, if wi,j > 0 we call it astrut.

LetW (n) denote the linear space of dimensionn2 of all edge stresseswi,j . Consider a
frameworkG(P ) and denote byW (G,P ) the subset ofW (n) of all possible self stresses
for G(P ). By definition the setW (G,P ) is a linear subspace ofW (n).

Definition 1.2. Theconfiguration space of tensegritiescorresponding to the graphG is the
set

Ωd(G) :=
{

(G(P ), w) |P ∈ (Rd)n, w ∈ W (G,P )
}

.

The set{G(P ) |P ∈ (Rd)n} is said to be thebase of the configuration space, we denote it
byBd(G).
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1.2 Stratification of the base of a configuration space of tensegrities

Suppose we have some frameworkG(P ) and we want to find a cable-strut construction on
it. Thenwhich edges can be replaced by cables, and which by struts? What is the geometric
position of points for which given edges may be replaced by cables and the others by struts?
These questions lead to the following definition.

Definition 1.3. A linear fiberW (G,P1) is said to beequivalentto a linear fiberW (G,P2)
if there exists a homeomorphismξ betweenW (G,P1) andW (G,P2), such that for any
self stressw in W (G,P1) the self stressξ(w) satisfies

sgn
(

ξ(w)
)

= sgn
(

w
)

.

The described equivalence relation gives us a stratification of the baseBd(G) = (Rd)n.
A stratumis by definition a maximal connected set of points with equivalent linear fibers.
In the paper [4] we prove that all strata are semialgebraic sets (which implies for instance
that they are path connected).

The idea of this paper is to make the first steps in the study of particular configuration
spaces of tensegrities. We present the techniques to find geometric conditions and open
problems for further study that already arise in very simplesituations of 9 point configura-
tions.

Let us, first, make the following threegeneral remarks.

GR1. The majority of the strata of codimensionk can be defined by algebraic equations
and inequalities that define the strata of codimension 1. Theexceptions here are mostly in
high codimension (the simplest one is as follows: for two points connected by an edge
there is no codimension 1 stratum, but there is one codimension 2 stratum corresponding
to coinciding points; actually it is interesting to find the complete list of such exceptions).
So the most important case to study is the codimension 1 case.

GR2. A stratification of a subgraph is a substratification of the original graph (i.e., each
stratum for a subgraph is the union of certain strata for the original graph), hence below we
skip the description ofB2(G) for graphs with 5 vertices other thanK5.

GR3. For any stratum there exists a certain subgraph thatlocally identifiesthe stratum
(i.e., for any pointx of the stratum there exists a neighborhoodB(x) such that any config-
uration inB(x) has a nonzero self stress for the subgraph if and only if this point is on the
stratum).

According to general remarks GR1 and GR2 the most interesting case is to study the
strata of codimension 1 for the complete graph onn vertices (denoted further byKn). It is
possible to find some of the strata ofKn directly. For the other strata one, first, should find
an appropriate subgraph that locally identifies the stratum, and then find appropriate surg-
eries (explained in Section 3) to reduce the complexity of the subgraph to find geometric
conditions.

This paper is organized as follows.In Section 2 we study the stratification of configu-
ration spaces of tensegrities in the plane with a small number of vertices. In Subsections 2.1
and 2.2 we briefly describe the trivial cases of two and three point configurations. Further
in Subsections 2.3 and 2.4 we study the four and the five point cases. In each of the cases
we describe the geometry and the number of strata. In addition we introduce the adjacency
diagram of full dimension and codimension 1 strata. In Subsections 2.5 and 2.6 we de-
scribe geometric conditions for the codimension 1 strata of6, 7, and 8 point tensegrities. In
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Section 3 we present the technique of surgeries to find geometric descriptions for the strata.
In Subsection 3.1 we describe surgeries that do not change graphs, and in Subsection 3.2
we show a couple of surgeries in the two-dimensional case. Weintroduce a new three-
dimensional surgery in Subsection 3.3. In conclusion, we formulate several open questions
in Subsection 3.4.

2 Stratification of the spaceB2(Kn
) for small n

In this section we study the geometry of tensegrity stratifications for graphs with a small
number of vertices. The cases ofn = 2, 3, 4, 5 are studied in full detail. Starting from
n = 6 there are some gaps in the understanding of tensegrities. Still for n = 6, 7, 8 the
complete description of the geometric conditions for the strata is known, we briefly describe
several results on them here (see [4] for more information).

2.1 Case of two points

Consider, first, the case of two points (n = 2). There are only two graphs on two points: a
complete oneK2 and a graph without edges (denote it byG0,2).

All the fibers of the baseB2(G0,2) = R
4 are of dimension 0, and, therefore, they are

equivalent. Hence the stratification is trivial.
The complete graphK2 here has only one edge. If two points of the graph do not

coincide then the stress at this edge should be zero. When twopoints coincide then the
stress at the edge can be arbitrary, and we have a one-dimensional set of solutions (i.e., a
fiber). So the baseB2(K2) = R

4 has a codimension 2 stratum (a 2-dimensional plane).
The complement to this stratum is a stratum of codimension 0.

2.2 Three point configurations

There are four different types of graphs here: letGi,3 be the graph withi edges fori =
0, 1, 2, 3.

In casesG0,3 andG1,3 the base stratifications are the following direct products:

B2(G0,3) = B2(G0,2)× R
2 and B2(G1,3) = B2(K2)× R

2.

SoB2(G0,3) is trivial andB2(G1,3) has a 4-dimensional subspace and its complement as
strata.

The baseB2(G2,3) contains five strata. One of them corresponds to the configuration
where three points coincide: the fiber here is 2-dimensional, this stratum is isometric toR2.
There are three strata where one of the edges of the graph vanishes: they are isometric to
R

4\R2. Finally, the complement to the union of these strata is the only stratum of maximal
dimension. There are no nonzero tensegrities for a configuration in this stratum.

For the complete graph on three vertices we have, for the firsttime, codimension 1
strata. There are three codimension 1 strata, all of them correspond to the following config-
uration: three points are in one line. Different strata correspond to having a different point
between the two others.

Let us briefly describe one of such strata. LetPi = (xi, yi) be the points of the graph
(i = 1, 2, 3). Then the condition that the three points are in a line is defined by a quadratic
equation:

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1) = 0
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This quadric divides the space into two connected components: corresponding to positively
and negatively oriented triangles.

To sum up we present forB2(K3) the following table.

Dimension of a stratum 0 1 2 3 4 5 6
Number of such strata 0 0 1 0 3 3 2

2.3 Stratification of B2(K4)

In this subsection we restrict ourselves to the complete graph K4 (for its subgraphs we
apply the reasoning of GR2 above). A plane configuration of four points in general position
admits a unique tensegrity (up to a multiplicative constant), which is called anatom. In [8]
it was proved that any self stress forKn is a sum of self-stressed atoms inKn (i.e., a sum
of certainK4 ⊂ Kn with scalars). ForK4 there are exactly 14 strata of general position.

The strata of codimension 1 correspond to three of four points of the graph lying in a
line. Actually in this case there is no jump of dimension of the fiber: there is also a unique
(up to scalar) solution corresponding to the three points ina line. But the stresses on the
edges from the fourth point are all zero, and hence a fiber of this stratum is not equivalent
to general fibers. The number of such strata is 24.

In codimension 2 we have two different types of strata corresponding to

• four points in a line: the dimension of a fiber is 2 (twelve strata);
• two points coincide: the dimension of a fiber is 1 (twelve strata).

In codimension 3 there is one type of strata with configurations of four points in a line,
two of which coincide. Six of them with the double point in themiddle and twelve of them
with the double point not in the middle.

In codimension 4, there are two types of strata:

• three points coincide (4 strata);

• two pairs of points coincide (3 strata).

And, finally, there is a codimension 6 stratum when all four points coincide. We remark
that for none of the strata the fiber is 3-dimensional.

The cardinalities of strata are shown in the following table.

Dimension of a stratum 0 1 2 3 4 5 6 7 8
Number of strata 0 0 1 0 7 18 24 24 14

2.3.1 The space of formal configurations

Let us draw schematically the adjacency of the strata of maximal dimension via strata of
codimension 1. The dimension of the stratification space is 8, let us reduce it to two via
factoring by proper affine transformations. We will use the following simple proposition.

Proposition 2.1. Invertible affine transformations of the plane do not changethe equiva-
lence class of a fiberW (G,P ). In other words ifP is a configuration andT an invertible
affine transformation of the plane then

W (G,P ) ≃ W (G, T (P )).
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So instead of studying the stratification itself we restrictto the set of formal configura-
tions with respect to proper affine transformations of the plane.

Definition 2.2. We say that a four point configurationv1, v2, v3, v4 is formal in one of the
following cases:

i) nondegenerate case:a configurationPx,y,+ with verticesv1 = (0, 0), v2 = (1, 0),
v3 = (x, y), v4 = (x, y+1) for arbitrary (x, y).

ii) nondegenerate case:a configurationPx,y,− with v1 = (0, 0), v2 = (1, 0), v3 =
(x, y), v4 = (x, y−1) for arbitrary (x, y).

iii ) degenerate case:a configurationP∆,+ with v1 = (0, 0), v2 = (1, 0), v3 = (0, 1),
v4 = (∆, 1) for an arbitrary∆.

iv) degenerate case:a configurationP∆,− with v1 = (0, 0), v2 = (1, 0), v3 = (0,−1),
v4 = (∆,−1) for an arbitrary∆.

v) closure: we add two formal configurationsP±∞ with verticesv1 = (0, 0), v2 =
(1, 0), v3 = (1, 0), v4 = (1,±∞).

We denote the set of all formal configurations byΛ4.

In some sense the spaceΛ4 is the space of all codimension 0 and codimension 1 con-
figurations factored by the group of proper affine transformations.

Proposition 2.3. For any codimension 0 and codimension 1 configuration there exists a
unique formal configuration to which the first configuration can be affinely deformed.

The spaceΛ4 is endowed with a natural topology of a quotient space.

Proposition 2.4. There is a natural topology of a unit sphereS2 for the setΛ4.

Proof. Let us introduce a topology of a unit sphereS2 for Λ4. Consider the configurations
of casei) on the planez = 1: we identify the pointPx,y,+ with the point(x, y, 1). Consider
the projection of this plane to the upper unit hemisphereS2 from the origin. So we have a
one to one correspondence between the configurations of casei) and the upper hemisphere.

Similarly we take the planez = −1 for the caseii ) identifying the point(−x,−y,−1)
with the configurationPx,y,− and projecting it to the lower hemisphere.

For the equator of the unit sphere we use all the other cases asasymptotic directions.
First, we associate the configurationP∆,+ with the point

(cos(π − arccotan∆), sin(π − arccotan∆), 0).

Let us explain the topology at one of such points of the equator. Suppose we start with
Px,y,+. The transformation sending the first three points to(0, 0), (1, 0), and (0, 1) is
linear with matrix

(

1 −x/y
0 1/y

)

.

Then the image of the fourth point ofPx,y,+ is (−x/y, 1+1/y). While x tends to infinity
andx/y tends to∆ the last point tends to(−∆, 1), and hence the configurationPx,y,+

tends toP−∆,+, as in the above formula.
Secondly, we associateP∆,− with the point

(cos(− arccotan∆), sin(− arccotan∆), 0)

in a similar way.
Finally, we glueP+∞ andP−∞ to the points(1, 0, 0) and(−1, 0, 0) respectively.
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Figure 1: Stratification ofB2(K4).

So, the codimension 0 and 1 stratification ofB2(K4) can be derived from the stratifi-
cation of the sphere. We show the stereographic projection of Λ4 from the point(0, 0,−1)
to the planez = 1 on Figure 1. There are four types of strata of codimension 1, they
correspond to the fact that certain three points are in a line. They separate the plane into
14 connected components. In each of the connected components we draw a typical type of
configuration:(v1, v2, v3, v4). Herev1 is blue,v2 is purple,v3 is red andv4 is green.

Remark 2.5. Different geometric conditions are represented by different colors in the pic-
ture, the correspondence is as follows.

• Light blue strata (6 strata forming a circle) correspond to configurations withv1, v2,
andv3 in a line.

• Dark blue strata (6 strata) contain configurations withv1, v2, andv4 in a line.

• Light green strata (6 strata) contain configurations withv1, v3, andv4 in a line.

• Dark green strata (6 strata) correspond to configurations with v2, v3, andv4 in a line.
We have 24 strata of codimension 1 in total.

• The dashed black line is the projection of the equator. It corresponds to the degenerate
case of parallel segments. The dashed line is not a stratum, it has the same fiber as
all the points in its neighborhood. While one passes the dashed line the red-green
segment ”rotates” around the blue-purple segment.
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2.4 Stratification of B2(K5)

2.4.1 General description of the strata

We have 264 strata of general position.
As in the two previous cases the strata of codimension 1 correspond to three points of

the graph lying in a line. The number of such strata is 600.
The following strata are of codimension 2:

• twice three points in a line: 270 strata;

• four points in a line: 120 strata;
• two points coincide: 420 strata.

In codimension 3 we have the following cases:

• three points in a line and one double point: 60 strata;

• four points in a line two of which coincide: 180 strata;
• five points in a line: 60 strata.

For codimension 4 we have the following list:

• one triple point: 20 strata;
• five points in a line two of which coincide: 120 strata;
• two double points: 30 strata.

In codimension 5 we get:

• five points in a line three of which coincide: 30 strata;
• five points in a line with two pairs of points coinciding: 45 strata.

In codimension 6 there are the following strata:

• a triple point and a double point: 10 strata;
• one point and one point of multiplicity four: 5 strata.

And, finally, there is a codimension 8 stratum when all five points coincide.
The cardinalities of the strata are shown in the following table.

Dimension of a stratum 0 1 2 3 4 5 6 7 8 9 10
Number of strata 0 0 1 0 15 75 170 300 810 600 264

2.4.2 Visualization ofB2(K5)

Let us now describe the structure of the stratificationB2(K5). Like in case ofB2(K4)
we introduce a setΛ5 which represents the adjacency of strata of full dimension and of
codimension 1. By definition we put

Λ5 = Λ4 × R
2,

i.e., we consider all the four point configurations ofΛ4, and to each configuration we add
the fifth point. We take the product topology forΛ5.

So at each point ofΛ4 we attach anR2-fiber. It will soon become clear that for any full
dimension stratum ofΛ4 the corresponding fibration is trivial, but the adjacency isnot.

On Figures 2 and 3 we showΛ5 in the following way. We draw the stratification of
Λ4 and inside each connected component we show the typical fiberof the component. The
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first four points are represented by purple, blue, green, andred points. The lines passing
through any pair of them divide the fiber into 18 connected components, that correspond
to strata of full dimension. At each such component we write aletter of the Latin alphabet
(we consider capital and small letters as distinct).

• Two regions denoted by the same letter and lying in neighboring connected compo-
nents ofΛ4 separated by light red, dark red, and black strata are in the same stratum.

• Two regions denoted by the same letter and lying in neighboring connected compo-
nents ofΛ4 separated by light blue, dark blue, light green, and dark green strata are
in distinct strata which are adjacent to the same codimension 1 stratum.

• Two regions denoted by a distinct letter and lying in neighboring connected compo-
nents ofΛ4 are not in one stratum and are not adjacent to the same codimension 1
stratum.

The light blue, dark blue, light green, and dark green stratarepresent the same geomet-
ric conditions as in Remark 2.5 above. For the remaining strata we have:

• The dark red stratum symbolizes that the line through the redand blue points is par-
allel to the line through the green and purple points.

• The light red stratum symbolizes that the line through the red and purple points is
parallel to the line through the green and blue points.

• The black stratum symbolizes that the line through the red and green points is parallel
to the line through the purple and blue points.

Remark 2.6. The configuration spaceB2(K5) has several obvious symmetries. First, there
is the group of permutationsS5 that acts on the points ofB2(K5); these symmetries are
hardly seen from Figures 2 and 3 since the representation is not S5-symmetric. Secondly,
there is a symmetry about the origin that sends configurations fromB2(K5) to themselves,
on Figures 2 and 3 we used capital and small letters to indicate this symmetry (for instance,
the strata of ”a” contain centrally symmetric configurations to the configurations of the
strata ”A”).

As in the case of 4 point configurations we skip the subgraphs of K5, see the second
general remark above (GR2).

2.5 Essentially new strata inB2(K6)

The stratification ofB2(K6) is much more complicated, at this moment we do not even
know how many strata of distinct dimension are present in thestratification.

According to GR1 the first step in studying the stratificationof B2(K6) is to study all
possible distinct types of strata of codimension 1. In the examples ofKn for n < 6 we
only have strata corresponding to the following geometric condition: three points are in a
line. For the case of 6 points we get two additional types of strata: six points on a conic,
and three lines passing through three pairs of points have a unique point of intersection.

So the following are three codimension 1 strata (appeared in[12] by N. L. White and
W. Whiteley):

• three points in a line;

• the linesv1v2, v3v4, andv5v6 meet in one point (or all parallel);

• all the six points are on a conic.
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We conclude this subsection with the following problems.

Problem 2.7. Find a description ofB2(K6), B3(K4) andB3(K5) similar to the ones for
B2(K4) andB2(K5) shown in the previous subsections.

2.6 A few words about the casen > 6

In [4] we have studied strata of the 7 and 8 point configurations. There are 4 distinct types
of codimension 1 strata for 7 points and 17 types for 8 points.

The 4 types of codimension 1 strata for 7 points are defined by the following geometric
conditions:

• three points in a line;

• the linesv1v2, v3v4, andv5v6 meet in one point (or all parallel);

• the linesv1v2, v3v4, andv5p (wherep is the intersection of the linesv2v6 andv3v7)
have a common nonempty intersection;

• the six pointsv1, v2, v3, v4, v5, andp (wherep is the intersection of the linesv1v6
andv3v7) are on a conic.

For the list of strata of 8 point configurations we refer to [4].
It turns out that the geometric conditions of any codimension 1 stratum can be obtained

by the following procedure. Consider the points of configuration P ; for each two pairs
of points (vi, vj) and (vk, vl) of this configuration consider the point of intersection of
the linesvivj andvkvl. This leads to a bigger configuration of points includingP and
the above intersections, we denote it byU(P ). This operation can be iteratively applied
infinitely many times, which results in auniversal set

U∞(P ) =

∞
⋃

m=0

Um(P ).

Any condition for a codimension 1 stratum is always as follows: three certain points of
U∞(P ) are in a line(for the details, see for instance [9] and [4]).

Example 2.8. The conditionthe linesv1v2, v3v4, andv5v6 meet in one pointin terms of
points ofU1(P ) = U(P ) is as follows.The pointsv1, v2, andp = v3v4 ∩ v5v6 are in a
line.

Remark 2.9. For simplicity reasons we omit discussions of cases where certain linesvivj
andvkvl are parallel, due to the fact that this situation is never generic for codimension
1 strata. In general one may think that if the linesvivj andvkvl are parallel, then their
intersection point is in the line at infinity in the projectivization ofR2.

Remark 2.10. At first glance, the conditionsix points are on a conicis of different nature.
Nevertheless, it is a relation on the points of the configuration in U1(P ) described by
Pascal’s theorem:The intersections of the extended opposite sides of a hexagon inscribed
in a conic lie on the Pascal line.See also Example 2.14 below.

Problem 2.11. Describe all the possible different types of strata for 9 points.

Problem 2.12. How to calculate the number of different types of strata forn points with
arbitraryn?
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It is also interesting to have an answer for the following question:how many iterations
(i.e., find the minimalm for Um(P )) does one need to perform to describe all conditions
for the codimension 1 strata ofn-point configurationsP?

Problem 2.13. Which configurations ofUm(P ) define the same geometric condition?

This problem is a kind of question of finding generators and relations for the set of all
conditions. Let us show one type of such ”relations” in the following example.

Example 2.14. Consider the condition: six pointsv1, v2, . . . , v6 are on a conic. This
condition is described by configurations contained inU1(P ) via Pascal’s theorem:

The pointsp, q, r are in a line for







p = vσ(1)vσ(2) ∩ vσ(4)vσ(5)
q = vσ(2)vσ(3) ∩ vσ(5)vσ(6)
r = vσ(3)vσ(4) ∩ vσ(6)vσ(1)

,

whereσ is an arbitrary permutation of the set of six elements. So, there are 60 different
configurations ofU1(P ) defining the same geometric condition.

3 Further study of strata: surgeries

We now look into subgraphs contained in a particular stratumand ask the basic question
on the dimension of the fiber.

Even graphs of very low connectivity admit non-zero tensegrities, for disconnected or
one-connected graphs we may simply examine the connected or2-connected components.
Also 2-connected graphs may be decomposed via the 2-sum, see[11]: Consider graphsG1

andG2, their configurationsP1 andP2 admitting tensegrities withp1q1 a cable inG1(P1)
andp2q2 a strut inG2(P2). We form the2-sumG1

⊕

G2 by identifyingp1 with p2 andq1
with q2 and removing the identified edge. We can inherit a configurationP from P1 and
P2 by fixingP1 and properly dilating, rotating and translatingP2. It is clear that

dimW (G1

⊕

G2, P ) = dimW (G1, P1) + dimW (G2, P2)− 1.

Since 2-sum decomposition is canonical, we can describe geometric conditions for 2-
connected graphs by geometric conditions on their 3-blocks. For example the geometric
condition forG in Figure 4 is that the linesv1v2, v3v4, andv5v6 meet in one point.

v
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v
5

v
1

v
2

v
3

v
4

v
6

v
5

v
1

v
2

v
3

v
4

v
6

v
8

v
5

v
7

v
8

v
7

=

Figure 4: The 2-sum of a triangular prism withK4

3.1 Subgraphs related to codimension 1 strata

As we have already mentioned in GR3, for any codimension 1 stratum there exists at least
one subgraph ofKn that generically does not admit tensegrities but at this stratum admits
a one-dimensional family of tensegrities. Let us show such subgraphs for the codimension
one strata ofB2(K6) andB2(K7).
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v1 v2

v3v4
v5 v6

v1 v2

v3v4
v5 v6

v1 v2

v3v4
v5 v6

Figure 5: Examples of subgraphs ofK6 admitting tensegrities at codimension 1 strata of
B2(K6).

v1 v2

v3 v4v5

v6 v7
v1 v2

v3v4
v5 v6

v7
v1 v2

v3v4
v5

v6

v7

v1 v2

v3v4
v5

v6

v7

Figure 6: Examples of subgraphs ofK7 admitting tensegrities at codimension 1 strata of
B2(K7).

Example 3.1. In the case ofK6 we have three strata of different geometrical nature. The
first triangular subgraph (Figure 5, left) is related to the strata with three points in a line.
The second (Figure 5, middle) corresponds to the strata whose three pairs of points gen-
erate lines passing through one point. The last one (Figure 5, right) corresponds to the
configurations of six points on a conic.

Example 3.2. In the case ofK7 there are the following new examples of subgraphs, cor-
responding to the main 4 different types of strata.

From the left to the right we have the following geometric conditions

• v1, v2, andv3 are in a line;

• the linesv1v2, v3v4, andv5v6 meet in one point;

• the linesv1v2, v3v4, andv5p (wherep = v2v6 ∩ v3v7) have a common point;

• the six pointsv1, v2, v3, v4, v5, andp (wherep = v1v6 ∩ v3v7) are on a conic.

Note that the example for three points in a line is actually the 2-sum of a triangle with
two atoms, so the only way for a non-zero self stress on the edges is to havev1, v2, andv3,
the vertices of the triangle, in a line.

Remark 3.3. Geometric conditions for the graphs with 8 and fewer vertices are given
in [4]. Several of those geometric conditions were described before in terms of bracket
polynomials in [12] by N. L. White and W. Whiteley. We also refer to the paper [1] by
E. D. Bolker and H. Crapo for the relation of bipartite graphswith rectangular bar con-
structions.

3.2 Surgeries on subgraphs that change geometric conditions in a predictable way

In this subsection we present several surgeries that allow to guess the geometric conditions
for new strata (characterized by certain subgraphs) via other strata (characterized by these
graphs modified in a certain way). We call such modifications of graphssurgeries.
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3.2.1 Surgeries that do not change geometric conditions

LetG be a graph, denote byGe the graph with an edgee removed.

Proposition 3.4. (Edge exchange)Consider a graphG and a subgraphH , and lete1 and
e2 be two edges ofH . LetP be a configuration for whichdimW (H,P ) = 1. Suppose
also that the self stresses ofH do not vanish at the edgese1 ande2. Then we have

dimW (Ge1 , P ) = dimW (Ge2 , P ).

In the situation of Proposition 3.4 the strata ofGe1 (P ) andGe2(P ) are defined by the
same geometrical conditions.

3.2.2 Two two-dimensional surgeries that change geometricconditions

The first surgery is described in the following proposition.

Proposition 3.5. Consider the frameworksG(P ), GI
1(P

I
1 ), andGI

2(P
I
2 ) as on the figure:

v1
v2 v3

v4

p
q

G(P )

v1

v4

p
q

GI
1(P

I
1 )

v2 v3

v4

p
q

GI
2(P

I
2 )

If none of the triples of points(p, v2, v3), (q, v2, v3), (p, v2, v4), (q, v3, v4) and(v2, v3, v4)
are on a line then we have

dimW (GI
1, P

I
1 ) = dimW (GI

2, P
I
2 ).

Example 3.6. Let us consider a simple example of how to get a geometric condition for
the graph

v1 v2

v3v4
v5

v6

v7

to admit a tensegrity knowing all geometric conditions for 6-point graphs. Let us apply
Surgery I to the pointsv5, v6, v7. We have:

v1 v2

v3v4
v5

v6

v7

v1 v2

v3v4
v5 p

.

The geometric condition to admit a tensegrity for the graph on the right is:
the linesv1v2, v3v4 andv5p intersect in a point.

Hence the geometric condition for the original graph is:
the linesv1v2, v3v4 andv5p intersect in a point, wherep = v2v6 ∩ v3v7.
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Now let us show the second surgery.

Proposition 3.7. Consider the frameworksG(P ), GII
1 (P II

1 ), andGII
2 (P II

2 ) as on the
following figure:

v1
v2 v3

v4

p
q

rs

G(P )

v2 v3

p
q

rs

GII
1 (P II

1 )

v1

v4

p
q

rs

GII
2 (P II

2 )

If none of the triples of points(p, q, v1), (p, v1, v4), (r, v1, v4), (q, v1, v4), (s, v1, v4), or
(r, s, v4) lie on a line then we have

dimW (GII
1 , P II

1 ) = dimW (GII
2 , P II

2 ).

Remark 3.8. Both surgeries were shown in [4]. There is a certain analogy of the first
surgery to∆Y exchange in matroid theory (see for instance [13] and [5] forthe connections
between matroids and rigidity theory), but it is not exactlythe same.

Remark 3.9. Actually these surgeries are valid in the multidimensionalcase as well under
the condition that certain points are in one plane.

3.3 A new tensegrity surgery inR3

We conclude this paper with a single surgery for tensegrities inR
3.

Proposition 3.10. Consider a graphG and frameworksG(P ), G1(P1), andG2(P2) as
follows:

v1
v2 v3

v4

e1
e2

e3
e4

e5 e6

G(P )

v2 v3

v4

e1
e2

e3
e4

e5 e6

G1(P1)

v1
v2 v3

v4

e1
e2

e3
e4

e5 e6

G2(P2)

Denote the planev2v3v4 byπ1. Suppose that the couples of edgese1 ande2, e3 ande4, e5
ande6 define planesπ2, π3, andπ4, different fromπ1. Assume thatπ2 ∩ π3 ∩ π4 is a one
point intersection.

If G1(P1) andG2(P2) have nonzero stress on the edges connectingv1, v2, v3, andv4
then

π1 ∩ π2 ∩ π3 ∩ π4 = v1.

In this case we additionally have

dimW (G1, P1) = dimW (G2, P2).
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Proof. The first statement follows sincev1 only has valency 3 inG2(P2), sov1, v2, v3,
andv4 need to be coplanar to have a nonzero edge stress. Now we explain how to map
W (G1, P1) to W (G2, P2). The inverse map is simply given by the reverse construction.
By the conditionsv1 is the intersection point of the planesπ1, π2, andπ3. We add the
uniquely defined plane atom onv1, v2, v3, v4 to G1(P1) that cancels the edge stress on
v2v3. Since the planeπ1 does not coincide with the planeπ2 spanned by the forces one1
ande2, the edge stress onv2v4 is also canceled. By the same reasons the edge stress on
v3v4 is canceled as well. This uniquely defines a self stress onG2(P2).

3.4 Some related open problems

The next goal in this approach is to continue to study the geometry of the strata. Ideally
one would like to find techniques that will give geometric conditions for a graph via its
combinatorics. This question seems to be a very hard open problem. The studyof surgeries
is the first step to solve it at least in codimension 1.

For a start we propose the following open question.

Problem 3.11. Find all geometric conditions for the strata of 9 point tensegrities.

The surgeries introduced in this section were extremely useful for the study of 8 point
configurations (see in [4]). We think that it is not enough to know only these surgeries to
find all the geometric conditions. This gives rise to anotherquestion.

Problem 3.12. Find other surgeries on graphs that predictably change the geometric con-
ditions.

As far as we know there is no systematic study of strata for tensegrities inR3 or higher
dimensions: these cases are much more complicated than the planar case. At least the
stratification ofB3(K5) should have a description similar to that ofB2(K4), since 5 points
in general position inR3 admit a unique non-zero self stress.

Additionally one should examine the rigidity properties ofsubgraphs in a stratum. For
K4 we have 14 strata of full dimension. For 8 of them the convex hull is a triangle, in 5 of
the strata the points are in convex position. A tensegrity for the convex position has 4 struts
(cables) and two cables (struts), while in the non-convex case there are three cables and
three struts. All of these tensegrities are (infinitesimally) rigid and struts and cables may
be exchanged without destroying rigidity. However, when viewed as graphs embedded in
R

3 only half of them are rigid. For the convex case, there must becables on the convex
hull and two struts. In the non-convex case there must be a triangle of struts on the convex
hull and three cables in the interior, termed a spider web by R. Connelly. None of these
are proper forms in the sense of B. Grünbaum. They are minimally rigid, but in the convex
case they have members intersecting in a vertex other than a vertex of the graph, in the
non-convex case there is a vertex without a strut. B. Grünbaum in his lectures on lost
mathematics [6] asks about the number of proper forms givenn struts. On 3 struts, there
is only one tensegrity which is minimally rigid with edges only intersecting at vertices and
such that every vertex is endpoint of at least one strut. For 4struts there are at least 20
forms, but it is not known how many there are. The number of forms onn struts is bounded
by the number of strata onB3(Kn). For the hierarchies of the various kinds of rigidity
see [3].
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