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Abstract This paper studies semidiscrete surfaces from the viewpoint of par-
allelity, offsets, and curvatures. We show how various relevant classes of sur-
faces are defined by means of an appropriate notion of infinitesimal quadrilat-
eral, how offset surfaces behave in the semidiscrete case, and how to extend
and apply the mixed-area based curvature theory which has been developed
for polyhedral surfaces.
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A semidiscrete surface x(i, u) is a mapping from Z × R to some vector

space, i.e., a bivariate function of one discrete and one continuous variable.
Such mixed continuous-discrete objects classically occur in the transformation
theory of surfaces. For instance, a pair x(u, v) and x+(u, v) of surfaces is seen
as a semidiscrete mapping defined in {0, 1} × R2. The viewpoint of smooth
parameterized surfaces as limits of discrete nets — systematically exploited
by [2] — directly leads to semidiscrete objects, if limits do not apply to all
variables, only to some of them. In this way the theory of smooth surfaces,
their transformations, and the permutability of their transformations appear as
limit cases of a discrete master theory of discrete nets and integrable systems.

This paper is concerned with semidiscrete objects of very simple type.
They fit the larger theory if they are considered as a transformation sequence
of smooth curves, but they are interesting in their own right and in fact they
have turned up in geometry processing applications [8].

Even if in many senses semidiscrete surfaces are limit cases of discrete ones
and their properties are similar to both the discrete and continuous cases, they
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nevertheless deserve separare study [14]. Classes of surfaces already treated
are the asymptotic surfaces of constant Gaussian curvature [15], the isother-
mic surfaces [6], and the conjugate surfaces and their circular and conical
reductions, which are also relevant for applications [8].

This paper demonstrates how the concept of parallel surfaces (i.e., Combes-
cure transforms) and offsets (i.e., parallel surfaces at constant distance) lead
to a theory of curvatures. For smooth surfaces this topic is classical: Steiner’s
formula

dA(xτ ) = (1− 2Hτ +Kτ2) dA(x),

on the surface area element of an offset at distance τ belongs here. A discrete
theory has been given by [7] and [1]. Besides applying this idea to the semidis-
crete case, this paper also extends our knowledge of discrete curvatures, for
instance by the formula

H(f) = − 1
2 area(f)

∑
e∈∂f

tan
αe
2
× len(e),

for the mean curvature of a face of a conical polyhedral surface, more details
of which are found in the text below.

1 Smooth, Semidiscrete, and Discrete Surfaces

We define a net as a mapping x : Zk × Rm−k → Rn, which depends on
discrete parameters i1, . . . , ik and continuous parameters uk+1, . . . , um. We
do not insist on entire Zk × Rm−k as the domain where x is defined, since
our study concerns local properties. For the discrete parameter ir we use the
notation xr for an index shift:

xr(. . . , ir, . . . ) = x(. . . , ir + 1, . . . ),

and x−r denotes the inverse shift. Differentiation with respect to ir is done by
the forward difference operator: δrx = xr − r. For the continuous parameters
we use partial derivatives δjx = ∂x

∂uj
. For us the most important case is k =

m− k = 1, i.e.,
x : Z× R→ R3, x = x(i, u). (1)

The derivatives δ1x, δ2x with respect to the one discrete and the one continuous
parameter are written as

∆x(i, u) = x(i+ 1, u)− x(i, u), ẋ(i, u) =
∂x

∂u
(i, u).

A semidiscrete net x(i, u) is visualized as piecewise-smooth surface, namely as
the union of line segments

(1− v)x(i, u) + vx(i+ 1, u), where v ∈ [0, 1]. (2)

Recall that this strip is a developable surface, if and only if

{∆x, ẋ, ẋ1} linearly dependent.
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1.1 Infinitesimal quadrilaterals

While the definition of certain classes of smooth surfaces (conjugate, circular,
etc.) requires 2nd order derivatives, the analogous definition in the discrete
category frequently involves only geometric properties of single faces. It turns
out that for semidiscrete surfaces, there is a natural notion of infinitesimal
quadrilateral which allows a similar approach. Motivated by the decomposition

x x1

x2 x12
= x x1

x x1
+ 0 0

δ2x δ2x1

of an elementary quadrilateral of a discrete surface x : Z2 → U we define:

Definition 1.1. An infinitesimal n-gon is a tangent vector in the affine space
of n-gons; we use the notation (P ;V ) for a tangent vector representing any
smooth path P (τ) of n-gons with P (0) = P , d

dτ P (0) = V . The elementary
quadrilaterals (P (i, u);V (i, u)) of the semidiscrete surface x(i, u) are repre-
sented by

P = x x1

x x1
, V = 0 0

ẋ ẋ1
. (3)

Recall the notions of conjugate and circular discrete surfaces which are
characterized by elementary quads being planar or possessing a circumcircle.
Conical surfaces have the property that faces adjacent to a vertex always
touch some common right circular cone [2,4]. The following definitions for
semidiscrete surfaces are natural extensions and have in fact already been
given by [8,6]:

Definition 1.2. A semidiscrete surface x(i, u) is regular/conjugate/circular/
conical ⇐⇒ the respective condition listed below is fulfilled for all i, u.

1. Regularity is linear independence of both {ẋ,∆x} and {ẋ−1, ∆x}.
2. Conjugacy means regularity and linear dependence of {∆x, ẋ, ẋ1}.
3. Circularity means that if in addition there is a circle passing through x and

x1 such that derivatives ẋ, ẋ1 are tangent there.
4. The conical property is conjugacy and existence of a right circular cone

with axis through x which touches the adjacent ruled strips along the rulings
x ∨ x1 and x ∨ x−1.

Note that conjugacy and circularity are properties of the infinitesimal quadri-
lateral (P ;V ) of Equation (3).

Corollary 1.3 (see [8]). Circularity and conicality are equivalently expressed
by the condition that the configuration of straight lines

x ∨ x1, x+ span(ẋ), x1 + span(ẋ1) (circ.)
x+ span(ẋ), x ∨ x1, x ∨ x−1 (con.)

respectively, is invariant w.r.t. a Euclidean symmetry.
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Remark 1.4. Conjugacy of surfaces is uniformly expressed by

{δ1x, δ2x, δ12x} linearly dependent,

where x may be discrete, semidiscrete, or smooth. This is in accordance with
the definition that a conjugate discrete net is defined as a quad mesh with
planar faces, i.e., a quad mesh which is a polyhedral surface.
Remark 1.5. Recall that smooth surfaces x, x+ constitute a Jonas pair if we
have linear dependence of {x+−x, ∂kx, ∂kx+} for all parameters ik, throughout
the domain of definition. They form a Darboux pair if similarly there is a circle
passing through x+, x such that the partial derivatives ∂kx, ∂kx+ are tangent
there (see e.g. [2]). It follows that for a conjugate semidiscrete surface, curves
x(i, ·) and x(i+1, ·) are a Jonas pair. If x is cirular, they constitute a Darboux
pair.

1.2 Parallelity of surfaces

Combescure pairs x, x+ of surfaces (i.e., surfaces where δix, δix+ are parallel)
turn up frequently in discrete differential geometry. We are particularly inter-
ested in surfaces at constant distance which are discussed later. We prefer to
speak of parallel surfaces, which is written as

x ‖ x+.

For semidiscrete surfaces, parallelity means ∆x ‖ ∆x+ and ẋ ‖ ẋ+.

Proposition 1.6. Assuming regular surfaces, the properties of x being con-
jugate, circular, or conical are invariant under parallelity.

This follows directly from Cor. 1.3. It turns out that parallelity is interest-
ing only for conjugate surfaces:

Proposition 1.7. Assume that x is regular, but not conjugate, i.e., we have
linear dependence of {ẋ,∆x,∆ẋ} only in a set of measure zero w.r.t. 1-dimensional
Lebesgue measure in R× Z. Then

x+ ‖ x ⇐⇒ x+, x homothetic.

Proof. Let U be the ambient space which contains all surfaces. The statement
is void unless dimU ≥ 3. We compute in the exterior algebra Λ2U and show
the statement by proving that the ratios λ = ẋ : ẋ+ and γ = ∆x : ∆x+ (well
defined by parallelity and regularity) are constant and equal. Firstly,

0 = ∂u(∆x ∧∆x+) = (ẋ1 − ẋ) ∧ (γ∆x) +∆x ∧ (λ1ẋ1 − λẋ)
= (γ − λ)∆x ∧ ẋ− (γ − λ1)∆x ∧ ẋ1.

Linear independence of ∆x, ẋ, ẋ1 implies linear independece of ∆x∧ẋ, ∆x∧ẋ1,
so we have γ = λ and λ = λ1. Secondly, differentiation of γ’s defining equation
together with λ = γ yields

0 = ∂u(∆x+ − γ∆x) = γẋ1 − γẋ− γ̇∆x− γ∆ẋ = γ̇∆x.
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It follows that γ̇ = 0. The identities γ = λ, γ̇ = 0 and ∆γ = 0 shown here
hold everywhere except in a zero set, so we conclude γ = λ = const.

1.3 Parallel Infinitesimal Polygons.

The curvature theory of discrete surfaces presented by [7,1] depends on the
notion of parallel polygons, which are required to be contained in parallel
planes.

For P = (p0, . . . , pn−1), Q = (q0, . . . , qn−1) ∈ Un,
P ‖ Q ⇐⇒ (pi+1 − pi) ∧ (qi+1 − qi) = 0 (indices modulo n).

We extend the definition of parallelity to infinitesimal polygons in a way which
serves our purposes when applied to the elementary quads of a semidiscrete
surface. We first consider infinitesimal polygons (P ;V ) and (Q;W ) being rep-
resented by n-gon paths

P + τV, Q+ τW.

For parallelity we require P ‖ Q; in addition each Λ2U -valued polynomial

(pi+1(τ)− pi(τ)) ∧ (qi+1(τ)− qi(τ)) (indices modulo n)

(in the indeterminate τ) shall have a zero at τ = 0 whose order is higher than
would be the case for a generic element V ×W ∈ TPUn × TQUn. The next
lemma illustrates this definition by means of the elementary quadrilaterals of
semidiscrete surfaces.

Lemma 1.8. Parallelity of conjugate surfaces x, x+ is equivalent to parallelity
of elementary qadrilaterals

x x1

x x1
+ τ

0 0
ẋ ẋ1

,
x+ x+

1

x+ x+
1

+ τ
0 0
ẋ+ ẋ+

1

.

The latter is expressed by the conditions

(x1 − x) ‖ (x+
1 − x+), ẋ1 ‖ ẋ+

1 , ẋ ‖ ẋ+,

(ẋ− ẋ1) ∧ (x+ − x+
1 ) + (x− x1) ∧ (ẋ+ − ẋ+

1 ) = 0.

Proof. Parallelity of elementary quads firstly means that (x1−x) ‖ (x+
1 −x+),

and secondly that Λ2U -valued polynomials

(τ ẋ) ∧ (τ ẋ+), (τ ẋ1) ∧ (τ ẋ+
1 ),

(x− x1 + τ(ẋ− ẋ1)) ∧ (x+ − x+
1 + τ(ẋ+ − ẋ+

1 ))

have zeros of multiplicities 3, 3, 2, resp., for τ = 0. This verifies the definition
of parallelity of infinitesimal quadrilaterals.

Clearly parallelity of elementary quads implies parallelity of surfaces. For
the converse we observe that the first three conditions express the definition
of x ‖ x+ while the last one is found by differentiating ∆x ∧∆x+ = 0.
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1.4 Offsets in three dimensions.

In the elementary differential geometry of surfaces, an offset means a surface at
constant distance to a given one. This requirement defines the offset uniquely,
but for discrete surfaces there are different ways of defining offsets [4,7,2]. In
the semidiscrete category the situation is similar, as has been observed by [8].
We say that a parallel pair x, x+ of surfaces is an offset pair at distance d,
with Gauss image

s =
1
d

(x+ − x),

if x, x+ are at constant distance d from each other. This distance can be
measured in different ways:

1. Case (V), vertex offsets: Distance of vertices is constant:

dist(x, x+) = d.

2. Case (E1) edge offsets, 1st kind: Distance of rulings is constant:

dist(x ∨ x1, x
+ ∨ x+

1 ) = d.

3. Case (E2) edge offsets, 2nd kind: Distance of tangents is constant:

dist(x+ span(ẋ), x+ + span(ẋ+)) = d.

4. Case (F) face offsets: Distance of tangent planes is constant:

dist(x+ span(∆x, ẋ), x+ + span(∆x+, ẋ+) = d.

In the following discussion we restrict ourselves to U = R3 as ambient
space. We will see that there are essentially only two cases of offsets, not four.
Before we prove that, we state an obvious but important relation:

Proposition 1.9. The surface x+ is an offset of x at distance d ⇐⇒ s =
1
d (x+ − x) is an offset of the same type of the zero surface.

Lemma 1.10. Offset types (E2), (F) are generically equivalent.

Proof. We translate statements (E2), (F) into equivalent statements (E′2), (F′)
worded in terms of the Gauss image surface s, which is conjugate and parallel
to both x, x+:

1. case (E′2): Rulings s+ span(∆s) = s ∨ s1 are tangent to the unit sphere.
2. case (F′): Tangent planes s+ span(ṡ, ∆s) are tangent to the unit sphere.

Assuming (F′), there is a normal vector field n : Z× R→ S2 such that

〈s, n〉 = 〈s1, n〉 = 1 and 〈ṡ, n〉 = 〈ṡ1, n〉 = 〈∆s, n〉 = 0

(we find n by normalizing ẋ×∆x). We compute

0 = ∂u〈s, n〉 = 〈ṡ, n〉+ 〈s, ṅ〉 = 〈s, ṅ〉 and similarly 〈s1, ṅ〉 = 0,
0 = ∂u〈n, n〉 = 2〈ṅ, n〉 = 0.
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It follows that each of s, s1, n fulfills the two linear equations 〈n, · 〉 = 1 and
〈ṅ, · 〉 = 0. If ṅ 6= 0 (this is the genericity assumption) this implies that they
are collinear and n ∈ s∨s1. Since the tangent plane touches the unit sphere in
the point n, the line s∨ s1 touches the unit sphere in the point n. This shows
(E′2).

Assume now (E′2). Consider the point of contact n of the ruling s ∨ s1
with the unit sphere. If ṅ, ∆s are linearely independent (this is the genericity
assumption), these two vectors, both orthogonal to n, span the tangent plane
which obviously touches the unit sphere. This shows (F′).

Lemma 1.11. Offset cases (V) and (E1) are generically equivalent.

Proof. Polarity w.r.t. S2 maps vertices “x”, tangents “x + span(ẋ)”, rulings
“x ∨ x1” and tangent planes of a conjugate surface to the tangent planes,
rulings, tangents, and vertices, respectively, of another conjugate surface. It
follows that this polarity maps Gauss images of types (V) and (E1) to Gauss
images of types (F) and (E2), resp., and vice versa. The equivalence (F) ⇐⇒
(E2) shown above thus implies (V)⇐⇒ (E1).

The following statement, which is analogous to the discrete case shown in
[9], is stated already in [8].

Theorem 1.12. Consider a semidiscrete conjugate surface x. A nontrivial
vertex offset exists ⇐⇒ x is circular.

Sketch of Proof. If x has a vertex offset, there exists a Gauss image s inscribed
in S2. By Prop. 1.6 it is sufficient to show that s is circular. This follows directly
from conjugacy of s: The plane through s and s1 which is spanned by vectors
ṡ, ∆s, ṡ1 intersects S2 in the desired circle.

For the converse we assume that x is circular. We construct a Gauss image
surface s : R× Z→ S2 parallel to x.

Choose s(i0, u0) arbitrarily on S2∩ẋ⊥. Since the straight line s+span(∆x),
evaluated at (i0, u0) has exactly one other intersection point with the unit
sphere, s(i0 + 1, u0) is uniquely determined by parallelity. The circular con-
dition ensures that also there, s ∈ ẋ⊥. By induction we construct all values
s(i, u0).

As to the continuous variable, s(i0, u) shall be the integral of the linear
ODE ṡ = − 〈s,ẍ〉〈ẋ,ẋ〉 ẋ. By construction, ∂uu〈s, s〉 = 0, and initial conditions at
u = u0 are such that 〈s, s〉 = const. = 1.

To compute arbitrary values s(i, u) we can either apply the discrete con-
struction to s(i0, u) or the continuous construction to s(i, u0). Consistency
(i.e., integrability of this difference-differential equation) follows from the cir-
cular condition. We omit this calculation.
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1.5 Support Functions.

Our discussion of offsets in R3 leads us to consider support functions of sur-
faces, which is motivated by the well known concept of the same name in
convex geometry. We start by defining a unit normal vector field n of a con-
jugate surface x, by the requirements

〈δ1x, n〉 = 〈δ2x, n〉 = 0, ‖n‖ = 1.

We can locally make the normal vector field unique by requiring

det(δ1x, δ2x, n) > 0, (4)

but this does not always serve our purposes; when we speak about a parallel
pair x, x+ with 1

d (x+ − x) = s, then we always consider a common normal
vector field n for all three surfaces x, x+, s, even if the handedness condition
(4) is fulfilled only for, say, x.

Definition 1.13. If n is a unit normal vector field of the conjugate surface
s, then the associated support function is given by

σn,s : R× Z→ R, σn,s = 〈n, s〉.

Remark 1.14. Obviously, if x+ = x + λs, then σn,x+ = σn,x + λσn,s. If s is
tangentially circumscribed to the unit sphere, then σn,s = const. = 1.

Theorem 1.15. Assume a vector field n with det(n, δ1n, δ2n) 6= 0. Then
there is a conjugate surface x whose support function w.r.t. n equals the given
function σ, if and only if

det
(
σ δ1σ δ2σ δ2δ1σ
n δ1n δ2n δ2δ1n

)
= 0.

This statement applies to discrete, semidiscrete and smooth surfaces, with the
appropriate meanings of δ1, δ2.

Proof. Define x by solving 〈n, x〉 = σ, 〈δ1n, x〉 = δ1σ, 〈δ2n, x〉 = δ2σ. The
vanishing determinant means that x also solves 〈δ2δ1n, x〉 = δ2δ1σ.

(i) In the discrete case a linear combination of equations gives the equiva-
lent condition that the solution of 〈n, x〉 = σ, 〈n1, x〉 = σ1, 〈n2, x〉 = σ2 also
solves 〈n12, x〉 = σ12. By an index shift, this is conjugacy.

(ii) In the smooth case, the definition of x means that the surface x(u1, u2)
is the envelope of tangent planes 〈n, · 〉 = σ. Differentation 0 = δ1(〈δ2n, x〉 −
δ2σ) = 〈δ2δ1n, x〉+ 〈δ2n, δ1x〉− δ1δ2σ shows that the determinant condition is
equivalent to 〈δ1n, δ2x〉 = 0, which is well known to express conjugacy.

(iii) The semidiscrete case is a mixture of (i) and (ii). A linear combina-
tion of equations defines x equivalently as solution of 〈n, ·〉 = σ, 〈ṅ, ·〉 = σ̇,
〈n1, ·〉 = σ1, and the determinant condition means x also solves 〈ṅ1, ·〉 = σ̇1.
The first two equations define the ruling through x of the developable en-
veloped by planes 〈n(i, t), ·〉 = σ(i, t) as t is running and i fixed, while the last
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two equations define the corresponding ruling through x1. Conjugacy means
that x is contained in the latter ruling, which is just the determinant condi-
tion.

Corollary 1.16. Assume that conjugate surfaces x, x+ have the same unit
normal vector field n. If δ1n 6= 0, δ2n 6= 0, then x, x+ are parallel.

Thus there is a linear space of surfaces with given unit normal vector field
which are conjugate apart from the condition of regularity.

Proof. The previous proof states that span(δ1x), span(δ2x) is determined by
the normal vector field alone, e.g. in the smooth case by 〈δ1x, δ2n〉 = 0.

Corollary 1.17. The conjugate surface x with unit normal vector field n has
an offset at constant face-face distance ⇐⇒ det(δ1n, δ2n, δ2δ1n) = 0

Proof. In view of Prop. 1.9, existence of such offsets means that σ = 1 = const.
is an admissible support function. Now Theorem 1.15 immediately gives the
result.

Definition 1.18. Parallel surfaces x, x+ with normal vector fields n = n+

and support functions σ, σ+ are assigned the distance function σ+ − σ.

The next result was mentioned by [8]:

Theorem 1.19. Consider a semidiscrete conjugate surface x and its unit
normal vector field n. Provided we are in the generic case det(ẋ,∆x−1, ∆x) 6=
0, we have the following equivalences:

1. x has a face offset ⇐⇒
2. n is circular ⇐⇒
3. x is conical.

Proof. The proof uses the ‘symmetry’ characterizations of circular and conical
surfaces mentioned in Cor. 1.3.

1. =⇒ 2. follows from Cor. 1.17: we have det(∆n, ṅ,∆ṅ) = 0, i.e., n is
conjugate. Being inscribed in S2, n is circular.

2. =⇒ 3.: The ruled surface strips associated with x are the envelopes of
planes with normal vector n. Thus vectors ∆x,∆x−1, ẋ are parallel to n × ṅ,
n−1×ṅ−1, n−1×n, respectively, and the symmetry required for n being circular
immediately yields a symmetry revealing x as conical.

3. =⇒ 1.: Consider the oriented right circular cone with vertex x which
touches the (oriented) adjacent ruled strips along rulings, and parallel translate
it to become tangentially circumscribed to S2. The vertex x thereby moves to
a new position s; tangent planes are now tangent to S2. It follows that the
semidiscrete surface s, which by construction is parallel to x, is tangentially
circumscribed to S2. This implies that σ = const. = 1 is an admissible support
function for x.
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2 Curvatures

We recapitulate how [7] and [1] introduce curvatures associated with the faces
of a polyhedral surface. This is done via the classical Steiner formula, which
relates the area element of an offset surface xτ at distance τ from an original
surface x via

xτ = x+ τs =⇒ dA(xτ )
dA(x)

= 1− 2Hτ +Kτ2, (5)

locally around τ = 0. Here s is the unit normal vector field (the Gauss map),
and H, K are mean and Gaussian curvatures, respectively. In the framework
of relative differential geometry this definition was generalized to a surface x
and a Gauss map s which is not necessarily contained in the unit sphere, but
such that x, s have the same unit normal vector in corresponding points [13].

For discrete polyhedral surfaces (and in particular for discrete conjugate
nets), there is a similar construction which used to define curvatures of circular
surfaces in [10,11]. Suppose x, s are parallel, and s is regarded as the Gauss
image of x. Then the variation of surface area of faces as we travel through a
1-parameter family of offsets reads

xτ = x+ τs =⇒ A(fτ )
A(f)

= 1− 2H(f)τ +K(f)τ2,

where f and fτ are corresponding faces of the surface x and its offset xτ . The
quantities H(f) and K(f) — mean and Gaussian curvatures of the face f —
have been introcuded by [7] and are studied by [1]. Their relation to mixed
areas is explained in the next section.

2.1 The oriented mixed area of polygons

The above-mentioned curvature theory is based on the oriented area and
oriented mixed area of polygons. We therefore first collect some definitions
before we proceed to semidiscrete surfaces. The oriented area of an n-gon
P = (p0, . . . , pn−1) in a two-dimensional vector space U , is given by Leibniz’
sector formula:

A(P ) =
1
2

∑
0≤i<n

[pi, pi+1].

Here and in the following indices in such sums are taken modulo n. We use
the notation [a, b] for a determinant form in U which defines the area, i.e., [a,
b] = det(a, b, n), for some normal vector n of this plane, the choice of which is
irrelvant for curvatures. The sector formula is invariant w.r.t. translation by a
vector t ∈ R3, not necessarily contained in U ;∑

det(pi + t, pi+1 + t, n) =
∑

det(pi, pi+1, n) + det(
∑

pi, t, n)

− det(
∑

pi+1, t, n) =
∑

det(pi, pi+1, n).
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This means that A(P ) can be extended to polygons lying in any affine subspace
t+U . Apparently A is a quadratic form, whose associated symmetric bilinear
form is denoted by the symbol A(P,Q):

A(λP + µQ) = λ2A(P ) + 2λµA(P,Q) + µ2A(Q), where (6)

A(P,Q) =
1
4

∑
0≤i<n

[qi, pi+1] + [pi, qi+1].

Note that in Equation (6) the sum of polygons is defined vertex-wise, and
that A(P,Q) does not, in general, equal the well known mixed area [12]. For
boundaries of convex polygons which happen to be parallel, however, this is
the case (as discussed by [1]). Thus A(P,Q) is called the (oriented) mixed area
of P,Q, provided P ‖ Q.

2.2 Area and mixed area of infinitesimal quadrilaterals.

For the differentials of area and mixed area we observe that A(P + εV ) =
A(P ) + 2εA(P, V ) + ε2A(V ). A similar relation holds for the mixed area of
P + εV and Q+ εW . Consequently

dPA(V ) = 2A(P, V ), dP,QA(V,W ) = A(P,W ) +A(V,Q).

For the special infinitesimal quadrilaterals according to Def. 1.1, we get

P = x x1

x x1
, V = 0 0

ẋ ẋ1
=⇒ dPA(V ) =

1
2

[x1 − x, ẋ1 + ẋ].

The area of a semidiscrete surface is naturally defined as the surface area of
the corresponding ruled strips (2) associated with it. In case x is conjugate, a
normal vector field of x yields an orientation in the ruled strips and it makes
sense to consider signed surface area:

area(x(D)) =
∫

(i,u)∈D
dA =

∫
(i,u)∈D

1
2

[∆x, ẋ+ ẋ1] du. (7)

2.3 Curvatures in the semidiscrete case

Regarding the surface area of their offsets, semidiscrete surfaces behave in a
way similar to their discrete and continuous counterparts.

Proposition 2.1. Assume x is a conjugate semidiscrete surface, and s (con-
sidered to be the Gauss image of x) is parallel to x. Then the surface area of
the offset family xτ = x+ τs reads

area(xτ (D)) =
∫

(i,u)∈D
(1− 2Hτ +K2τ) dA,
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where dA(i, u) = 1
2 [∆x, ẋ+ ẋ1] du. With the infinitesimal quadrilaterals

P + V dε = x x1

x x1
+ 0 0

ẋ ẋ1
dε, Q+Wdε = s s1

s s1
+ 0 0

ṡ ṡ1
dε,

the coefficient functions H (mean curvature) and K (Gauss curvature) can be
expressed as

H = −A(P,W ) +A(V,Q)
2A(P, V )

, K =
A(Q,W )
A(P, V )

. (8)

Proof. Equation (7) implies that the area element of x + τs has the form
dAP+τQ(V + τW ) du = 2A(P + τQ, V + τW ) du. The rest is using bilinearity
of the mixed area.

Example 2.2. Expanding the previous definition of Gaussian curvature K
and mean curvature H leads to the expressions

H = − [∆x, ṡ+ ṡ1] + [∆s, ẋ+ ẋ1]
2[∆x, ẋ+ ẋ1]

, K =
[∆s, ṡ+ ṡ1]
[∆x, ẋ+ ẋ1]

. (9)

In terms of the infinitesimal area and mixed area of infinitesimal quadrilaterals
given above, we also have the expressions

H = −dP,QA(V,W )
dP (V )

, K =
dQA(W )
dP (V )

.

This is a direct analogy to the discrete case.

2.4 Curvatures from offset distances: discrete case

Here we derive a formula which expresses the mean curvature of a polyhedral
offset pair in terms of edge lengths and dihedral angles. This is interesting
because it can directly be compared with other notions of mean curvature
derived via the Steiner formula: For a convex polyhedral surface (V,E, F )
which bounds a convex set K, the area of an outer parallel body is given by

area(∂(K + εB)) =
∑

faces f

area(f) + ε
∑

edges e

αe len(e) + 4πε2.

Here αe is the dihedral angle of the edge e. It is therefore natural to consider

H(e) = −1
2
αe, (10)

as the mean curvature density in the edge e.
Remark 2.3. The values H(e) of (10) and H(f) of Th. 2.4 are not immedi-
ately comparable. Total mean curvature “

∫
G
H” of a domain G in the surface

under consideration would have to be defined as
∑
e∈E H(e) len(e ∩ G), or∑

f∈F H(f) area(f ∩G) (see e.g. [3] for Geometry Processing applications).
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An expression in terms of angles similar to (10) is if we consider polyhedral
surfaces which admit offsets at constant face-face distance:

Theorem 2.4. For a conical mesh, i.e., a polyhedral surface which admits a
face-face offset at constant distance, the mean curvature of a face is expressed
in terms of the dihedral angles of edges by

H(f) = − 1
2 area(f)

∑
edges e⊂f

tan
αe
2

len(e).

The proof of Theorem 2.4 depends on the following more general result:

Lemma 2.5. Assume that n-gons P = (p0, . . . , pn−1) and Q = (q0, . . . , qn−1)
are corresponding faces in an offset pair of discrete surfaces, and that trans-
lating the plane of P by the vector d · n, with n a unit normal vector, yields
the plane of Q. Similarly corresponding edges pipi+1 and qiqi+1 lie in parallel
planes, carrying faces adjacent to P,Q, resp., whose relative position is given
by normal vectors ni and distances di. Then the mean curvature of the face P
is expressed as

H(P ) = − 1
2A(P )

∑
i

di − d cosαi
sinαi

‖∆pi‖.

Here dihedral angles are computed by cosαi = 〈n, ni〉, sinαi = 〈n×ni, ∆pi
‖∆pi‖ 〉.

Proof. We consider the orthogonal projection of Q on the plane of P and
measure the oriented distance φi of corresponding edges pipi+1 and qiqi+1:

φi =
di − d cosαi

sinαi
.

Here φi is positive, if (after projection) the edge of Q lies to the left of the
corresponding edge of P — the plane being oriented by the normal vector n.
The mixed area needed for mean curvature is then derived as

A(P,Q− P ) =
1
2
d

dε

∣∣∣
ε=0

A(P + ε(Q− P )) =
1
2

∑
‖∆pi‖φi.

Remark 2.6. Obviously the mean curvature can also be expressed as

H(P ) = − 1
2A(P )

∑
i

di − d〈n, ni〉
det(∆pi, n, ni)

‖∆pi‖2.

Proof of Theorem 2.4. Let d = di = 1 and observe the relation

1− cosx
sinx

= tan
x

2
.
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2.5 Curves from offset distances: semidiscrete case

The following result attempts to carry over Lemma 2.5 to the semidiscrete
case. Unfortunately the limit process which is involved does not lead to a pretty
result, whose proof we omit.1 Only the semidiscrete version of Theorem 2.4
can be expressed in a reasonably short way:

Corollary 2.8. Assume that the semidiscrete surface x has face offsets. Con-
sider the angles β between successive normal vectors n, n1 and the angular
velocity ω of the normal vector field:

sinβ = det
( ẋ

‖ẋ‖
, n, n1

)
, ω = det

( ∆x

‖∆x‖
, n, ṅ

)
,

Then 〈n, n1〉 = cosβ and ‖ṅ‖ = |ω|, and the mean curvature is expressed as

H = − 1
det(∆x, ẋ+ ẋ1, n)

(
‖ẋ‖ tan

β−1
2
− ‖ẋ1‖ tan

β

2
+ ω‖∆x‖

)
.

Proof. Letting d = 1 in Lemma 2.7 yields the result, if we observe the various
expressions for β, ω given above, as well as 〈ṅ, ṅ〉 + 〈n, n̈〉 = ∂uu〈n, n〉 = 0.
Alternatively we may compute a limit of Theorem 2.4.

3 Examples

3.1 Surfaces of discrete rotational symmetry

Here the surface x(i, u) is generated by rotating the planar meridian x(0, u) =
(ξ(u), η(u), 0) about the first coordinate axis, by the angle iα. Assume that a
second surface s (the Gauss image of x) is generated in the same way from a
planar meridian curve s(0, u) = (σ(u), τ(u), 0). Obviously,

x ‖ s ⇐⇒ ∆s

∆x
=
τ

η
=
σ

ξ
and

ṡ

ẋ
=
τ̇

η̇
=
σ̇

ξ̇

We use Ex. 2.2 to compute the mean and Gaussian curvatures (if η, η̇ 6= 0):

H = − η̇τ + ητ̇

2ηη̇
, K =

τ τ̇

ηη̇
.

We discuss various special cases and the relation to smooth surfaces.

– An immediate conseqence of these formulas is K = 0 ⇐⇒ τ = const. and
H = 0 ⇐⇒ τη = const.

1 Lemma 2.7. Assume a pair x, x+ of parallel conjugate surfaces, such that the non-
degeneracy condition det(ẍ, ẋ,∆x) 6= 0 holds. Then the mean curvature associated with
the offset pair x, x+ is expressed via the normal vector field n and the distance function

d (cf. Def. 1.18) by the formula H = − δ+γ
det(∆x,ẋ+ẋ1,n)

, where δ =
d−1−d〈n,n−1〉
det(ẋ,n,n−1)

‖ẋ‖2 −
d1−d〈n,n1〉
det(ẋ1,n,n1)

‖ẋ1‖2 and γ =
2[∆ẋ,ṅ]+det(∆x,n̈,n)

[∆x,ṅ]2
ḋ‖∆x‖2 − (d̈+d‖ṅ‖2)‖∆x‖2+4ḋ〈∆x,∆ẋ〉

[∆x,ṅ]
.
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– The case K = 0 is not so interesting, because for non-degenerate Gauss
image we get only x, s as co-axial cylinders.

– The given meridian curves, by continuous rotation, can also be used to
define smooth surfaces of revolution. If s is contained in the unit sphere (so
x is circular), then −ṡ : ẋ = −τ̇ : η̇ is the normal curvature of the meridian
curves, while τ : η is the normal curvature of the parallels. Thus the ex-
pressions for H,K above also compute the mean and Gaussian curvatures
for smooth surfaces.

– If s(0, u) is contained in the unit sphere, it is determined uniquely by x
up to multiplication with −1 by the parallelity condition. This unique-
ness is also present in the smooth case. So for circular surfaces, curvatures
coincide with the curvatures of associated smooth surface with the same
meridian. For instance, vanishing mean curvature implies that x is gener-
ated by x(0, u) = (t, C cosh(u/C), 0).

– Any semidiscrete surface x with the discrete rotational symmetry as de-
scribed above has a face offset, since Theorem 1.19 applies. The Gauss
image s(i, u) is tangentially circumscribed to S2, so

τ(u) =
√

1− σ(u)2/ cos
α

2
.

We conclude that the affine mapping

(ξ, η, ζ) 7→ (cos α2 · ξ, η, cos α2 · ζ)

maps s to the Gauss image of a circular semidiscrete surface, such as
considered by the previous paragraph. Since curvatures are defined in an
affine-invariant way, we have shown that curvatures of x with respect to s
are equal to curvatures of the smooth surface generated by the meridian
(ξ, (u), η(u)/ cos α2 , 0).
For instance, minimal surfaces in the face-offset category are generated by
meridians of the form (u, C

cos α2
cosh u

C , 0).

3.2 Semidiscrete surfaces of continuous rotational symmetry

We generate a surface x(i, u) and its associated Gauss image s(i, u) by rotating
the respective “meridian” polylines

x(i, 0) = (ξi, ηi, 0), s(i, 0) = (σi, τi, 0).

about the first coordinate axis; the angle of rotation being equal to u. The
condition of parallelity x ‖ s is equivalent to ∆ηi : ∆ξi = ∆τi : ∆σi. We
discuss various special cases:

– Unsurprisingly, the formulas for the mean and Gaussian curvatures coincide
with their discrete counterparts given by [1]:

H(i, u) =
ηiτi − ηi+1τi+1

η2
i+1 − η2

i

, K(i, u) =
τ2
i − τ2

i+1

η2
i+1 − η2

i

.
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Fig. 1 A semidiscrete minimal surface with
the conical property, defined by the angle se-
quence . . . , π
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– If H = 0 then x(i, u) is a minimal surface, and we get the recursion(
ξi+1

ηi+1

)
−
(
ξi
ηi

)
=

1
τi+1

(
0 σi − σi+1

0 τi − τi+1

)(
ξi
ηi

)
,

Thus x(i, u) is uniquely determined by the Gauss image up to scaling.
The case of Gauss images inscribed in the unit sphere is analyzed by [5],
especially the convergence of meridian polylines to the graph of the cosh
function.

– If x is to have a face offset we consider a Gauss image s which is tangentially
circumscribed to the unit sphere. It follows that s is generated by a polyline
of the form

(σi, τi) =
1

cos αi−αi−1
2

(
cos

αi + αi−1

2
, sin

αi + αi−1

2

)
,

for some sequence αi of angles. See Figure 1 for an example.

3.3 Semidiscrete trapezoidal surfaces of the horizontal type

The class of semidiscrete surfaces considered here contains those with discrete
rotational symmetry, and indeed we will see that some formulas carry over
unchanged.

We require that the infinitesimal quadrilaterals are trapezoids in the sense
that the direction of rulings x∨x1 depends only on the discrete parameter, but
not on the continuous parameter (in fact, assuming conjugacy, it is sufficient
to require that for each i, the rulings x(i, u) ∨ x(i + 1, u) are parallel to a
fixed plane). We define a trapezoidal surface of the horizontal type by a scalar
function λ and vectors e by

∆x(i, u) = λ(i, u)e(i), where λ : Z× R→ R, e : Z→ S2.

Parallel surfaces x, s can without loss of generality be defined by the same
vectors e(i), so we now assume that parallel surfaces x, s are defined by vectors
e(i) and scalars λ (for x) and µ (for s). Obviously,

∆s : ∆x = µ : λ.
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It turns out that

x ‖ s ⇐⇒ ∆(µ̇ : λ̇) = 0 for all i, and ṡ : ẋ = µ̇ : λ̇ for all i. (11)

⇐⇒ ∆(µ̇ : λ̇) = 0 for all i, and ṡ : ẋ = µ̇ : λ̇ for some i. (12)

Proof. To see this, we assume that for i = i0 we have parallelity of derivatives:
ν = ṡ : ẋ. Parallelity of derivatives for i = i0 + 1 means [ṡ1, ẋ1] = [ṡ + µ̇e,
ẋ + λ̇e] = 0, which expands to νλ̇ = µ̇, i.e., the strips under consideration
are parallel if and only if the ratio ν obeys ν = µ̇ : λ̇. In this case obviously
also the ratio ṡ1 : ẋ1 equals ν. This argument shows the “ =⇒ ” part of (11).
“(11) =⇒ (12)” is trivial. Assume now (12). The previous argument shows
that ṡ1, ẋ1 are parallel and that ẋ1 : ṡ1 = ẋ : ṡ. Induction shows the left hand
side of (11).

If s is considered the Gauss image of x, then similar to Section 3.1 it is
straightforward to compute the Gaussian and mean curvatures. We get

H = −1
2

(µ
λ

+
µ̇

λ̇

)
= −∂u(λµ)

∂u(λ2)
, K =

µµ̇

λλ̇
. (13)

We consider some interesting special cases:

– H = 0 ⇐⇒ λµ does not depend on the continuous variable.
– For existence of a face offset we look to the answer given by Theorem 1.19.

This leads to the following equivalences:
1. x has a face-offset.
2. Throughout the surface, the vector ẋ(i, u) is contained in the bisector

plane P (i, u) of normalized vectors ∆x(i, u) and −∆x(i− 1, u).
3. Each curve x(i, ·) is planar, lying in the bisector plane P (i) = P (i, u) of

rulings x(i, u)x(i + 1, u) and x(i, u)x(i − 1, u), which does not depend
on the continuous variable.

We focus on a single strip bounded by curves x(i, ·) and x(i + 1, ·) and
assume a coordinate system with 0 ∈ P (i) ∩ P (i + 1). The Gauss image
s enjoys each of the properties (a)–(c) mentioned above, but in addition
it is tangentially circumscribed to the unit sphere. Therefore, all planes
carrying s(i, ·) pass through the origin anyway, and we have s(i, u) ∈ P (i),
s(i+ 1, u) ∈ P (i+ 1).
The Gauss image is uniquely determined by the surface x. It is not difficult
to check that

s =
ẋ× e
‖ẋ× e‖

− det(ẋ× e, x, ẋ)
‖ẋ× e‖ det(e, x, ẋ)

e.

If x(i, u) = (ξ(u), η(u), 0), s(i, u) = (σ(u), τ(u), 0), and e(i) = (α, β, γ),
we get τ = αβη̇−(β2+γ2)ξ̇

γ
√
γ2((ξ̇)2+(η̇)2)+(βξ̇−aη̇)2

(this is valid for the value i under

consideration).
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– Recall the formula for mean curvature given in (13). A somewhat lengthy
computation shows that for face-offset surfaces, we may characterize the
minimality condition H = 0 using the local coordinate system described
above, by an implicit equation which must be satisfied by ξ(u) and η(u):

H = 0 ⇐⇒ η =
C1

γ
cosh

( (β2 + γ2)ξ − αβη − C2

C1

)
(14)

for some constants C1 and C2. This equation is valid for a previously chosen
fixed value i, with e(i) = (α, β, γ). Any parametric representation ξ(u), η(u)
of the implicit curve given by this equation generates a minimal surface.

Proof. With the substitution ξ = φ + αβ
γ ψ and η = β2+γ2

γ ψ we rewrite
the coordinate function τ(u) as τ = −φ̇(β2 + γ2)1/2γ−1(φ̇2 + ψ̇2)−1/2

and consequently the mean curvature is expressed as H = (β2 + γ2)−1/2(
φ̇

ψ(φ̇2+ψ̇2)1/2
+ φ̈ψ̇−φ̇ψ̈

(φ̇2+ψ̇2)3/2

)
It follows that H = 0 ⇐⇒ (ψ̇2+φ̇2)φ̇+ψ(φ̈ψ̇−

φ̇ψ̈) = 0. This equation has the trivial solution φ = const., but otherwise
it transforms to the equation (dψdφ )2 + 1 − ψ d

2ψ
dφ2 = 0, whose solutions are

ψ = C cosh((φ− C∗)/C)). Backsubstitution yields the result.

– It is interesting that we have just found semidiscrete minimal surfaces
generated by a sequence of affinely-distorted catenary curves which do not
have rotational symmetry. It is tempting to try to achieve smooth minimal
surfaces as limit shapes of a sequence of semidiscrete surfaces x(j) of the
type studied here, with e(j) → 0. Such a limit unfortunately is always an
ordinary catenoid, so we do not find cases of new smooth minimal surfaces
in this way.
This can be seen as follows: Curves x(j)(i, ·) converge to planar princi-
pal curvature lines x∞(u, ·) (because of the conical property [4]), which
evolve with evolution velocity ∂vx∞ orthogonal to the plane they are con-
tained in (being conjugate to a principal curve). It follows that this evo-
lution is isometric, and is actually generated by the rolling of a plane. All
principal curves are congruent. In the coordinate system employed in the
previous paragraph, the limit of vectors e (which is the direction of evo-
lution) then reads (0, 0,±1), and the principal curve is explicitly given by
η = C1 cosh( ξ−C2

C1
). We already know that C1 is constant (by the congru-

ence property), so we see that the distance of the curve from the axis of
rolling is constant. This concludes the argument.

3.4 Semidiscrete trapezoidal surfaces of the vertical type

We here consider a class of semidiscrete surfaces which contains the ones with
continuous rotational symmetry. Its defining property is that the infinitesimal
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quadrilaterals are trapezoids in the sense that the infinitesimal edges ẋ dt and
ẋ1 dt are parallel: We define that x is trapezoidal of the vertical type, if

ẋ(i, u) = λ(i, u)e(u), where λ : Z× R→ R, e : R→ S2.

Assume that such surfaces x, s are defined by coefficient functions λ, µ and unit
vectors e(u), ẽ(u). If x, s are to be parallel, we can without loss of generality
assume ẽ = e. We have the following result:

x ‖ s ⇐⇒ ∂u(∆µ : ∆λ) = 0 and ∆s : ∆x = ∆µ : ∆λ,

where the “ =⇒ ” part is true in the generic case where the directions of
∆e,∆s on the one hand, and e on the other hand are linearely independent.

Proof. Clearly the right hand side implies x ‖ s. Conversely assume now x ‖ s.
Differentiation of ∆x×∆s = 0 yields (∆λ ·e)×∆s+∆x× (∆µ ·e) = (∆λ∆s−
∆µ∆x) × e = 0. The genericity assumption implies ∆λ∆s − ∆µ∆x = 0,
which is the right hand property we wanted to show. We differentiate again
and get ∆λ∆µe+ ∆̇λ∆s−∆λ∆µe− ∆̇µ∆x = ∆̇λ∆s− ∆̇µ∆x = 0 Therefore,
∆̇λ : ∆λ−∆̇µ : ∆µ = 0 which can also be written as ∂u(log∆λ− log∆µ) = 0,
i.e., ∆λ : ∆µ does not depend on the continuous parameter.

We immediately get the following formulas for mean and Gaussian curva-
ture:

H = −1
2

(µ1 − µ
λ1 − λ

+
µ1 + µ

λ1 + λ

)
, K =

µ1 − µ
λ1 − λ

· µ1 + µ

λ1 + λ
.

Any condition that either H or K assumes a given value can be converted into
a recursion which expresses both µ1, λ1 in terms of λ, µ, γ, if we observe that
∆µ = γ∆λ.
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