ENERGY OF A KNOT: VARIATIONAL PRINCIPLES.

OLEG KARPENKOV

1. INTRODUCTION

Let S' = R/(27Z) be the circle and 7 : S' — R?® be a smooth knot. We will assume that 7()
is the arc length parametrization. Denote by D(t1,1) the length of the minimal subarc between ¢,
and ?, on the circle. Let | * | denote the absolute value of vectors in R?.

Following [1], we denote by

E(r) = FE¢(7) = // FU7 () — 7(t2)], D(t1, t2))dt 1 dts

the energy of the knot 7, where f(p, ) satisfies the following conditions:
1) f(p,a) € CHYU), where U = {(p,a)|0 < p < a,a < 7}
2) there exist the following limits:

Af(p, ) Af(p, )

lim « llm ——= lim ———=.
(p,a)€U f(p7 )7 (p,a)€U ap ’ (p,2) EU alo
p—0,p/a—1 p—0,p/a—1 p—0,p/a—1

Almost all energies are not homothety invariant, so we will consider only knots of length 27.

The energy of a knot is not an invariant of the topological class of this knot. If we make a smooth
perturbation of a knot, its energy smoothly changes. We will consider energies with the following
important properties. The energy is always positive. When a knot crossing tends to a double point,
the energy tends to infinity. So every topological class of knots has a representative with the minimal
value of energy. This knot is called a normal form of the class. It is unknown whether each class has
a unique normal form or not, i.e., whether the normal form for some energy is an invariant of the
topological class or not. The normal forms satisfy the variational equations considered below.

Some energies have a physical meaning. For example f = 1/(|7(t1) — 7(t2)|) is the energy of a
charged knot. Unfortunately, this energy is always infinite. As long as the charged knot does not
break there must be some other forces which save the knot. Let us consider a model of such a
restriction:

_ D*(ty1,ty)
(00 — ()]
For this energy we will develop our variational principles.

The study of knot energies began with the work of Moffatt (1969) [5], and was developed by him
in [6] following Arnold’s work [2]. The first steps in studying properties of the energies of knots were
made by O’Hara [7, 8, 9] and the first variational principles for polygons in space were studied by
Fukuhara [4].

The aim of this note is to prove that any extremal knot 7 satisfies certain variational equations.
The paper is organized as follows. We start in Section 2 with the definitions and formulations of the
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main theorem. In Section 3 we prove this theorem. In Section 4 we prove that the circle unknot
always satisfies our extremal conditions. Unfortunately the integrals in the equations do not converge
for all possible energies. For example, they do not converge in the case of the most famous energy:
Mobius energy. We discuss this also in Section 4. Section 5 seems to be independent from the
previous sections. In Section 5 we consider Mobius energy of a knot. We prove some inequality for
the energy of a normal form of the connected sum of two knots.

The author is grateful to professor A. B. Sossinsky for constant attention to this work.

2. NOTATION AND DEFINITIONS

Mostly we will work with knots of fixed length 27. So let S* = R/(27Z) be the circle and let
7 : 5" — R? denote some smooth knot of length 2. Let 7(¢) be the arc length parametrization.
By x(t) we denote the curvature at ¢t and R(¢) = 1/k(t), the radius of curvature at ¢.

Definition 2.1. Given a smooth knot 7: S! — R? and a point ¢ty € St, a locally perturbed knot is a
knot (denoted by 7, o) such that

a) |7(1) — 7, (8)] < ¥ if D(to,t) < e and 7(t) = 7, (1) il D(to,1) > ¢;

b) [£(t) — ke ()] < € for D(to,t) < ¢

) Tipe(to+ A) = T (o) + Ay e(to) + (A?/2) 74 (o) + 0(e?) if D(to,to + A) <e.

Note that at the points tg — ¢ and tg + € the curvature is not restricted.

The length of the knot 7, . can change, but we regard knots of length 27 only. One of the ways
to solve this problem is to consider the restriction of the set of locally perturbed knots to the set
of knots of constant length 27, but this definition is unsatisfactory. Indeed, let a knot 7 in some
neighborhood of the point #y be a piece of a straight line. Then the set of locally perturbed knots at
the point ¢y of length 27 consists of the knot 7 only.

We will extend this set in the following way.

Definition 2.2. Let the length of 7, . be (1 4 §)27w. The locally perturbed length 27 knot 7, . is the
knot obtained from 7, . by homothety with coefficient 1/(1 + §) and center at the origin. We also
say that the knot 7 is associated with the knot .

Consider any 7, .. We will show later that § = ¢;e® + o(€e®). Thus by Definition 2.1 we have
[Tt0,e(t1) = Tio e (t2)] = [7(t1) = 7(E2)] + ea(tr, t2)e” + o(€”)
if D(to,t1) < e or D(tg,t2) < . Then we may conclude that
E(ti,2) = BE(7) + 38 +0(e®) and  E(F,.) = E(7) + c4c” + o(”).

The coefficients c3 and ¢4 of the term & will be called the variation and denoted by Var(r, .) and
Var(7, ) respectively.
Now all is prepared for the definition of a locally extremal point of a knot.

Definition 2.3. Any to € S' is called locally extremal point of T if Var(7,.) = 0 for each locally
perturbed knot 7 . of length 2.

Definition 2.4. The knot 7 is said to be locally extremal if all its points are locally extremal.

Let us find necessary and sufficient conditions for the point ¢y be locally extremal. We denote the
vector product of two vectors a and b by [a,b]. By (a,b,c) we denote the mixed product (oriented
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7(t) — 7(to)

FIGURE 1. The geometric interpretation of ¢ (to,t) and ¢(to,1).

volume) of the vectors a, b and ¢. Let 7(¢) be the velocity vector and 7(¢) be the acceleration vector.
Now we define the functions W(to,t) and ®(to,1).

#to)  F(to) (t)=7(to)
U(to,1) = <|+<to>|’|%<to>|’|7<t>—v<to>|> 1 7(to) 70;
0 7(t)=7(to)  +(to) (1) = 0
[F(O= ()] TF(io)] 1 7(to) =
7(to) 7(t)—7(%0) (o) 7 oo
O(lo, 1) = IT'(to)I’IT(t)—T(to)I’{IT(to)I’IT(t >|D 1 7(to) # 0;
0, cp e
0 Jif 7(to) =

Note that |7(to)| = 1 and |7(t) — 7(to)| # 0 if t # to. Thus U and ¢ are well defined.

We also remark that W(tg,t) = sin(to, 1), where ¢)(to, 1) is the angle between the vector 7(¢)—7 (o)
and the oriented plane spanning of 7(¢y) and 7(¢y9). The function ® has a similar representation:
O(tg,t) = sind(to,t), where ¢(to,1) is the angle between the vector 7(¢) — 7(¢9) and the oriented
plane spanning of 7(to) and [7(to),7(to)]. (See Fig. 1). These angles can be either positive or
negative.

Theorem 2.1. Let 7 be a smooth knot. The point to is a locally extremal point of T if and only if
the following conditions hold:

Val(to) ::%(4/@ + R(to)Cb(to,t)g—i>dt - %//(2]? + D(thtz)g_i .

St Sly gt

aof of
[7(t1) — 7(t2)| 5= )dtadtz + 2 —dtldt2> — 0
8@) é/ Do

—f U (to, t)dt = 0.

Vot

Here A C S x St is the set of points (11,13) such that D(ty,15) = D(l1,10) + D(to,1s).
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FIGURE 2. a)The choice of X, Y and Z-axes. b)The parabolic arcs (a,v) where v is fixed.

Corollary 2.1. A knot 7 is locally extremal if and only if almost all of its points are locally extremal,
i.€.

[ (v + Vi) =o.

Sl

3. PROOFS

Let ¢5 be any point of S'. We choose orthonormal coordinates in R® such that 7(¢) is on the
(X,Y)-plane, 7(to — €) and 7(to + €) lie symmetrically on the X-axis. If 7(tg —¢), 7(¢o) and 7(to + ¢)
are on the same line, then we make any possible choice of the Y-axis. Finally, we choose the Z-axis
such that the orientation of the (X, Y, Z)-space is positive (see Fig. 2a)).

Let P. be the class of parabolic arcs and one segment such that all the parabolas have their vertex
in the (Y, Z)-plane, 7(tg — ¢) and 7(to 4 ) are the endpoints of the arcs, and the endpoints of the
segment are 7(fp — ¢) and 7(to + ¢). Each parabola can be specified by two parameters (A,7), where
2 is the “acceleration” and v is the angle between the (X, Y )-plane and the plane containing the
parabola (see Fig. 2b)). Notice also that (0,v) is some segment.

Denote by Mp, - the 2-dimensional set of knots 74, ., where the curve connecting 7(fo — ¢) and
7(to + ¢) belongs to the class P. with the following property: the knot (74, .1~ + 7)/2 is a locally

perturbed knot. Denote by MP¢075 the set of knots associated with the knots in the class P..

Theorem 3.1. Let 7 be a smooth knot. The point to is a locally extremal point if and only if
Var(fy,:) =0 for each locally perturbed (at to) knot T4y . € Mpy, c.

Proof of Theorem 3.1.
We begin the proof with the following lemma.

Lemma 3.1. Let C = {(z,y,2) € R*|\/y? + 22 < r,|z| < s} be a cylinder. Suppose a point moves
inside C' with velocity of constant modulus 1 and so that the absolute value of its acceleration is

bounded by K (see Fig.3). Let x(0) = —s, o(T) = s, s > r and K < 1/(4r). Then the length of the
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A

1 7

FIGURE 3. The trajectory of the point p(t) inside the cylinder C.

trajectory of a point (i.e. T') is bounded:
2s
V1—4Kr
First let us prove that y*(¢y) < 2Kr. We first consider the case for which x(¢o) < 0, 2(¢s) > 0 and
y(to) > 0; then

T <

t

y(t) = y(to) + /y‘(g)df <7

By the assumption, we have
3 3
6 = it + [ 506 > itte) — [ KiC = ita) ~ (¢ = )

It follows that

0(0) > u(to) + [ 9(r0) — (€~ to)Rede = () + (1~ o)~ L

to

But y(to) > —r and y(t) < r, so
t—1o)?
(t — to)y(to) — %I( —2r < 0.

By assumption @ < 0 and s > r, so the vertex of the parabola is at the point t — ty = y(to)/ K < s.
This yields the inequality 3%(¢o) < 2K7r.

The proof for the cases in which &(#9) > 0 and y(to) < 0; (to) < 0 and y(to) > 0; @(ty) < 0 and
y(to) < 0 is similar.

Secondly, we claim that 2*(¢g) < 2Kr. The proof is similar to the inequality for y*(¢).

By the previous statements, it follows that

jfz(to) =1- yz(to) — Zz(to) > 1 — 4Kr >0
for every to € [0,T]. So we have T' < 2s/(1 — 4K'r)

This completes the proof of Lemma 3.1
We continue the proof with a generalization of the previous lemma.
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AN/

FIGURE 4. The trajectory of the point p(t) inside the cylinder C;.

Lemma 3.2. Let [ : [—s,s] — R? be a unit-length smooth map, let the curvature of f be bounded
(If(1)] < K1) and sK, < 1. Let D*(t) € R?, where t € [—s,s] is the disk of radius r centered at
f(t) with the plane of the disc orthogonal to f. Let also rK; < 1. Denote by Cy = U[_M] D*(t)
the tubular neighborhood of the curve f. Suppose a point p(t) = (x(t),y(t),z(t)) moves inside C;
(see Fig. 4) with velocity of constant absolute value 1 and let the absolute value of its acceleration be

bounded by K. Let p(0) € D*(—s), p(T) € D*(s). Let s > r and

1
Ky < —.

[,7
2t 1—-rK; 4r

Then the length of the trajectory of the point (i.e., T) is bounded and

25(1 +rKy)

28(1 —rK|) < T <« ——————=.
s(1 = ki) Ny

Let us define = t¢.
Now we describe some map 7 from Cy to the standard cylinder C' (see Fig. 3). Let

7(D*(2)) = {(3,y.2) € Rl\/y? + 22}

be isometric images of the disk Dz( ) for each & € [—s, s]. If we fix a preimage g-axis of the y-axis
and a preimage Z-axis of the z-axis in the disc D?*(%) for each ¥ € [—s,s], then the map will be
completely described. As long as sK; < 1 and rK; < 1, this map is well defined and the manifold
Ny = U[_M] dD?*(t) with boundary dD?*(—s) U dD?(s) is smooth.

Let m(g_s) = (—s,r,0) for some §_; € 9D*(—s). Consider the vector field on N; with the following

property: if the point ¢ lies on the circle 9D*(%), then the vector v, equals f(:i'), this means that
v, is the unit-length vector orthogonal to the disc D?(#) with the corresponding direction. Denote
the integral trajectory of this field passing through the point y_s by § = {g(i)|z € [—s,s]}. This
trajectory defines the § coordinate in each disc D?(Z). Finally we define the unit-length Z-vector as
the vector product of the unit-length #-vector and unit-length g-vector (in each D?*()).

The image 7(p) of the point p moves inside C'. We denote m(p) by p. Notice that

=——€[l—rK;,1+rK.
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Note also that if the curvature of the trajectory is K at some point p(t), then the curvature of the
image of this trajectory will be

K< K+

K
at the point p(¢), as can be easily shown.
Now Lemma 3.2 follows from Lemma 3.1.

We continue the proof of Theorem 3.1. Let 7, . be any locally perturbed knot at the point ¢, and
let t € St such that D(tg,¢) < ¢. Consider

P%ya(t) = Ty <(to) + (t — to) <7Lt0,s(t0) + C1> + %(7’;@0) + Cz)

We choose the constants ¢; = o(e?) and ¢; = o(e?) so that
P (t4e)=Tpe(t+e), P .(t—¢)="Tyet—e).

Here we take the unit-length parametrization and denote the length of curves by (). Then P, _(t)
is a parabolic arc in the e-neighborhood of the point #5. From Lemma 3.2 it follows that |P;, .(t) —
Tio.c()] = o(£?) and also Z(P%ya(t)) = (74, ) + 0(e?). So B . — Eth0 (= o(e?).

Consider the perturbed curve 7, .\ passing through the point Ttm;(to). We have

|Ttg,enr (1) = Teo ()] < e
We also have F;, PE% .= o(e?).
Finally we conclude that ., = — E, . =o(e’).
One can see that the knot 7, .\ belongs Mpy, .. We note again that [(P, .(t)) = I(7y,,c) + o(e?).

Hence

e

Tto,e, Ay

— Ef'to,a = 0(53).

By definition, the knot 7, . . belongs MP¢075. This completes the proof of Theorem 3.1.
Proof of Theorem 2.1 Without loss of generality, we put

to =0, y=o(l), and A=1/(2R(0))+ o(1),

where R(0) is the radius of curvature at the point 0. According to Theorem 3.1, we can consider
only the class Mp of knots. Let 7y, . be a knot in Kp. Denote

A = }CSl.

146 1456

Now note that for any 7 we have

://meﬂ//MMyi/fM@+ // MMy%/ Fdrdy =

S1xst Ax St AxA A\(Ax ST StxA) S1x ST\ A

28, (1) — Ea(7) + Es(7) + Ea(7).
Here f = f(p(7(x),7(y)), a(7(x),7(y))). Further note that
Var(r) =2Var(t) — Vare(r) + Vars(r) + Vary(r),

where Var; is the variation of E;.
First we calculate Var;. We recall that sin¢ = ® and siny = V.
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Lemma 3.3.

Vari(foenr) = %(/ % + sin qbg—idy) ()\ _ 23}(())) i 332(0) </ sin ;/)g—idy)’y.

St St

The length of the arc of the parabola is 2¢ 4+ %)\253 + 0(63). So § = %)\253. Note also that the
coefficient of homothety is o(e?) and thus Var (7. w) = Varl(f'o Y w)- Let

(a.b.¢) = (a(t),b(1), 1) = Tocnn (1), €= (1) = /allF +B(OF + 1P | = f(p,).

Thus we have
/ ,11/2
Ei(roz)) = / / ({H(zxtl)}
Sl —e

f<[((t1 — a(t2))? + (M* = Ae?) cos 7 — b(t1))? + (At — Ae?) siny — e(t1))H)] 7,
D(tl,t2)>>dt1dt2 +0(£%) =

/]((1 LN 4 o(t12)> <f + <t12 —aty+ A(e? = 11*)(beosy + esiny) a2t12>a—f+

l 202 7 dp
St —e .
a2t128—2 af
_ e af .
57 + D(O,h)aa))dtldtg + 0(5 ) =
+e ‘
= //(2)\2t12f _I_ f _I_ <t12 - atl —I_ )\(52 - tgz)(bCOS"}/ —I— CcSsin F}/) _

N A = af ,
2€2>8_,0+ = —|—D(t1,0)a—a>dt1dt2—|—o(5)_

2)%? 2e% 44X e’ (bcosy + csiny)  a*e?\ If a? 38 f
_/< fref+ < 30 _2£2>ap+ 25 )dt2+

/ / tl, dt dtz + 0( )
This yields

dEy (N, 7) = d</<2)\;€3f—|— <4)\53(bcosg’2—|- csiH’Y))gIJOC)dtQ + o(e )) =

(/(4)\5 < bcosv—l—csmfy)>g£>dt2+0( ))d)\—l—
(=

1
4e3X(=bsiny + ccosy)\ If
</< T >apdt2—|—0( ) dy.

Sl

Sl

Finally we substitute

%:sinqb, %zsin;/), y=o0(l), A=-—=—+0(1),
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where R(0) is the radius of curvature at the point 0, obtaining

Vari(Toeny) =

1 2 . Of
/——I-smqb dt2> <)\ 2]%(0)>+3R(0) </sm¢a—dt2> .
The proof of Lemma 3.3 is complete

Sl
Lemma 3.4. Vary =0
Since Ey(7) — Ey(70.) = o(e?), we immediately have Vary = 0
Lemma 3.5.

Vars = <37r12>(0) // —2f - gg_f "

1
P (27'[' — D(tl,tz))f/\dtldt2> <)\ — m)
\(AX ST STxA)
The following calculations prove this lemma

FEs(m0.0) = fdtdt, =
)\/\ A\( AxSl/U/Sle \ \
2X\2e3 AN23 9323
// f<£<1_ ) D= nl+ =) (- 57 >0>>
\M(AxSTJSTxA)
a((1- 2;53>t1>d<<1 B 2?;53)t2> o) =
(f + (—2 _ Lol

D(ty,t 2X%e3
2f\ — (b, 2%) c >dt dty + o(e?)
7T T dp 7T 3
A\(Ax ST S1xA)

Let us remark that

of (2 D(ty, 1 INZe?
(__f_ dp ‘|‘2f/\_ (17 2)fA> €
m m m
AxST|STxA

dtldtz = 0(53).
Therefore
2 af 1
Vars = (m // ~2f — o+ (27 — D(tl,tz))fAdtldQ) <)\ . —)
\M(AxSTJStxA)
Lemma 3.6.

2R(0)

af 1
VCLT4 == (3 R // —2f g— — D(tl,tg)aadtldt2> <)\ — m)
Sl X ST\ A
The proof of this lemma is similar to the previous one

Lemmas 3.3-3.6 complete the proof of Theorem 2.1

4. COROLLARIES

In [1] it is shown that the circle is not always the global maximum, or the global minimum for the
energy considered. Let us show that circle is a locally extremal knot for any energy F satisfying the
conditions 1), 2) of the Introduction.

Corollary 4.1. The circle is always a locally extremal knot
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If 7 is a circle, then

ty — 1 by —1
((ht) = 2sin "=, R(h) =1, w(ht) =0, ¢="5

So Va(ty) = 0 for any ¢, € S*. Further

Vl(tl):%(8/f+sm<@>fpdtl_%//2f+28m<|t2;tll>g_£

St Slxst

0 0
—|—D(t1,t2)a—£dt1dt2 —|—4// a—idtldt2> —

A
%( /f-|- |1| afdt1—4/2f—|—2si ('21|>gf+p(o tl)gidtﬁ

Si

s

4/2D(t1,t2)g—£dt1dt2> Jp)=Lip2m=e) —4/D(0,t1)g—£dt1 —|—4/D(0,t1)g—£dt1 = 0.

St St

[VIE]

Therefore any point of the circle is a locally extremal point. Hence the circle is locally extremal. The
corollary is proved.
Now let us say a few worlds about Mébius energy which is (in the version from [3])

1 1

= T T mE Dty

It has many remarkable properties (see [7] and [3]). Mobius energies of homothetic knots are equal.
This energy is invariant for Mobius transformations (see also Section 5). The variational equations
and the gradient flow equation of Mébius energy was studied in [3].

Unfortunately, for Mobius energy, the variation Var is always infinite, and this mean that we can
not perturb the knot in the way considered above.

The main property of Mobius energy is as follows. When a knot crossing tends to a double point,
the energy tends to infinity. The energy is always positive. So every topological type of knot has a
representative with minimal value of energy, some normal form.

Notice that the main part of Mdbius energy is 1/|7(¢;) — 7(¢2)|*. The other part 1/D*(ty,15) is
only a normalization that makes the integral convergent. So let us make another normalization of the
“main part” of Mobius energy. In this case we often lose the invariance for Mobius transformations.
Let us consider the following energy:

N D3(:1;,y)
= TP

It is easily seen that this energy on one hand has the above property and on the other we can use
our variational principles. Note also that such an energy is the same for homothetic knots.
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Corollary 4.2. We present Vi and Vy for this energy:

Vi(to) = %(4/0%2(;;(;5” (1 —ZDIi()i’tiz)q)(to,t)))dt_

//' dtdt2—|—6//| WF yar, ).
D 271

Slxsl

| |
Vt = WU(to, t)dt.
2(0 3Rt0/ to, (07)

5. MOBIUS ENERGY OF THE CONNECTED SUM OF KNOTS.

In this section we consider only the standard Mobius energy

|
B —th 211,12 d '
7= [ e = [ (5 T~ D)

Slx St Slx st

Denote the topological class of the knot 7 by [r] and the minimal energy for the class [7] (the
energy of the normal form of this class) by Ep. Let also [ry 4+ 72]; denotes any possible class of the
connected sums of the classes [r1] and [r3]. From now we fix the orientations of the summands 7
and 75. This mean that we choose some class of the connected sum :.

We give some restriction for the energy of the normal form of the connected sum.

Theorem 5.1. Let 1] and [r3] be classes of knots. Then the following inequality holds:
B4l < By + Epy) — 4.

In the proof of the Theorem 5.1, we use a nice property of Mobius energy. Mobius energy is
invariant for Mobius transformations. Here we recall the theorem from [3].

Theorem 5.2 (Freedman, He, Wang). Let 7 be a knot in R® and let T be a Mébius transformation
of R®*U{cc}. The following statements hold:

(i) if Tor CR? then E(T o7) = E(7);

(ii) if T o7 passes through oo, then E(T o71) = E(1) — 4.

Let ¢ < m; then we define the function x. : [—7,7) — R as follows:

1 < 5
1—-1 exp<<4|t| 2>_2> £ < |t| <z
Xe = -2
%exp<<4—@> > 7T§|t|<€
0 S

Further we will consider a function y. as the function defined on the circle.

Let 7 be a C] knot (i.e., there exist the derivative of 7 and this derivative belongs to Lipschitz class),
to a point of this knot and r the radius of curvature at the point ty. Then in a small neighborhood
of tp in some orthogonal coordinates 7 can be expressed

T(i)z(rsin(—r%), TCOS<t_tO>‘|‘f(t_t0)v g(t_t0)>7
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FIGURE 5. The long double knot ~.

where f(t —tg) = o((t —t0)?) and g(¢t — to) = o((t — t9)*). Now we are ready to define 7..

Tf(t) = T(t)_ (07 f(t - tO)Xs(t - tO)? g(t - tO)Xs(t - tO)) .

Lemma 5.1. For any 6 > 0 there exists some small € > 0 such that |E(7)— E(7.)| < 4.

Direct calculations show that y.(¢) < O(e™!) and x”(¢) < O(¢7?). Thus we can obtain

fxe < 0(53)0( ) = (53),
(fxe) = f’xs + fxs < 0( 2) (1) + O(e®)0(e71) < O(e2);
(gx=)" = g'x= + gxL < O(e1)O(1) + 0(%)0(e7h) < O(e?);

Therefore the knot 7 is the limit in the Cl-topology of the knots 7. as ¢ tends to 0. Mdbius energy
is a smooth functional from the set of C'{ knots in the C'{-topology (see [3] for the proof of this fact).
Hence we can find an ¢ satisfying the condition of the lemma.

Lemma 5.1 is proven.

Now we consider some class of smooth maps v : R — U C R? without self-intersections, where
U is described below. Consider some straight line ¢ and two point O; and O on it. We denote the
distance between O; and Oy by [. Let r; and ry be two positive real numbers such that r; +r; < L.
We define U as the union of two open balls B; and B; of radii r; and ry centered at O and O3 and of
the straight line /. The map + sends bijectively some segment and two rays to the set £\ (B; U By).
Inside the balls the map « is smooth and has no any self-intersections. We denote the map restricted
to By and By by v; and v, (see Fig. 5). Let also v(¢) be a unit length parametrization.

Definition 5.1. We call a map from the class described above a long double knot.

Consider some one-parametric family of long double knots v(I) with fixed radii of the balls ry and
ry, and the fixed functions v; and 3. The parameter of this family is { = |0y — Oq| > 1 + ra.
Denote by ¢ and g the length of the curves +; and ~3. Let also v~ be the long double knot with
the function v, in the first ball and the straight segment in the second. Similarly, let vt be the knot
with the function ~; in the second ball and the straight segment in the first. We denote by €23 the
preimage of the central segment, and by €y and 3 the connected components of R \ 2 (see Fig. 5).

Lemma 5.2. For any e > 0 there exists an [ > r1 + ry such that

E(v()) < E(y )+ E(RY) +e.
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so=( [ ] ] [

QlLJQQ QlLJQQ QlLJQQ x§23 Qg)( QlLJQQ 23 X823

// fardt dts + // fardt dty — / fardtydta+

Note that

(Q1U2) X (1 UL2) (2003 ) X (22UQ3) 2 X €20
/ fMdtldt2‘|‘// Fardtidty <
21 X8 3 X8
E(v‘)+E(v+)—0+// fMdtldt2+// Fadtidts.
21 X8 3 X8

Let us estimate the last two integrals.

7’1—1/2 -|—oo

1 1
dtydty = dtydty M ( _ >dt dty =
//fM vt //fM oM < / / h—ti—a-w? G-t/
Q1 xQs Q3 xQ —co {[2—rs
1n< l—1r1—1y >:1n<1—|- q1 + g2 >l—>_—|—o>00‘
5—7“1—7“2—%—92 Z—T1—T2—Q1—92

Therefore for any ¢ > 0 the desired [ exists. Lemma 5.2 is proven.

Now we prove Theorem 5.1.

Let 71 and 75 be the normal forms in the classes [71] and [r3]. Take any 6 > 0. We fix some ¢; and
t3. By Lemma 5.1 there exist two knots 7, and 7, with the small arcs in some neighborhood of this
two points, such that

|E(m,) — E(1)]<d and |E(rm.)— E(T)] < 4.

Consider the Mobius transformations T and T, sending the points ¢; and 5 of the knots 71, a 7,
to infinity. The arcs in the neighborhood of ¢; and ¢; map to the rays of the same straight line.
Therefore we can combine T o 7y, and T} o 75, to obtain the long double knot.

By Theorem 5.2 we have:

E(Tiomn,)=F(r,)—4 and FE(Tyom,) = F(mn,)—4.

Further, by Lemma 5.2, using the long knots F(Tio7,) and E(Ty07,,) we construct the long double
knot ~ so that

E(v)< E(Tyom,)+ E(Tyom,) + 6.

Finally, consider a Mobius transformation 7" which maps the long double knot + to the knot T o ~.
This knot belongs to the class [1 + 73];. We use Theorem 5.2 again to obtain the following;:

Bppiqm) < E(Toy) = E(y) +4 < E(Tvom,)+ E(Tyom,) —4+4 =
E(ri,) + E(r,) =4+ 6= E(n) + B(r) — 4+ 3.

The inequality
E[7'1+7'2]i < E(T o] ’)/) < E(Tl) + E(TQ) —4 + 35
holds for any ¢ < 0. This proves Theorem 5.1.
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