ON IRRATIONAL LATTICE ANGLES.
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INTRODUCTION

The aim of this paper is to generalize the notions of ordinary and expanded lattice
angles and their sums studied in the work [6] by author to the case of angles with lattice
vertices but not necessary lattice rays. We find normal forms and extend the definition
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2 OLEG KARPENKOV

of lattice sums for a certain special case of such angles. The sum of angles described in
the paper seems to be a natural notion of ordinary continued fractions “addition”.

The study of lattice angles is an imprescriptible part of modern lattice geometry. In-
variants of lattice angles are used in the study of lattice convex polygons and polytopes.
Such polygons and polytopes play the principal role in Klein’s theory of multidimensional
continued fractions (see, for example, the works of F. Klein [11], V. I. Arnold [1], E. Kork-
ina [13], M. Kontsevich and Yu. Suhov [12], G. Lachaud [14], and the author [7]). Lattice
polygons and polytopes of the lattice geometry are in the limelight of complex projective
toric varieties (see for more information the works of V. I. Danilov [2], G. Ewald [3],
T. Oda [15], and W. Fulton [4]).

The studies of lattice angles and measures related to them were started by A. G. Kho-
vanskii, A. Pukhlikov in [9] and [10] in 1992. They introduced and investigated special
additive polynomial measure for the expanded notion of polytopes. The relations between
sum-formulas of lattice trigonometric functions and lattice angles in Khovanskii-Pukhlikov
sense are unknown to the author.

In the work [6] it was studied in details the trigonometry of rational angles and their
relation to the triangles. Some properties of rational trigonometric functions follows from
the statements of the work [16].

This paper is organized as follows. In the first section we remind the definition and
main properties of ordinary continued fractions, and give definitions of ordinary lattice
angles. The aim of Section 2 is to introduce trigonometric functions of ordinary lattice
angles. Further in Section 4 we denote and study expanded irrational angles. These angles
are necessary for the definition of sum of lattice angles. We study equivalence classes (with
respect to the group of affine lattice preserving transformations) of expanded lattice angles
and show a normal form for such classes. Finally in Section 4 we give definitions of sums of
lattice angles. We conclude the papers in Section 5 with related questions and problems.

Acknowledgement. The author is grateful to V. I. Arnold for constant attention
to this work, A. G. Khovanskii for useful remarks and discussions, and Mathematisch
Instituut of Universiteit Leiden for the hospitality and excellent working conditions.

1. BASIC DEFINITIONS

1.1. Ordinary continued fractions. For any finite sequence (ag, a1, ..., a,) where the
elements ay, ..., a, are positive integers and ag is an arbitrary integer we associate the

following rational ¢:
g = a+ 1 T

a1 +

Ap—1 + é
This representation of the rational ¢ is called an ordinary continued fraction for g and
denoted by [ag,a1,...,a,]. An ordinary continued fraction [ag,as,...,a,] is said to be
odd if the number of the elements of the sequence (i.e. n+1) is odd, and even if the
number is even.
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Theorem 1.1. For any rational there exist exactly one odd ordinary continued fraction
and exactly one even ordinary continued fraction. 1

We continue with the standard definition of infinite ordinary continued fraction.

Theorem 1.2. Consider a sequence (ag,ay,...,Gy,...) of positive integers. There exists
the following limit: r = klim (lao, a1, ..., ax)). O
—00

This representation of r is called an (infinite) ordinary continued fraction for r and
denoted by [ag, a1,...,an,...].

Theorem 1.3. For any irrational there exists and unique an infinite ordinary continued
fraction. Any rational does not have infinite ordinary continued fractions. 1

For the proofs of these theorems we refer to the book [5] by A. Ya. Hinchin.

1.2. Lattice ordinary angles. A linear (affine) lattice preserving transformation is said
to be lattice.

Let A, B, and C do not lie in the same straight line. Suppose also that B is lattice. We
denote the angle with the vertex at B and the rays BA and BC by ZABC. If both open
rays BA and BC contain lattice points, then we say that the angle ZABC' is ordinary
rational angle. If the open ray BA (the open ray BC) contains lattice points, and the
remaining open ray of the angle does not contain lattice points, then we say that the angle
ZABC is ordinary R-irrational (L-irrational) angle. If the union of open rays BA and
BC does not contain lattice points, then we say that the angle ZABC is ordinary lattice
LR-irrational angle.

Definition 1.4. Two ordinary lattice angles ZAOB and ZA'O'B' are said to be L-
congruent if there exist a lattice-affine transformation which takes the vertex O to the
vertex O’ and the rays OA and OB to the rays O’'A’ and O'B’ respectively. We denote
this as follows: ZAOB & LA'O'B'.

2. SOME PROPERTIES OF ORDINARY LATTICE ANGLES

2.1. A few L-congruence invariants. We start this section with definitions of some
important invariants of the group of lattice-affine transformations.

For a lattice segment AB (i.e. a segment with lattice endpoints) we define its lattice
lengths to be equal to the number of lattice inner points plus one and denote it by 1£(AB).

An lattice area of the parallelogram ABC' D with lattice points A, B,C, D is an index
of sublattice generated by the vectors AB and AC in the whole lattice. We denote the
area by IS(ABCD,).

Consider an arbitrary rational angle ZABC. Let D = C+BA. The lattice sine of
Z/ABC is a positive integer

IS(ABCD)

16(BA)I¢(BC)’

we denote it by Isin ZABC'.
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Suppose some points A, B, and V are not in the same straight line. The integer distance
from the lattice segment AB to the lattice point V is an index of sublattice generated by
lattice vectors contained in AB and a vector AV in the whole lattice.

For the 3-tuples of lattice points A, B, and C' we define the function sgn as follows:

+1, if the couple of vectors BA and BC defines the positive
orientation.
sgn(ABC) =< 0, if the points A, B, and C are contained in the same straight line.
—1, if the couple of vectors BA and BC defines the negative
orientation.

2.2. LLS-sequences for ordinary angles. Consider an ordinary angle ZAOB. Let also
the vectors OA and OB be linearly independent.

Denote the closed convex solid cone for the ordinary irrational angle ZAOB by
C(AOB). The boundary of the convex hull of all lattice points of the cone C(AOB)
except the origin is homeomorphic to the straight line. The closure in the plane of the
intersection of this boundary with the open cone AOB is called the sail for the cone
C(AOB). A lattice point of the sail is said to be a vertez of the sail if there is no segment
of the sail containing this point in the interior. The sail of the cone C(AOB) is a broken
line with a finite or infinite number of vertices and without self-intersections. We orient
the sail in the direction from OA to OB. (For the definition of the sail and its higher
dimensional generalization, see, for instance, the works [1], [13], and [7].)

In the case of ordinary R-irrational and rational angle we denote the vertices of the sail
by V;, for i > 0, according to the orientation of the sail (such that Vj is contained in the
ray OA). In the case of ordinary L-irrational angle we denote the vertices of the sail by
V_;, for i > 0, according to the orientation of the sail (such that Vj is contained in the
ray OB). In the case of ordinary LR-irrational angle we denote the vertices of the sail by
V_;, for i € Z, according to the orientation of the sail (such that V; is an arbitrary vertex
of the sail).

Definition 2.1. Suppose that the vectors OA and OB of an ordinary angle ZAOB are
linearly independent. Let V; be the vertices of the corresponding sail. The sequence of
lattice lengths and sines

(16(VoV1), Isin £V Vi Va, U(ViVa), Isin £ViVa Vi, . . . Isin £ VoV 1V, 1(Vi_1 V), or
(16(VoW), Isin £VuViVa, 1(ViV3), Isin Vi VeV, .. ), or

(. P Isin AV_3V_2V_1, IK(V_QV_l), Isin ZV_QV_l%, lg(v_l‘/o)), or

(. e ,lsin AV_QV_I‘/E), M(V_IVO), Isin LV_IVOVl, M(VOVI), e )

is called the LLS-sequence for the ordinary angle ZAOB, if this angle is rational, R-
irrational, L-irrational, or LR-irrational respectively.

On Figure 1 we show an example of an LR-irrational ordinary angle ZAOB. The convex
hull of all lattice points inside is colored with gray, its boundary is the sail of the angle.
The lattice lengths of the segments are in black and the lattice sines of the angles are in
white respectively. The LLS-sequence of the angle is (...,1,1,2,3,1,1,2,...).



ON IRRATIONAL LATTICE ANGLES. 5

FIGURE 1. LR-irrational angle ZAOB, its sail and LLS-sequence.

Proposition 2.2. a). The elements of the LLS-sequence for any ordinary ratio-
nal/irrational angle are positive integers.
b). The LLS-sequences of L-congruent ordinary rational/irrational angles coincide. O

2.3. Lattice tangents for ordinary rational and R-irrational angles. Let us give
the definitions of lattice tangents for ordinary rational angles.

Definition 2.3. Let the vectors OA and OB of an ordinary rational angle ZAOB be
linearly independent. Suppose that V; are the vertices of the corresponding sail. Let

(1(VoV1),1sin ZVoViVa, ..., Isin £V, oV, 1 Vo, U(V,1 V2))

be the LLS-sequence for the angle ZAOB. The lattice tangent of the ordinary angle
ZAOB is the following rational:

[1e(VoVh),1sin ZVy ViV, ..., Isin £V, oV, 1 Vi, (V21 V)]
We denote it by Itan ZAOB.

Definition 2.4. Let the vectors OA and OB of an ordinary R-irrational angle ZAOB be
linearly independent. Suppose that V; are the vertices of the corresponding sail. Let

(lﬁ(V()Vl), lsin 4%‘/1‘/2, - ,lsin ZVH_QVH_IVH, lﬁ(Vn_IVn), . )

be the LLS-sequence for the angle ZAOB. The lattice tangent of the ordinary R-irrational
angle ZAOB is the following irrational:

[lﬁ(‘/ovl), Isin é%vl%, “as ,lsin 4Vn—2vn—lvn7 lﬁ(Vn_IVn), .. ]
We denote it by Itan ZAOB.
Let A, B, O, V_1, V1 be as on Figure 1, then

10 10
Itan ZV_IOVI = [1,2,3] = 7, Itan Z‘/IOV_I = [3,2, 1] = ?’
ltan Z/V_OB = [1,2,3,1,1,2,..], ltanZV,0A=[3,2,1,1,...].

Proposition 2.5. a). For any ordinary rational/R-irrational angle ZAOB with linearly
independent vectors OA and OB the rational/irrational ltan ZAOB is greater or equiva-
lent to 1.

b). The values of the function ltan at two L-congruent ordinary angles coincide. 1
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2.4. Lattice arctangent for ordinary rational and R-irrational angles. Consider
the system of coordinates OXY on the space R? with the coordinates (z,y) and the origin
O. We work with the integer lattice of OXY'.

For any reals p; and p; we denote by ¢, ,, the angle with the vertex at the origin and
two edges {(z,piz)|z > 0}, where i =1, 2.

Definition 2.6. For any real s > 1, the ordinary angle ZAOB with the vertex O at the
origin, A = (1,0), and B = (1,s), is called the lattice arctangent of s and denoted by
larctan s.

The following theorem shows that ltan and larctan are actually inverse to each other.

Theorem 2.7. a). For any real s, such that s > 1,
Itan(larctan s) = s.
b). For any ordinary rational or R-irrational angle « the following holds:

larctan(ltan o) & a.

Proof. The both statements of the theorem for rational angles were proven in the paper [8].
Let us prove the first statement of Theorem 2.6 for the irrational case. Let s > 1 be
some irrational real. Suppose that the sail of the angle larctan s is an infinite broken line
ApA; ... and the corresponding ordinary continued fraction is [ag, a1, ag, . . .]. Let also the
coordinates of A; be (z;,y;).
We consider the ordinary angles «;, corresponding to the broken lines Ag... A;, for
1 > 0. Then,

lim (y; /z;) = s/1.
1—00
By the statement of the theorem for rational angles for any positive integer ¢ the ordi-

nary angle «; coincides with larctan([ag, a1, . .., a2_2]), and hence the coordinates (x;, y;)
of A; satisfy

yz/IEz = [a07a17 cee 7a2i—2]-
Therefore,

llm ([ao, ai,y ... ,CLQZ'_Q]) = S.

1—00

So, we obtain the first statement of the theorem:

ltan(larctan s) = s.

Now we prove the second statement. Consider an ordinary lattice R-irrational angle c.
Suppose that the sail of the angle « is the infinite broken line AgA; ...

For any positive integer ¢ we consider the ordinary angle ¢;, corresponding to the broken
lines Ay ... A;.

For an ordinary angle 8 denote by C(3) the cone, corresponding to 3. Note that C(3')
and C(8") are L-congruent iff § = 3.

By the statement of the theorem for rational angles we have:

larctan(ltan o) = «;.



ON IRRATIONAL LATTICE ANGLES. 7

Since for any positive integer n the following is true

n

U Clay) = U C(larctan(ltan ¢;))

i=1 i=1
we obtain
Cla) = U Cloy) = U C(larctan(ltan ¢;)) = C(larctan(ltan «)).
i=1 i=1
Therefore,
larctan(ltan o) & a.
This concludes the proof of Theorem 2.7. [l

Now we give the following description of ordinary rational and R-irrational angles.

Theorem 2.8. (Description of ordinary rational and R-irrational angles.)

a). For any finite/infinite sequence of positive integers (ag, a1, az,...) there exists some
ordinary rational/R-irrational angle o such that ltan a = [ag, ai, a9, . . .].

b). Two ordinary lattice rational/R-irrational angles are L-congruent iff they have equiv-
alent lattice tangents.

Proof. Theorem 2.7a implies the first statement of the theorem.

Let us prove the second statement. Suppose that the ordinary rational/R-irrational
angles o and 8 are L-congruent, then their sails are also L£-congruent. Thus their LLS-
sequences coincide. Therefore, ltan o« = ltan .

Suppose now that the lattice tangents for two ordinary rational/R-irrational angles «
and 8 are equivalent. Now we apply Theorem 2.7b and obtain

a = larctan(ltan o) = larctan(ltan 5) = S.
Therefore, the angles o and 8 are L-congruent. [l

Corollary 2.9. (Description of ordinary L-irrational and LR-irrational angles.)
a). For any sequence of positive integers (...,a_g,a_1,a9) (or (...a_y,a9,0a1,...)) there
exists an ordinary L-irrational (LR-irrational) angle with the LLS-sequence equivalent to
the given one.

b). Two ordinary L-irrational (LR-irrational) angles are L-congruent iff they have the
same LLS-sequences.

Proof. The statement on L-irrational angles follows immediately from Theorem 2.8.
Let us construct a LR-angle with a given LLS-sequence (...a_1,ap,a1,...). First we
construct

«; = larctan([ag, a1, ag, . . .]).
Denote the points (1,0) and (1,a9) by A¢ and A; and construct the angle o that is
L-congruent to the angle
larctan([ag, a—1,a_9,...]),
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and that has the first two vertices A; and Ay respectively. Now the angle obtained by
the rays of a; and «e that do not contain lattice points is the LR-angle with the given
LLS-sequence.

Suppose now we have two LR-angles 5; and £2 with the same LLS-sequences. Consider
a lattice transformation taking the vertex of 3, to the vertex of 31, and one of the segments
of B3 to the segment ByB; of £, with the appropriate order in LLS-sequence. Denote this
angle by 8. Consider the R-angles 5, and 3} corresponding to the sequences of vertices
of 81 and B starting from Vj in the direction to V5. These two angles are L-congruent by
Theorem 2.8, therefore 3, and S} coincide. So the angles 8, and £} have a common ray.
By the same reason the second ray of 8, coincides with the second ray of 5. Therefore
oy coincides with 85 and L-congruent to Ss. O

Remark on zero ordinary angles. Further we use zero ordinary angles and their trigono-
metric functions. Let A, B, and C be three lattice points of the same lattice straight line.
Suppose that B is distinct to A and C' and the rays BA and BC' coincide. We say that
the ordinary lattice angle with the vertex at B and the rays BA and BC' is zero. Suppose
Z/ABC is zero, put by definition

Isin(ZABC) =0, lcos(LZABC) =1, ltan(£ZABC)=0.
Denote by larctan(0) the angle ZAOA where A = (1,0), and O is the origin.

3. LATTICE EXPANDED ANGLES

3.1. Signed LLS-sequences. In this subsection we work in the oriented two-dimensional
real vector space with a fixed lattice. As previously, we fix coordinates OXY on this space.
A finite (infinite to the right, to the left, or both sides) union of ordered lattice seg-
ments ..., A; 1 A;, AiA 1, A1 Aigo, ... is said to be a lattice oriented finite (R-infinite,
L-infinite, or LR-infinite) broken line, if any segment of the broken line is not of zero
length, and any two consecutive segments are not contained in the same straight line.
We denote this broken line by ... A; 1 A4;A4;114;.2... We also say that the lattice oriented
broken line ... A; 0 A; 11 A;A;_1 ... is inverse to the broken line ... A; 1 A;A; 1 Ao ..

Definition 3.1. Consider a lattice infinite oriented broken line and a point not in this
line. The broken line is said to be on the unit distance from the point if all edges of the
broken line are on the unit lattice distance from the given point.

Now, let us associate to any lattice oriented broken line on the unit distance from some
point the following sequence of non-zero elements.

Definition 3.2. Let ... A; 1A;A; 1 A;.2... be a lattice oriented broken line on the unit
distance from some lattice point V. Let

a9;_3 = Sgn(Ai_QVAi_l) sgn(Ai_IVAi) Sgn(Ai_QAi_lAi) Isin ZAZ'_QAZ'_lAZ',

agi—z = sgn(A; 1V A;) 10(A4; 1 4;)
for all possible indexes i. The sequence (... a9;_3, a9 2,02 1...) is called a signed LLS-

sequence for the lattice oriented finite/infinite broken line on the unit distance from V' (or
for simplicity just LSLS-sequence).
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On Figure 2 we identify geometrically the signs of elements of the LSLS-sequence for a
lattice oriented V-broken line on Figure 2.

A; b Ai b Ai bOAi
N . N N A A
1. > . _
azi—3 >0 / Ak—\l E I//-:\/\] E /// ) E / w § e
S ' R ' sy ' / //,, / /
V‘fl/’ A; s E V‘f/// A; E V&/////Az—l E V"‘/’/ A; 1/\ //\
——————— vian, [VEh
: ) . ) . ) ;
i—2 ! ) Ai—l ! 1\141_2 ! i—1 Az
. < 0 / A'_l : ! \\ s : / i : /l i
42i-3 b S AN R R RN a2i—2 >0 | a2 <0
7 = ] 1.7 = ] e ] ///,,
Vi--""A i Vii-"Ai ; Vit-4i 4 ; Vic-"A;

F1GURE 2. All possible different combinatorial cases for angles and seg-
ments of an LSLS-sequence.

Proposition 3.3. An LSLS-sequence for the given lattice oriented broken line and the
point is invariant under the group action of orientation preserving lattice-affine transfor-
mations.

Proof. The statement holds, since the functions sgn, 14, and Isin are invariant under the
group action of orientation preserving lattice-affine transformations. [l

3.2. L,-congruence of lattice oriented broken lines on the unit distance from
the lattice points. Two lattice oriented broken lines on the unit distance from lattice
points Vi and V, are said to be L -congruent iff there exists an orientation preserving
lattice-affine transformation taking V; to V5 and the first broken line to the second.

Let us formulate a necessary and sufficient conditions for two lattice oriented broken
lines on the unit distance from two lattice points to be £ -congruent.

Theorem 3.4. The LSLS-sequences of two lattice finite or infinite oriented broken lines
on the unit distance from lattice points Vi and Vy respectively coincide, iff there exists
an orientation preserving lattice-affine transformation taking the point Vi to Vo and one
oriented broken line to the other.

Proof. The case of finite broken lines was studied [6], we skip the proof here.

The LSLS-sequence for any lattice infinite oriented broken line on the unit distance is
invariant under the group action of orientation preserving lattice-affine transformations,
since functions sgn, 14, Isin are invariant. Therefore, the LSLS-sequences for two £, -
congruent broken lines coincide.

Suppose now that we have two lattice oriented infinite broken lines ... A4; 1A4;4;,1 ...
and ...B; 1B;B;, ... on the unit distance from the points V; and V5, and with the same
LSLS-sequences. Consider the lattice-affine transformation & that takes the point Vi to
Vo, A; to B;, and A;, 1 to B;y; for some integer i. Since sgn(A;V A;, 1) = sgn(B;VB;;1),
the lattice-affine transformation £ is orientation preserving. By Theorem 3.4 for the finite
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case the transformation £ takes any finite oriented broken line A; A, ... A; containing the
segment A;A;; to the oriented broken line B;B, ., ... B;. Therefore, the transformation
¢ takes the lattice oriented infinite broken line ... A; 1A4;A;.1 ... to the oriented broken
line ... B;_1B;B;; ... and the lattice point V] to the lattice point V5.

This concludes the proof of Theorem 3.4 for the infinite broken lines. [l

3.3. Equivalence classes of almost positive lattice infinite oriented broken lines
and corresponding expanded infinite angles. We start this section with the following
general definition.

Definition 3.5. We say that the lattice infinite oriented broken line on the unit distance
from some lattice point is almost positive if the elements of the corresponding LSLS-
sequence are all positive, except for a finite number of elements.

Let [ be the lattice (finite or infinite) oriented broken line ... A, 1A, ... AnApyr ...
Denote by I(—oc, Ay,) the broken line ... A, 1 A,. Denote by I(A,,, +00) the broken line
ApmAmyi - .. Denote by I(A,, Ay,) the broken line A, ... A,.

Definition 3.6. Two lattice oriented infinite broken lines /; and [, on unit distance from
V are said to be equivalent if there exist two vertices Wi; and Wi, of the broken line [;
and two vertices Wy, and Wy, of the broken line /5 such that the following three conditions
are satisfied:

i) the broken line I (W2, +00) coincides (edge by edge) with the broken line lo(Wag, +00);
i7) the broken line [, (—oo, Wi;) coincides with the broken line lo(—o0, Wy );

i4i) the closed broken line generated by I, (W1, Wi2) and the inverse of lo(Way, Was) is
homotopy equivalent to the point on R? \ {V'}.

Now we give the definition of expanded angles.

Definition 3.7. An equivalence class of lattice finite (R/L/LR-infinite) oriented broken
lines on unit distance from V' containing the broken line [ is called the expanded finite
(R/L/LR-infinite) angle for the equivalence class of | at the vertex V and denoted by
Z(V;1) (or, for short, expanded R/L/LR-infinite angle).

Remark 3.8. Since all the sails for ordinary angles are lattice oriented broken lines, the set
of all ordinary irrational angles is naturally embedded into the set of expanded irrational
angles. An ordinary angle with a sail S corresponds to the expanded angle with the
equivalence class of the broken line S.

Definition 3.9. Two expanded angles ®; and ®, are said to be L, -congruent iff there
exists an orientation preserving lattice-affine transformation sending the class of lattice
oriented broken lines corresponding to ®; to the class of lattice oriented broken lines
corresponding to ®,. We denote it by ®; = ®,.

On Figure 3 we show two LR-infinite broken lines, we also indicate their LSLS-
sequences. (We suppose that outside of the pictures the broken lines are the same.)
These broken lines define two non-equivalent expanded LR-infinite angles. The broken
line of Figure 3a and the sail of Figure la defines equivalent expanded angles.
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T 29 13 -2
a:(...1,2,-1,-1,-2,-1,3,1,2..). b)(...1,2,-2,3,-2,1,-2,2,1,1,2..).

FiGUrE 3. Examples of expanded angles for two particular LSLS-sequences.

3.4. Revolution number for expanded rational, L- and R-irrational angles. First
we define the revolution number for the case of finite broken lines.

Let r = {V+AT|A > 0} be the oriented ray for an arbitrary vector 7 with the vertex at
V, and AB be an oriented (from A to B) segment not contained in the ray r. Suppose
also, that the vertex V of the ray r is not contained in the segment AB. We denote by
#(r,V, AB) the following number:

(0, if the segment AB does not intersect the ray r
%sgn (A(A-i—E)B), if the segment AB intersects the ray r at A or
#(r,V,AB) = { at B ,

sgn (A(A—l—E)B), if the segment AB intersects the ray r at the
interior point of AB

\
and call it the intersection number of the ray r and the segment AB.

Definition 3.10. Let AgA; ... A, be some lattice oriented broken line, and let r be an
oriented ray {V+AT|A > 0}. Suppose that the ray r does not contain the edges of the
broken line, and the broken line does not contain the point V. We call the number

D H#(r,V, A Ay)

i=1
the intersection number of the ray r and the lattice oriented broken line AgA; ... A,, and
denote it by #(r,V, AgA; ... A,).

Definition 3.11. Consider an arbitrary expanded angle Z(V, ApA; ... A,). Denote the
rays {V + AV Ag|A > 0} and {V — AV Ay|A > 0} by r; and r_ respectively. The number

1
5(#(7"+7 V, ApAr ... Ap) + #(r_, V, ApA, .. An))

is called the lattice revolution number for the expanded angle Z(V, AgA; ... A,), and de-
noted by #(Z(V, ApA; ... An)).

The revolution number of any expanded angle is well-defined and is invariant under the
group action of the orientation preserving lattice-affine transformations (see [6] for more
details).
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Let now us extend the revolution number to the case of almost positive infinite oriented
broken lines.

Definition 3.12. Let ... A; 1A4;A;.1... be some lattice R-, L- or LR-infinite almost
positive oriented broken line, and r = {V 4+ AT|A > 0} be the oriented ray for an arbitrary
vector v with the vertex at V. Suppose that all straight lines containing the edges of the
broken line do not the vertex V. We call the number

liI_B #(r,V, AgA; ... Ap) if the broken line is R-infinite,
n——+40co

liI_B #(r,V,A_, ... A_1 Ap) if the broken line is L-infinite,
n——+40co

liI_B #(r,V,A_LA_n+1...Ay,) if the broken line is LR-infinite
n——+40co

the intersection number of the ray r and the lattice almost positive infinite oriented broken
line broken line ... A;_1A4;A;11 ... and denote it by #(r, V... A;_1A; A1 .. ).

Proposition 3.13. The intersection number of a ray r and an almost positive lattice
infinite oriented broken line is well-defined.

Proof. Consider an almost positive lattice infinite oriented broken line /. Let us show that
the broken line [ intersects the ray r only finitely many times.

By Definition 3.5 there exist vertices W, and W5 of this broken line such that the LSLS-
sequence for the lattice oriented broken line I(—oo, W) contains only positive elements,
and the LSLS-sequence for the oriented broken line {(WW,, +00) also contains only positive
elements.

The positivity of the LLS-sequences implies that the lattice oriented broken lines
[(—o0, W), and (W, +00) are the sails for some angles with the vertex V. Thus, these
two broken lines intersect the ray r at most once each. Therefore, the broken line [ in-
tersects the ray = at most once at the part [(—oo, W), only a finite number times at the
part [(W1, Ws), and at most once at the part [(Wa, +00).

So, the lattice infinite oriented broken line / intersects the ray r only finitely many
times, and, therefore, the corresponding intersection number is well-defined. 1

Now we give a definition of the lattice revolution number for expanded R-irrational and
L-irrational angles.

Definition 3.14. a). Consider an arbitrary R-infinite (or L-infinite) expanded angle
Z(V,1), where V is some lattice point, and [ is a lattice infinite oriented almost-positive
broken line. Let Ay be the first (the last) vertex of I. Denote the rays {V + AV Ag|A > 0}
and {V — AV Ag|A > 0} by r, and r_ respectively. The following number

%(#(T-H V7 l) + #(T—7 V7 l))

is called the lattice revolution number for the expanded irrational angle Z(V,1), and de-
noted by #(Z£(V,1)).

The revolution numbers for the angles defined by the broken lines of Figure 3a and 3b
are respectively: 1/4 and 5/4.
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Proposition 3.15. The revolution number of an R-irrational (or L-irrational) expanded
angle is well-defined.

Proof. Consider an arbitrary expanded R-irrational angle Z(V, AgA; ...). Let
r. ={V+AVA4AA >0} and r_={V — AV A\ > 0}.
Suppose that
AV, AOA1A2 cel = ZVI, ABAIIAIQ PR
This implies that V = V', Ay = A}, Anqi = A;,,,, for some integers n and m and any non-
negative integer k, and the broken lines ApA4; ... A, A}, ;... Al A} is homotopy equivalent
to the point on R? \ {V'}. Thus,
%(#(H, AgAy . AGAL L CATAY) + H# (o, AgAr L AGAL .A’IA()))
=0+0=0.
And hence
Therefore, the revolution number of any expanded R-irrational angle is well-defined.

The proof for L-irrational angles repeats the proof for R-irrational angles and is omitted
here. L]

Proposition 3.16. The revolution number of expanded R/L-irrational angles is invariant
under the group action of the orientation preserving lattice-affine transformations. 1

Let us finally give the definition of trigonometric functions for the expanded angles and
describe some relations between ordinary and expanded angles.

Definition 3.17. Consider an arbitrary expanded angle & with the normal form knw+¢
for some ordinary (possible zero) angle ¢ and for an integer k.

a). The ordinary angle ¢ is said to be associated with the expanded angle ®.

b). The numbers ltan(yp), Isin(p), and lcos(y) are called the lattice tangent, the lattice
sine, and the lattice cosine of the expanded angle ®.

3.5. Normal forms of expanded rational angles. In this section we list the results
of [6] in rational case.
We use the following notation. By the sequence

((ao, - .. ,an) X k-times, by, ..., bn),
where k > 0, we denote the following sequence:
(@05 -+ ny Gy -3 Gny oo G0y Gy oy b
k-times
Definition 3.18. I). Suppose O be the origin, Ay be the point (1,0). We say that the

expanded angle Z(O, Ay) is of the type I and denote it by Ox +larctan(0) (or 0, for short).
The empty sequence is said to be characteristic for the angle Or + larctan(0).

Consider a lattice oriented broken line AgA; ... A; on the unit distance from the origin
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O. Let also Ay be the point (1,0), and the point A; be on the straight line z = 1. If the
LSLS-sequence of the expanded angle &y = £(O, AgA; ... A,) coincides with the following
sequence (we call it characteristic sequence for the corresponding angle):

IL;) ((1,-2,1,-2) x (k — 1)-times, 1, —2,1), where k > 1, then we denote the angle ®,
by km+larctan(0) (or kw, for short) and say that @, is of the type I1;

IIL;) ((—1,2,—1,2) x (k — 1)-times, —1,2, —1), where k > 1, then we denote the angle
®y by —kw+larctan(0) (or —km, for short) and say that ®q is of the type I1Iy;

IVy) ((1,-2,1,—2) x k-times, ag, . .., asy), where k > 0,7 > 0, a; > 0, for i = 0,...,2n,
then we denote the angle ®; by kn+larctan([ag, a1,...,as,]) and say that ®q is of the
type IVy;

Vi) ((—1,2, —1,2) X k-times, ay, . . . ,agn), where £ > 0,n>0,a; >0, fori=0,...,2n,
then we denote the angle ®; by —kn+ larctan([ag, a1, ..., as,|) and say that ®q is of the
type V.

Theorem 3.19. For any expanded rational angle ® there exist and unique a type among
the types I-V and a unique rational expanded angle ®y of that type such that ®y is L, -
congruent to .

The expanded angle ® is said to be the normal form for the expanded angle ®. 1

Further we use the following lemma of [6].

Lemma 3.20. Letm, k> 1, and a; > 0 for1=0,...,2n be some integers.
a). Suppose the LSLS-sequences for the expanded angles ®1 and @, are respectively

(1,-2,1,-2) x (k—1)-times, 1,-2,1,-2,aq,...,0a2,) and
(1,-2,1,-2) x (k—1)-times, 1,—2,1,m, aq, . .., 2n),

then ®, is L -congruent to ®,.
b). Suppose the LSLS-sequences for the expanded angles ®1 and ®, are respectively

(-1,2,-1,2) x (k—1)-times, —1,2,—1,m, ay, ..., a2,) and
(-1,2,-1,2) x (k—1)-times, —1,2,—1,2,aq, . . ., azn),

then ®1 is L -congruent to ®q. Cl

3.6. Normal forms of expanded R- and L-irrational angles. In this section we
formulate and prove a theorem on normal forms of expanded lattice R-irrational and
L-irrational angles.

For the theorems of this section we introduce the following notation. By the sequence

((ao, Ca ,an) X k—times, bo, b1 . .),
where k£ > 0, we denote the sequence:

(@05 Gny @y -3 Gny oo G0y, Gy oy by ).

k—t;;nes
By the sequence
(. . ,b_2, b_l, bo, (ao, cey an) X k—times),
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where k£ > 0, we denote the sequence:

(...,b_Q,b_l,bo,go,...,an,ao,...,an, ,ao,...,a,).

k-times
We start with the case of expanded R-irrational angles.

Definition 3.21. Consider a lattice R-infinite oriented broken line AyA; ... on the unit
distance from the origin O. Let also Ay be the point (1,0), and the point A; be on the line
z = 1. If the LSLS-sequence of the expanded R-irrational angle ®, = Z(O, ApA4; ...) coin-
cides with the following sequence (we call it characteristic sequence for the corresponding
angle):

IVy) ((1,-2,1,—2) x k-times, ag, a1, ...), where k > 0, a; > 0, for ¢ > 0, then we denote
the angle ®y by km+ larctan([ag, a1, ...]) and say that @ is of the type IVy;

Vi) ((—1,2,-1,2) x k-times, ag, a1, .. .), where k > 0, a; > 0, for ¢ > 0, then we denote
the angle ®y by —kn + larctan([ao, a1, .. .]) and say that ®q is of the type V.

Theorem 3.22. For any expanded R-irrational angle ® there exist and unique a type
among the types IV-V and a unique expanded R-irrational angle ® of that type such that
Dy is L -congruent to Py.

The expanded R-irrational angle ®; is said to be the normal form for the expanded R-
irrational angle ®.

Proof. First, we prove that any two distinct expanded R-irrational angles listed in Defi-
nition 3.21 are not £,-congruent. Let us note that the revolution numbers of expanded
angles distinguish the types of the angles. The revolution number for the expanded angles
of the type IV, is 1/4+1/2k where k£ > 0. The revolution number for the expanded angles
of the type Vi is 1/4—1/2k where k > 0.

We now prove that the normal forms of the same type IV}, (or V) are not £, -congruent
for any integer k. Consider the expanded R-infinite angle ® = kn+ larctan([ag, a1, .. .]).
Suppose that a lattice oriented broken line AgA; A, ... on the unit distance from O defines
the angle ®. Let also that the LSLS-sequence for this broken line be characteristic.

If k£ is even, then the ordinary R-irrational angle with the sail AgpAggiq... is Lo-
congruent to larctan([ag, a1,...]). This angle is a proper lattice-affine invariant for the
expanded R-irrational angle ® (since Aoy = Ap). This invariant distinguish the expanded
R-irrational angles of type IV (or V) for even k.

If £ is odd, then denote B; = V+A;V. The ordinary R-irrational angle with the sail
BogBog41 ... is Ly-congruent to the angle larctan([ag,ay,...]). This angle is a proper
lattice-affine invariant of the expanded R-irrational angle ® (since By, = V+A4V). This
invariant distinguish the expanded R-irrational angles IV (or V) for odd k.

Therefore, the expanded angles listed in Definition 3.21 are not £, -congruent.

Secondly, we prove that an arbitrary expanded R-irrational angle is £,-congruent to
some of the expanded angles listed in Definition 3.21.

Consider an arbitrary expanded R-irrational angle ® = Z(V, AgA4; ...). Suppose that
#(®) = 1/4+k/2 for some non-negative integer k. By Proposition 3.13 there exist an
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integer positive number ng such that the lattice oriented broken line A, A,,+1 ... does not
intersect the rays r, = {V4+AV A\ > 0} and r_ = {V-AV Ag|A > 0}, and the LSLS-
sequence (Gopy—2,d2ne—1 - -.) for the oriented broken line A, A, +1... does not contain
non-positive elements.

By Theorem 3.19 there exist integers k£ and m, and a lattice oriented broken line

AOB1B2 R B2kB2k+1 R B2k+mAno
with LLS-sequence of the form
((1, —2, 1, —2) X k—times, bo, bl, ceay bgm_g),

where all b; are positives.
Consider now the lattice oriented infinite broken line AgB By ... Bogym—1A4n, Angs1 - - -
The LLS-sequence for this broken line is as follows

((1, —2, 1, —2) X k—times, bo, bl, - ,me_Q, U, O2ng—202n4—1 - - .),

where v is (not necessary positive) integer.

Note that the lattice oriented broken line AgB1Bs. .. BogymAn, is a sail for the angle
ZAyV A, and the broken line A, A, 11 ... is a sail for some R-irrational angle (we denote
it by «). Let H; be the convex hull of all lattice points of the angle ZAyV A, except the
origin, and H, be the convex hull of all lattice points of the angle o except the origin.
Note that H; intersects Hs in the ray with the vertex at A,,.

The lattice oriented infinite broken line BogBogia ... BogimAng Angt1 - - - intersects the
ray T, in the unique point By, and does not intersect the ray r_. Hence there exists a
straight line [ intersecting both boundaries of H; and Hj, such that the open half-plane
with the boundary straight line [ containing the origin does not intersect the sets H; and
H,.

Denote By = A¢ and Bogim+1 = An,. The intersection of the straight line [ with H;
is either a point B; (for 2k < s < 2k +m + 1), or a boundary segment B,B;; for some
integer s satisfying 2k < s < 2k+m. The intersection of [ with H, is either a point A, for
some integer ¢ > ng, or a boundary segment A,_; A; for some integer ¢ > ny.

Since the triangle AV A, B, does not contain interior points of H; and Hj, the lattice
points of AV A, B, distinct to B are on the segment A;B,. Hence, the segment A,B; is on
unit lattice distance to the vertex V. Therefore, the lattice infinite oriented broken line

A0B1B2 Ca BsAtAt—I—l Ca

is on lattice unit distance.

Since the lattice oriented broken line By, ... B;AyAyyq ... is convex, it is a sail for some
R-irrational angle. (Actually, the case B, = A, = A, is also possible, then delete one of
the copies of A,,, from the sequence.) We denote this broken like by Cor11Cor o ... The
corresponding LSLS-sequence is (cax, Car11, Carr2; - - -), Where ¢; > 0 for 4 > 4k. Thus the
LSLS-sequence for the lattice ordered broken line AgB1Bs. .. BopCor1Cokia ... is

((1,-2,1,-2) x (k — 1)-times, 1, =2, 1, w, (Ca, Cakt1, Cak+2, - - -5

where w is an integer that is not necessary equivalent to —2.
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Consider an expanded angle Z(V, AgB1Bsy. .. BopCaory1). By Lemma 3.20 there exists a
lattice oriented broken line Cjy .. .Caryq with the vertices Cy = Ay and Coy 1 of the same
equivalence class, such that Cy, = By, and the LSLS-sequence for it is

((1, —2, 1, —2) X k—times, Cag, C4k+1).

Therefore, the lattice oriented R-infinite broken line CyC ... for the angle Z(V, AgA; .. .)
has the LSLS-sequence coinciding with the characteristic sequence for the angle k7w +
larctan([cak, Cagx+1, - - .]). Therefore,

0] é km + larctan([04k, Cag+1, - - ])

This concludes the proof of the theorem for the case of nonnegative integer k.
The proof for the case of negative k repeats the proof for the nonnegative case and is
omitted here. |

Let us give the definition of trigonometric functions for expanded R-irrational angles.

Definition 3.23. Consider an arbitrary expanded R-irrational angle & with the normal
form km+¢ for some integer k.

a). The ordinary R-irrational angle ¢ is said to be associated with the expanded R-
irrational angle ®.

b). The number ltan(y) is called the lattice tangent of the expanded R-irrational angle
.

We continue now with the case of expanded L-irrational angles.

Definition 3.24. The expanded irrational angle Z(V,... A;124;114;...) is said to be
transpose to the expanded irrational angle Z(V,...A;4;11A4;12...) and denoted by
(L(V,... AjAip1 Ais .. )

Definition 3.25. Consider a lattice L-infinite oriented broken line ... A_; Ay on the unit
distance from the origin O. Let also Ay be the point (1,0), and the point A_; be on
the straight line z = 1. If the LSLS-sequence of the expanded L-irrational angle &, =
Z(0,...A_1Ap) coincides with the following sequence (we call it characteristic sequence
for the corresponding angle):

IVy) (... ,a-1,a0,(—2,1,-2,1) X k-times), where k£ > 0, a; > 0, for ¢ < 0, then we denote
the angle ®y by kr+ larctan®([ag, a_1, ...]) and say that @ is of the type IVy;

Vi) (... a_1,a0,(2,—1,2, —1) X k-times), where k > 0, a; > 0, for ¢ < 0, then we denote
the angle ®, by —k7+larctan’([ag,a_1,...]) and say that ®q is of the type Vj.

Theorem 3.26. For any expanded L-irrational angle ® there exist a unique type among
the types IV-V and a unique expanded L-irrational angle ®y of that type such that ® is
L -congruent to ®y.

The expanded L-irrational angle ®, is said to be the normal form for the expanded L-
irrational angle ®.

Proof. After transposing the set of all angles and change of the orientation of the plane
the statement of Theorem 3.26 coincide with the statement of Theorem 3.22. [l



18 OLEG KARPENKOV

4. SUMS OF EXPANDED ANGLES AND EXPANDED IRRATIONAL ANGLES

Now we can give definitions of sums of ordinary angles, and ordinary R-irrational or/and
L-irrational angles.

Definition 4.1. Consider expanded angles ®;, where ¢ = 1,...,f, an expanded R-
irrational angle ®,, and an expanded L-irrational angle ®;. Let the characteristic LSLS-

sequences for the normal forms of the angles ®; be (ao;,@14,--.,0am,:); of &, — be
(aoyr, alyr, . .), and Of q)l - be ( “ay a_l,l, ao,l).
Let M = (m4,...,m_1) be some (t—1)-tuple of integers. The normal form of any ex-
panded angle, corresponding to the following LSLS-sequence
(00,1, Q1,15 -+ -5 G2nq,1, 1101, Q0,2, G125 - - -, A2pp,2, T2, - - -
sy My 1, A0y A1ty - - -y a2nt,t)

is called the M-sum of expanded angles ®; (i=1,...,t).
Let Mg = (my,...,m_1,m,) be some t-tuple of integers. The normal form of any ex-
panded angle, corresponding to the following LSLS-sequence

(00,1, A1,15 -y A209,1,7M01, 00,2, Q1,25+ -+ 5 A2ny 2, T2, - . .
e, MMy, ao,t, al,t, . ,a2nt7tmT, CLO,T, alﬂ‘, .. )

is called the Mg-sum of expanded angles ®; (i =1,...,t) and ,.
Let My = (my,my,...,m_1) be some t-tuple of integers. The normal form for any
expanded angle, corresponding to the following LSLS-sequence

(- <y G105, A0, TN, Q0,15 Q1,15 - - -5 B2y 15 7101, G0,2, 1,25 - - -5 A2y 2, TN, - - -
cee gy My 1, Aoy A1ty - - -y a2nt,t)

is called the My -sum of expanded angles ®;, and ®; (i =1,...,1).
Let Mrr = (my,my,...,mi_1,m,) be some (¢t + 1)-tuple of integers. Any expanded LR-
irrational angle, corresponding to the following LSLS-sequence

(. .- ,a_u, aoyl, my, aoyl, al,l, C ey a2m,1, my, a072, a172, C ey a2n272, mo, ...
e, MMy, ao,t, al,t, . ,a2nt7tmT, CLO,T, alﬂ‘, .. )
is called a Mpg-sum of expanded angles ®;, ®; (i=1,...,t) and P,.
We denote the (aq,as,...,a,_1)-sum of angles ®,,...,®, by
D1 +4, Po+a, -+ - ta,_, Pn-
Finally we give a few examples of sums.

larctan 1 +,, larctan 1

larctan 3 +_; larctan 3 +_, larctan 1

1+v5
2

larctan 242 (n > 0),
2w,
larctan 15,

(1> 11> 11>

larctan 2 +4 larctan
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5. RELATED QUESTIONS AND PROBLEMS

We conclude the paper with the following questions and problems.

Problem 1. a). Find a natural definition of lattice tangents for L-irrational angles, and
LR-irrational angles.

b). Find a natural definition of lattice sines and cosines for irrational angles (see also
in [6]).

Problem 2. Does there exist a natural definition of the sums of
a) any expanded LR-irrational angle and any expanded angle;
b) any expanded R-irrational angle and any expanded angle;

c) any expanded angle and any expanded L-irrational angle?

Problem 3. Find an effective algorithm to verify whether two given almost-positive
LSLS-sequences define L-congruent expanded irrational angles, or not.
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