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Abstract. How to find “best rational approximations” of maximal commutative sub-
groups of GL(n,R)? In this paper we pose and make first steps in the study of this
problem. It contains both classical problems of Diophantine and simultaneous approxi-
mations as a particular subcases but in general is much wider. We prove estimates for
n = 2 for both totaly real and complex cases and write the algorithm to construct best
approximations of a fixed size. In addition we introduce a relation between best approxi-
mations and sails of cones and interpret the result for totally real subgroups in geometric
terms of sails.
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Introduction: the problem and its relationships

We pose and investigate a problem of approximation of maximal commutative sub-
groups of GL(n,R) by rational subgroups, or more geometrically in other words a prob-
lem of approximation of arbitrary simplicial cones in Rn by rational simplicial cones. This
problem is a natural multidimensional generalization of a problem on rational approxima-
tions of real numbers that is contained in the case of n = 1. As a particular example it also
contains a simultaneous approximation problem and closely related to multidimensional
generalizations of continued fractions. The problem of approximation of real spectrum
maximal commutative subgroups has much in common with the problem of approxima-
tions of nondegenerate simplicial cones. This in particular allows to use methods dealing
with multidimensional continued fractions.

Maximal commutative subgroups. We consider a Cartan subgroup of the group
GL(n,R) or maximal abelian semisimple subgroups of GL(n,R). Some times it is conve-
nient to consider such subgroup as the set of all matrices, commuting with given semisim-
ple element A ∈ GL(n,R), i.e., the centralizer CGL(n,R)(A). The centralizer is commutative
if and only if A has distinct eigenvalues. So we work with centralizers of “generic” ma-
trices. For the field of real numbers not all Cartan subgroups are mutually conjugate:
the general Cartan subgroup in GL(n,R) has k one-dimensional and l two-dimensional
minimal eigenspaces (where k+2l = n). We will study mainly the Cartan subgroups
with only one-dimensional minimal eigenspaces, which we call ”real Cartan subgroup”,
but all the definitions are extended to the general Cartan subgroups of GL(n,R) and can
be extended to the case of the Cartan subgroup of GL(n,C) or more general semisimple
groups. In that case all elements of the Cartan subgroup has real eigenvalues.

We will use term ”maximal commutative subgroup” or shortly MCRF, and denote the
space of it as Cn.

The space of simplicial cones. It is convenient to deal with geometric analog of
MCRF-subgroups. Let us describe a relation of real maximal commutative subgroups
and nondegenerate simplicial cones.

A nondegenerate simplicial cone in Rn is a conical convex hull of a set of n unordered
linearly-independent vectors. Further we omit “nondegenerate”, since we work only with
nondegenerate cones. Together with any simplicial cone K one may study its symmetric
with respect to origin cone −K. All further discussions, constructions, notions, and
statements are invariant with respect to the map x 7→ −x of Rn, and hence they all deal
with both cones K and its symmetric one −K. Therefore, we identify the cones K and
−K and define Simpln as a space of pairs of symmetric cones.

There exists a natural (2n−1)-folded covering of the space Cn of all maximal commutative
subgroups by the space Simpln:

Simpln → Cn

the cones map to the subalgebras whose eigendirections are the extremal rays of the cones.
So for any element of Simpln we have a maximal commutative subgroups.
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Therefore, approximation problems, which we discuss below and which are local prob-
lems, can be studied in terms of the groups as well as in terms of simplicial cones.

A space Simpln of all simplicial cones in Rn can be defined directly with coordinates of
cones generators, nevertheless it is very important to understand this space as a homoge-
neous space of the group GL(n,R) in the following way.

Consider a group GL(n,R), n > 1 of all linear invertible transformations in Rn with a
fixed basis. Take Dn — the subgroup of the diagonal matrices in the chosen basis which
have positive numbers on the diagonal, i.e. a positive part of the corresponding Cartan
subgroup or connected component of the unity of that subgroup. The elements of this
subgroup leaves invariant each of the 2n of coordinate cones. The left homogeneous space
GL(n,R)/Dn can be considered as a space of all connected parts of the Cartan subgroups
of the group GL(n,R). To get a cone (or actually a pair of symmetric cones K and −K)
we should add a symmetric group of coordinate permutations Sn (Weil group) which is

also contained in the normalizer of Dn. Denote by D̂n the skew-product Sn i Dn of the
symmetric group and the subgroup of diagonal matrices.

A homogeneous space

GL(n,R)/D̂n

of left conjugacy classes in GL(n,R), n > 1 with respect to the subgroup D̂n is naturally
identified with the space of all (pairs of) nondegenerate simplicial cones Simpln.

Indeed, the subgroup of GL(n,R) preserving the positive coordinate cone Rn
+ as well

as its reflection coincides with the group D̂n, and GL(n,R) transitively acts on Simpln.

Notice that it is sometimes convenient to take the group SL(n,R) instead of GL(n,R)

(factoring the last by the subgroups of positive scalar matrices and taking D̂n as the
subgroup of positive diagonal matrices with unit determinant in SL(n,R):

Simpln = SL(n,R)/{D̂n ∩ SL(n,R)}
A homogeneous space Simpln, n > 1 is not compact. This space admits a transitive

right action of the whole group GL(n,R) and it possess an essential absolutely continuous
measure µn, that is quasihomogeneous with respect of the action. This measure is called
Möbius measure, it was studied in [18]. We are mostly interested in the actions of SL(n,Z)
and SL(n,Q) on the space Simpln but not in the action of the whole group GL(n,R), n >
1. These actions are ergodic.

Definition 0.1. Consider a simplicial cone C ∈ Simpln. The boundary of the convex
hall of the integer points in this cone without an origin, i.e.

∂
(

conv
{

C ∩ Zn \ (0, . . . , 0)
})

,

is called the sail of the simplicial cone.

The space of the simplicial cones could be identified with the space of the sails of
simplicial cones.
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Remark. Note that one can consider the sail for other convex bodies, for instance of the
interiors of conics.

For the simplest case of n = 2 a simplicial cone is a convex angle between two rays on
the plane, and the space Simpl2 of all cones is a two dimensional torus without a diagonal
modulo the involution: {S1 × S1 r Diag}/ ≈, where Diag is the diagonal in S1 × S1

and ≈ is a factorization: (x, y) ≈ (y, x). Here the points of the circles S1 are the oriented
lines in R2 that contains critical rays of the angles, and quasiinvariant measure is the
Lebesque measure. Actually Simpl2 is a Möbius strip without a boundary or equivalently
a punctured projective plane. The geometry of the corresponding cone includes a part
of the classical theory of continuous fraction. The sail for n = 2 is the boundary of
noncompact convex polygon. The two-dimensional case is tightly connected with classical
continued fractions (see in Section 2).

The problem of approximations. The described relation between simplicial cones and
real spectrum (i.e. having real eigenvalues, see further) maximal commutative subgroups
in GL(n,R) preserving the corresponding cones is a covering (up to an identification of
the cone and its central symmetrical image). Therefore approximations of such subgroups
and approximations of simplicial cones (we speak about this further) are the same up to
the lifting. Recall that we have fixed a system of coordinates in Rn, and hence we have a
special coordinate simplicial cone K0 = Rn

+ (a hyperoctant).

Definition 0.2. A rational simplicial cone (or respectively a rational commutative subgroup)
is a cone (a subgroup) whose all extremal rays (eigen-directions) contains points distinct
to the origin with all rational coordinates, actually this implies the existence of points
with all integer coordinates as well.

A simplicial cone (maximal commutative subgroup) is called algebraic if there exists a
matrix g ∈ SL(n,Z) with distinct eigenvalues whose eigen-directions generates this cone
(respectively integer matrix whose centralizer in SL(n,R) coincides with this subgroup).

It is clear that the rational cones form the orbit of the coordinate cone K0 with respect
to the group SL(n,Q).

An example of an algebraic simplicial cone is the conical convex hull of the two eigen-
vectors of the Fibonacci matrix:

g =

(
1 1
1 0

)

Definition 0.3. Consider some cone C ∈ Simpln and take nonzero linear forms L1, . . . , Ln

that annulates the hyperfaces of the cone. A Markoff-Davenport form is

ΦC(x) =

n∏
k=1

(
Lk(x1, . . . , xn)

)

∆(L1, . . . , Ln)

where ∆(L1, . . . , Ln) is the volume of the parallelepiped spanned by Lk for k = 1, . . . , n
in the dual space.
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This form is defined by a cone uniquely up to a sign. Now having Markoff-Davenport
form Φ one can define distances between two cones. For two cones C1 and C2 consider
two forms

ΦC1(v) + ΦC2(v) and ΦC1(v)− ΦC2(v).

Take the maximal absolute values of the coefficients of these forms separately, the minimal
of them would be the distance between C1 and C2. Further in Subsection 1.1 we define
Markoff-Davenport form in a more general situation.

Now we are ready to formulate the main problem of approximations:
For a given simplicial cone (or maximal commutative subgroup of SL(n,R))
find a rational simplicial cone (rational maximal commutative real subgroup)
that for a chosen Markoff-Davenport metric is the closest rational simplicial
cone (subgroup) in some fixed class of rational cones (subgroups).

Such classes of rational cones can chosen to be finite classes including only cones having
fixed “sizes” of integer points on their rays (for more information see below in Section 1).

First of all the approximations problem by rational simplicial cones (subgroup) must
be considered for algebraic cones (subgroups). The most intriguing things are connected
with generalization of the beautiful theory of Markoff-Lagrange spectra [31] and Markoff-
Davenport n-ary forms [10].

Relations with theory of multidimensional continued fractions. The problem
on approximation of commutative subgroups or simplicial cones formulated above and
studied in this work is intimately connected with the theory of multidimensional continued
fractions but does not reduce to that.

The recent work by V. I. Arnold [2] and the following works by him [4], E. I. Korkina [26],
G. Lachaud [29], J.-O. Mussafir [33], Karpenkov [14], etc., revived the interest to one of
classical generalizations of continued fractions theory, considered for the first time by
F. Klein in [23]. From geometrical point of view the generalization deals with sails. The
classical theory of ordinary continued fractions i.e. theory of Gauss transformations in
algebro-dynamical terms related to the case n = 2 was made by R. L. Adler and L. Flatto
in [1]. M. L. Kontsevich, Yu. M. Suhov in [24] made an improved version admitting an
extension to multidimensional case. In the work [24] the authors considered the following
approach to these questions: to study the homogeneous space SL(n,R)/SL(n,Z), i.e.
the space of lattices in SL(n,R), and the action of the Cartan subgroup Dn on it. For
n = 2 this action is reduced to the action of the group R1 and as it is known from [1] it
is a special suspension over the Gauss automorphism that lies in a definition of continued
fractions.

One can suppose that the solution of the approximation problem reduced to the geom-
etry of the sails in the following sense: in order to find the best approximation of the cone
(equivalently maximal commutative subgroup) one must find the appropriate basis of the
vectors which belong to the vertices of the sail of this cone or adjacent cone. Up to now
this is an open question. The experiments show that it could be not always the case (see
for instance in Example 3.11).
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Let us show connections of our problem with this geometry. First of all the space
Simpln as we had mentioned can be interpreted as the space of sails of simplicial cones.
Let us compare our approach to the geometry of sails with [24].

One can think of dynamical systems as of triples: (a space, a group action, an invariant
or quasiinvariant measure). Then in [24] the authors study the dynamical system

{SL(n,R)/SL(n,Z), Dn, νn}.
i.e. in our terms it is multidimensional suspension (time here is a Cartan subgroup) in a
given or an arbitrary cone.

Our approach to theory of sails is in some sense dual to the approach of [24]. We
consider another dynamical system, namely, the action of a discrete (noncommutative)
group SL(n,Z) (or SL(n,Q)) in the space of sails (or equivalently simplicial cones):

{Simpln(= SL(n,R)/D̂n), SL(n,Z), µn}.
Roughly speaking the “time” and the subgroup defining the homogeneous space has been
transposed.

Both approaches have their own advantages and limitations. However the main aim of
the current work is not in studying of multidimensional sails, their statistics and other
properties, but in their applications to approximations.

More about geometry of sails. The geometry of sails is very interesting by itself. One
of the essential subjects here is a statistical analysis of their geometric characteristics with
respect to the measure on the space of the sails Simpln. For instance, what is the measure
of sails with given properties: say with given number of faces of some given combinatorial
type (see [24], [5], [6], [15], [18]). This would generalize Gauss-Kuzmin theorem (see
in [28]) and some others for ordinary continued fractions. The work in this direction has
just started and it is not much known now, first theorems on this subject can be found
in [18].

Faces of different dimensions of a sail were studied in [29], [33], [13], [25], [17]. In alge-
braic cases all faces are polyhedra. It is also natural to consider the sails in the adjacent
hyperoctants. The important problem here is to study the condition for a polygonal sur-
face to be a sail form some cone. This problem was posed by V. I. Arnold and was studied
in several papers ([3], [4], [14], [16], [17], [20], [26], [27] [29], [33]). In [37] H. Tsuchihashi
showed the relation between sails of cones and cusp singularities, introducing a new appli-
cation to toric geometry. This relation is studied in detail in [19] for the two-dimensional
case.

Actually in the study of Simpln the other multidimensional generalizations of contin-
ued fractions can be useful. This in particular includes the considered before convex-
geometric ([23], [4], [26], [29], [14]) local minima type ([32], [7]), Voronoy ([39], [9]), and
algorithmic([34], [35]) generalizations of continued fractions.

Connections with limit shape problems. Another link of the approximation problem
is with so called limit shape problems. We want only to emphasize here that the problems
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like limit shape problems about Young diagrams or convex lattice polygons (see [38]) can
be considered in the simplicial cones (instead of traditional posing in the hyperoctant Z+

n ),
and in this case the rational approximation of the cone becomes an important argument.
We hope to consider this in the appropriate place.
Description of obtained results. Let us briefly describe the results of this work. Ap-
parently the problem of approximations of arbitrary commutative subgroups in SL(n,R)
was never stated in such generality. By the problem of approximation we mean the prob-
lem of finding of best approximation of a simplicial cone by rational cones (similar to
the classical problem on best approximations of real numbers by rational numbers). This
problem is very complicated already in the case of n = 2. That is also applied even to the
algebraic cones. We give several estimates that suggest an idea that best approximations
are not always related to sails or to sails of adjacent cones (see also in Example 3.11).

First, we show that the classical case of approximations of real numbers by rational
numbers is really one of particular cases of the proposed new approximation model. In
addition we also indicate that simultaneous approximations are also covered by our ap-
proach.

Further we work in general case of n = 2. We give upper and lower estimates for the
discrepancy between best approximations and original simplicial cones in the following
important case (Theorem 3.1): let α1, α2 ∈ R both have infinite continued fractions with
bounded elements, consider a simplicial cone bounded by two lines y = α1 and y = α2,
then the growth rate of the best approximation of size N is bounded by C1/N

2 and C2/N
2

while N tends to infinity. Then we translate this statement to the language of sails
and their generalizations (Theorem 3.8) and finally show an algorithm to construct best
approximations of a fixed size.

Remark. In this paper we work in a slightly extended way including commutative sub-
groups of SL(n,R) having complex conjugate eigenvectors as well. This is the main reason
for our choice to use terminology of commutative subgroups instead of simplicial cones
(that are convenient only for the totally real case).

We conclude the paper with several examples of approximations in the three-dimensional
case, coming from simultaneous approximations.

The paper is organized as follows. In Section 1 we give basic notions and definitions of
maximal subgroup approximation theory. We introduce sizes and discrepancies for the
subgroups and define the notion of “best approximations” in our context. In Section 2
we briefly show how the classical theory of Diophantine approximations is embedded into
theory of subgroup approximations.

Further we make first steps to study a general two-dimensional case. It is rather compli-
cated since we need to approximate an object defined by four entries of 2×2 matrices that
vary. Hence this case is comparable with a general case of simultaneous approximations
of vectors in R4. Nevertheless it is simpler to find the best approximations in the case of
subgroups, especially in special algebraic case when a certain periodicity of approxima-
tions take place. In Section 3 we write estimates for the quality of best approximations for
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both hyperbolic and non-hyperbolic cases of rays whose continued fractions has bounded
elements. This in particular includes an algebraic case. We also show geometric origins
of the bounds in terms of continued fractions for the hyperbolic algebraic case.

Finally in Section 4 we study in a couple examples the case of simultaneous approxi-
mations of vectors in R3 in the frames of subgroup approximations. We test two algebraic
examples coming from totally real and non-totally real cases.

1. Rational approximations of MCRF-groups

In this section we give general definitions and formulate basic concepts of maximal
commutative subgroups approximations. We recall a definition of a Markoff-Davenport
form in Subsection 1.1. Further in Subsection 1.2 we define rational subgroups and choose
“size” for them. We define the distance function (discrepancy) between two subgroups in
Subsection 1.3.

As we have already mentioned we will continue with terminology of maximal commu-
tative subgroups. In case when we deal with real spectra subgroups the statements can
be directly translated to the case of simplicial cones.

1.1. Regular subgroups and Markoff-Davenport forms. Consider a real space Rn

and fix some coordinate basis in it. A real operator is called regular if all its eigenvalues
are distinct (but not necessary real). A maximal commutative subgroup of GL(n,R) is
said to be regular, or MCRS-group for short, if it contains regular operators.

We say that a one-dimensional complex space is an eigenspace of an MCRF-group if it
is an eigenspace of one of its regular operators. Actually any two regular operators of the
same MCRS-group have the same eigenspaces, therefore each MCRF-group has exactly n
distinct eigenspaces.

Consider an arbitrary MCRS-group A and denote its eigenspaces by l1, . . . , ln. Denote
by Li a nonzero linear form over Cn that attains zero values at all vectors of the complex
lines lj for j 6= i. Let ∆(L1, . . . , Ln) be the determinant of the matrix having in the k-th
column the coefficients of the form Lk for k = 1, . . . , n in the dual basis.

Definition 1.1. We say that the form
n∏

k=1

(
Lk(x1, . . . , xn)

)

∆(L1, . . . , Ln)

is the Markoff-Davenport form for the MCRS-group A and denote it by ΦA.

Example 1.2. Consider an MCRS-group containing a Fibonacci operator
(

1 1
1 0

)
.

Fibonacci operator has two eigenlines

y = −θx and y = θ−1x,
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where θ is the golden ration 1+
√

5
2

. So the Markoff-Davenport form of Fibonacci operator
is

(y + θx)(y − θ−1x)

θ − θ−1
=

1√
5
(−x2 + xy + y2).

A Markoff-Davenport form is uniquely defined by an MCRS-group up to a sign, since
the linear forms Li are uniquely defined by the MCRS-group up to multiplication by a
scalar and permutations. By definition any MCRS-group contains a real operator with
distinct roots, therefore all the coefficients of the Markoff-Davenport form are real.

Remark 1.3. The minima of the absolute values of such forms on the integer lattice were
studied by A. Markoff in [31] for two-dimensional case, and further by H. Davenport in [10],
[11], and [12] for three-dimensional totally real case. A few three-dimensional totally real
examples were exhoustively studied by A. D. Bryuno, V. I. Parusnikov (see for instance
in [8]). The first steps in general multidimensional case were made in paper [21].

1.2. Rational subgroups and their sizes. We start with the following definition.

Definition 1.4. An MCRS-group A is called rational if all its eigenspaces contain Gauss-
ian vectors, i. e. vectors whose coordinates are of type a + Ib for integers a and b, where
I2 = −1. Denote the set of all rational MCRS-groups of dimension n by Ratn.

Example 1.5. The following two operators
(

0 −1
1 0

)
with eigenvectors (I, 1) and (−I, 1),

(
1 1
4 1

)
with eigenvectors (1, 2) and (1,−2)

represents rational MCRS-groups (denote them by Ai and Aii) with real and complex
conjugate eigen-directions.

For a complex vector v = (a1+Ib1, . . . , an+Ibn) denote by |v| the norm

max
i=1,...,n

(√
a2

i + b2
i

)
.

A Gaussian vector is said to be primitive if all its coordinates are relatively prime.
Suppose that a complex one-dimensional space has Gaussian vectors, then the minimal

value of the norm | ∗ | for the Gaussian vectors is attained at primitive Gaussian vectors.

Definition 1.6. Consider a rational MCRS-group A. Let l1, . . . , ln be the eigenspaces of
A. The size of A is a real number

max
i=1,...,n

{|vi|
∣∣vi – is a primitive Gaussian vector in li

}
,

we denote it by ν(A).

The sizes of operators in Example 1.5 are 1 and 2 respectively.
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1.3. Discrepancy functional and approximation model. We are focused mostly on
the following approximation problem: how to approximate an MCRS-group by rational
MCRS-groups (or even by a certain subset of rational MCRS-groups)?

Let us first define a natural distance between MCRF-groups. Let A1 and A2 be two
MCRS-groups. Consider the following two symmetric bilinear forms

ΦA1(v) + ΦA2(v) and ΦA1(v)− ΦA2(v)

for vectors in Rn. Take the maximal absolute values of the coefficients of these forms
(separately). The minimal of these two maximal values we consider as a distance between
A1 and A2, we call it discrepancy and denote by ρ(A1,A2).

Let us calculate the discrepancy between the MCRS-groups of Example 1.5. We have

∣∣ΦAi
(v)± ΦAii

(v)
∣∣ =

∣∣∣∣I
x2 + y2

2
± y2 − 4x2

4

∣∣∣∣

therefore ρ(Ai,Aii) =
√

3
2

.

Definition 1.7. Let Ω ⊂ Ratn for a fixed n. The problem of best approximations of an
MCRS-group A by MCRS-groups in Ω is as follows. For a given positive integer N find
a rational MCRS-group AN in Ω with size not exceeding N such that

ρ(A,AN) = min
{
ρ(A,A′)

∣∣A′ ∈ Ω, ν(A′) ≤ N
}
.

Remark 1.8. There are another important classes of MCRS-groups that contain matrices of
GL(n,Z) and GL(n,Q) respectively. The MCRS-group is said to be algebraic if it contains
regular operators of GL(n,Z). It is natural to consider approximations of MCRS-groups
by algebraic MCRS-groups, and approximations of algebraic MCRS-groups by rational
MCRS-groups.

2. Diophantine approximations and MCRS-group approximations

A classical problem of approximating real numbers by rational numbers is a particular
case of the problem of best approximations of MCRS-groups.

For a real α denote by A[α] an MCRS-group of GL(2,R) defined by the two spaces
x = 0 and y = αx. Consider any two MCRS-groups A[α1] and A[α2] with positive α1 and
α2 and calculate a discrepancy between them.

ΦA[α1] − ΦA[α2] =
x(y − α1x)

1
− x(y − α2x)

1
= (α2 − α1)x

2

ΦA[α1] + ΦA[α2] =
x(y − α1x)

1
+

x(y − α2x)

1
= 2xy − (α2 + α1)x

2

Since α1 > 0 and α2 > 0 we have

ρ(A[α1],A[α2]) = |α1 − α2|.
Denote by ΩQ[0,1] a subset of all A[α] for rational α in the segment [0, 1].
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For any couple of relatively prime integers (m,n) satisfying 0 ≤ m
n
≤ 1 we have

ν
(
A

[m

n

])
= n.

A classical problem of approximations of real numbers by rational numbers having
bounded denominators in our terminology is as follows.

Theorem 2.1. Consider a real number α, 0 ≤ α ≤ 1. Let [0, a1, . . .] (or [0, a1, . . . , ak])
be an ordinary infinite (finite) continued fraction for α. Then the set of best approx-
imations consists of MCRS-groups A[m/n] for m/n = [0, a1, . . . , al−1, al] where l =
1, 2, . . . (In case of finite continued fraction we additionally have A[m/n] for m/n =
[0, a1, . . . , ak−1, ak−1]). ¤

3. General approximations in two-dimensional case

In this section we prove estimates on the quality of best approximations for MCRS-
groups whose eigen-directions are expressed by continued fractions with bounded denom-
inators. We study separately the cases of hyperbolic and non-hyperbolic MCRS-groups.
Especially we study geometric interpretation of the bounds in turms of geometric contin-
ued fractions for the algebraic hyperbolic MCRS-groups.

3.1. Hyperbolic case. An MCRS-group is called hyperbolic if it contains a hyperbolic
operator (whose all eigenvalues are all real and pairwise distinct).

3.1.1. Lagrange estimates for a special case. In this subsection we prove an analog of
Lagrange theorem on the approximation rate for an MCRS-groups that has eigenspaces
defined by y = α1x and y = α2x with bounded elements of the continued fractions for α1

and α2. In particular this includes all algebraic MCRS-groups. Here we do not consider
the case when one of the eigenspaces is x = 0, this case was partially studied in Section 2.

Theorem 3.1. Let α1 and α2 be real numbers having infinite continued fractions with
bounded elements. Consider an MCRS-group A with eigenspaces y = α1x and y = α2x.
Then there exist positive constants C1 and C2 such that for any positive integer N the best
approximation AN in Ω satisfies

C1

N2
< ρ(A,AN) <

C2

N2
.

We will start the proof with the following two lemmas.
Denote by Aδ1,δ2 the MCRS-group defined by the lines y = (αi + δi)x for i = 1, 2.

Lemma 3.2. Consider a positive real number ε1 such than ε1 < 1/|α1 − α2|. Suppose
that ρ(A,Aδ1,δ2) < ε1 then

|δ1| < (1+|α1|)(α1−α2)2

|α2|(1−ε1|α1−α2|)ε1 and |δ2| < (1+|α2|)(α1−α2)2

|α1|(1−ε1|α1−α2|)ε1.
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Proof. Let us remind that the Markoff-Davenport form of Aδ1,δ2 is

ΦAδ1,δ2(x, y) =

(
y − (α1 + δ1)x

)(
y − (α2 + δ2)x

)

(α2 + δ2)− (α1 + δ1)
.

Consider the absolute values of the coefficients at y2 and at xy for the difference of
Markoff-Davenport forms for the MCRS-groups A and Aδ1,δ2 . By the conditions of the
lemma these coefficients are less then ε1:∣∣∣∣

δ2 − δ1

(α1 − α2)(α1 − α2 + δ1 − δ2)

∣∣∣∣ < ε1 and

∣∣∣∣
α1δ2 − α2δ1

(α1 − α2)(α1 − α2 + δ1 − δ2)

∣∣∣∣ < ε1.

From the first inequality we have:

|δ1 − δ2| < (α1 − α2)
2

1− ε1|α1 − α2|ε1.

The second inequality implies:

|δ1| < |(α1 − α2)(α1 − α2 + δ1 − δ2)|ε1 + |α1(δ1 − δ2)|
|α2| ,

and therefore

|δ1| <
|α1 − α2|(|α1 − α2|+ (α1−α2)2

1−ε1|α1−α2|ε1)ε1 + |α1| (α1−α2)2

1−ε1|α1−α2|ε1

|α2| =
(1 + |α1|)(α1 − α2)

2

|α2|(1− ε1|α1 − α2|)ε1.

The inequality for δ2 is obtained in the same way. ¤
Lemma 3.3. Let ε2 be a positive real number. Suppose |δ1| < ε2 and |δ2| < ε2, then

ρ(A,Aδ1,δ2) <
max

(
2, 2(|α1|+ |α2|), α2

1+α2
2 + |α1−α2|ε2

)

(|α1 − α2|)(|α1 − α2|+ 2ε2)
ε2.

Proof. The statement of lemma follows directly form the estimate of the coefficients for
the difference of Markoff-Davenport forms for the MCRS-groups A and Aδ1,δ2 . ¤

Proof of Theorem 3.1. Let us start with the first inequality. Let α1 = [a0, a1, . . .], and
mi/ni = [a0, a1, . . . , ai]. Without loss of generality we assume that N > a0. Suppose k is
the maximal positive integer for which mk ≤ N and nk ≤ N . Then we have

min

(∣∣∣α1 − m

n

∣∣∣
∣∣∣∣|m|≤N, |n|≤N

)
≥

∣∣∣∣α1 − mk+1

nk+1

∣∣∣∣ ≥
1

nk+1(nk+1 + nk+2)
≥

1

(ak+1 + 1)nk

(
(ak+1 + 1)nk + (ak+1 + 1)(ak+2 + 1)nk

) ≥ 1

(ak+1 + 1)2(ak+2 + 2)
· 1

N2
.

For the second and the third inequalities we refer to [22].
The same calculations are valid for α2. Hence we get C1 from Lemma 3.2.

Now we prove the second inequality.∣∣∣∣α1 − mk

nk

∣∣∣∣ <
1

nknk+1

<
ak+1 + 1

n2
k+1

<
(ak+1 + 1)

N2
max

(
1, (α1 + 1)2

)
.
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The first inequality is classical and can be found in [22]. We take maximum in the last
inequality for the case of mk+1 > N and nk+1 < N . From conditions of the theorem the
set of ai’s is bounded. Therefore, there exists a constant C ′

2,1 such that for any N there

exists an approximation of α1 of quality smaller than C ′
2,1/N

2.
The same holds for α2. Therefore, we can apply Lemma 3.3 in order to obtain the

constant C2. ¤
Let us say a few words about the case of unbounded elements of continued fractions for

αi. Take any positive ε. If the elements of a continued fraction (say for α1) are growing
fast enough than there exists a sequence Ni for which the approximations ANi

are of a
quality C

(Ni)1+ε
. We show this in the following example.

Example 3.4. Let M be a positive integer. Consider α1 = [a0, a1, . . .], such that a0 = 1,
an = (nk−1)

M−1. Denote mk

nk
= [a0, . . . , ak]. Let α2 = 0. Take Nk = nk+nk+1

2
. Then there

exists a positive constant C such that for any integer i we have

ρ(A,ANi
) ≥ C

N
1+1/M
i

.

Proof. For any i we have

ni+1 ≥ aini = nM−1
i ni = nM

i .

Therefore, the best approximation with denominator and numerator less than Nk is not
better than ∣∣∣∣α1 − mk

nk

∣∣∣∣ ≥
1

nk(nk+1 + nk)
≥ 1

nM
k+1(nk+1 + nk)

≥ 21+1/M

N
1+1/M
k

.

Now we apply Lemma 3.2 to complete the proof. ¤

We suspect the existence of badly approximable MCRS-group A and a constant C such
that there are only finitely many solutions N of the following equation

ρ(A,AN) ≤ C

N
,

like in the case of simultaneous approximations of vectors in R3 (see for instance in [30]).

3.1.2. Periodic sails and best approximations in algebraic case. Let us show one relation
between classical geometry of numbers (for example see in [4]) and best simultaneous
approximations.

First we recall the notion of sails. Consider an arbitrary cone C in R2 with vertex at
the origin and boundary rays r1 and r2. We also suppose that the angle between r1 and
r2 is non-zero and less than π. Denote the set of all integer points in the closure of the
cone except the origin by Ir1,r2 . The sail of this cone is the boundary of the convex hull
of Ir1,r2 . It is homeomorphic to a line and contains rays in case of ri has an integer point
distinct to the origin.
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Definition 3.5. Define inductively the n-sail for the cone C.
— let 1-sail be the sail of C.
— suppose all k-sails for k < k0 are defined then let k0-sail be

∂
(

conv
(
Ir1,r2 \

k0−1⋃

k=1

k-sail
))

,

where conv(M) denote the convex hull of M .

The k-sails have the following interesting property.

Proposition 3.6. Consider a cone C. The k-sail of C is homothetic to the 1-sail of C
and the coefficient of homothety is k. ¤

Now consider an arbitrary MCRS-group. Let l1 and l2 be the two eigenlines for all the
operators of MCRS-group. The union of all four k-sails for the cones defined by the lines
l1 and l2 is a k-geometric continued fraction of the MCRS-group.

Further we proceed with an algebraic case. So a hyperbolic MCRS-group A contains an
GL(2,Z)-operator with distinct eigenvalues. In this case the mentioned operator acts on
a k-geometric continued fraction (for any k) as a transitive shift. In addition the values
of the function

ΦA(m,n), for m,n ∈ Z,

are contained in the set αZ where the value α is attained at some point of the 1-geometric
continued fraction. The value α = α(A) is an essential characteristic of A, it is sometimes
called Markoff minima of the form ΦA.

Lemma 3.7. Let an integer point (m,n) be in the k-geometric continued fraction of A.
Then

|ΦA(m,n)| ≥ kα.

Proof. We use induction.
The statement clearly holds for k = 1.
Suppose the statement holds for k = k0 let us prove it for k = k0 + 1. From the

step of induction we have the following: for any cone the convex hull of real points
|ΦA(a, b)| = k0α contains the k0-sail of the cone. From the other hand all integer points
with |ΦA(m,n)| = k0α (if any) are on the boundary of this convex hull. Hence all of them
are in k0-sail, and thus they are not contained in (k0+1)-sail. ¤

Theorem 3.8. Let A be an algebraic MCRS-group. Then there exists a positive constants
C such that for any positive integer N the following holds. Let the best approximation
AN ∈ Ω be defined by primitive vectors v1 and v2 contained in k1- and k2-geometric
continued fractions respectively, then k1, k2 < C.

Proof. By Lemma 3.7 it is sufficient to prove that the set of values of |ΦA(vi)| is bounded.
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Let A has eigenlines y = αix, i = 1, 2. Notice that

|ΦA(m,n)| =
∣∣∣∣
(m− α1n)(m− α2n)

α1 − α2

∣∣∣∣ =
∣∣∣m
n
− α1

∣∣∣ ·
∣∣∣∣
m− α2n

α1 − α2

n

∣∣∣∣
Let v1 = (x1, y1). By Lemma 3.2 (without loss of generality we suppose that v1 corresponds
to δ1 in the lemma) the first multiplicative is bounded by C̃/N2 for some constant C̃ that
does not depend on N .

Hence,

|ΦA(x1, y1)| ≤ C̃

∣∣∣∣
y2

1

N2
·

x1

y1
− α2

α1 − α2

∣∣∣∣ ≤ C̃

∣∣∣∣
x1

y1
− α2

α1 − α2

∣∣∣∣
Finally, the last expression is uniformly bounded. The same holds for v2.

Therefore, the set of values of |ΦA(vi)| is bounded. ¤
Conjecture 1. We conjecture that for almost all N the vectors v1 and v2 defining AN

are in 1-geometric continued fraction.

3.1.3. Technique of calculation of best approximations in the hyperbolic case. In this sub-
section we show a general technique of calculation of best approximations for an arbitrary
MCRS-group A with eigenspaces y = α1x and y = α2x for distinct real numbers α1 and
α2.

Proposition 3.9. Let m and n be two integers. Suppose |α1− m
n
| < ε3 (or |α2− m

n
| < ε3

respectively), then the following holds:
∣∣∣α1 − m

n

∣∣∣ >
|α1 − α2|

|α1 − α2|+ ε3

|ΦA(m,n)|
n2

(∣∣∣α2 − m

n

∣∣∣ >
1

|α1 − α2|+ ε3

|ΦA(m,n)|
n2

)
.

Proof. We have
∣∣α1 − m

n

∣∣ = 1
n
|m− α1n| = 1

n
|m−α1n|(m−α2n)

m−α2n
= |ΦA(m,n)|

n2

|α1−α2|
|α1−α2+(m

n
−α1)| > |α1−α2|

|α1−α2|+ε3

|ΦA(m,n)|
n2 .

The same holds for the case of the approximations of α2. ¤
Procedure of best approximation calculation.
1). Find best Diophantine approximations of α1 and α2 using continued fractions in

the square N × N . Suppose for αi it is mi/ni, and the following best approximation is
m′

i/n
′
i.

2). Consider now the MCRS-group A with invariant lines y = mi

ni
x. By Lemma 3.3 we

get an upper bound for ρ(A,A) (where ε2 = max(1/(n1n
′
1), 1/(n2n

′
2))).

3). Now having the estimate for discrepancy we use Lemma 3.2 to get estimates C1

and C2 for
∣∣α1− p1

q1

∣∣ and
∣∣α2− p2

q2

∣∣ for the best approximation of A with rays y = p1

q1
x and

y = p2

q2
x.

4). By Proposition 3.9 we write an estimate for ΦA(pi,qi)

q2
i

for i = 1, 2.

5). Finally we compare the discrepancies for all MCRS-groups that satisfies the esti-

mates for ΦA(ki,li)

l2i
obtained in 4).
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Example 3.10. Consider an MCRS-group containing Fibonacci matrix:
(

0 1
1 1

)
.

Denote by Fn the n-th Fibonacci number.
Consider any integer N ≥ 100.
1). Consider a positive integer k such that Fk ≤ N < Fk+1 and choose an approximation

A with eigenspaces Fk−1y − Fkx = 0 and Fky + Fk−1x = 0. Then
∣∣∣∣α1 − Fk

Fk−1

∣∣∣∣ ≤ 1/(Fk−1Fk),

∣∣∣∣α1 +
Fk−1

Fk

∣∣∣∣ ≤ 1/(FkFk+1)

2). So, ε2 = 1/(Fk−1Fk) < 1/(55 · 89). Therefore,

ρ(A,Aδ1,δ2) <
max

(
2, 2

√
5, 3 +

√
5/4895

)

5 + 2
√

5
4895

1

Fk−1Fk

<
2
√

5

5 + 2
√

5
4895

(89/55)3

N2
<

3.79

N2
.

3). Hence, by Lemma 3.2 we get (ε1 < 3.79/1002):

|δ1| < 80.35
N2 and |δ2| < 18.97

N2 .

4). The estimates for ΦA(p1,q1)

q2
1

and ΦA(p2,q2)

q2
2

for the corresponding rays of best approxi-

mation are as follows.

|ΦA(m1, n1)|
n2

1

<
80.65

N2
,

|ΦA(m2, n2)|
n2

2

<
18.99

N2
.

5). Notice that the number of approximations whose discrepancies we compare in
this step is bounded by some constant not depending on N . We have completed the
computations for N = 106, the answer in this case is the matrix with eigenspaces: F29y−
F30x = 0 and F30y + F29x = 0.

We conjecture that for the Fibonacci matrix we always get the best approximation with
eigenspaces Fk−1y − Fkx = 0 and Fky + Fk−1x = 0.

We conclude this subsection with an example showing that the continued fractions do
not always give best approximations.

Example 3.11. Consider an operator A with eigenvectors:

v1 = (1, 2) and v2 = (2, 3),

and the corresponding maximal subgroup A. Then there are four different best approxi-
mations of size 1, they have invariant lines defined by the following couples of vectors:

(
w1 = (1, 0), w2 = (1, 1)

)
,

(
w1 = (1, 0), w2 = (1,−1)

)
,(

w1 = (1, 0), w2 = (0, 1)
)
, and

(
w1 = (0, 1), w2 = (1, 1)

)
.
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(the discrepancy between A and any of them equals 6). The continued fraction (or the
union of sails) of A contains only four integer points

(1, 2), (2, 3), (−1,−2), and (−2,−3).

Therefore the invariant lines of all four best approximations do not contain vectors of the
sail of A.

Remark 3.12. Actually, for a generic MCRS-group the best approximation of any size
N > 0 is unique. In the previous example we have four best approximations since we are
approximating MCRS-group defined by vectors with integer coefficients.

3.2. Non-hyperbolic case. Now we prove similar statements for the complex case.

3.2.1. Lagrange estimates for a special case. In this subsection we prove an analog of
Lagrange theorem on the approximation rate for an MCRS-groups that has complex
conjugate eigenspaces defined by y = (α+Iβ)x and y = (α−Iβ)x with bounded elements
of the continued fractions for α and β. In particular this includes all complex algebraic
MCRS-groups.

Theorem 3.13. Let α and β be real numbers having infinite continued fractions with
bounded elements. Consider an MCRS-group A with eigenspaces y = (α + Iβ)x and
y = (α − Iβ)x. Then there exist positive constants C1 and C2 such that for any positive
integer N the best approximation AN in Ω satisfies

C1

N2
< ρ(A,AN) <

C2

N2
.

We will start the proof with the following two lemmas.
Denote by Aδ1,δ2 the MCRS-group defined by the lines y =

(
(α + δ1)± I(β + δ2)

)
x for

i = 1, 2.

Lemma 3.14. Consider a positive real number ε1 such than ε1 < 1
2(1+|β|) . Suppose that

ρ(A,Aδ1,δ2) < ε1 then

|δ1| < 2|α−β|β2

|α−β|−2ε1|β|(1+|β|)ε1 and |δ2| < 2(1+|β|+|α−β|)β2

|α−β|−2ε1|β|(1+|β|)ε1.

Proof. Consider the absolute values of the coefficients at y2 and at xy for the difference
of Markoff-Davenport forms for the MCRS-groups A and Aδ1,δ2 . By the conditions of the
lemma these coefficients are less then ε1:∣∣∣∣

δ2 − δ1

2β(β + δ2)

∣∣∣∣ < ε1 and

∣∣∣∣
αδ2 − βδ1

2β(β + δ2)

∣∣∣∣ < ε1.

Hence we have∣∣∣∣
(α− β)δ2

2β(β + δ2)

∣∣∣∣ ≤ +

∣∣∣∣
αδ2 − βδ1

2β(β + δ2)

∣∣∣∣ + |β|
∣∣∣∣

δ2 − δ1

2β(β + δ2)

∣∣∣∣ < (1 + |β|)ε1.

This gives us the estimate for δ2.
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For δ1 we have

|δ1| < 2|β|
∣∣∣|β|+ 2(1+|β|)β2

|α−β|−2ε1|β|(1+|β|)ε1

∣∣∣ ε1 + 2(1+|β|)β2

|α−β|−2ε1|β|(1+|β|)ε1 = 2(1+|β|+|α−β|)β2

|α−β|−2ε1|β|(1+|β|)ε1.

The proof is completed. ¤
Lemma 3.15. Let ε2 be a positive real number. Suppose |δ1| < ε2 and |δ2| < ε2, then

ρ(A,Aδ1,δ2) <
max

(
2, 2(|α|+ |β|), |α2−β2|+ 2|αβ|+ 2|β|ε2

)

|β|(|β|+ ε2)
ε2.

Proof. The statement of lemma follows directly form the estimate of the coefficients for
the difference of Markoff-Davenport forms for the MCRS-groups A and Aδ1,δ2 . ¤

Proof of Theorem 3.13. The remaining part of the proof almost completely repeats the
end of the proof of Theorem 3.1, so we omit it here. ¤
3.2.2. Technique of calculation of best approximations in the hyperbolic case. Here we show
a general technique of calculation of best approximations for an arbitrary MCRS-group
A with eigenspaces y = (α± Iβ)x for real number α and positive real β.

Proposition 3.16. Let a satisfy |α + Iβ| < ε3, then the following holds:

|(α + Iβ)− a| > 2β|ΦA(1, a)|
2β + ε3

.

Proof. We have |(α + Iβ)− a| = |(α+Iβ)−a|((α−Iβ)−a)
(α−Iβ)−a

= 2β|ΦA(1,a)|
|((α+Iβ)−a)−2Iβ| > 2β|ΦA(1,a)|

2β+ε3
. ¤

Procedure of best approximation calculation.
1). Find best Diophantine approximations of α and β using continued fractions in

the square N × N . Suppose for α and β it are m1/n1, and m2/n2, and the next best
approximation are m′

1/n
′
1, and m′

2/n
′
2.

2). Consider the MCRS-group A with invariant lines y =
(

m1

n1
±I m2

n2

)
x. By Lemma 3.15

we get an upper bound for ρ(A,A) (where ε2 = max(1/(n1n
′
1), 1/(n2n

′
2))).

3). Now having the estimate on discrepancy we use Lemma 3.14 to get estimates C1

and C2 for the best approximation of A:
∣∣α− p1

q1

∣∣ and
∣∣β − p2

q2

∣∣ respectively.

4). By Proposition 3.16 we write an estimate for
∣∣ΦA

(
1, p1

q1
+ I p2

q2

)∣∣.
5). Finally we compare the discrepancies for all MCRS-groups that satisfies the esti-

mates obtained in 4).

4. Simultaneous approximations in R3 and MCRS-group approximations

Theory of simultaneous approximation of a real vector by vectors with rational coeffi-
cients can be considered as a special case of MCRS-group approximations similarly to the
Diophantine case. In this section we study several examples of simultaneous approxima-
tions in frames of MCRS-group approximations. The first example is an eigen-direction
of a hyperbolic operator (see in Subsection 3.2) and the second is an eigen-direction of a
nonhyperbolic operator (see in Subsection 3.3).



RATIONAL APPROXIMATION OF THE MAXIMAL COMMUTATIVE SUBGROUPS OF GL(n,R) 19

4.1. General construction. Let [a, b, c] be a vector in R3. Consider the maximal com-
mutative subgroup A[a, b, c] defined by three vectors

(a, b, c), (0, 1, I), (0, 1,−I).

The problem of approximation here is in approximation of the subgroup A[a, b, c] by
A[a′, b′, c′] for integer vectors (a′, b′, c′). For this case we have:

ΦA[a,b,c](x, y, z) = I

(
−b2 + c2

2a2
x3 +

b

a
x2y +

c

a
x2z − 1

2
xy2 − 1

2
xz2

)
.

Therefore,

ρ
(A[a, b, c],A[a′, b′, c′]

)
= min

(
max

(∣∣ b
a
− b′

a′
∣∣ ,

∣∣ c
a
− c′

a′
∣∣ ,

∣∣∣ b2+c2

2a2 − b′2+c′2

2a′2

∣∣∣
)

,

max
(∣∣ b

a
+ b′

a′
∣∣ ,

∣∣ c
a

+ c′
a′

∣∣ ,
∣∣∣ b2+c2

2a2 + b′2+c′2

2a′2

∣∣∣
))

.

4.2. A ray of non-hyperbolic operator. Consider the non-hyperbolic algebraic ope-
rator

B =




0 1 1
0 0 1
1 0 0


 .

This operator is in some sense the simplest non-hyperbolic operator we can have (see for
more information [21]).

Denote the eigenvalues of E1 by ξ1, ξ2, and ξ3 such that ξ1 is real, ξ2 and ξ3 are complex
conjugate. Notice also that

|ξ1| > |ξ2| = |ξ3|.
We approximate the eigenspace corresponding to ξ1. Let vξ1 be the vector in this

eigenspace having the first coordinate equal to 1. Note that

ξ1 ≈ 1.3247179573 and vξ1 ≈ (1, .5698402911, .7548776662).

The set of best approximations AN with N ≤ 106 contains of 48 elements. These
elements are of type Bni(1, 0, 0) where n1 = 4, and for 2 ≤ i ≤ 48 we have ni = i + 4. We
conjecture that all the set of best approximations coincide with the set of points Bk(1, 0, 0)
where k = 4, or k ≥ 6, the approximation rate in this case is CN−3/2.

4.3. Two-dimensional golden ratio. Let us consider an algebraic operator

G =




3 2 1
2 2 1
1 1 1


 .

This operator is usually called two-dimensional golden ratio. It is the simplest hyperbolic
operator from many points of view, his two-dimensional continued fraction in the sense
of Klein was studied in details by E. I. Korkina in [26] and [27].
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The group of all integer operators of GL(3,Z) commuting with G is generated by the
following two operators:

E1 =




1 1 1
1 1 0
1 0 0


 and E2 =




0 1 1
1 0 0
1 0 −1


 .

Note that G = E2
1 and E2 = (E1 − Id)−1, where Id is an identity operator. Operator E1

is a three-dimensional Fibonacci operator.
Denote the eigenvalues of E1 by ξ1, ξ2, and ξ3 in such a way that the following holds:

|ξ1| > |ξ2| > |ξ3|.
Let us approximate the eigenspace corresponding to ξ1. Denote by vξ1 the vector of

this eigenspace having the last coordinate equal to 1. Note that

ξ1 ≈ 2.2469796037 and vξ1 ≈ (2.2469796037, 1.8019377358, 1).

The set of best approximations AN with N ≤ 106 contains 40 elements. These elements
are in the set {

Em
1 En

2 (1, 0, 0)
∣∣∣m,n ∈ Z

}
.

All the points of the sequence can be found from the next table. In the column c we
get m = mc, n = nc for the approximation Emc

1 Enc
2 (1, 0, 0).

i 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

m 1 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 10 10 11 11
n 1 1 2 1 2 1 3 2 3 2 1 3 2 3 2 4 3 4 3 5 4

i 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

m 11 12 12 13 13 14 14 15 15 15 16 16 17 17 18 18 19 19 19
n 3 4 3 5 4 5 4 6 5 4 5 4 6 5 6 5 7 6 5

In addition to this table we have A3 = (3, 2, 1) as best approximation.
We conjecture that all the set of best approximations except A3 is contained in the set

of all points of type Em
1 En

2 (1, 0, 0), the approximation rate in this case is CN−3/2.
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