
COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES ANDTWO-DIMENSIONAL FACES OF MULTIDIMENSIONAL CONTINUEDFRACTIONS.O. N. KARPENKOVAbstra
t. In this paper we develop an integer-aÆne 
lassi�
ation of three-dimensionalmultistory 
ompletely empty 
onvex marked pyramids. We apply it to obtain the 
om-plete lists of 
ompa
t two-dimensional fa
es of multidimensional 
ontinued fra
tions lyingin planes at integer distan
es to the origin equal 2, 3, 4, : : : The fa
es are 
onsidered upto the a
tion of the group of integer-linear transformations.Introdu
tion and ba
kgroundThe main purpose of the present paper is to develop an integer-aÆne 
lassi�
ationof three-dimensional multistory 
ompletely empty 
onvex marked pyramids. We applyit to dedu
e an integer-linear 
lassi�
ation of 
ompa
t two-dimensional fa
es of multidi-mensional 
ontinued fra
tions in the sense of Klein lying in planes at integer distan
esto the origin greater than one. The 
lassi�
ation of two-dimensional fa
es leads to newalgorithms of two-dimensional 
ontinued fra
tion 
al
ulations. It is also the �rst step instudying the 
ombinatorial stru
ture of multidimensional 
ontinued fra
tions.0.1. General de�nitions. Consider a ve
tor spa
e Rn+1 for some n � 1. A point or ave
tor of Rn+1 is 
alled integer if all its 
oordinates are integers.Consider some k-dimensional plane of Rn+1 . The interse
tion of a �nite number of
losed k-dimensional half-planes of the plane is said to be a 
onvex (solid) k-dimensionalpolyhedron if it is homeomorphi
 to a k-dimensional 
losed disk. For k = 0, 1, or 2 wehave a point, a segment, or a 
onvex polygon. Here we 
onsider polyhedra as 
onvex hullswith all their interior points.A polyhedron is said to be a 
onvex marked pyramid with some marked fa
e and avertex outside the plane 
ontaining the fa
e if it 
oin
ides with the 
onvex hull of theunion of the marked vertex and the marked fa
e. The marked fa
e is 
alled the base ofthe marked 
onvex pyramid and the marked vertex | the vertex of the marked 
onvexpyramid. A polyhedron is 
alled a 
onvex pyramid if some stru
ture of 
onvex markedpyramid 
an be introdu
ed for it.Date: 19 De
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onvex polyhedron (polygon, segment) is said to be integer if all its verti
es areinteger points. A 
onvex (marked) pyramid is said to be integer if it is an integer 
onvexpolyhedron.De�nition 0.1. An integer 
onvex polyhedron is 
alled empty if it does not 
ontaininteger points di�erent from the verti
es of the polyhedron. An integer 
onvex markedpyramid is 
alled 
ompletely empty if it does not 
ontain integer points di�erent from themarked vertex and from the integer points of the base.Two sets in Rn+1 are said to be integer-aÆne equivalent (or have the same integer-aÆnetype), if there exists an aÆne transformation of Rn+1 preserving the set of all integer pointsand taking the �rst set to the se
ond. Two sets in Rn+1 are said to be integer-linearequivalent (or have the same integer-linear type), if there exists a linear transformation ofRn+1 preserving the set of all integer points and taking the �rst set to the se
ond.De�nition 0.2. A k-dimensional plane is 
alled integer if it is integer-aÆne equivalent tosome plane passing through the origin and 
ontaining a rank k sublatti
e of the integerlatti
e.Consider some integer (k�1)-dimensional plane and an integer point in the 
omple-ment to this plane. Let the Eu
lidean distan
e from the given point to the given planeequals l. The minimal value of nonzero Eu
lidean distan
es from all integer points of the(k-dimensional) span of the the given plane and the given point to the plane is denotedby l0. Note that l0 is always greater than zero and 
an be obtained for some integer pointof the des
ribed span. The ratio l=l0 is said to be the integer distan
e from the giveninteger point to the given integer plane.For example, the integer distan
e from O to the plane spanned by A, B, and C ofFigure 1 equals 3.De�nition 0.3. An integer 
onvex marked pyramid is 
alled l-story for some positiveinteger l if the integer distan
e from the vertex of this pyramid to its base plane equals l.An integer 
onvex marked pyramid is 
alled multistory/single-story if the integer distan
efrom the vertex of this pyramid to its base plane is greater than one/equals to one. (Seeexample on Figure 1.)For any 
onvex polygon there exists a single-story integer three-dimensional 
onvexmarked pyramid with the given polygon as the base (sin
e any single-story integer 
onvexmarked pyramid is 
ompletely empty). Two single-story three-dimensional 
onvex markedpyramids are integer-aÆne equivalent i� their bases are integer-aÆne equivalent.It turns out that the 
ase of multistory 
onvex marked pyramids is essentially di�erentfrom the single-story 
ase. Only polygons of a few integer-aÆne types 
an be bases ofmultistory 
onvex marked 
ompletely empty pyramids. For example, the parallelogramwith verti
es (0; 0), (0; 1), (1; 1), and (1; 0) is not of that type. Besides, there exist integer-aÆne nonequivalent multistory 
onvex marked 
ompletely empty pyramids whose basesare integer-aÆne equivalent.In Se
tion 1 of the present paper, we give the 
omplete list of integer-aÆne types ofinteger multistory 
onvex marked 
ompletely empty pyramids. To 
lassify the pyramids,
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A BC

O
A BCFigure 1. Two images of a 
ompletely empty three-story marked pyramidwith vertex O and base ABC.we study arrangements of integer sublatti
es on the planes parallel to the bases of thepyramids.0.2. De�nition of multidimensional 
ontinued fra
tions in the sense of Klein.The problem of generalizing ordinary 
ontinued fra
tions to the higher-dimensional 
asewas posed by C. Hermite [9℄ in 1839. A large number of attempts to solve this problemlead to the birth of several di�erent remarkable theories of multidimensional 
ontinuedfra
tions. In this paper we 
onsider the geometri
al generalization of ordinary 
ontinuedfra
tions to the multidimensional 
ase presented by F. Klein in 1895 and published byhim in [17℄ and [18℄.Consider a set of n+1 hyperplanes of Rn+1 passing through the origin in general position.The 
omplement to the union of these hyperplanes 
onsists of 2n+1 open orthants. Let us
hoose an arbitrary orthant.De�nition 0.4. The boundary of the 
onvex hull of all integer points ex
ept the originin the 
losure of the orthant is 
alled the sail. The set of all 2n+1 sails of the spa
e Rn+1is 
alled the n-dimensional 
ontinued fra
tion asso
iated to the given n+1 hyperplanes ingeneral position in (n+1)-dimensional spa
e.Note that the union of all sails of any 
ontinued fra
tion is 
entrally symmetri
.On Figure 2 we show an example of one-dimensional 
ontinued fra
tion. This 
ontinuedfra
tion 
ontains four sails (four broken lines on Pi
ture 2). A des
ription of 
onne
tionsbetween ordinary 
ontinued fra
tions and geometri
al one-dimensional 
ontinued fra
tions
an be found in [16℄, [11℄, and [12℄.Two n-dimensional 
ontinued fra
tions are said to be equivalent if there exists a lineartransformation that preserves the integer latti
e of the (n+1)-dimensional spa
e and takesthe sails of the �rst 
ontinued fra
tion to the sails of the other.Multidimensional 
ontinued fra
tions in the sense of Klein have many relations withother bran
hes of mathemati
s. For example, J.-O. Moussa�r [27℄ and O. N. German [8℄studied the 
onne
tion between the sails of multidimensional 
ontinued fra
tions andHilbert bases. In [35℄ H. Tsu
hihashi found the relationship between periodi
 multidi-mensional 
ontinued fra
tions and multidimensional 
usp singularities, whi
h generalizes
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Figure 2. A one-dimensional 
ontinued fra
tion.the relationship between ordinary 
ontinued fra
tions and two-dimensional 
usp singu-larities. M. L. Kontsevi
h and Yu. M. Suhov dis
ussed the statisti
al properties of theboundary of a random multidimensional 
ontinued fra
tion in [19℄. The 
ombinatorialtopologi
al generalization of Lagrange theorem was obtained by E. I. Korkina in [21℄ andits algebrai
 generalization by G. La
haud [24℄.Theory of ordinary 
ontinued fra
tions was des
ribed, for example, by A. Ya. Hin
hinin [10℄. V. I. Arnold presented a survey of geometri
al problems and theorems asso
iatedwith one-dimensional and multidimensional 
ontinued fra
tions in his arti
les [3℄, [4℄ andhis book [2℄). For the algorithms of 
onstru
ting multidimensional 
ontinued fra
tions,see the papers of R. Okazaki [30℄, J.-O. Moussa�r [28℄.E. Korkina in [20℄, [22℄, [23℄ and G. La
haud in [24℄, [25℄, A. D. Bruno and V. I. Parus-nikov in [6℄, [31℄, and [32℄, the author in [13℄ and [14℄ produ
ed a large number of fun-damental domains for periodi
 algebrai
 two-dimensional 
ontinued fra
tions. A ni
e
olle
tion of two-dimensional 
ontinued fra
tions is given in the work [5℄ by K. Briggs.Besides the multidimensional 
ontinued fra
tions in the sense of Klein, there exist sev-eral di�erent generalizations of 
ontinued fra
tions to the multidimensional 
ase. Someother well-known generalizations of 
ontinued fra
tions 
an be found in the works ofH. Minkowski [29℄, G. F. Voronoi [36℄, A. K. Mittal and A. K. Gupta [26℄, A. D. Bryunoand V. I. Parusnikov [7℄, V. Ya. Skorobogat'ko [34℄, and V. I. Shmoilov [33℄.0.3. Two-dimensional fa
es of multidimensional 
ontinued fra
tions. Many 
las-si
al papers were dedi
ated to studying algebrai
 and algorithmi
 properties of multidi-mensional 
ontinued fra
tions. The interest to geometri
al properties of multidimensional
ontinued fra
tions was revived by V. I. Arnold's work [1℄ and the subsequent paper ofE. I. Korkina [20℄ on the 
lassi�
ation of A-algebras with three generators. In 1989 andlater, V. I. Arnold formulated a series of problems and 
onje
tures asso
iated to the geo-metri
al and topologi
al properties of sails of multidimensional 
ontinued fra
tions. Themajority of these problems are still open. The geometry of sails has not been suÆ
ientlystudied.



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 5In the present work, we make the �rst steps in the investigation of geometri
 propertiesof sails. One of the �rst natural questions here is the following: what 
ompa
t fa
es 
ansails of multidimensional 
ontinued fra
tions have (these obje
ts are usually studied up tothe integer-linear equivalen
e relation)?The 
omplete answer to this question was known only for one-dimensional 
ontinuedfra
tions. For any non-negative integer number n there exists a one-dimensional fa
e withexa
tly n integer points inside. Two 
ompa
t fa
es with the same numbers of integer pointsinside are integer-linear equivalent.In the two-dimensional 
ase the original question de
omposes into two questions.What 
ompa
t fa
es 
ontained in planes at integer distan
es from the origin equal to one
an sails of multidimensional 
ontinued fra
tions have (up to integer-linear equivalen
e)?What 
ompa
t fa
es 
ontained in planes at integer distan
es from the origin greaterthan one 
an sails of multidimensional 
ontinued fra
tions have (up to integer-linearequivalen
e)?The answer to the �rst question is quite straightforward. For any 
onvex polygon P atthe unit integer distan
e from the origin, there exist an integer positive k, a k-dimensional
ontinued fra
tion, and some fa
e F of a sail of this 
ontinued fra
tion, su
h that F isinteger-aÆne equivalent to P . Furthermore, two two-dimensional fa
es in the planes atthe unit integer distan
e from the origin are integer-linear equivalent i� the 
orrespondingpolygons are integer-aÆne equivalent.Note that up to this moment the following statement on 
ompa
t two-dimensional fa
es(of sails of multidimensional 
ontinued fra
tions) 
ontained in planes at integer distan
esfrom the origin greater than one was known. Su
h fa
es are either triangles or quadrangles(see the work [3℄ by J.-O. Moussa�r).In the present work we 
lassify 
ompa
t two-dimensional fa
es 
ontained in planesat integer distan
es from the origin greater than one up to integer-linear equivalen
e.This result was announ
ed in [15℄. We give the 
omplete lists for 
ontinued fra
tions ofany dimension. This result is based on the 
lassi�
ation of three-dimensional multistory
ompletely empty 
onvex marked pyramids.0.4. Des
ription of the paper. We start in Se
tion 1 with introdu
ing Theorem Aon integer-aÆne 
lassi�
ation of three-dimensional multistory 
ompletely empty 
onvexmarked pyramids. In this se
tion we also formulate Theorem B on integer-linear 
lassi-�
ation of two-dimensional fa
es of the sails at integer distan
e greater than one. Theinteger-aÆne 
lassi�
ation of two-dimensional fa
es 
ontained in planes at integer dis-tan
es from the origin greater than one (Corollary C) dire
tly follows from the integer-linear 
lassi�
ation of two-dimensional fa
es 
ontained in planes at integer distan
es fromthe origin greater than one. In Se
tions 2 and 3 we prove Theorem A and Theorem Brespe
tively. 1. Formulation of main results1.1. Classi�
ation of two-dimensional multistory 
ompletely empty pyramids.By (a1; : : : ; ak) in Rn for k < n we denote the point (a1; : : : ; ak; 0; : : : ; 0).
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(0;�1)(0; 1) (b; 0)Ub
(�1; 0) (0;�2) (2; 1)V (�1;�1) (1; 0)(0; 1)

W
(0;�1)(0; 1)(�a; 0) (b; 0)Ma;b (0; 0) (a; 0)(0; 1) T �a;r

Figure 3. The integer-aÆne types of the bases of the marked pyramids ofList \M-W".Denote the marked pyramid with vertex at the origin and quadrangular base (2;�1; 0),(2;�a�1; 1), (2;�1; 2), (2; b�1; 1), where b � a � 1, by Ma;b.Denote the marked pyramid with vertex at the origin and triangular base(�; r � 1;�r), (a + �; r � 1;�r), (�; r;�r), where a � 1, r � 1, by T �a;r;(2; 1; b� 1), (2; 2;�1), (2; 0;�1), where b � 1, by Ub;(2;�2; 1), (2;�1;�1), (2; 1; 2) by V ;(3; 0; 2), (3; 1; 1), (3; 2; 3) by W (the pyramid W is shown on Figure 1).The integer-aÆne types of bases of the des
ribed above triangular and quadrangularpyramids are shown on Figure 3.Theorem A. Any multistory 
ompletely empty 
onvex three-dimensional marked pyra-mid is integer-aÆne equivalent exa
tly to one of the marked pyramids from the followinglist.List \M-W":| the quadrangular marked pyramids Ma;b, with integers b � a � 1;| the triangular marked pyramids T �a;r, where a � 1, and � and r are relatively prime,and r � 2 and 0 < � � r=2;| the triangular marked pyramids Ub, where b � 1;| the triangular marked pyramid V ;| the triangular marked pyramid W .We give the proof of Theorem A in Se
tion 2.1.2. Compa
t two-dimensional fa
es at distan
e greater than one. Note that thefollowing statement on 
ompa
t two-dimensional fa
es 
ontained in planes at the integerdistan
e from the origin greater than one was known.



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 7Theorem (J.-O. Moussa�r [28℄.) Let F be a two-dimensional 
ompa
t fa
e of somesail of a two-dimensional 
ontinued fra
tion. Let r be the integer distan
e from the originto the plane, 
ontaining the fa
e.1. If r = 1, then F may have arbitrary many verti
es.2. If r = 2, then F has at most 4 verti
es.3. If r � 3, then F has three verti
es. �Here we present a new theorem on integer-linear 
lassi�
ation and its 
orollary oninteger-aÆne 
lassi�
ation of two-dimensional fa
es of multidimensional sails (the fa
esare again 
ontained in the planes at integer distan
es greater than one from the origin).Note that from this theorem and its 
orollary it follows that the se
ond item of Moussa�r'stheorem 
an be strengthened:2 0. If r = 2, then F has three verti
es.Quadrangular fa
es for the 
ase of r = 2 are possible only for n-dimensional 
ontinuedfra
tions where n � 3.Theorem B. Any 
ompa
t two-dimensional fa
e of a sail of a two-dimensional 
ontin-ued fra
tion 
ontained in a plane at integer distan
e from the origin greater than one isinteger-linear equivalent exa
tly to one of the fa
es of the following list.List \�2":| triangle with verti
es (�; r�1;�r), (a+�; r�1;�r), (�; r;�r), where a � 1, integers� and r are relatively prime and satisfy the following inequalities r � 2 and 0 < � � r=2;| triangle with verti
es (2; 1; b�1), (2; 2;�1), and (2; 0;�1) for b � 1;| triangle with verti
es (2;�2; 1), (2;�1;�1), and (2; 1; 2);| triangle with verti
es (3; 0; 2), (3; 1; 1), and (3; 2; 3).All triangular fa
es of List \�2" are realizable by sails of dimension two and integer-linearnonequivalent to ea
h other.Any 
ompa
t two-dimensional fa
e of a sail of an n-dimensional (n�3) 
ontinued fra
-tion 
ontained in a plane at integer distan
e from the origin greater than one is integer-linear equivalent exa
tly to one of the fa
es of the following list.List \�n", n � 3:| quadrangle with verti
es (2;�1; 0), (2;�a�1; 1), (2;�1; 2), (2; b�1; 1), for b � a � 1;| triangle with verti
es (�; r�1;�r), (a+�; r�1;�r), (�; r;�r), where a � 1, integers� and r are relatively prime and satisfy the following inequalities r � 2 and 0 < � � r=2;| triangle with verti
es (2; 1; b� 1), (2; 2;�1), and (2; 0;�1) for b � 1;| triangle with verti
es (2;�2; 1), (2; 1; 2), and (2;�1;�1);| triangle with verti
es (3; 0; 2), (3; 1; 1), and (3; 2; 3).All fa
es of List \�n" are realizable by sails of any dimension greater than two and integer-linear nonequivalent to ea
h other.Remark 1.1. Note that for any 
ompa
t fa
e of a sail we 
an asso
iate an integer 
om-pletely empty 
onvex marked pyramid with marked vertex at the origin and this fa
e asbase. Therefore integer-aÆne types of su
h marked pyramids are in one-to-one 
orrespon-den
e with integer-linear types of fa
es (see Lemma 3.1 below).
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(�1; 0)(�1; 2)(�a� 1; 1) (b� 1; 1)a)(�1; 0)(0;�2)(2; 1)b) (0;�1)(0; 1) (b; 0)
) (0; 0) (a; 0)(0; 1) d)Figure 4. Integer-aÆne types of fa
es of List \�2".We give a proof of Theorem B in Se
tion 3.Corollary C. Any 
ompa
t two-dimensional fa
e of a sail of a multidimensional 
on-tinued fra
tion 
ontained in a plane at integer distan
e from the origin equals r is integer-aÆne equivalent exa
tly to one of the polygons of the list �r shown below.List \�2":| quadrangle with verti
es (�1; 0), (�a�1; 1), (�1; 2), (b�1; 1), where b � a � 1(see the 
ase of a = 2, b = 3 on Figure 4a)); quadrangular fa
es are possible only forn-dimensional 
ontinued fra
tions where n � 3;| single triangle (�1; 0), (0;�2), (2; 1) (see Figure 4b));| triangle (0;�1), (0; 1), (b; 0), for b � 1 (see the 
ase of b = 5 on Figure 4
));| triangle (0; 0), (a; 0), (0; 1), for a � 1 (see the 
ase of a = 5 on Figure 4d)).

(�1;�1) (1; 0)(0; 1)a) (0; 0) (a; 0)(0; 1) b)Figure 5. Integer-aÆne types of fa
es of List \�3".List \�3":| single triangle (�1;�1), (1; 0), (0; 1) (see Figure 5a));| triangle (0; 0), (a; 0), (0; 1), for a � 1 (see the 
ase of a = 5 on Figure 5b)).List \�r", (r � 3):| triangle with verti
es (0; 0), (a; 0), and (0; 1), for some a � 1 (see the 
ase of a = 6on Figure 6), the 
orresponding 
onvex marked pyramid is integer-aÆne equivalent to T �a;r,where the integers � and r are relatively prime and satisfy 0 < � � r=2. For di�erent �the 
orresponding fa
es are integer-linear nonequivalent but integer-aÆne equivalent.
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Figure 6. Integer-aÆne types of fa
es of List \�r", for r � 4.For any integer r the fa
es of List �r are integer-aÆne nonequivalent to ea
h other;List �r is irredundant. �The integer-aÆne and the integer-linear 
lassi�
ations 
oin
ide, for r < 5. For r � 5,the integer-linear 
lassi�
ation 
ontains the integer-aÆne 
lassi�
ation.For any integers n � 3 and r � 2, the integer-linear 
lassi�
ation of 
ompa
t two-dimensional fa
es 
ontained in planes at integer distan
es from the origin greater than oneof sails of n-dimensional 
ontinued fra
tions 
oin
ides with the integer-aÆne 
lassi�
ationof 
ompletely empty r-story three-dimensional 
onvex marked pyramids.2. Proof of Theorem A2.1. Preliminary de�nitions and statements. Let us give several de�nitions, �x thenotation, and also formulate some general statements that we will further use in theproofs.For an integer polygon in some two-dimensional subspa
e the ratio of its Eu
lideanvolume to the minimal possible Eu
lidean volume of an integer triangle in the same two-dimensional subspa
e is 
alled the integer volume of this polygon.An integer polyhedron (polygon) is 
alled empty, if it does not 
ontain integer pointsin its interior, and the set of integer points of the fa
es 
oin
ides with the set of verti
esof the polyhedron (polygon).Let ABCD be a tetrahedron with an ordered set of verti
es A, B, C, and D. Denoteby P (ABCD) the following parallelepiped:fA+ �AB + �AC + 
ADj 0 � � � 1; 0 � � � 1; 0 � 
 � 1g:De�nition 2.1. Now we spe
ify some useful 
oordinates (denoted by hx; y; zi) in thethree-dimensional subspa
e 
ontaining P (ABCD) of Rn . Let b, 
, and d be the integerdistan
es from B, C, and D to the two-dimensional planes 
ontaining the fa
es ACD,ABD, and ACD respe
tively. Let us de�ne the 
oordinates of A, B, C, and D as follows:h0; 0; 0i, hb; 0; 0i, h0; 
; 0i, and h0; 0; di respe
tively. The 
oordinates of all other points inthis three-dimensional subspa
e are uniquely de�ned by means of linearity. We 
all themthe integer-distan
e 
oordinates with respe
t to P (ABCD).Remark 2.2. For any set of verti
es A, B, C, and D ordered as in P (ABCD), theinteger-distan
e 
oordinates are uniquely de�ned.By integer latti
e nodes of Rn (or, for short, latti
e nodes) we mean integer points inthe original 
oordinates in Rn .



10 O. N. KARPENKOVRemark 2.3. Note that any latti
e node of the three-dimensional spa
e des
ribed abovehas integer 
oordinates in the new integer-distan
e system of 
oordinates. The inverseis not true. There exist an integer-distan
e system of 
oordinates and a point in the
orresponding three-dimensional spa
e with integer 
oordinates whi
h is not a latti
enode. For latti
e nodes, the absolute values of their new 
oordinates 
oin
ide with integerdistan
es from these latti
e nodes to the planes 
ontaining the 
orresponding fa
es of theparallelepiped.Let us 
ontinue with the following de�nition.De�nition 2.4. Two points P and Q are said to be equivalent with respe
t to some integerparallelogram ABCD if there exist integers � and � su
h that P = Q+�AB+�AC. Theset of all equivalen
e 
lasses of the integer latti
e with respe
t to the integer parallelogramABCD is 
alled the quotient-latti
e of the spa
e by this integer parallelogram.Note that any equivalen
e 
lass is 
ontained in one of the two-dimensional planes parallelto the plane of the parallelogram.Proposition 2.5. Consider an integer parallelepiped ABCDA0B0C 0D0 in R3 and someinteger plane � parallel to the fa
e ABCD. Let � interse
t the parallelepiped (along aparallelogram). Then the following two statements hold.First, � 
ontains only �nitely many equivalen
e 
lasses of the integer latti
e with respe
tto the integer parallelogram ABCD. Their number equals to the index of the sublatti
egenerated by the ve
tors AB and AC in the integer latti
e of the plane 
ontaining ABCD.Se
ond, for any equivalen
e 
lass of the integer latti
e 
ontained in � with respe
t to theinteger parallelogram ABCD it holds exa
tly one of the following 
onditions.a) only one point of the equivalen
e 
lass is in the parallelogram, it is an interior point ofthe parallelogram;b) two points of the equivalen
e 
lass are in the parallelogram, they are 
ontained in op-posite (open) edges of the parallelogram;
) four points of the equivalen
e 
lass are in the parallelogram, they 
oin
ide with verti
esof the parallelogram.We skip the proof of Proposition 2.5. It is straightforward and is based on the followingeasy lemma.Lemma 2.6. Consider an integer parallelepiped with an empty fa
e. Let some parallel tothis fa
e plane interse
t the parallelepiped. Then exa
tly one of the following statementsholds.a) only one latti
e node is in the parallelogram, it is an interior point;b) two latti
e nodes are in the parallelogram, they are 
ontained in (open) opposite edgesof the parallelogram;
) four latti
e nodes are in the parallelogram, they 
oin
ide with verti
es of the parallelo-gram. �Further we use the following 
orollary of Proposition 2.5.



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 11Corollary 2.7. Consider an integer parallelepiped ABCDA0B0C 0D0 in R3 . Denote by dthe integer distan
e between A0 and BAD. Denote by s the number of equivalen
e 
lassesof the integer latti
e with respe
t to the integer parallelogram ABCD that are 
ontained inthe plane of ABCD. Finally, denote by v the number of equivalen
e 
lasses of the integerlatti
e with respe
t to the parallelogram ABCD that are 
ontained either stri
tly betweentwo planes of fa
es ABCD and A0B0C 0D0 or in the plane of ABCD. Then we haved = vs :Proof. It follows from Proposition 2.5 that ea
h integer plane parallel to ABCD 
ontainsexa
tly s equivalen
e 
lasses. Hen
e there are exa
tly v=s�1 integer planes between twoplanes 
ontaining fa
es ABCD and A0B0C 0D0. Therefore, d = v=s. �2.2. First results on empty integer tetrahedra. In this subse
tion we show the 
orol-lary of White's theorem (see also [8℄). Here without loss of generality we 
onsider onlythe three-dimensional spa
e. The result of G. K. White [37℄ implies, as a spe
ial 
ase, thefollowing theorem.Theorem 2.8. (G. K. White, 1964 [37℄.) Let � � R3 be an integer three-dimensionalsimplex, let Ei = f�i; �0ig, i = 1; 2; 3 be the set of points belonging to a pair of oppositeedges �i; �0i of �. Then (� n Ei) \ Z3 is empty i� there exist j 2 f1; 2; 3g and twoneighboring planes �j, �0j (by neighbor we mean that there are no integer latti
e nodes\between" these planes �j and �0j), su
h that �i � �j and �0i � �0j. �We will use the following 
orollary on empty integer tetrahedra for the 
lassi�
ation ofempty 
onvex multistory tetrahedra and also further in the proof of Theorem A.Corollary 2.9. Let ADBA0 be some empty integer tetrahedron. Then all integer inte-rior latti
e nodes of the parallelepiped P (ADBA0) are in the plane passing through two
entrally-symmetri
 edges of the parallelepiped. These two edges do not 
ontain the ver-tex A.Proof. Consider an empty integer tetrahedron ADBA0 and the 
orresponding paral-lelepiped P (ADBA0) = ABCDA0B0C 0D0. Without loose of generality we suppose thatthe statement of Theorem 2.9 holds for the edges AA0 and BD of the tetrahedron ADBA0.We obtain that there are no latti
e nodes between the plane �1 
ontaining the 
entral se
-tion BB0D0D and �2 parallel to �1 and passing through the segment AA0. So all latti
enodes of the prism ABDA0B0D0 distin
t to the points A and A0 are 
ontained in �1 (i.e.in BB0D0D).Note that both points P and P 0 = A + PC 0 are at the same time latti
e nodes ornot, sin
e A and C 0 are latti
e nodes. If P is in the prism CBDC 0B0D0 then P 0 is inABDA0B0D0. Therefore all latti
e nodes of the prism ABDA0B0D0 distin
t to the pointsC and C 0 are also 
ontained in �1 (i.e. in BB0D0D). This 
on
ludes the proof of the
orollary. �Remark 2.10. The number of planes passing through two 
entrally-symmetri
 edges ofthe parallelepiped equals six, and only three of them do not 
ontain the vertex A.



12 O. N. KARPENKOV2.2.1. Classi�
ation of empty triangular marked pyramids. Corollary 2.9 allows to de-s
ribe all integer-aÆne types of empty triangular marked pyramids (i.e. tetrahedra withone marked vertex ea
h).Let r be some positive integer, and � be a nonnegative integer. Denote by P �r themarked pyramid with vertex at (0; 0; 0) and triangular base (0; 1; 0), (1; 0; 0), (�; r� �; r).Corollary 2.11. Any integer empty triangular marked pyramid is integer-aÆne equivalentto exa
tly one of the pyramids ofList \P":| P 01 ;| P �r , where � and r are relatively prime, r�2, and 0<��r=2.All triangular marked pyramids of List \P" are empty and integer-aÆne nonequivalentto ea
h other.Proof. 1. Completeness of List \P". Let us show that an arbitrary empty integermarked pyramid ADBA0 (with a vertex A) is integer-aÆne equivalent to one of the markedpyramids of \P".Suppose that, the integer distan
e from its marked vertex to the plane 
ontaining themarked base equals some positive integer r. If r = 1 then the verti
es of the marked pyra-mid generate the three-dimensional integer latti
e, and therefore su
h a marked pyramidis integer-aÆne equivalent to P 01 (here A 
orresponds to the marked vertex of P 01 ).Suppose now that r > 1. By Corollary 2.9 all latti
e nodes of the parallelepipedP (ADBA0) are 
ontained exa
tly in one of the three planes passing through 
entrally-symmetri
 edges of the parallelepiped and not 
ontaining A. Denote the verti
es of themarked base DBA0 by B, D, and A0 in su
h a way that all interior latti
e nodes ofthe parallelepiped P (ADBA0) are 
ontained in the plane passing through BD and the
entrally-symmetri
 edge.Consider the integer-distan
e 
oordinates with respe
t to the parallelepiped P (ADBA0).By Corollary 2.7 the 
oordinates of A0, B, and D equal to hr; 0; 0i, h0; r; 0i, and h0; 0; rirespe
tively. Take the interse
tion of the parallelepiped with the plane x = 1 in these 
oor-dinates. There is only one latti
e node in the interse
tion, by Corollary 2.9 its 
oordinatesare h1; r��; �i. Denote this latti
e node by K.If the integers � and r have some 
ommon integer divisor 
 � 1, then the point withthe 
oordinates h r
 ; r��
 r; �
ri is a latti
e node. Hen
e the point hr=
; 0; 0i is also a latti
enode. The marked pyramid ADBA0 is not empty, sin
e it 
ontains hr=
; 0; 0i. Thus theintegers � and r are relatively prime.Sin
e the integer distan
e fromK to the two-dimensional plane 
ontaining the fa
e ADBequals one, there exists an integer-aÆne transformation taking the tetrahedron ABDKto the tetrahedron with verti
es (0; 0; 0), (0; 1; 0), (1; 0; 0), and (1; 1; 1). Here the pointA0 maps to (�; r��; r). Hen
e the integer-aÆne type of the marked pyramid ABDA0
oin
ides with the integer-aÆne type of the marked pyramid ABDA0, and therefore it
oin
ides with the integer-aÆne type of the marked pyramid P �r , where 0 < � < r,and � and r are relatively prime. It remains to say that the marked pyramids P �r and
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an be mapped one to another by the integer-aÆne symmetry preserving the points(0; 0; 0), (0; 0; 1), and (1; 1; 0), and transposing (1; 0; 0) and (0; 1; 0). Therefore the markedpyramids P �r and P r��r are integer-aÆne equivalent.2. Emptiness of the marked pyramids of List \P". Let us show that all listedmarked pyramids P r� are empty.The interse
tion of the plane a3 = b (for 1 � b � (r � 1)) and marked pyramid P r� isthe triangle AkBkDk with the following 
oordinates of the verti
es:� br �; br (r��); b� ; � br ; br (r��)+r�br ; b� ; � br �+r�br ; br (r�a); b� :The triangle AkBkDk is 
ontained in the band b � a1+a2 � b+ r�br , a3 = b. This band
ontains only integer points with 
oordinates (t; b�t; b) for integer t. Hen
e it remains to
he
k if Ak is integer. Sin
e � and r are relatively prime and d < r, the �rst 
oordinateof Ak is not integer. Therefore all marked pyramids P r� of List \P" are empty.3. Irredundan
e of List \P". We will show now that all marked pyramids P r� ofList \P" are integer-aÆne nonequivalent to ea
h other. Note that the integer distan
efrom the marked vertex to the plane 
ontaining the base is an integer-aÆne invariant.Therefore the pyramids with distin
t parameter r are integer-aÆne nonequivalent.To distinguish the marked pyramids with the same r, we 
onstru
t the following integer-aÆne invariant. Consider an arbitrary empty marked pyramidABDA0 with marked vertexA and the 
orresponding trihedral angle also with vertex A and triangle DBA0 as itsbase. By White's theorem exa
tly one latti
e node of the trihedral angle (we denote thislatti
e node by K) is 
ontained in the two-dimensional plane parallel to the fa
e DBA0and at integer distan
e r+1 from A. By Corollary 2.9 the integer distan
es from K totwo-dimensional planes of the angle equal 1, �, r�� (for some integer �). The trihedralangle and K are uniquely de�ned by the marked pyramid up to the symmetries of themarked pyramid preserving the marked vertex. The group of su
h symmetries permutesall integer distan
es from K to the planes 
ontaining the fa
es of the angle. Hen
e, theunordered system of integers [1; �; r��℄ is an invariant. This invariant distinguishes allmarked pyramids P r� with the same integer distan
e r. �Proposition 2.12. Let relatively prime integers � and r satisfy the following inequalities:r � 2, 0 < � � r=2. Then the marked pyramid P �r is integer-aÆne equivalent to themarked pyramid T �1;r.Proof. The marked pyramid T �1;r is the image of P �r under the integer-linear transformation0� � + 1 � ��r � 1 r � 1 2� r�r �r r � 1 1A : �Corollary 2.13. Any integer empty r-story (r � 2) triangular marked pyramid is integer-aÆne equivalent exa
tly to one of the marked pyramids T �1;r for relatively prime integers



14 O. N. KARPENKOV� and r satisfying 0 < � � r=2. All su
h pyramids T �1;r are empty (and integer-aÆnenonequivalent if the 
orresponding parameters r and � do not 
oin
ide). �2.2.2. Classi�
ation of integer empty tetrahedra. A 
ertain di�eren
e between the integer-aÆne 
lassi�
ation of integer empty triangular marked pyramids (with marked vertex)and the integer-aÆne 
lassi�
ation of integer empty tetrahedra (without marked verti
es)o

urs. The �rst steps in the integer-aÆne 
lassi�
ations of integer empty tetrahedra weremade by J.-O. Moussa�r in [28℄.Theorem 2.14. (J.-O. Moussa�r [28℄.) Any integer empty tetrahedron is integer-aÆne equivalent to the tetrahedron with verti
es (0; 0; 0), (1; 0; 0), (0; 1; 0), and (u; v; d),for some integers u, v and d, where u, v and u+v�1 are relatively prime with d, and oneof the integers u+v, u�1, v�1 is divisible by d. (These tetrahedra are sometimes 
alledHermitian normal forms of the simpli
es.)Note that many of su
h Hermitian normal forms are integer-aÆne equivalent to ea
hother. The following 
onsequen
e of Corollary 2.9 improves Moussa�r's theorem.Corollary 2.15. Any integer empty tetrahedron is integer-aÆne equivalent exa
tly to oneof the following tetrahedra:| P 01 ;| P �r , where r � 2, 0 < � < r, and the element (� mod r) of the additive group Z=mZis also 
ontained in the asso
iated multipli
ative group (Z=mZ)� (i.e. integers � and r arerelatively prime).All listed integer tetrahedra are empty. Two tetrahedra P �r1 and P �r2 are integer-aÆneequivalent i� r1 = r2 and (for r1 > 1) one of the following equalities in (Z=mZ)� holds:(� mod r1) = (�1) � (� mod r1)�1:Proof. 1. Completeness of the list. By Corollary 2.11 any empty integer tetrahedronis integer-aÆne equivalent to some tetrahedron of the list of Corollary 2.15.2. Emptiness of the tetrahedra of the list. By Corollary 2.11 the tetrahedronP �r is empty for relatively prime integers r and � satisfying r � 2 and � � r=2. Sin
eP �r and P r��r are integer-aÆne equivalent and P 01 is empty, all tetrahedra of the list ofCorollary 2.15 are empty.3. Proof of the last statement of Corollary 2.15. Consider any tetrahedron P �r ofthe list. The set of four trihedral angles asso
iated with all four verti
es of the tetrahedronis uniquely de�ned.It follows from White's theorem, that for any of these trihedral angles exa
tly onelatti
e node 
ontained in the interior of the angle is at unit integer distan
e to the fa
eof tetrahedron do not 
ontaining the vertex of the angle. Dire
t 
al
ulations show thatthe integer distan
es from these points to the four two-dimensional planes 
ontaining thefa
es of the tetrahedron are(1; 1; �; r� �); (1; 1; �; r� �); (�; r � �; 1; 1); and (�; r � �; 1; 1);
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Figure 7. Possible 
ases for M 0 with respe
t to the quadrangle KLMN .where (� mod r) � (� mod r) = 1 in (Z=mZ)�. The set of these numbers up to the groupS4 of permutations a
tion (for all points at the same time) is an integer-aÆne invariant.Therefore, the tetrahedra P �r , P �r , P r��r , and P r��r are integer-aÆne equivalent and theinvariant distinguishes all other tetrahedra. �Remark 2.16. The integer-aÆne 
lassi�
ations of integer empty triangular marked pyra-mids and of integer empty tetrahedra 
oin
ide only for r = 1; 2; 3; 4; 5; 6; 8; 10; 12; 24.2.3. Proof of Theorem A for the 
ase of polygonal marked pyramids. In thissubse
tion we study the 
ase of marked pyramids with polygonal bases (
ontaining morethan three angles distin
t from the straight angle). In the next subse
tion we will studytriangular marked pyramids.2.3.1. Integer parallelograms 
ontained in integer polyhedra.Proposition 2.17. Let four verti
es of a 
onvex polygon be integer points. Then thispolygon 
ontains some integer parallelogram that is integer-aÆne equivalent either to theunit parallelogram, or to the parallelogram with verti
es (1; 0), (0; 1), (�1; 0), and (0;�1).Proof. Suppose that a 
onvex polygon 
ontains four integer verti
es, denote them by K, L,M , and N . Let us show that the quadrangle KLMN 
ontains some integer parallelogram.De�ne M 0 = N+KL. The vertex M 
an be in any of the four orthants with respe
t tothe lines 
ontainingM 0N andM 0L. For any of these four 
ases, we expli
itly 
onstru
t aninteger parallelogram 
ontained in the quadrangle on Figure 7 (we draw the quadrangleKLMN with thi
k line, the 
orresponding parallelogram is shaded).Let some point of an integer parallelogram be integer. Consider the point whi
h is
entrally-symmetri
 about the interse
tion point of the diagonals of this parallelogram.This point is also in the parallelogram and is integer.Denote the integer parallelogram in the polygon by ABCD.1. Integer empty parallelogram. Suppose ABCD is empty. Then it generates theinteger latti
e and hen
e is integer-aÆne equivalent to the standard one.2. Integer parallelogram with the only one integer point inside. SupposeABCD 
ontains only one integer point O in its interior. Then this point 
oin
ides withthe 
entrally-symmetri
 point about the interse
tion point of the diagonals of this paral-lelogram. And hen
e it 
oin
ides with the interse
tion point of the diagonals. Thereforethe integer triangle OAB is empty. Hen
e it is integer-aÆne equivalent to the standardunit triangle. Thus ABCD is integer-aÆne equivalent to the parallelogram with verti
es(1; 0), (0; 1), (�1; 0), and (0;�1).



16 O. N. KARPENKOV3. Remaining 
ases. Let the parallelogram ABCD 
ontains more than one integerpoint ex
ept of the verti
es. Then there exists a points among these points su
h that itis distin
t to the interse
tion point of the diagonals of this parallelogram. We denote itby O. Denote the 
entrally-symmetri
 point about the interse
tion point of the diagonalsof this parallelogram by O0. Without loss of generality, we suppose that OO0 is not asubset of AC (otherwise OO0 is not a subset of BD). Therefore AOCO0 (or AO0CO) isan integer parallelogram 
ontained in ABCD. The number of integer points of AOCO0is smaller than the number of integer points of ABCD at least by two. Hen
e we 
ometo one of the 
ases of item 1. or 2. in a �nite number of su
h steps.Therefore any 
onvex polygon with four integer verti
es 
ontains a parallelograminteger-aÆne equivalent to one of the parallelograms of Proposition 2.17. �2.3.2. The 
ase of an empty marked pyramid with an empty parallelogram as base.Proposition 2.18. Let an empty integer parallelogram be a base of some marked pyramid.If this pyramid is empty, then it is single-story.Proof. We prove by redu
tio ad absurdum. Let A0ABCD be an empty marked pyramidwith marked vertex A0 and an empty parallelogram ABCD as its base. Suppose that theinteger distan
e from the point A0 to the plane 
ontaining ABCD equals r > 1. Con-sider the parallelepiped P (AA0BC) and the integer-distan
e 
oordinates 
orrespondingto it (denoted by hx; y; zi). By Corollary 2.7 the 
oordinates of A0, B, and C equal tohr; 0; 0i, h0; r; 0i, and h0; 0; ri respe
tively. Note that 
oordinates of latti
e nodes (in old
oordinates) are integers.Let us �nd the latti
e node of the parallelepiped at unit integer distan
e to the plane
ontaining ABC, i.e. the latti
e node with 
oordinates h1; y; zi, where 0 � y � r, 0 � z �r. On one hand, it is not 
ontained in the marked pyramid A0ABCD, and hen
e y+1 > ror z+1 > r. On the other hand, by Corollary 2.9 the two-dimensional fa
es of P (AA0BC)do not 
ontain integer points distin
t to verti
es, sin
e AA0BC is empty. Therefore y 6= rand z 6= r. Hen
e there are no latti
e nodes in the plane 
ontaining ABC. We 
ome tothe 
ontradi
tion with Lemma 2.6. �2.3.3. The 
ase of a 
ompletely empty marked pyramid whose base is an integer parallel-ogram 
ontaining a unique integer point in its interior.Lemma 2.19. Consider an integer marked pyramid with vertex O and parallelogramABCD as base. Let ABCD be integer-aÆne equivalent to the parallelogram with verti
es(1; 0), (0; 1), (�1; 0), and (0;�1). If the marked pyramid OABCD is 
ompletely emptyand multistory, then it is two-story. The integer-aÆne type of su
h pyramid 
oin
ides withthe integer-aÆne type of the pyramid with vertex (0; 0; 0) and base (2;�1; 0), (2;�2; 1),(2;�1; 2), (2; 0; 1).Proof. Let the integer base ABCD of the 
ompletely empty r-story integer marked pyra-mid OABCD (r � 2) be integer-aÆne equivalent to the parallelogram with verti
es (1; 0),(0; 1), (�1; 0), and (0;�1).



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 17Consider the parallelepiped P (AOBC) and the integer-distan
e 
oordinates 
orrespond-ing to it (denoted by hx; y; zi). By Corollary 2.7 the 
oordinates of O, B, C, and D equalhr; 0; 0i, h0; 2r; 0i, h0; 0; 2ri, and h0; 2r; 2ri respe
tively.Let us 
onsider the parallelogram of interse
tion of P (AOBC) with the plane x = 1.Now we �nd all latti
e nodes in this parallelogram. By Proposition 2.5 there are exa
tlytwo latti
e nodes in the parallelogram of interse
tion. Let us des
ribe all possible positionsof these nodes in the interse
tion of P (AOBC) and the plane x = 1. First, there are nolatti
e nodes in the interse
tion of the marked pyramid AOBCD and the plane x = 1,i.e. in the 
losed parallelogram with verti
es h1; 0; 0i, h1; 0; 2r�2i, h1; 2r�2; 2r�2i, andh1; 2r�2; 0i. Se
ondly, there are no latti
e nodes in all parallelograms obtained from thegiven one by applying translations by the ve
tors �h0; 2r; 0i + �h0; r; ri, where � and �are integers. On Figure 8, we show some parallelograms that do not 
ontain any latti
enodes. These parallelograms are painted shaded.So, the latti
e nodes of the interse
tion parallelogram of P (AOBC) with the planex = 1 
an only 
oin
ide with integer points of open parallelograms obtained from the par-allelogram with verti
es Kh1; r�2; 2r�2i, Lh1; r; 2r�2i, Mh1; r; 2ri, and Nh1; r�2; 2riby the symmetry with respe
t to the plane y = z and translations by the ve
tors�h0; 2r; 0i + �h0; r; ri, where � and � are integers. The parallelogram KLMN 
ontainsexa
tly one integer point h1; r�1; 2r�1i, see Figure 8.
K LMN

Figure 8. The interse
tion of P (AOBC) and the plane x = 1.Suppose that this point is a latti
e node. Sin
e the interse
tion parallelogram 
ontainsexa
tly two latti
e nodes, the point symmetri
 to the point h1; r�1; 2r�1i with respe
t tothe plane y = z is also a latti
e node (there are no other integer points in the interse
tionparallelogram). Therefore h2; 2r�2; 4r�2i is a latti
e node. Hen
e h2; 2r�2; 2r�2i is alatti
e node, and hen
e h2; r�2; r�2i is also a latti
e node. However, for r � 3 the pointh2; r�2; r�2i is 
ontained in the 
losed parallelogram of interse
tion of P (AOBC) withthe plane x = 2. The verti
es of this parallelogram are the following: h2; 0; 0i, h1; 0; 2r�4i,h1; 2r�4; 2r�4i, and h1; 2r�4; 0i. Thus there are no pyramids satisfying all the 
onditionsof Lemma 2.19 for r � 3.



18 O. N. KARPENKOVNow 
onsider the 
ase r = 2. The integer points A, B, C, and h1; 1; 3i de�ne the integerlatti
e in a unique way. This implies that all marked pyramids satisfying all the 
onditionsof Lemma 2.19 are of the same integer-aÆne type, and it 
oin
ides with the integer-aÆnetype of the marked pyramid with vertex (0; 0; 0) and base (2;�1; 0), (2;�2; 1), (2;�1; 2),(2; 0; 1) (in the old 
oordinates). �2.3.4. General 
ase. Now we study the general 
ase of integer 
ompletely empty markedpyramids with 
onvex polygonal bases.Lemma 2.20. Consider an integer marked pyramid with vertex O and 
onvex polygonalbase M . If this marked pyramid is 
ompletely empty and multistory, then it is two-story.The base of the marked pyramid is integer-aÆne equivalent to the quadrangle (b; 0), (0; 1),(�a; 0), (0;�1) where b � a � 1. The integer-aÆne type of the pyramid is uniquelydetermined by the integers a and b (for b � a � 1) and 
oin
ides with the integer-aÆnetype of the marked pyramid Ma;b. Two marked pyramids Ma;b and Ma0;b0 (b � a � 1,b0 � a0 � 1) are integer-aÆne equivalent i� a = a0 and b = b0.Proof. Under the assumptions of the lemma the integer distan
e from the two-dimensionalplane 
ontaining the parallelogram M to the vertex O is greater than one. It followsfrom Proposition 2.17 that the parallelogram M 
ontains either an empty parallelogramor a parallelogram with exa
tly one integer point in its interior (and distin
t to theverti
es). By Proposition 2.18 the 
ase of an empty parallelogram is eliminated. Considera parallelogram P with exa
tly one integer point inside.Choose 
oordinates on the plane 
ontaining the base M so that the verti
es of P havethe following 
oordinates: (1; 0), (0; 1), (�1; 0), and (0;�1). Note that all the 
oordinatesof a point of this plane are integers i� this point is a latti
e node.Let an integer point with 
oordinates (x; y) for some x; y > 0 be in the baseM . Sin
eMis 
onvex, the point (1; 1) is also inM . This implies that the empty integer parallelogramwith verti
es (0; 0), (1; 0), (1; 1), (0; 1) is 
ontained in M . Therefore, by Proposition 2.18the distan
e from the vertex of the pyramid to the two-dimensional plane 
ontaining thepolygon M equals one.The 
ases x > 0, y < 0; x < 0, y > 0; and x; y < 0 are similar.Let the integer points with 
oordinates (x; 0) and (0; y), where jxj > 1 and jyj > 1, be inthe baseM . Then M 
ontains one of the points: (1; 1), (1;�1), (�1; 1), or (�1;�1). Andfor the same reason, the distan
e from the vertex of the pyramid to the two-dimensionalplane 
ontaining M equals one.Without loss of generality we suppose thatM does not 
ontain points with 
oordinates(0; y) for jyj > 1. Then M is integer-aÆne equivalent to the quadrangle with verti
es(b; 0), (0; 1), (�a; 0), (0;�1), where b � a � 1.Sin
e the polygonM 
ontains the parallelogram P , by Lemma 2.19 the integer distan
efrom the vertex O of the marked pyramid to the two-dimensional plane 
ontaining the baseM equals two. The parallelogram P is uniquely de�ned by the quadrangle with verti
es(b; 0), (0; 1), (�a; 0), (0;�1), where b � a � 1 (this quadrangle 
ontains the uniqueinteger parallelogram with exa
tly one integer point distin
t to the verti
es). Therefore,



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 19by Lemma 2.19 the marked pyramid is integer-aÆne equivalent to the marked pyramidwith vertex (0; 0; 0) and base (2;�1; 0), (2;�a�1; 1), (2;�1; 2), (2; b�1; 1).The point of interse
tion of the quadrangular base diagonals divides the diagonals intofour segments with integer lengths 1, 1, a, and b. Therefore the (unordered) pair ofintegers [a; b℄ is an integer-aÆne invariant for the marked pyramid. �2.4. Proof of Theorem A for the 
ase of triangular marked pyramids. We 
on-tinue the proof by studying some spe
ial 
ases. Throughout this subse
tion we denote byOABC a triangular marked pyramid with vertex O and base ABC.2.4.1. Case 1: the base 
ontains an integer polygon. Suppose that the triangle ABC
ontains two integer points D and E su
h that the line DE interse
ts the edges of thetriangle ABC and does not 
ontain any vertex of the triangle. Without loss of generalitywe suppose that the open ray DE with vertex at D interse
ts AB, and the open ray EDwith vertex at E interse
ts BC. Hen
e the triangle ABC 
ontains some integer 
onvexquadrangle AEDC. By Proposition 2.17 the triangle ABC 
ontains either an integerempty parallelogram or a parallelogram integer-aÆne equivalent to the parallelogram withverti
es (1; 0), (0; 1), (�1; 0), and (0;�1).If the triangle ABC 
ontains an integer empty parallelogram, then by Proposition 2.18the marked pyramid OABC is single-story.Suppose that the triangle ABC does not 
ontain an integer empty parallelogram and
ontains a parallelogram integer-aÆne equivalent to the parallelogram with verti
es (1; 0),(0; 1), (�1; 0), and (0;�1). Consider the 
oordinates on the plane 
ontaining the base su
hthat the verti
es of the above-mentioned parallelogram have the following 
oordinates:(1; 0), (0; 1), (�1; 0), and (0;�1). If the points (1; 1), (1;�1), (�1; 1), and (�1;�1) arenot 
ontained in ABC, then the marked pyramid is no longer triangular. Therefore anymarked pyramid of Case 1 
ontains some empty parallelogram, and by Proposition 2.18it is single-story.2.4.2. Case 2: the integer points of the base di�erent from the verti
es are not 
ontainedin one line. The only possible aÆne type is shown on Figure 9.
A B CDE FFigure 9. The aÆne type of triangles of Case 2.Let us �nd all possible integer-aÆne types of su
h triangle. Sin
e the triangle FED(see Fig. 9) is empty, it is integer-aÆne equivalent to the triangle (1; 0), (0; 0), and (0; 1).The points A, B, and C 
orrespond to (�1; 0), (2; 1), and (0;�2) respe
tively. Hen
e theinteger-aÆne type is determined in the unique way.



20 O. N. KARPENKOVLemma 2.21. Consider an integer multistory marked pyramid with vertex O and triangu-lar base ABC. Let ABC be integer-aÆne equivalent to the triangle with verti
es (�2; 1),(�1;�1), and (1; 2). Then the marked pyramid OABC is two-story and integer-aÆneequivalent to the marked pyramid V of List \M-W".Proof. Let the base of an r-story (r � 2) 
ompletely empty marked pyramid OABC beinteger-aÆne equivalent to the triangle with verti
es (�2; 1), (�1;�1), and (1; 2).Consider the parallelepiped P (AOBC) and the integer-distan
e 
oordinates 
orrespond-ing to it and denoted by: hx; y; zi. By Corollary 2.7 the 
oordinates of the verti
es O, B,and C are hr; 0; 0i, h0; 7r; 0i, and h0; 0; 7ri respe
tively.Let us 
onsider the interse
tion parallelogram of P (AOBC) with the plane x = 1. Nowwe �nd all latti
e nodes in this parallelogram. By Proposition 2.5 there are exa
tly sevenlatti
e nodes in the parallelogram of interse
tion. Let us des
ribe all possible positions ofthese nodes in the interse
tion of P (AOBC) with the plane x = 1. First, there are nolatti
e nodes in the interse
tion of the marked pyramid AOBC with the plane x = 1, i.e.in the 
losed triangle with verti
es h1; 0; 0i, h1; 0; 7r�7i, and h1; 7r�7; 0i. Se
ondly, thereare no latti
e nodes in all triangles obtained from the given one by applying translationsby ve
tors �h0; r; 2ri + �h0; 4r; ri for all integers � and �. On Figure 10 (r � 4) andFigure 11 (r = 2; 3) we show triangles that do not 
ontain latti
e nodes. These trianglesare shaded.So the latti
e nodes of the interse
tion parallelogram of P (AOBC) with the plane x = 1
an be only at integer points in open triangles obtained from two triangles by translationsby the ve
tors �h0; r; 2ri + �h0; 4r; ri for all integers � and �. The verti
es of the �rsttriangle are Kh1; 3r; 4r�7i, Lh1; 3r; 2ri, and Mh1; 5r�7; 2ri. Here the points h1; 0; 0i andL should be in di�erent half-planes with respe
t to the line LM . This 
ondition is satis�edonly if 2r > 4r�7, i.e. r < 7=2. The verti
es of the se
ond triangle are P h1; 4r�7; 3ri,Qh1; r; 3ri, and Rh1; r; 6r�7i. And again the points h1; 0; 0i and Q should be in di�erenthalf-planes with respe
t to the line PR. This 
ondition is satis�ed only if (4r�7 < r), i.e.r < 7=3.So for r > 3 all points of the interse
tion parallelogram of P (AOBC) with the planex = 1 are 
overed, see Figure 10. If r = 2, then the triangle KLM 
ontains only oneinteger point with 
oordinates h1; 5; 3i, see Figure 11a). If r = 3, then the triangle KLMdoes not 
ontain any integer point, see Figure 11b).Sin
e the interse
tion parallelogram of the plane x = 1 with the open parallelepipedshould 
ontain seven latti
e nodes, the only possible 
ase is r = 2. There are exa
tly seveninteger points in the 
omplement to the union of the des
ribed triangles in the parallel-ogram. Hen
e all these points are latti
e nodes. Therefore, the marked pyramid OABCis two-story and integer-aÆne equivalent to the marked pyramid with vertex (0; 0; 0) andbase (2;�2; 1), (2;�1;�1), (2; 1; 2) (i.e. to the pyramid V of List \M-W"). �It remains to study the 
ases of triangular pyramids with the following property. Allinteger points of the base of su
h pyramid distin
t to the verti
es of the pyramid are
ontained in some straight line passing through one of the verti
es of the base triangle.
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KL MPQR

Figure 10. The interse
tion of P (AOBC) with the plane x = 1 (for r > 3).
KLMP QR a) K LMPQR b)Figure 11. The interse
tion of P (AOBC) with the plane x = 1: a) r = 2;b) r = 3.2.4.3. Case 3: all integer points of the base distin
t to verti
es are 
ontained in a straightline | I. Suppose that all latti
e nodes of the triangle ABC are 
ontained in a ray withvertex at A. Let the number of nodes equal 
 (
 � 1), and also suppose all these pointsare in the interior of ABC. Denote the nodes in the interior by D1; : : : ; D
, starting fromthe point 
losest to A and in
reasing the indexing in the dire
tion from A. It turns outthat for any positive integer 
 there exists exa
tly one integer-aÆne type of su
h pyramid.Sin
e the triangle BD
C is empty there exists an integer-aÆne transformation thattakes the triangle to any other empty triangle. Let us take the triangle BD
C to thetriangle ~B ~D
 ~C with verti
es (0; 1), (0; 0), and (1; 0) respe
tively. Now we determine theimage of A. Sin
e the point ~D
(0; 0) is an integer point of the triangle, the point ~A is inthe third orthant (x < 0, y < 0). Sin
e (�1; 0) is not in the triangle, the point ~A is in thehalf-plane de�ned by y < x+1. Sin
e (0;�1) is not in the triangle, the point ~A is in thehalf-plane de�ned by y > x�1. Sin
e ~A is integer, its 
oordinates are (�t;�t) for somepositive integer t. Sin
e there are exa
tly 
 interior integer points in the triangle ~B ~D
 ~C,



22 O. N. KARPENKOVwe have t = 
. Therefore the triangle ~A ~B ~C is integer-aÆne equivalent to the triangle withverti
es (1; 0), (0; 1), and (�
;�
).First we study the 
ase 
 = 1.Lemma 2.22. Consider an integer multistory marked pyramid with vertex O and trian-gular base ABC. Let the triangle ABC be integer-aÆne equivalent to the triangle withverti
es (�1;�1), (0; 1), and (1; 0). Then the marked pyramid OABC is three-story andinteger-aÆne equivalent to the marked pyramid W of List \M-W".Proof. Suppose that the base of r-story (r�2) 
ompletely empty marked pyramid OABCbe integer-aÆne equivalent to the triangle with verti
es (�1;�1), (0; 1), and (1; 0).Consider the parallelepiped P (AOBC) and the integer-distan
e 
oordinates 
orrespond-ing to it (denoted by hx; y; zi). By Corollary 2.7 the 
oordinates of O, B, and C equalhr; 0; 0i, h0; 3r; 0i, and h0; 0; 3ri respe
tively.Let us 
onsider the parallelogram at interse
tion of P (AOBC) and the plane x =1. Now we �nd all latti
e nodes in this parallelogram. By Proposition 2.5 there areexa
tly three latti
e nodes in the parallelogram at interse
tion. Let us des
ribe all possiblepositions of these nodes in the interse
tion of P (AOBC) with the plane x = 1. First,there are no latti
e nodes in the interse
tion of the marked pyramid AOBC with theplane x = 1, i.e. in the 
losed triangle with verti
es h1; 0; 0i, h1; 0; 3r�3i, and h1; 3r�3; 0i.Se
ondly, there are no latti
e nodes in all triangles obtained from the given one by applyingtranslations by ve
tors �h0; 3r; 0i+ �h0; r; ri for integers � and �. On Figure 12, we showsome triangles that do not 
ontain latti
e nodes. These triangles are shaded.So the latti
e nodes in the interse
tion of P (AOBC) with the plane x = 1 
an be onlyat integer points in an open triangle obtained from the triangle Kh1; 3r; r�3i, Lh1; 3r; ri,Mh1; 3r�3; ri by translations by ve
tors �h0; 3r; 0i + �h0; r; ri for any integers � and �.Only one point with integer 
oeÆ
ients h1; 3r�1; r�1i is in the triangle KLM , see Fig-ure 12.
KLM

Figure 12. The interse
tion of P (AOBC) with the plane x = 1.Shaded triangles 
over almost all integer points in the interse
tion of P (AOBC) withthe plane x = 1. Only two three-tuples of integer points are still un
overed:1) h1; 3r�1; r�1i, h1; r�1; 2r�1i, h1; 2r�1; 3r�1i;



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 232) h1; r�1; 3r�1i, h1; 2r�1; r�1i, h1; 3r�1; 2r�1i.So the latti
e nodes are either the points of the �rst three-tuples or the points of these
ond one.Suppose h1; 3r�1; r�1i is a latti
e node. (If no, then the point h1; r�1; 3r�1i is alatti
e node. Sin
e the transformation that maps hx; y; zi to hx; z; yi is integer-aÆne andit preserves the parallelepiped P (AOBC) and the marked pyramid OABC, this 
ase issimilar.) Then the point hr; (3r�1)r; (r�1)ri is a latti
e node. Geometry of latti
e nodesimply that (3r�1)r � (r�1)r is divisible by 3. Therefore 2r2 is divisible by 3, and hen
er is also divisible by 3.Suppose r = 3, then the marked pyramid exists and is integer-aÆne equivalent to W .Let us study the 
ase of r = 3k, for k � 2. Consider the parallelogram at interse
tion ofP (AOBC) and the plane x = 3. Now we �nd all latti
e nodes in this parallelogram. ByProposition 2.5 there are exa
tly three latti
e nodes in the parallelogram of interse
tion.Let us des
ribe all possible positions of these nodes. First, there are no latti
e nodes inthe interse
tion of the marked pyramid AOBC with the plane x = 3, i.e. in the 
losedtriangle with verti
es h3; 0; 0i, h3; 3r�9; 0i, and h3; 3r�9; 0i. Se
ondly, there are no latti
enodes in all triangles obtained from the given one by applying translations by ve
tors�h0; 3r; 0i + �h0; r; ri for all integers � and �. This in
ludes the triangle with verti
esP h3; 2r; 2ri, Qh3; 5r�9; 2ri, and Rh3; 2r; 5r�9i shown on Figure 13 Sin
e h1; 3r�1; r�1i
P QR

Figure 13. The interse
tion of P (AOBC) with the plane x = 3.is a latti
e node, the point h3; 9r�3; 3r�3i is a latti
e node. Thus h3; 3r�3; 3r�3i is alatti
e node. However, this point is in KLM (for r > 1) and hen
e h1; 3r�1; r�1i is nota latti
e node. We 
ome to the 
ontradi
tion, the 
ase of r = 3k for k � 2 is empty. �Lemma 2.23. Consider an integer multistory marked pyramid with vertex O and trian-gular base ABC. Let the triangle ABC be integer-aÆne equivalent to the triangle withverti
es (�
;�
), (0;�1) , and (�1; 0), for 
 � 2. Then the marked pyramid OABC isnot 
ompletely empty.Proof. We prove by redu
tio ad absurdum. Suppose that the base of r-story (r � 2)
ompletely empty marked pyramid OABC is integer-aÆne equivalent to the triangle withverti
es (�
;�
), (0;�1), and (�1; 0), for 
 � 2. Sin
e the triangle with verti
es (�
;�
),(1; 0), and (0; 1) 
ontains the triangle with verti
es (�1;�1), (1; 0), and (0; 1), the marked



24 O. N. KARPENKOVpyramid OABC 
ontains a marked subpyramid integer-aÆne equivalent to the pyramidof Lemma 2.22. (By a marked subpyramid P of some marked pyramid Q we 
all a 
onvexpyramid P su
h that the verti
es of P and Q 
oin
ides and the base of Q 
ontains thebase of P .) Therefore by Lemma 2.22 we have r = 3.Sin
e 
 � 2, the marked pyramid OABC 
ontains some marked subpyramid OA0BCwith base A0BC integer-aÆne equivalent to the triangle with verti
es (�2;�2), (1; 0), and(0; 1). We show now that OA0BC is not 
ompletely empty.Consider the parallelepiped P (A0OBC) and the integer-distan
e 
oordinates 
orre-sponding to it (denoted by hx; y; zi). By Corollary 2.7 the 
oordinates of O, B, andC equal h3; 0; 0i, h0; 15; 0i, and h0; 0; 15i respe
tively.Let us 
onsider the parallelogram at interse
tion of P (A0OBC) and the plane x = 1.Now we �nd all latti
e nodes in this parallelogram. First, there are no latti
e nodes inthe interse
tion of the marked pyramid A0OBC with the plane x = 1, i.e. in the 
losedtriangle with verti
es h1; 0; 0i, h1; 0; 12i, and h1; 12; 0i. Se
ondly, there are no latti
enodes in all triangles obtained from the given one by applying translations by ve
tors�h0; 15; 0i+ �h0; 3; 3i for all integers � and �. These triangles 
ontain all integer pointsof the interse
tion of P (A0OBC) with the plane x = 1, see Figure 14.

Figure 14. The interse
tion of P (A0OBC) with the plane x = 1.So, the marked pyramid OA0BC is not 
ompletely empty. Hen
e the marked pyramidOABC is not 
ompletely empty. Thus r 6= 3. We 
ome to the 
ontradi
tion. �2.4.4. Case 4: all integer points of the base distin
t to verti
es are 
ontained in a straightline | II. Suppose that all integer points of the triangle ABC are 
ontained in the raywith vertex A. Let the number of points equal b (b � 1), and the last point be in theedge BC. Denote these points by D1; : : : ; Db, starting from the point 
losest to A andin
reasing the indexing in the dire
tion from A. It turns out that for any b there existsexa
tly one integer-aÆne type of su
h pyramid.Sin
e the triangle DbDb�1B is empty there exists an integer-aÆne transformation thattakes the triangle to any other empty triangle. We take the triangle DbDb�1B to thetriangle with verti
es (0; 0), (1; 0), and (0;�1) respe
tively. Then C maps to (0; 1), and



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 25A maps to (b; 0). Therefore the triangle ABC is integer-aÆne equivalent to the trianglewith verti
es (0;�1), (b; 0), and (0; 1).First we study the 
ase b = 2.Lemma 2.24. Consider an integer multistory marked pyramid with vertex O and trian-gular base ABC. Let the triangle ABC be integer-aÆne equivalent to the triangle withverti
es (2; 0), (0;�1), and (0; 1). Then the marked pyramid OABC is two-story andinteger-aÆne equivalent to the marked pyramid U2 of List \M-W".Proof. Suppose that the base of r-story (r � 2) 
ompletely empty marked pyramid OABCbe integer-aÆne equivalent to the triangle with verti
es (2; 0), (0;�1), and (0; 1).Consider the parallelepiped P (AOBC) and the integer-distan
e 
oordinates 
orrespond-ing to it (denoted by hx; y; zi). By Corollary 2.7 the 
oordinates of O, B, and C equalhr; 0; 0i, h0; 4r; 0i, and h0; 0; 4ri respe
tively.Consider the parallelogram at interse
tion of P (AOBC) and the plane x = 1. Nowwe �nd all latti
e nodes in this parallelogram. By Proposition 2.5 there are exa
tly threelatti
e nodes in the parallelogram at interse
tion. Let us des
ribe all possible positions ofthese nodes. First, there are no latti
e nodes in the interse
tion of the marked pyramidAOBC with the plane x = 1, i.e. in the 
losed triangle with verti
es h1; 0; 0i, h1; 0; 4r�4i,and h1; 4r�4; 0i. Se
ondly, there are no latti
e nodes in triangles obtained from the givenone by applying translations by ve
tors �h0; 4r; 0i+�h0; r; ri for all integers � and �. Weshow (shaded) triangles that do not 
ontain latti
e nodes on Figure 15.So the latti
e nodes in the interse
tion of P (AOBC) with the plane x = 1 
an be only atinteger points in an open triangle obtained from the triangle Kh1; 4r; 2r�3i, Lh1; 4r; 2ri,Mh1; 4r�3; 2ri by translations by ve
tors �h0; 4r; 0i + �h0; r; ri for all integers � and �and the symmetry about the plane y = z. Only the points with integer 
oordinatesh1; 4r�2; 2r�1i, h1; 4r�1; 2r�1i, and h1; 4r�1; 2r�2i are in the triangle KLM , see Fig-ure 15.
KLM

Figure 15. The interse
tion of P (AOBC) with the plane x = 1.We prove that one of these points is a latti
e node by redu
tio ad absurdum. Supposethat the triangle KLM does not 
ontain a latti
e node. Then there are no latti
e nodes intriangles obtained from KLM by applying translations by ve
tors of the form �h0; 4r; 0i+



26 O. N. KARPENKOV�h0; r; ri for all integers � and �. Hen
e the interse
tion of the parallelepiped P (AOBC)with the plane x = 1 does not 
ontain integer nodes. We 
ome to the 
ontradi
tion. Soone of the points h1; 4r�2; 2r�1i, h1; 4r�1; 2r�1i, and h1; 4r�1; 2r�2i is a latti
e node.Suppose that r � 3 and 
onsider the plane x = 2. First, there are no latti
e nodes inthe interse
tion of the marked pyramid AOBC with the plane x = 2, i.e. in the 
losedtriangle with verti
es h1; 0; 0i, h1; 0; 4r�8i, and h1; 4r�8; 0i. Se
ondly, there are no latti
enodes in all triangles obtained from the given one by applying translations by ve
tors�h0; 4r; 0i+ �h0; r; ri for all integers � and �. In parti
ular, there are no latti
e nodes inthe triangle with verti
es P h2; 3r; 3ri, Qh2; 7r�8; 3ri, and Rh2; 3r; 7r�8i.
P QR

Figure 16. The interse
tion of P (AOBC) with the plane x = 2.Suppose that the point h1; 4r�2; 2r�1i, h1; 4r�1; 2r�1i, or h1; 4r�1; 2r�2i is a lat-ti
e node, then h2; 8r�4; 4r�2i, h2; 8r�2; 4r�2i, or h2; 8r�2; 4r�4i respe
tively is alsoa latti
e node. Hen
e the point h2; 4r�4; 4r�2i, h2; 4r�2; 4r�2i, or h2; 4r�2; 4r�4i re-spe
tively is a latti
e node. The last three points are 
ontained in the triangle PQR withverti
es P h2; 3r; 3ri, Qh2; 7r�8; 3ri, and Rh2; 3r; 7r�8i, for r > 3 (see Figure 16), andhen
e these points are not latti
e nodes. For r = 3, the point h1; 11; 5i is not a latti
enode by the same reason. The points h1; 10; 5i and h1; 11; 4i are not latti
e nodes, sin
ethe points h3; 30; 15i and h3; 33; 12i are not latti
e nodes of the plane x = 3 (all su
h node
oordinates are h3; 4m; 4ni for some integers m and n). From the above we 
on
lude thatr � 2.Suppose now that r = 2 and 
onsider the points h1; 6; 4i, h1; 7; 3i, and h1; 7; 4i. Thepoints h1; 6; 4i and h1; 7; 3i are not latti
e nodes, sin
e the points h2; 12; 6i and h2; 14; 8iare not latti
e nodes of the plane x = 2 (all su
h nodes 
oordinates are h2; 4m; 4ni forsome integers m and n). The point h1; 7; 4i de�nes a unique-possible integer-aÆne type ofmarked pyramids with su
h base | the integer-aÆne type of the marked pyramid U2. �Now we will study the general 
ase (b � 2).Lemma 2.25. Consider an integer multistory marked pyramid with vertex O and trianglebase ABC. Let the triangle ABC be integer-aÆne equivalent to the triangle with verti
es(b; 0), (0;�1), and (0; 1), for b � 2. Then the marked pyramid OABC is two-story andinteger-aÆne equivalent to the marked pyramid Ub of List \M-W".



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 27Proof. Let the base of r-story (r�2) 
ompletely empty marked pyramid OABC be integer-aÆne equivalent to the triangle with verti
es (b; 0), (0;�1), and (0; 1).Sin
e the triangle with verti
es (b; 0), (0;�1), and (0; 1) 
ontains the triangle withverti
es (2; 0), (0;�1), and (0; 1), the marked pyramid OABC 
ontains a marked sub-pyramid that is integer-aÆne equivalent to a marked pyramid of Lemma 2.24. Sin
e thesubpyramid is 
ompletely empty, by Lemma 2.24 we have that it is two-story.Suppose now r = 2. Consider the parallelepiped P (AOBC) and the integer-distan
e
oordinates 
orresponding to it (denoted by hx; y; zi). By Corollary 2.7 the 
oordinatesof O, B, and C equal h2; 0; 0i, h0; 4b; 0i, and h0; 0; 4bi respe
tively.Consider the parallelogram at the interse
tion of P (AOBC) and the plane x = 1. Nowwe �nd all latti
e nodes in this parallelogram. By Proposition 2.5 there are exa
tly 2blatti
e nodes in the parallelogram at interse
tion. Let us des
ribe all possible positions ofthese nodes. First, there are no latti
e nodes in the interse
tion of the marked pyramidAOBC with the plane x = 1, i.e. in the 
losed triangle with verti
es h1; 0; 0i, h1; 0; 2bi,and h1; 2b; 0i. Se
ondly, there are no latti
e nodes in all triangles obtained from the givenone by applying translations by ve
tors �h0; 4b; 0i+�h0; 2; 2i for all integers � and �. Weshow some (shaded) triangles that do not 
ontain any latti
e nodes on Figure 17.So the latti
e nodes of the interse
tion of P (AOBC) with the plane x = 1 
an be only atinteger points in an open triangle obtained from the triangle Kh1; 4b; 2b�4i, Lh1; 4b; 2bi,Mh1; 4b�4; 2bi by translations by ve
tors �h0; 4b; 0i + �h0; 2; 2i for all integers � and �and the symmetry about the plane y = z. Only the points with integer 
oeÆ
ientsh1; 4b�2; 2b�1i, h1; 4b�1; 2b�1i, and h1; 4b�1; 2b�2i are in the triangle KLM (the 
aseb = 3 is shown on Figure 17).
KLM

Figure 17. The interse
tion of P (AOBC) with the plane x = 1.One of the integer points of this triangle is a latti
e node (the other un
overed parts ofthe se
tion 
an be obtained by translations by ve
tors �h0; 4b; 0i + �h0; 2; 2i for integers� and �).Consider the plane x = 2. The point h2; y; zi is a latti
e node i� there exist integers mand n su
h that z = 2m, and y = 2m+ 2bn.We show that the point h1; 4b�2; 2b�1i is not a latti
e node by redu
tio ad absurdum.Suppose that this point is a latti
e node. Then the point h2; 8b�4; 4b�2i is also a latti
e



28 O. N. KARPENKOVnode. Let us �nd integers m and n su
h that 4b� 2 = 2m and 8b� 4 = 2m+ 2bn. Thenm = 2b � 1, n = 2b�1b . If b � 2, then n is not integer. We 
ome to the 
ontradi
tion.Therefore the point h1; 4b�2; 2b�1i is not a latti
e node.By the same reasons the point h1; 4b�1; 2b�2i is not a latti
e node. The last point ofthe triangle h1; 4b�1; 2b�1i determines the pyramid of the integer-aÆne type Ub. �2.4.5. Case 5: integer points of the base distin
t to the verti
es are 
ontained in one edgeof the base. It remains to study the 
ase of the last most simple series of triangular markedpyramids. Suppose that all integer points of the base ABC distin
t to the verti
es are
ontained in AC, and the integer length of AC is a�1, for some a � 2. The 
ase of a = 1is the 
ase of empty marked pyramid, it was studied before in Corollary 2.13. Denote thesepoints by D1; : : : ; Da�1 starting from the point 
losest to A and in
reasing the indexingin the dire
tion to C.Consider an integer multistory marked pyramid with vertex O and triangular baseABC. Let the triangle ABC be integer-aÆne equivalent to the triangle with verti
es(0; 0), (0; 1), and (a; 0), for a � 2.Lemma 2.26. The marked pyramid OABC is integer-aÆne equivalent to the markedpyramid of the following list.List \T":| T 0a;1;| T �a;r, where � and r are relatively prime and satisfy: r � 2 and 0 < � � r=2.All integer marked pyramids listed in \T 00 are 
ompletely empty and integer-linearnonequivalent to ea
h other.Proof. 1. Preliminary statement. Let us show that the marked pyramid OABC isinteger-aÆne equivalent to the marked pyramid T �a;r, for some positive integer � � r=2.First of all two single-story marked pyramids with the same a are integer-aÆne equiv-alent, sin
e the integer points of the edges of the pyramid generate all integer latti
e.Let the base of r-story (r � 2) 
ompletely empty marked pyramid OABC be integer-aÆne equivalent to the triangle with verti
es (0; 0), (0; 1), and (a; 0). Consider the paral-lelepiped P (AOBD1) and the integer-distan
e 
oordinates 
orresponding to it (denotedby hx; y; zi). By Corollary 2.7 the 
oordinates of O, B, and C equal hr; 0; 0i, h0; r; 0i, andh0; 0; ri respe
tively.By Corollary 2.9 (sin
e the tetrahedron AOBD1 is empty) all interior latti
e nodes are
ontained in one of three diagonal planes: x+z = r, y+z = r, or x+y = r. Now weexamine all the 
ases.Let all interior latti
e nodes be 
ontained in the plane x+z = r. By Lemma 2.6 thereexists exa
tly one latti
e node K 
ontained in the plane x = 1. So, K is in the interse
tionof these two planes, and its 
oordinates are h1; �; r�1i, where 0 < � < r. Now we 
omeba
k to the old 
oordinates asso
iated with the latti
e. Sin
e the integer distan
e fromK to the two-dimensional plane 
ontaining the fa
e AD1B equals one, the tetrahedronAD1BK 
an be taken by some integer-aÆne transformation to the tetrahedron withverti
es (0; 0; 0), (1; 0; 0), (0; 1; 0), and (0; 0; 1). By su
h transformation the vertex O



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 29maps to (��; 1�r; r), and C maps to (a; 0; 0). Let us translate the obtained pyramid bythe integer ve
tor (�; r�1; r). Finally we get the marked pyramid T �a;r. Hen
e the markedpyramid OACB is integer-aÆne equivalent to the marked pyramid T �a;r, where 0 < � < r.Consider the integer-aÆne transformation taking the points O, A, B, C to the pointsO, C, B, A respe
tively, then the point K maps to the point (r��; 1�r; r). Choose thesmallest one of � and r��. Obviously, this number is not greater than r=2.Let all interior latti
e nodes be 
ontained in the plane y+z = r in the integer-distan
e
oordinate system. By Lemma 2.6 there exists exa
tly one latti
e node K 
ontained inthe plane x = 1. So, K is in the interse
tion of these two planes, and its 
oordinates areh1; �; r��i, where 0 < � < r. The interse
tion of the marked pyramid OABC with theplane x = 1 is a triangle with verti
es h1; 0; 0i, h1; ar�a; 0i, and h1; 0; r�1i. This triangle
ontains all integer points h1; t; r�ti, for 2 � t � r. Hen
e � = 1. Therefore the point Kis in the plane x+z = r, so, we are in the position of the previous 
ase.Let all interior latti
e nodes be 
ontained in the plane x+y = r in the integer-distan
e
oordinate system. By Lemma 2.6 there exists exa
tly one latti
e node K 
ontained inthe plane z = 1. So, K is in the interse
tion of these two planes, and its 
oordinates areh�; r��; 1i, where 0 < � < r. The interse
tion of the marked pyramid OABC with theplane z = 1 is a triangle with verti
es h0; 0; 1i, hr�1; 0; 1i, and h0; ar�a; 1i. This triangle
ontains all integer points ht; r�t; 1i, for 1 � t � r�1. Hen
e � = r�1. Therefore thepoint K is again in the plane x+z = r.So, the marked pyramid OABC is integer-aÆne equivalent to a marked pyramid T �a;rfor some positive integer � � r=2.2. Completeness of List \T" and 
ompletely emptiness of the marked pyra-mids of \T". Let us show that the marked pyramids T �a;r of the list \T" are 
ompletelyempty. Denote the verti
es of the marked pyramids by O, A, B, C, and the integer pointsof AC by Di.Denote also the point A by D0, and the point C by Da. Note that the marked pyramidODiDi+1B is integer-aÆne equivalent to the marked pyramid P �r , for any positive integeri � a, sin
e the marked pyramid ODiDi+1B 
an be obtained from the pyramid P �r byapplying the 
ompositions of the integer-linear transformation de�ned by the followingmatrix 0� � + i+ 1 � + i �� � ir � 1 r � 1 2� r�r �r r � 1 1A ;and the translation by the integer ve
tor (��; 1�r; r).By Corollary 2.11 if � and r are relatively prime, then the marked pyramids OAD1B,OD1D2B, : : : , ODa�1CB are empty, and hen
e their union OABC is 
ompletely empty.By the same reasons the marked pyramids T �a;r with relatively prime � and r are 
om-pletely empty.Therefore List \T" is 
omplete, and all listed pyramids are 
ompletely empty.3. Irredundan
e of List \T". Now we prove that all marked pyramids T �a;r of List \T"are integer-aÆne nonequivalent to ea
h other. Obviously, that the marked pyramids with



30 O. N. KARPENKOVdi�erent a are nonequivalent. Sin
e the integer distan
e from the marked vertex to the two-dimensional plane of the marked base is an integer-aÆne invariant, the marked pyramidswith distin
t r are nonequivalent.For the 
ase of pyramids with the same integers a > 1 and r we 
onstru
t the follo-wing integer-linear invariant. Consider an arbitrary marked pyramid OABC, where allits latti
e nodes are 
ontained in the edge AC. As it was shown before the empty markedpyramids OAD1B, OD1D2B, : : : , ODa�1CB are integer-aÆne equivalent to the markedpyramid P �r with 0 � � � r=2. Sin
e the 
olle
tion of this marked pyramids is de�ned ina unique way and by Corollary 2.11, the type of su
h P �r is an invariant. This invariantdistinguishes di�erent marked pyramids of List \T". �So, we have studied all possible 
ases of integer-aÆne types of multistory 
ompletelyempty 
onvex three-dimensional marked pyramids. It remains to say a few words aboutthe irredundan
e of List \M-W" of Theorem A.2.4.6. Irredundan
e of List \M-W". If two marked pyramids have integer-aÆne nonequiv-alent bases, then these pyramids are also integer-aÆne nonequivalent. The integer-aÆnetypes of the base distinguish almost all marked pyramids of List \M-W". This does notwork only for pyramids T �a;r with the same a and r, and distin
t � from List \M-W". Su
hpyramids T �a;r are integer-aÆne nonequivalent by Lemma 2.26 (see List \T").The proof of the main theorem is 
ompleted. �3. Proof of Theorem B3.1. Completeness of Lists \�n" for n � 2 of Theorem B. Consider some markedpyramid with marked vertex at the origin and some 
ompa
t two-dimensional fa
e of asail as base. It follows from the de�nition of multidimensional 
ontinued fra
tions thatsu
h pyramid is 
ompletely empty.Lemma 3.1. Two two-dimensional fa
es are integer-linear equivalent i� the 
orresponding
ompletely empty marked pyramids are integer-aÆne equivalent. �The proof of this lemma is straightforward and we leave it for the reader.Lemma 3.1 and Theorem A (see List \M-W") imply that for any n > 2, List \�n" ofTheorem B is 
omplete. Now we study the 
ase of two-dimensional 
ontinued fra
tions.By Theorem A the list of all triangular fa
es in List \�2" is 
omplete.Lemma 3.2. Any two-dimensional 
ontinued fra
tion does not 
ontain fa
es that areinteger-linear equivalent to the quadrangle with verti
es (2;�1; 0), (2;�a�1; 1), (2;�1; 2),(2; b�1; 1) for b � a � 1.Proof. We prove by redu
tio ad absurdum. Suppose that there exists a two-dimensional
ontinued fra
tion with a fa
e F integer-linear equivalent to the quadrangle with verti
es(2;�1; 0), (2;�a�1; 1), (2;�1; 2), (2; b�1; 1) for b � a � 1. Consider 
oordinates on theplane 
ontaining F su
h the 
oordinates of the verti
es of F are (a; 0), (0; 1), (�b; 0), and(0;�1). Note that the point in this plane is a latti
e node i� its new 
oordinates areintegers.



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 31The points (1; 1), (1;�1), (�1; 1), and (�1;�1) are in the 
omplement to F . Threeplanes of the two-dimensional 
ontinued fra
tion interse
t with the plane 
ontaining F atthree lines. The fa
e F is in the interior of the triangle T generated by the interse
tionlines. The triangle T 
ontains F , and the set T n F does not 
ontain any integer point.Noti
e that the point (1; 0) is in F , and the points (1; 1) and (1;�1) are not in F . Notealso that the points (1; 0), (1; 1), and (1;�1) are in one straight line. Then the open anglewith vertex (0; 0) and edges passing through the points (1; 1), and (1;�1), 
ontains somevertex of the triangle T , see Figure 18.
TFigure 18. One of the verti
es of T is in the shaded (open) angle.The same holds for two adja
ent angles and for the opposite angle. Therefore thetriangle T has at least four verti
es. We 
ome to the 
ontradi
tion. �The above lemmas yield the 
ompleteness of List \�n" for any dimension n � 2.3.2. Realizability and nonequivalen
e of fa
es.Lemma 3.3. For any n � 2, any fa
e of List \�n" is realizable. Any two di�erent fa
esof this list are integer-linear nonequivalent to ea
h other.Proof. i) First, let us show that any triangular fa
e (denote it by ABC) of List \�2" isrealizable. Consider the 
ontinued fra
tions 
2 de�ned by three planes 
ontaining thesegments AB, BC, and AB respe
tively. It is obvious, that 
2 
ontains ABC as a fa
e.ii) Se
ond, we show how to realize a quadrangular fa
e (denote it by ABCD) of List\�3". We remind that ABCD lie in the plane a4 = 0 in the 
oordinates (a1; a2; a3; a4). LetO be the origin, P denote the interse
tion of the diagonals of ABCD, and E = (0; 0; 0; 1).Denote also by jWRj the Eu
lidean distan
e between the points W and R. DenoteK = B + PA+ "jPAjjPBjOE; L = B + PC � "jPCjjPBjOE;N = B + PA� "jPAjjPDjOE; M = B + PC + "jPCjjPDjOE;for a small positive ". The symplex KLMN interse
ts the plane a4 = 0 by ABCD. Ifwe 
hose " small enough then the symplex OKLMN 
ontains only the latti
e nodes ofthe plane a4 = 0, i.e. the nodes of ABCD. Therefore the three-dimensional 
ontinuedfra
tion de�ned by four planes 
ontaining fa
es OKLM , OKLN , OKMN , and OLMN
ontains ABCD as a fa
e.iii) Suppose now some (n�1)-dimensional 
ontinued fra
tion 
n�1 
ontains a fa
e F .Let us 
onstru
t an n-dimensional 
ontinued fra
tion 
n 
ontaining F . Suppose 
n�1 isde�ned by the planes li(a1; : : : ; an) = 0, for i = 1; : : : ; n. Consider than the n-dimensional
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ontinued fra
tion 
n de�ned by the planes li(a1; : : : ; an) = 0 for i = 1; : : : ; n and anadditional plane an+1 = 0. It is 
lear that 
n 
ontains all the fa
es of 
n�1. In parti
ular,F is a fa
e of 
n.iv) From i) it follows that the fa
es of List \�2" are realizable. This together with ii)and iii) imply that the fa
es of List \�3" are realizable. Finally, iii) indu
tively impliesthat all Lists \�n" for n � 5 are realizable.v) Nonequivalen
e follows dire
tly from Lemma 3.1 and Theorem A. �Remark 3.4. A
tually a more general statement holds. The set of all 
ontinued fra
tions
ontaining any fa
e of List \�n" is open in the natural topology on the set of all n-dimensional 
ontinued fra
tions.Lemmas 3.2 and 3.3 
on
lude the proof of Theorem B.A
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