COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES AND
TWO-DIMENSIONAL FACES OF MULTIDIMENSIONAL CONTINUED
FRACTIONS.

O. N. KARPENKOV

ABSTRACT. In this paper we develop an integer-affine classification of three-dimensional
multistory completely empty convex marked pyramids. We apply it to obtain the com-
plete lists of compact two-dimensional faces of multidimensional continued fractions lying
in planes at integer distances to the origin equal 2, 3, 4, ... The faces are considered up
to the action of the group of integer-linear transformations.

INTRODUCTION AND BACKGROUND

The main purpose of the present paper is to develop an integer-affine classification
of three-dimensional multistory completely empty convex marked pyramids. We apply
it to deduce an integer-linear classification of compact two-dimensional faces of multidi-
mensional continued fractions in the sense of Klein lying in planes at integer distances
to the origin greater than one. The classification of two-dimensional faces leads to new
algorithms of two-dimensional continued fraction calculations. It is also the first step in
studying the combinatorial structure of multidimensional continued fractions.

0.1. General definitions. Consider a vector space R*™! for some n > 1. A point or a
vector of R*! is called integer if all its coordinates are integers.

Consider some k-dimensional plane of R**!. The intersection of a finite number of
closed k-dimensional half-planes of the plane is said to be a convex (solid) k-dimensional
polyhedron if it is homeomorphic to a k-dimensional closed disk. For & = 0, 1, or 2 we
have a point, a segment, or a convex polygon. Here we consider polyhedra as convex hulls
with all their interior points.

A polyhedron is said to be a conver marked pyramid with some marked face and a
vertex outside the plane containing the face if it coincides with the convex hull of the
union of the marked vertex and the marked face. The marked face is called the base of
the marked convex pyramid and the marked vertex — the wverter of the marked convex
pyramid. A polyhedron is called a convexr pyramid if some structure of convex marked
pyramid can be introduced for it.
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A convex polyhedron (polygon, segment) is said to be integer if all its vertices are
integer points. A convex (marked) pyramid is said to be integer if it is an integer convex
polyhedron.

Definition 0.1. An integer convex polyhedron is called empty if it does not contain
integer points different from the vertices of the polyhedron. An integer convex marked
pyramid is called completely empty if it does not contain integer points different from the
marked vertex and from the integer points of the base.

Two sets in R are said to be integer-affine equivalent (or have the same integer-affine
type), if there exists an affine transformation of R*™! preserving the set of all integer points
and taking the first set to the second. Two sets in R**! are said to be integer-linear
equivalent (or have the same integer-linear type), if there exists a linear transformation of
R"*! preserving the set of all integer points and taking the first set to the second.

Definition 0.2. A k-dimensional plane is called integer if it is integer-affine equivalent to
some plane passing through the origin and containing a rank & sublattice of the integer
lattice.

Consider some integer (k—1)-dimensional plane and an integer point in the comple-
ment to this plane. Let the Euclidean distance from the given point to the given plane
equals [. The minimal value of nonzero Euclidean distances from all integer points of the
(k-dimensional) span of the the given plane and the given point to the plane is denoted
by ly. Note that [y is always greater than zero and can be obtained for some integer point
of the described span. The ratio [/ly is said to be the integer distance from the given
integer point to the given integer plane.

For example, the integer distance from O to the plane spanned by A, B, and C of
Figure 1 equals 3.

Definition 0.3. An integer convex marked pyramid is called [-story for some positive
integer [ if the integer distance from the vertex of this pyramid to its base plane equals [.
An integer convex marked pyramid is called multistory/single-story if the integer distance
from the vertex of this pyramid to its base plane is greater than one/equals to one. (See
example on Figure 1.)

For any convex polygon there exists a single-story integer three-dimensional convex
marked pyramid with the given polygon as the base (since any single-story integer convex
marked pyramid is completely empty). Two single-story three-dimensional convex marked
pyramids are integer-affine equivalent iff their bases are integer-affine equivalent.

It turns out that the case of multistory convex marked pyramids is essentially different
from the single-story case. Only polygons of a few integer-affine types can be bases of
multistory convex marked completely empty pyramids. For example, the parallelogram
with vertices (0,0), (0,1), (1,1), and (1, 0) is not of that type. Besides, there exist integer-
affine nonequivalent multistory convex marked completely empty pyramids whose bases
are integer-affine equivalent.

In Section 1 of the present paper, we give the complete list of integer-affine types of
integer multistory convex marked completely empty pyramids. To classify the pyramids,
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FiGure 1. Two images of a completely empty three-story marked pyramid
with vertex O and base ABC.

we study arrangements of integer sublattices on the planes parallel to the bases of the
pyramids.

0.2. Definition of multidimensional continued fractions in the sense of Klein.
The problem of generalizing ordinary continued fractions to the higher-dimensional case
was posed by C. Hermite [9] in 1839. A large number of attempts to solve this problem
lead to the birth of several different remarkable theories of multidimensional continued
fractions. In this paper we consider the geometrical generalization of ordinary continued
fractions to the multidimensional case presented by F. Klein in 1895 and published by
him in [17] and [18].

Consider a set of n+1 hyperplanes of R**! passing through the origin in general position.
The complement to the union of these hyperplanes consists of 2”! open orthants. Let us
choose an arbitrary orthant.

Definition 0.4. The boundary of the convex hull of all integer points except the origin
in the closure of the orthant is called the sail. The set of all 2" sails of the space R**!
is called the n-dimensional continued fraction associated to the given n+1 hyperplanes in
general position in (n+1)-dimensional space.

Note that the union of all sails of any continued fraction is centrally symmetric.

On Figure 2 we show an example of one-dimensional continued fraction. This continued
fraction contains four sails (four broken lines on Picture 2). A description of connections
between ordinary continued fractions and geometrical one-dimensional continued fractions
can be found in [16], [11], and [12].

Two n-dimensional continued fractions are said to be equivalent if there exists a linear
transformation that preserves the integer lattice of the (n+1)-dimensional space and takes
the sails of the first continued fraction to the sails of the other.

Multidimensional continued fractions in the sense of Klein have many relations with
other branches of mathematics. For example, J.-O. Moussafir [27] and O. N. German [§]
studied the connection between the sails of multidimensional continued fractions and
Hilbert bases. In [35] H. Tsuchihashi found the relationship between periodic multidi-

mensional continued fractions and multidimensional cusp singularities, which generalizes
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FIGURE 2. A one-dimensional continued fraction.

the relationship between ordinary continued fractions and two-dimensional cusp singu-
larities. M. L. Kontsevich and Yu. M. Suhov discussed the statistical properties of the
boundary of a random multidimensional continued fraction in [19]. The combinatorial
topological generalization of Lagrange theorem was obtained by E. I. Korkina in [21] and
its algebraic generalization by G. Lachaud [24].

Theory of ordinary continued fractions was described, for example, by A. Ya. Hinchin
in [10]. V. L. Arnold presented a survey of geometrical problems and theorems associated
with one-dimensional and multidimensional continued fractions in his articles [3], [4] and
his book [2]). For the algorithms of constructing multidimensional continued fractions,
see the papers of R. Okazaki [30], J.-O. Moussafir [28].

E. Korkina in [20], [22], [23] and G. Lachaud in [24], [25], A. D. Bruno and V. I. Parus-
nikov in [6], [31], and [32], the author in [13] and [14] produced a large number of fun-
damental domains for periodic algebraic two-dimensional continued fractions. A nice
collection of two-dimensional continued fractions is given in the work [5] by K. Briggs.

Besides the multidimensional continued fractions in the sense of Klein, there exist sev-
eral different generalizations of continued fractions to the multidimensional case. Some
other well-known generalizations of continued fractions can be found in the works of
H. Minkowski [29], G. F. Voronoi [36], A. K. Mittal and A. K. Gupta [26], A. D. Bryuno
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and V. I. Parusnikov [7], V. Ya. Skorobogat’ko [34], and V. I. Shmoilov [33].

0.3. Two-dimensional faces of multidimensional continued fractions. Many clas-
sical papers were dedicated to studying algebraic and algorithmic properties of multidi-
mensional continued fractions. The interest to geometrical properties of multidimensional
continued fractions was revived by V. I. Arnold’s work [1] and the subsequent paper of
E. I. Korkina [20] on the classification of A-algebras with three generators. In 1989 and
later, V. I. Arnold formulated a series of problems and conjectures associated to the geo-
metrical and topological properties of sails of multidimensional continued fractions. The
majority of these problems are still open. The geometry of sails has not been sufficiently
studied.
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In the present work, we make the first steps in the investigation of geometric properties
of sails. One of the first natural questions here is the following: what compact faces can
sails of multidimensional continued fractions have (these objects are usually studied up to
the integer-linear equivalence relation)?

The complete answer to this question was known only for one-dimensional continued
fractions. For any non-negative integer number n there exists a one-dimensional face with
exactly n integer points inside. Two compact faces with the same numbers of integer points
instde are integer-linear equivalent.

In the two-dimensional case the original question decomposes into two questions.

What compact faces contained in planes at integer distances from the origin equal to one
can sails of multidimensional continued fractions have (up to integer-linear equivalence)?

What compact faces contained in planes at integer distances from the origin greater
than one can sails of multidimensional continued fractions have (up to integer-linear
equivalence) ?

The answer to the first question is quite straightforward. For any convex polygon P at
the unit integer distance from the origin, there exist an integer positive k, a k-dimensional
continued fraction, and some face I’ of a sail of this continued fraction, such that [ is
integer-affine equivalent to P. Furthermore, two two-dimensional faces in the planes at
the unit integer distance from the origin are integer-linear equivalent iff the corresponding
polygons are integer-affine equivalent.

Note that up to this moment the following statement on compact two-dimensional faces
(of sails of multidimensional continued fractions) contained in planes at integer distances
from the origin greater than one was known. Such faces are either triangles or quadrangles
(see the work [3] by J.-O. Moussafir).

In the present work we classify compact two-dimensional faces contained in planes
at integer distances from the origin greater than one up to integer-linear equivalence.
This result was announced in [15]. We give the complete lists for continued fractions of
any dimension. This result is based on the classification of three-dimensional multistory
completely empty convex marked pyramids.

0.4. Description of the paper. We start in Section 1 with introducing Theorem A
on integer-affine classification of three-dimensional multistory completely empty convex
marked pyramids. In this section we also formulate Theorem B on integer-linear classi-
fication of two-dimensional faces of the sails at integer distance greater than one. The
integer-affine classification of two-dimensional faces contained in planes at integer dis-
tances from the origin greater than one (Corollary C) directly follows from the integer-
linear classification of two-dimensional faces contained in planes at integer distances from
the origin greater than one. In Sections 2 and 3 we prove Theorem A and Theorem B
respectively.

1. FORMULATION OF MAIN RESULTS

1.1. Classification of two-dimensional multistory completely empty pyramids.
By (ai,...,a;) in R* for k£ < n we denote the point (ay,...,a,0,...,0).
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FicurE 3. The integer-affine types of the bases of the marked pyramids of
List “M-W”.

Denote the marked pyramid with vertex at the origin and quadrangular base (2, —1,0),
(2,—a—1,1), (2,—1,2), (2,b—1,1), where b > a > 1, by M.

Denote the marked pyramid with vertex at the origin and triangular base
Er— 1 =), (a+&r—1,—r), (§,r,—r), where a > 1,7 > 1, by Ta’fr,
2,1, 1), (2,2,-1), (2,0,—1), where b > 1, by Uy;
a0 (110, (20.2) by V-
3,0 ) (3,1,1), (3,2,3) by W (the pyramid W is shown on Figure 1).
The integer-affine types of bases of the described above triangular and quadrangular
pyramids are shown on Figure 3.

(
(
(
(3,

Theorem A. Any multistory completely empty convex three-dimensional marked pyra-
mad 1s integer-affine equivalent exactly to one of the marked pyramids from the following
list.

List “M-W”:

— the quadrangular marked pyramids M, with integers b > a > 1;

— the triangular marked pyramids Tafr, where a > 1, and & and r are relatively prime,
andr>2and 0 < & <r/2;

— the triangular marked pyramaids Uy, where b > 1;

— the triangular marked pyramid V;

— the triangular marked pyramid W.

We give the proof of Theorem A in Section 2.

1.2. Compact two-dimensional faces at distance greater than one. Note that the
following statement on compact two-dimensional faces contained in planes at the integer
distance from the origin greater than one was known.
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Theorem (J.-O. Moussafir [28].) Let I be a two-dimensional compact face of some
sail of a two-dimensional continued fraction. Let r be the integer distance from the origin
to the plane, containing the face.

1. If r =1, then F may have arbitrary many vertices.

2. If r =2, then F has at most J vertices.

3. If r > 3, then F has three vertices. 0

Here we present a new theorem on integer-linear classification and its corollary on
integer-affine classification of two-dimensional faces of multidimensional sails (the faces
are again contained in the planes at integer distances greater than one from the origin).
Note that from this theorem and its corollary it follows that the second item of Moussafir’s
theorem can be strengthened:

2'. If r =2, then F has three vertices.

Quadrangular faces for the case of » = 2 are possible only for n-dimensional continued
fractions where n > 3.

Theorem B. Any compact two-dimensional face of a sail of a two-dimensional contin-
ued fraction contained in a plane at integer distance from the origin greater than one is
integer-linear equivalent exactly to one of the faces of the following list.

List “ay”:

— triangle with vertices (§,r—1,—r), (a+& r—1,—r), (§,r,—r), where a > 1, integers
& and r are relatively prime and satisfy the following inequalities r > 2 and 0 < £ < r/2;

— triangle with vertices (2,1,b—1), (2,2,-1), and (2,0, —1) for b > 1;

— triangle with vertices (2,—2,1), (2,—1,—1), and (2,1,2);

— triangle with vertices (3,0,2), (3,1,1), and (3,2, 3).

All triangular faces of List “as” are realizable by sails of dimension two and integer-linear
nonequivalent to each other.

Any compact two-dimensional face of a sail of an n-dimensional (n>3) continued frac-
tion contained in a plane at integer distance from the origin greater than one is integer-
linear equivalent exactly to one of the faces of the following list.

List “a,”, n > 3:

— quadrangle with vertices (2, —1,0), (2, —a—1,1), (2,—1,2), (2,b—1,1), forb > a > 1;

— triangle with vertices (§,r—1,—r), (a+& r—1,—r), (§,r,—r), where a > 1, integers
& and r are relatively prime and satisfy the following inequalities 1 > 2 and 0 < £ < r/2;

— triangle with vertices (2,1,b—1), (2,2,—1), and (2,0,—1) for b > 1;

— triangle with vertices (2,—2,1), (2,1,2), and (2,—1,—1);

— triangle with vertices (3,0,2), (3,1,1), and (3,2, 3).

All faces of List “ov,” are realizable by sails of any dimension greater than two and integer-
linear nonequivalent to each other.

Remark 1.1. Note that for any compact face of a sail we can associate an integer com-
pletely empty convex marked pyramid with marked vertex at the origin and this face as
base. Therefore integer-affine types of such marked pyramids are in one-to-one correspon-
dence with integer-linear types of faces (see Lemma 3.1 below).
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-1,0)
a)
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FIGURE 4. Integer-affine types of faces of List “(5”.

We give a proof of Theorem B in Section 3.

Corollary C. Any compact two-dimensional face of a sail of a multidimensional con-
tinued fraction contained in a plane at integer distance from the origin equals r is integer-
affine equivalent exactly to one of the polygons of the list 5, shown below.

List “5,”:

— quadrangle with vertices (—1,0), (—a—1,1), (=1,2), (b—1,1), where b > a > 1
(see the case of a = 2, b = 3 on Figure 4a)); quadrangular faces are possible only for
n-dimensional continued fractions where n > 3;

— single triangle (—1,0), (0,—=2), (2,1) (see Figure 4b));

— triangle (0,—1), (0,1), (b,0), for b > 1 (see the case of b =15 on Figure 4c));

— triangle (0,0), (a,0), (0,1), for a > 1 (see the case of a =5 on Figure 4d)).

.1
e U
(—1,-1) (0,0) (a,0)
a) b)

FIGURE 5. Integer-affine types of faces of List “f5”.

List “3y”:
— single triangle (-1, 1), (1,0), (0, ) (see Figure 5a));
— triangle (0,0), (a,0), (0, ra>

1
), for 1 (see the case of a =5 on Figure 5b)).
List “3,”, (r > 3):

— triangle with vertices (0,0), (a,0), and (0,1), for some a > 1 (see the case of a = 6
on Figure 6), the corresponding conver marked pyramid is integer-affine equivalent to Tfr,

where the integers & and r are relatively prime and satisfy 0 < € < r/2. For different £
the corresponding faces are integer-linear nonequivalent but integer-affine equivalent.

(
1
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ov

0,00  (a,0)

FIGURE 6. Integer-affine types of faces of List “3,”, for r > 4.

For any integer r the faces of List (5, are integer-affine nonequivalent to each other;
List B, is irredundant. O

The integer-affine and the integer-linear classifications coincide, for r < 5. For r > 5,
the integer-linear classification contains the integer-affine classification.

For any integers n > 3 and r > 2, the integer-linear classification of compact two-
dimensional faces contained in planes at integer distances from the origin greater than one
of sails of n-dimensional continued fractions coincides with the integer-affine classification
of completely empty r-story three-dimensional convex marked pyramids.

2. PROOF OF THEOREM A

2.1. Preliminary definitions and statements. Let us give several definitions, fix the
notation, and also formulate some general statements that we will further use in the
proofs.

For an integer polygon in some two-dimensional subspace the ratio of its Euclidean
volume to the minimal possible Euclidean volume of an integer triangle in the same two-
dimensional subspace is called the integer volume of this polygon.

An integer polyhedron (polygon) is called empty, if it does not contain integer points
in its interior, and the set of integer points of the faces coincides with the set of vertices
of the polyhedron (polygon).

Let ABCD be a tetrahedron with an ordered set of vertices A, B, C, and D. Denote
by P(ABC D) the following parallelepiped:

{A+aAB+ BAC+~vAD| 0<a<1,0<5<1,0<y <1}

Definition 2.1. Now we specify some useful coordinates (denoted by (z,y,2)) in the
three-dimensional subspace containing P(ABCD) of R*. Let b, ¢, and d be the integer
distances from B, ', and D to the two-dimensional planes containing the faces AC'D,
ABD, and ACD respectively. Let us define the coordinates of A, B, C', and D as follows:
(0,0,0), (b,0,0), (0,¢,0), and (0,0, d) respectively. The coordinates of all other points in
this three-dimensional subspace are uniquely defined by means of linearity. We call them
the integer-distance coordinates with respect to P(ABCD).

Remark 2.2. For any set of vertices A, B, C, and D ordered as in P(ABCD), the
integer-distance coordinates are uniquely defined.

By integer lattice nodes of R* (or, for short, lattice nodes) we mean integer points in
the original coordinates in R".
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Remark 2.3. Note that any lattice node of the three-dimensional space described above
has integer coordinates in the new integer-distance system of coordinates. The inverse
is not true. There exist an integer-distance system of coordinates and a point in the
corresponding three-dimensional space with integer coordinates which is not a lattice
node. For lattice nodes, the absolute values of their new coordinates coincide with integer
distances from these lattice nodes to the planes containing the corresponding faces of the
parallelepiped.

Let us continue with the following definition.

Definition 2.4. Two points P and () are said to be equivalent with respect to some integer
parallelogram ABCD if there exist integers A and 3 such that P = Q + MAB + SAC. The
set of all equivalence classes of the integer lattice with respect to the integer parallelogram
ABCD is called the quotient-lattice of the space by this integer parallelogram.

Note that any equivalence class is contained in one of the two-dimensional planes parallel
to the plane of the parallelogram.

Proposition 2.5. Consider an integer parallelepiped ABCDA'B'C'D' in R® and some
integer plane m parallel to the face ABCD. Let m intersect the parallelepiped (along a
parallelogram). Then the following two statements hold.

First, ™ contains only finitely many equivalence classes of the integer lattice with respect
to the integer parallelogram ABCD. Their number equals to the index of the sublattice
generated by the vectors AB and AC in the integer lattice of the plane containing ABCD.

Second, for any equivalence class of the integer lattice contained in m with respect to the
integer parallelogram ABCD it holds exactly one of the following conditions.

a) only one point of the equivalence class is in the parallelogram, it is an interior point of
the parallelogram;

b) two points of the equivalence class are in the parallelogram, they are contained in op-
posite (open) edges of the parallelogram;

¢) four points of the equivalence class are in the parallelogram, they coincide with vertices
of the parallelogram.

We skip the proof of Proposition 2.5. It is straightforward and is based on the following
easy lemma.

Lemma 2.6. Consider an integer parallelepiped with an empty face. Let some parallel to
this face plane intersect the parallelepiped. Then exactly one of the following statements
holds.

a) only one lattice node is in the parallelogram, it is an interior point;

b) two lattice nodes are in the parallelogram, they are contained in (open) opposite edges
of the parallelogram;

¢) four lattice nodes are in the parallelogram, they coincide with vertices of the parallelo-
gram. 0

Further we use the following corollary of Proposition 2.5.
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Corollary 2.7. Consider an integer parallelepiped ABCDA'B'C'D' in R®. Denote by d
the integer distance between A" and BAD. Denote by s the number of equivalence classes
of the integer lattice with respect to the integer parallelogram ABCD that are contained in
the plane of ABCD. Finally, denote by v the number of equivalence classes of the integer

lattice with respect to the parallelogram ABCD that are contained either strictly between
two planes of faces ABCD and A'B'C'D' or in the plane of ABCD. Then we have

d=".

S

Proof. 1t follows from Proposition 2.5 that each integer plane parallel to ABCD contains
exactly s equivalence classes. Hence there are exactly v/s—1 integer planes between two
planes containing faces ABC'D and A'B'C'D'. Therefore, d = v/s. O

2.2. First results on empty integer tetrahedra. In this subsection we show the corol-
lary of White’s theorem (see also [8]). Here without loss of generality we consider only
the three-dimensional space. The result of G. K. White [37] implies, as a special case, the
following theorem.

Theorem 2.8. (G. K. White, 1964 [37].) Let A C R® be an integer three-dimensional
simplez, let E; = {o0;,0.}, i = 1,2,3 be the sel of points belonging to a pair of opposite
edges o;, 0! of A. Then (A \ E;) NZ* is empty iff there exist j € {1,2,3} and two
neighboring planes m;, (by neighbor we mean that there are no integer lattice nodes
“between” these planes m; and 7';), such that o; C 7; and o; C 7. O

We will use the following corollary on empty integer tetrahedra for the classification of
empty convex multistory tetrahedra and also further in the proof of Theorem A.

Corollary 2.9. Let ADBA’ be some empty integer tetrahedron. Then all integer inte-
rior lattice nodes of the parallelepiped P(ADBA') are in the plane passing through two
centrally-symmetric edges of the parallelepiped. These two edges do not contain the ver-
tex A.

Proof. Consider an empty integer tetrahedron ADBA’' and the corresponding paral-
lelepiped P(ADBA') = ABCDA'B'C'D'. Without loose of generality we suppose that
the statement of Theorem 2.9 holds for the edges AA" and BD of the tetrahedron ADBA’.
We obtain that there are no lattice nodes between the plane 7; containing the central sec-
tion BB'D'D and 7y parallel to m; and passing through the segment AA’. So all lattice
nodes of the prism ABDA'B'D' distinct to the points A and A’ are contained in 7 (i.e.
in BB'D'D).

Note that both points P and P’ = A + PC'" are at the same time lattice nodes or
not, since A and C' are lattice nodes. If P is in the prism CBDC'B'D’ then P’ is in
ABDA'B'D'. Therefore all lattice nodes of the prism ABDA'B'D’ distinct to the points
C and C' are also contained in 7, (i.e. in BB'D'D). This concludes the proof of the
corollary. 0

Remark 2.10. The number of planes passing through two centrally-symmetric edges of
the parallelepiped equals six, and only three of them do not contain the vertex A.
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2.2.1. Classification of empty triangular marked pyramids. Corollary 2.9 allows to de-
scribe all integer-affine types of empty triangular marked pyramids (i.e. tetrahedra with
one marked vertex each).

Let 7 be some positive integer, and ¢ be a nonnegative integer. Denote by PS¢ the
marked pyramid with vertex at (0,0,0) and triangular base (0, 1,0), (1,0,0), ({&,7 =&, 7).

3

Corollary 2.11. Any integer empty triangular marked pyramid is integer-affine equivalent
to exactly one of the pyramids of

List “P”:

T P107

— P¢, where € and r are relatively prime, r>2, and 0<E<r/2.

All triangular marked pyramids of List “P” are empty and integer-affine nonequivalent
to each other.

Proof. 1. Completeness of List “P”. Let us show that an arbitrary empty integer
marked pyramid ADBA’ (with a vertex A) is integer-affine equivalent to one of the marked
pyramids of “P”.

Suppose that, the integer distance from its marked vertex to the plane containing the
marked base equals some positive integer r. If r = 1 then the vertices of the marked pyra-
mid generate the three-dimensional integer lattice, and therefore such a marked pyramid
is integer-affine equivalent to P (here A corresponds to the marked vertex of PD).

Suppose now that r > 1. By Corollary 2.9 all lattice nodes of the parallelepiped
P(ADBA') are contained exactly in one of the three planes passing through centrally-
symmetric edges of the parallelepiped and not containing A. Denote the vertices of the
marked base DBA' by B, D, and A in such a way that all interior lattice nodes of
the parallelepiped P(ADBAI) are contained in the plane passing through BD and the
centrally-symmetric edge.

Consider the integer-distance coordinates with respect to the parallelepiped P(ADBA’).
By Corollary 2.7 the coordinates of A', B, and D equal to (r,0,0), (0,r,0), and (0,0, r)
respectively. Take the intersection of the parallelepiped with the plane z = 1 in these coor-
dinates. There is only one lattice node in the intersection, by Corollary 2.9 its coordinates
are (1,r—&,£). Denote this lattice node by K.

If the integers £ and r have some common integer divisor ¢ > 1, then the point with
the coordinates (Z, %r, %r) is a lattice node. Hence the point (r/c,0,0) is also a lattice

node. The marked pyramid ADBA' is not empty, since it contains (r/c,0,0). Thus the
integers £ and r are relatively prime.

Since the integer distance from K to the two-dimensional plane containing the face ADB
equals one, there exists an integer-affine transformation taking the tetrahedron ABDK
to the tetrahedron with vertices (0,0,0), (0,1,0), (1,0,0), and (1,1,1). Here the point
A maps to (&,r—&,r). Hence the integer-affine type of the marked pyramid ABDA’
coincides with the integer-affine type of the marked pyramid ABDAl7 and therefore it
coincides with the integer-affine type of the marked pyramid P¢, where 0 < ¢ < 7,
and £ and r are relatively prime. It remains to say that the marked pyramids P¢ and
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Pr¢ can be mapped one to another by the integer-affine symmetry preserving the points

(0,0,0), (0,0,1), and (1, 1,0), and transposing (1,0,0) and (0, 1,0). Therefore the marked
pyramids P¢ and Pr=¢ are integer-affine equivalent.

2. Emptiness of the marked pyramids of List “P”. Let us show that all listed
marked pyramids P{ are empty.

The intersection of the plane a3 = b (for 1 < b < (r — 1)) and marked pyramid P} is
the triangle A, B D) with the following coordinates of the vertices:

(Pee-00). (529 00). (R le-an).
ror rr r r ror

The triangle AyByDy is contained in the band b < a1+as < b+TT;b, as = b. This band
contains only integer points with coordinates (¢,b—t, b) for integer . Hence it remains to
check if Ay is integer. Since £ and r are relatively prime and d < r, the first coordinate
of Ay is not integer. Therefore all marked pyramids P of List “P” are empty.

3. Irredundance of List “P”. We will show now that all marked pyramids P} of
List “P” are integer-affine nonequivalent to each other. Note that the integer distance
from the marked vertex to the plane containing the base is an integer-affine invariant.
Therefore the pyramids with distinct parameter r are integer-affine nonequivalent.

To distinguish the marked pyramids with the same 7, we construct the following integer-
affine invariant. Consider an arbitrary empty marked pyramid ABD A" with marked vertex
A and the corresponding trihedral angle also with vertex A and triangle DBA’ as its
base. By White’s theorem exactly one lattice node of the trihedral angle (we denote this
lattice node by K) is contained in the two-dimensional plane parallel to the face DBA’
and at integer distance r+1 from A. By Corollary 2.9 the integer distances from K to
two-dimensional planes of the angle equal 1, &, r—¢ (for some integer £). The trihedral
angle and K are uniquely defined by the marked pyramid up to the symmetries of the
marked pyramid preserving the marked vertex. The group of such symmetries permutes
all integer distances from K to the planes containing the faces of the angle. Hence, the
unordered system of integers [1,&,r—¢| is an invariant. This invariant distinguishes all
marked pyramids P{ with the same integer distance r. O

Proposition 2.12. Let relatively prime integers & and r satisfy the following inequalities:
r>2,0< &< /2. Then the marked pyramid P is integer-affine equivalent to the

marked pyramid Tf’r.

Proof. The marked pyramid Tﬁr is the image of P& under the integer-linear transformation
E¢+1 & =€
r—1 r—1 2—r
—r —r r—1
OJ

Corollary 2.13. Any integer empty r-story (r > 2) triangular marked pyramid is integer-
affine equivalent exactly to one of the marked pyramids Tf,, for relatively prime integers
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€ and r satisfying 0 < & < r/2. All such pyramids Tf,r are empty (and integer-affine
nonequivalent if the corresponding parameters r and & do not coincide). 0

2.2.2. Classification of integer empty tetrahedra. A certain difference between the integer-
affine classification of integer empty triangular marked pyramids (with marked vertex)
and the integer-affine classification of integer empty tetrahedra (without marked vertices)
occurs. The first steps in the integer-affine classifications of integer empty tetrahedra were
made by J.-O. Moussafir in [28].

Theorem 2.14. (J.-O. Moussafir [28].) Any integer empty tetrahedron is integer-
affine equivalent to the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), and (u,v,d),
for some integers u, v and d, where u, v and u+v—1 are relatively prime with d, and one
of the integers u+v, u—1, v—1 is divisible by d. (These tetrahedra are sometimes called
Hermitian normal forms of the simplices.)

Note that many of such Hermitian normal forms are integer-affine equivalent to each
other. The following consequence of Corollary 2.9 improves Moussafir’s theorem.

Corollary 2.15. Any integer empty tetrahedron is integer-affine equivalent exactly to one
of the following tetrahedra:

_ P10;'

— P&, wherer > 2,0 < & <1, and the element (¢ mod r) of the additive group Z/mZ
is also contained in the associated multiplicative group (Z/mZ)* (i.e. integers € and r are
relatively prime).

All listed integer tetrahedra are empty. Two tetrahedra Pfl and P?, are integer-affine

T

equivalent iff 11 = ro and (for ry > 1) one of the following equalities in (Z/mZ)* holds:
(¢ mod r) = (1) (v mod r)*".

Proof. 1. Completeness of the list. By Corollary 2.11 any empty integer tetrahedron
is integer-affine equivalent to some tetrahedron of the list of Corollary 2.15.

2. Emptiness of the tetrahedra of the list. By Corollary 2.11 the tetrahedron
Pt is empty for relatively prime integers 7 and ¢ satisfying 7 > 2 and £ < r/2. Since
P& and P7¢ are integer-affine equivalent and P! is empty, all tetrahedra of the list of
Corollary 2.15 are empty.

3. Proof of the last statement of Corollary 2.15. Consider any tetrahedron P¢ of
the list. The set of four trihedral angles associated with all four vertices of the tetrahedron
is uniquely defined.

It follows from White’s theorem, that for any of these trihedral angles exactly one
lattice node contained in the interior of the angle is at unit integer distance to the face
of tetrahedron do not containing the vertex of the angle. Direct calculations show that
the integer distances from these points to the four two-dimensional planes containing the
faces of the tetrahedron are

(1717€7T_€)> (Llagar_f)? (V,T—V./l,l)./ and (V'/T_V;l'/l);
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FI1GURE 7. Possible cases for M’ with respect to the quadrangle KLMN.

where (£ mod r)- (v mod r) = 11in (Z/mZ)*. The set of these numbers up to the group
S, of permutations action (for all points at the same time) is an integer-affine invariant.
Therefore, the tetrahedra PS, P”, Pr—¢ and P’ are integer-affine equivalent and the
invariant distinguishes all other tetrahedra. U

Remark 2.16. The integer-affine classifications of integer empty triangular marked pyra-
mids and of integer empty tetrahedra coincide only for r = 1,2, 3,4,5,6,8,10,12, 24.

2.3. Proof of Theorem A for the case of polygonal marked pyramids. In this
subsection we study the case of marked pyramids with polygonal bases (containing more
than three angles distinct from the straight angle). In the next subsection we will study
triangular marked pyramids.

2.3.1. Integer parallelograms contained in integer polyhedra.

Proposition 2.17. Let four vertices of a convex polygon be integer points. Then this
polygon contains some integer parallelogram that is integer-affine equivalent either to the
unit parallelogram, or to the parallelogram with vertices (1,0), (0,1), (=1,0), and (0, —1).

Proof. Suppose that a convex polygon contains four integer vertices, denote them by K, L,
M, and N. Let us show that the quadrangle K LM N contains some integer parallelogram.

Define M’ = N+KL. The vertex M can be in any of the four orthants with respect to
the lines containing M’N and M'L. For any of these four cases, we explicitly construct an
integer parallelogram contained in the quadrangle on Figure 7 (we draw the quadrangle
KLMN with thick line, the corresponding parallelogram is shaded).

Let some point of an integer parallelogram be integer. Consider the point which is
centrally-symmetric about the intersection point of the diagonals of this parallelogram.
This point is also in the parallelogram and is integer.

Denote the integer parallelogram in the polygon by ABCD.

1. Integer empty parallelogram. Suppose ABCD is empty. Then it generates the
integer lattice and hence is integer-affine equivalent to the standard one.

2. Integer parallelogram with the only one integer point inside. Suppose
ABCD contains only one integer point O in its interior. Then this point coincides with
the centrally-symmetric point about the intersection point of the diagonals of this paral-
lelogram. And hence it coincides with the intersection point of the diagonals. Therefore
the integer triangle OAB is empty. Hence it is integer-affine equivalent to the standard
unit triangle. Thus ABCD is integer-affine equivalent to the parallelogram with vertices
(1,0), (0,1), (=1,0), and (0, —1).
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3. Remaining cases. Let the parallelogram ABC D contains more than one integer
point except of the vertices. Then there exists a points among these points such that it
is distinct to the intersection point of the diagonals of this parallelogram. We denote it
by O. Denote the centrally-symmetric point about the intersection point of the diagonals
of this parallelogram by O'. Without loss of generality, we suppose that OO’ is not a
subset of AC (otherwise OO’ is not a subset of BD). Therefore AOCO' (or AO'CO) is
an integer parallelogram contained in ABCD. The number of integer points of AOCO’
is smaller than the number of integer points of ABCD at least by two. Hence we come
to one of the cases of item 1. or 2. in a finite number of such steps.

Therefore any convex polygon with four integer vertices contains a parallelogram
integer-affine equivalent to one of the parallelograms of Proposition 2.17. OJ

2.3.2. The case of an empty marked pyramid with an empty parallelogram as base.

Proposition 2.18. Let an empty integer parallelogram be a base of some marked pyramid.
If this pyramid is empty, then it is single-story.

Proof. We prove by reductio ad absurdum. Let A’ABCD be an empty marked pyramid
with marked vertex A" and an empty parallelogram ABC D as its base. Suppose that the
integer distance from the point A’ to the plane containing ABC'D equals r > 1. Con-
sider the parallelepiped P(AA’BC) and the integer-distance coordinates corresponding
to it (denoted by (x,y, z)). By Corollary 2.7 the coordinates of A’, B, and C equal to
(r,0,0), (0,7,0), and (0,0, r) respectively. Note that coordinates of lattice nodes (in old
coordinates) are integers.

Let us find the lattice node of the parallelepiped at unit integer distance to the plane
containing ABC, i.e. the lattice node with coordinates (1, y, z), where 0 <y <r, 0 < z <
r. On one hand, it is not contained in the marked pyramid A’ABC D, and hence y+1 > r
or z+1 > r. On the other hand, by Corollary 2.9 the two-dimensional faces of P(AA'BC)
do not contain integer points distinct to vertices, since AA'BC is empty. Therefore y # r
and z # r. Hence there are no lattice nodes in the plane containing ABC. We come to
the contradiction with Lemma 2.6. O

2.3.3. The case of a completely empty marked pyramid whose base is an integer parallel-
ogram containing a unique integer point in ils interior.

Lemma 2.19. Consider an integer marked pyramid with vertex O and parallelogram
ABCD as base. Let ABCD be integer-affine equivalent to the parallelogram with vertices
(1,0), (0,1), (=1,0), and (0,—1). If the marked pyramid OABCD is completely empty
and multistory, then it is two-story. The integer-affine type of such pyramid coincides with
the integer-affine type of the pyramid with vertex (0,0,0) and base (2,—1,0), (2,—2,1),
(2,-1,2), (2,0,1).

Proof. Let the integer base ABC D of the completely empty r-story integer marked pyra-
mid OABCD (r > 2) be integer-affine equivalent to the parallelogram with vertices (1, 0)
(0,1), (—=1,0), and (0, —1).

3
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Consider the parallelepiped P(AOBC') and the integer-distance coordinates correspond-
ing to it (denoted by (z, vy, 2)). By Corollary 2.7 the coordinates of O, B, C, and D equal
(r,0,0), (0,2r,0), (0,0,2r), and (0, 2r, 2r) respectively.

Let us consider the parallelogram of intersection of P(AOBC') with the plane x = 1.
Now we find all lattice nodes in this parallelogram. By Proposition 2.5 there are exactly
two lattice nodes in the parallelogram of intersection. Let us describe all possible positions
of these nodes in the intersection of P(AOBC) and the plane z = 1. First, there are no
lattice nodes in the intersection of the marked pyramid AOBCD and the plane x = 1,
i.e. in the closed parallelogram with vertices (1,0,0), (1,0,2r—2), (1,2r—2,2r—2), and
(1,2r—2,0). Secondly, there are no lattice nodes in all parallelograms obtained from the
given one by applying translations by the vectors (0, 2r,0) + (0, 7,7), where A and pu
are integers. On Figure 8, we show some parallelograms that do not contain any lattice
nodes. These parallelograms are painted shaded.

So, the lattice nodes of the intersection parallelogram of P(AOBC) with the plane
x = 1 can only coincide with integer points of open parallelograms obtained from the par-
allelogram with vertices K(1,r—2,2r—2), L{1,r,2r—2), M(1,r,2r), and N{1,r—2,2r)
by the symmetry with respect to the plane y = 2z and translations by the vectors
A0, 2r,0) + {0, 7, 7), where A and p are integers. The parallelogram KLMN contains

exactly one integer point (1,r—1,2r—1), see Figure 8.

=
=

F1cure 8. The intersection of P(AOBC') and the plane z = 1.

Suppose that this point is a lattice node. Since the intersection parallelogram contains
exactly two lattice nodes, the point symmetric to the point (1,7—1,2r—1) with respect to
the plane y = z is also a lattice node (there are no other integer points in the intersection
parallelogram). Therefore (2,2r—2,4r—2) is a lattice node. Hence (2,2r—2,2r—2) is a
lattice node, and hence (2,r—2,r—2) is also a lattice node. However, for r > 3 the point
(2,r—2,7—2) is contained in the closed parallelogram of intersection of P(AOBC) with
the plane z = 2. The vertices of this parallelogram are the following: (2,0,0), (1,0, 2r—4),
(1,2r—4,2r—4), and (1,2r—4,0). Thus there are no pyramids satisfying all the conditions
of Lemma 2.19 for r > 3.
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Now consider the case r = 2. The integer points A, B, C, and (1, 1, 3) define the integer
lattice in a unique way. This implies that all marked pyramids satisfying all the conditions
of Lemma 2.19 are of the same integer-affine type, and it coincides with the integer-affine
type of the marked pyramid with vertex (0,0,0) and base (2,—1,0), (2,—-2,1), (2,—1,2)

’ ’

(2,0,1) (in the old coordinates). O

2.3.4. General case. Now we study the general case of integer completely empty marked
pyramids with convex polygonal bases.

Lemma 2.20. Consider an integer marked pyramid with vertex O and convex polygonal
base M. If this marked pyramid is completely empty and multistory, then it is two-story.
The base of the marked pyramid is integer-affine equivalent to the quadrangle (b,0), (0, 1),
(—a,0), (0,—1) where b > a > 1. The integer-affine type of the pyramid is uniquely
determined by the integers a and b (for b > a > 1) and coincides with the integer-affine
type of the marked pyramid Myp. Two marked pyramids My, and My y (b > a > 1,
b > d > 1) are integer-affine equivalent iff a = o’ and b =1'.

Proof. Under the assumptions of the lemma the integer distance from the two-dimensional
plane containing the parallelogram M to the vertex O is greater than one. It follows
from Proposition 2.17 that the parallelogram M contains either an empty parallelogram
or a parallelogram with exactly one integer point in its interior (and distinct to the
vertices). By Proposition 2.18 the case of an empty parallelogram is eliminated. Consider
a parallelogram P with exactly one integer point inside.

Choose coordinates on the plane containing the base M so that the vertices of P have
the following coordinates: (1,0), (0,1), (—1,0), and (0, —1). Note that all the coordinates
of a point of this plane are integers iff this point is a lattice node.

Let an integer point with coordinates (x, y) for some x,y > 0 be in the base M. Since M
is convex, the point (1, 1) is also in M. This implies that the empty integer parallelogram
with vertices (0,0), (1,0), (1,1), (0,1) is contained in M. Therefore, by Proposition 2.18
the distance from the vertex of the pyramid to the two-dimensional plane containing the
polygon M equals one.

The cases z > 0, y < 0; x <0, y > 0; and z,y < 0 are similar.

Let the integer points with coordinates (x,0) and (0, y), where |z| > 1 and |y| > 1, be in
the base M. Then M contains one of the points: (1,1), (1,-1), (—=1,1), or (=1, —1). And
for the same reason, the distance from the vertex of the pyramid to the two-dimensional
plane containing M equals one.

Without loss of generality we suppose that M does not contain points with coordinates
(0,y) for |y| > 1. Then M is integer-affine equivalent to the quadrangle with vertices
(b,0), (0,1), (—a,0), (0,—1), where b > a > 1.

Since the polygon M contains the parallelogram P, by Lemma 2.19 the integer distance
from the vertex O of the marked pyramid to the two-dimensional plane containing the base
M equals two. The parallelogram P is uniquely defined by the quadrangle with vertices
(b,0), (0,1), (—a,0), (0,—1), where b > a > 1 (this quadrangle contains the unique

integer parallelogram with exactly one integer point distinct to the vertices). Therefore,
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by Lemma 2.19 the marked pyramid is integer-affine equivalent to the marked pyramid
with vertex (0,0,0) and base (2,-1,0), (2, —a—1,1), (2,-1,2), (2,0—1,1).

The point of intersection of the quadrangular base diagonals divides the diagonals into
four segments with integer lengths 1, 1, a, and b. Therefore the (unordered) pair of

integers [a, b] is an integer-affine invariant for the marked pyramid. O

2.4. Proof of Theorem A for the case of triangular marked pyramids. We con-
tinue the proof by studying some special cases. Throughout this subsection we denote by
OABC a triangular marked pyramid with vertex O and base ABC.

2.4.1. Case 1: the base contains an integer polygon. Suppose that the triangle ABC
contains two integer points D and F such that the line DFE intersects the edges of the
triangle ABC' and does not contain any vertex of the triangle. Without loss of generality
we suppose that the open ray DFE with vertex at D intersects AB, and the open ray FD
with vertex at F intersects BC'. Hence the triangle ABC contains some integer convex
quadrangle AEDC. By Proposition 2.17 the triangle ABC' contains either an integer
empty parallelogram or a parallelogram integer-affine equivalent to the parallelogram with
vertices (1,0), (0,1), (—1,0), and (0, —1).

If the triangle ABC' contains an integer empty parallelogram, then by Proposition 2.18
the marked pyramid OABC is single-story.

Suppose that the triangle ABC' does not contain an integer empty parallelogram and
contains a parallelogram integer-affine equivalent to the parallelogram with vertices (1,0),
(0,1), (—1,0), and (0, —1). Consider the coordinates on the plane containing the base such
that the vertices of the above-mentioned parallelogram have the following coordinates:
(1,0), (0,1), (—1,0), and (0,—1). If the points (1,1), (1,—1), (—1,1), and (—1,—1) are
not contained in ABC', then the marked pyramid is no longer triangular. Therefore any
marked pyramid of Case 1 contains some empty parallelogram, and by Proposition 2.18

it is single-story.

2.4.2. Case 2: the integer points of the base different from the vertices are not contained
in one line. The only possible affine type is shown on Figure 9.

F1GURE 9. The affine type of triangles of Case 2.

Let us find all possible integer-affine types of such triangle. Since the triangle FED
(see Fig. 9) is empty, it is integer-affine equivalent to the triangle (1,0), (0,0), and (0, 1).

3

The points A, B, and C correspond to (—1,0), (2,1), and (0, —2) respectively. Hence the

3

integer-affine type is determined in the unique way.
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Lemma 2.21. Consider an integer multistory marked pyramid with vertex O and triangu-
lar base ABC. Let ABC' be integer-affine equivalent to the triangle with vertices (—2,1),
(—=1,-1), and (1,2). Then the marked pyramid OABC is two-story and inleger-affine
equivalent to the marked pyramid V of List “M-W?”.

Proof. Let the base of an r-story (r > 2) completely empty marked pyramid OABC' be
integer-affine equivalent to the triangle with vertices (—2,1), (—1,—1), and (1, 2).

Consider the parallelepiped P(AOBC') and the integer-distance coordinates correspond-
ing to it and denoted by: (x,y, z). By Corollary 2.7 the coordinates of the vertices O, B,
and C are (r,0,0), (0,7r,0), and (0,0, 7r) respectively.

Let us consider the intersection parallelogram of P(AOBC') with the plane x = 1. Now
we find all lattice nodes in this parallelogram. By Proposition 2.5 there are exactly seven
lattice nodes in the parallelogram of intersection. Let us describe all possible positions of
these nodes in the intersection of P(AOBC) with the plane x = 1. First, there are no
lattice nodes in the intersection of the marked pyramid AOBC with the plane z = 1, i.e.
in the closed triangle with vertices (1,0,0), (1,0,7r—7), and (1, 7r—7,0). Secondly, there
are no lattice nodes in all triangles obtained from the given one by applying translations
by vectors A0, r,2r) + (0, 4r,r) for all integers A and p. On Figure 10 (r > 4) and
Figure 11 (r = 2,3) we show triangles that do not contain lattice nodes. These triangles
are shaded.

So the lattice nodes of the intersection parallelogram of P(AOBC) with the plane z = 1
can be only at integer points in open triangles obtained from two triangles by translations
by the vectors A(0,r,2r) + 1(0,4r,r) for all integers A and pu. The vertices of the first
triangle are K(1,3r,4r—7), L(1,3r,2r), and M(1,5r—7,2r). Here the points (1,0, 0) and
L should be in different half-planes with respect to the line LM . This condition is satisfied
only if 2r > 4r—7 i.e. r < 7/2. The vertices of the second triangle are P(1,4r—7, 3r),
Q(1,r,3r), and R(1,r,6r—7). And again the points (1,0,0) and @ should be in different
half-planes with respect to the line PR. This condition is satisfied only if (4r—7 < r), i.e.
r<7/3.

So for r > 3 all points of the intersection parallelogram of P(AOBC) with the plane
x = 1 are covered, see Figure 10. If r = 2, then the triangle K LM contains only one
integer point with coordinates (1,5, 3), see Figure 11a). If 7 = 3, then the triangle K LM
does not contain any integer point, see Figure 11b).

Since the intersection parallelogram of the plane x = 1 with the open parallelepiped
should contain seven lattice nodes, the only possible case is » = 2. There are exactly seven
integer points in the complement to the union of the described triangles in the parallel-
ogram. Hence all these points are lattice nodes. Therefore, the marked pyramid OABC
is two-story and integer-affine equivalent to the marked pyramid with vertex (0,0,0) and
base (2,-2,1), (2,—1,-1), (2,1,2) (i.e. to the pyramid V of List “M-W"). O

It remains to study the cases of triangular pyramids with the following property. All
integer points of the base of such pyramid distinct to the vertices of the pyramid are
contained in some straight line passing through one of the vertices of the base triangle.
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FIGURE 10. The intersection of P(AOBC') with the plane z =1 (for r > 3).

2}* . 'R‘\. }
Rt M SN P4
N« K
a) b)

FIcURE 11. The intersection of P(AOBC') with the plane x = 1: a) r = 2;
b) r = 3.

2.4.3. Case 3: all integer points of the base distinct to vertices are contained in a straight
line — I. Suppose that all lattice nodes of the triangle ABC are contained in a ray with
vertex at A. Let the number of nodes equal ¢ (¢ > 1), and also suppose all these points
are in the interior of ABC'. Denote the nodes in the interior by D, ..., D,, starting from
the point closest to A and increasing the indexing in the direction from A. It turns out
that for any positive integer ¢ there exists exactly one integer-affine type of such pyramid.

Since the triangle BD.C is empty there exists an integer-affine transformation that
takes the triangle to any other empty triangle. Let us take the triangle BD.C to the
triangle BD,C with vertices (0,1), (0,0), and (1,0) respectively. Now we determine the
image of A. Since the point D,(0,0) is an integer point of the triangle, the point A is in
the third orthant (z < 0, y < 0). Since (—1,0) is not in the triangle, the point A is in the
half-plane defined by y < z+1. Since (0, —1) is not in the triangle, the point A is in the
half-plane defined by y > z—1. Since A is integer, its coordinates are (—t,—t) for some

positive integer ¢t. Since there are exactly ¢ interior integer points in the triangle BDCC,
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we have ¢ = ¢. Therefore the triangle ABC is integer-affine equivalent to the triangle with
vertices (1,0), (0,1), and (—¢, —c).

First we study the case ¢ = 1.

Lemma 2.22. Consider an integer multistory marked pyramid with vertex O and trian-
gular base ABC'. Let the triangle ABC' be integer-affine equivalent to the triangle with
vertices (—1,—1), (0,1), and (1,0). Then the marked pyramid OABC' is three-story and
integer-affine equivalent to the marked pyramid W of List “M-W".

Proof. Suppose that the base of r-story (r>2) completely empty marked pyramid OABC
be integer-affine equivalent to the triangle with vertices (—1, —1), (0,1), and (1, 0).

Consider the parallelepiped P(AOBC') and the integer-distance coordinates correspond-
ing to it (denoted by (z,y,z)). By Corollary 2.7 the coordinates of O, B, and C equal
(r,0,0), (0,3r,0), and (0, 0, 3r) respectively.

Let us consider the parallelogram at intersection of P(AOBC') and the plane z =
1. Now we find all lattice nodes in this parallelogram. By Proposition 2.5 there are
exactly three lattice nodes in the parallelogram at intersection. Let us describe all possible
positions of these nodes in the intersection of P(AOBC') with the plane x = 1. First,
there are no lattice nodes in the intersection of the marked pyramid AOBC with the
plane x = 1, i.e. in the closed triangle with vertices (1,0, 0}, (1,0, 3r—3), and (1,3r—3,0).
Secondly, there are no lattice nodes in all triangles obtained from the given one by applying
translations by vectors A(0, 3r,0) + (0, r, r) for integers A and p. On Figure 12, we show
some triangles that do not contain lattice nodes. These triangles are shaded.

So the lattice nodes in the intersection of P(AOBC) with the plane z = 1 can be only
at integer points in an open triangle obtained from the triangle K (1, 3r,r—3), L(1,3r,7),
M(1,3r—3,r) by translations by vectors A(0, 3r,0) + (0, r,7) for any integers A and u.
Only one point with integer coefficients (1,3r—1,7r—1) is in the triangle K LM, see Fig-
ure 12.

.M\K

F1cURE 12. The intersection of P(AOBC') with the plane z = 1.

Shaded triangles cover almost all integer points in the intersection of P(AOBC') with
the plane x = 1. Only two three-tuples of integer points are still uncovered:
1) (1,3r=1,r—1), (1,r—1,2r—1), (1,2r—1,3r—1);

3
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So the lattice nodes are either the points of the first three-tuples or the points of the
second one.

Suppose (1,3r—1,r—1) is a lattice node. (If no, then the point (1,7—1,3r—1) is a
lattice node. Since the transformation that maps (z,y, z) to (x, z,y) is integer-affine and
it preserves the parallelepiped P(AOBC) and the marked pyramid OABC, this case is
similar.) Then the point (r, (3r—1)r, (r—1)r) is a lattice node. Geometry of lattice nodes
imply that (3r—1)r — (r—1)r is divisible by 3. Therefore 2r? is divisible by 3, and hence
r is also divisible by 3.

Suppose r = 3, then the marked pyramid exists and is integer-affine equivalent to W.

Let us study the case of r = 3k, for k£ > 2. Consider the parallelogram at intersection of
P(AOBC) and the plane x = 3. Now we find all lattice nodes in this parallelogram. By
Proposition 2.5 there are exactly three lattice nodes in the parallelogram of intersection.
Let us describe all possible positions of these nodes. First, there are no lattice nodes in
the intersection of the marked pyramid AOBC with the plane z = 3, i.e. in the closed
triangle with vertices (3,0, 0), (3,3r—9,0), and (3,3r—9,0). Secondly, there are no lattice
nodes in all triangles obtained from the given one by applying translations by vectors
A0, 3r,0) + p(0,r,7) for all integers A and p. This includes the triangle with vertices

P(3,2r,2r), Q(3,5r—9,2r), and R(3,2r,5r—9) shown on Figure 13 Since (1,3r—1,r—1)

3

2) (1,r—1,3r—1), (1,2r—1,r—1), (1,3r—1,2r—1).

N
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F1cure 13. The intersection of P(AOBC') with the plane x = 3.

is a lattice node, the point (3,9r—3,3r—3) is a lattice node. Thus (3,3r—3,3r—3) is a
lattice node. However, this point is in K LM (for r > 1) and hence (1,3r—1,r—1) is not
a lattice node. We come to the contradiction, the case of r = 3k for k£ > 2 is empty. [

Lemma 2.23. Consider an integer multistory marked pyramid with vertex O and trian-
gular base ABC'. Let the triangle ABC be integer-affine equivalent to the triangle with
vertices (—c,—c), (0,—1) , and (—1,0), for ¢ > 2. Then the marked pyramid OABC' is
not completely empty.

Proof. We prove by reductio ad absurdum. Suppose that the base of r-story (r > 2)
completely empty marked pyramid OABC' is integer-affine equivalent to the triangle with
vertices (—¢, —c), (0, —1), and (—1,0), for ¢ > 2. Since the triangle with vertices (—c, —c),

(1,0), and (0, 1) contains the triangle with vertices (—1,—1), (1,0), and (0, 1), the marked
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pyramid OABC' contains a marked subpyramid integer-affine equivalent to the pyramid
of Lemma 2.22. (By a marked subpyramid P of some marked pyramid @) we call a convex
pyramid P such that the vertices of P and @) coincides and the base of () contains the
base of P.) Therefore by Lemma 2.22 we have r = 3.

Since ¢ > 2, the marked pyramid OABC contains some marked subpyramid OA'BC
with base A’BC integer-affine equivalent to the triangle with vertices (-2, —2), (1,0), and
(0,1). We show now that OA’BC is not completely empty.

Consider the parallelepiped P(A'OBC') and the integer-distance coordinates corre-
sponding to it (denoted by (z,y,z)). By Corollary 2.7 the coordinates of O, B, and
C equal (3,0,0), (0,15,0), and (0,0, 15) respectively.

Let us consider the parallelogram at intersection of P(A'OBC) and the plane x = 1.
Now we find all lattice nodes in this parallelogram. First, there are no lattice nodes in
the intersection of the marked pyramid A'OBC with the plane x = 1, i.e. in the closed
triangle with vertices (1,0,0), (1,0,12), and (1,12,0). Secondly, there are no lattice
nodes in all triangles obtained from the given one by applying translations by vectors
A{0,15,0) + (0, 3, 3) for all integers A and p. These triangles contain all integer points
of the intersection of P(A'OBC') with the plane x = 1, see Figure 14.

FIGURE 14. The intersection of P(A’OBC') with the plane x = 1.

So, the marked pyramid OA’'BC' is not completely empty. Hence the marked pyramid
OABC is not completely empty. Thus r # 3. We come to the contradiction. O

2.4.4. Case 4: all integer points of the base distinct to vertices are contained in a straight
line — II. Suppose that all integer points of the triangle ABC are contained in the ray
with vertex A. Let the number of points equal b (b > 1), and the last point be in the
edge BC. Denote these points by Ds,..., Dy, starting from the point closest to A and
increasing the indexing in the direction from A. It turns out that for any b there exists
exactly one integer-affine type of such pyramid.

Since the triangle D, D,_1 B is empty there exists an integer-affine transformation that
takes the triangle to any other empty triangle. We take the triangle DD, 1B to the
triangle with vertices (0,0), (1,0), and (0, —1) respectively. Then C' maps to (0, 1), and

3
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A maps to (b,0). Therefore the triangle ABC is integer-affine equivalent to the triangle
with vertices (0, —1), (b,0), and (0, 1).

First we study the case b = 2.
Lemma 2.24. Consider an integer multistory marked pyramid with verter O and trian-
gular base ABC'. Let the triangle ABC be integer-affine equivalent to the triangle with
vertices (2,0), (0,—1), and (0,1). Then the marked pyramid OABC is two-story and

integer-affine equivalent to the marked pyramid Uy of List “M-W”.

Proof. Suppose that the base of r-story (r > 2) completely empty marked pyramid OABC
be integer-affine equivalent to the triangle with vertices (2,0), (0, —1), and (0, 1).

Consider the parallelepiped P(AOBC') and the integer-distance coordinates correspond-
ing to it (denoted by (z,y,z)). By Corollary 2.7 the coordinates of O, B, and C equal
(r,0,0), (0,4r,0), and (0, 0, 4r) respectively.

Consider the parallelogram at intersection of P(AOBC) and the plane x = 1. Now
we find all lattice nodes in this parallelogram. By Proposition 2.5 there are exactly three
lattice nodes in the parallelogram at intersection. Let us describe all possible positions of
these nodes. First, there are no lattice nodes in the intersection of the marked pyramid
AOBC with the plane x = 1, i.e. in the closed triangle with vertices (1,0, 0), (1,0, 4r—4),
and (1,4r—4,0). Secondly, there are no lattice nodes in triangles obtained from the given
one by applying translations by vectors A0, 4r, 0) + (0, r, ) for all integers A and . We
show (shaded) triangles that do not contain lattice nodes on Figure 15.

So the lattice nodes in the intersection of P(AOBC') with the plane x = 1 can be only at
integer points in an open triangle obtained from the triangle K(1,4r,2r—3), L(1,4r, 2r),
M(1,4r—3,2r) by translations by vectors A(0,4r,0) 4+ p(0,r,7) for all integers A and pu
and the symmetry about the plane y = 2. Only the points with integer coordinates
(1,4r—2,2r—1), (1,4r—1,2r—1), and (1,4r—1,2r—2) are in the triangle K LM, see Fig-
ure 15.

F1cURE 15. The intersection of P(AOBC') with the plane z = 1.

We prove that one of these points is a lattice node by reductio ad absurdum. Suppose
that the triangle K LM does not contain a lattice node. Then there are no lattice nodes in
triangles obtained from K LM by applying translations by vectors of the form A(0, 47, 0) +
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p{0, 7, r) for all integers A and p. Hence the intersection of the parallelepiped P(AOBC)
with the plane x = 1 does not contain integer nodes. We come to the contradiction. So
one of the points (1,4r—2,2r—1), (1,4r—1,2r—1), and (1,4r—1,2r—2) is a lattice node.

Suppose that » > 3 and consider the plane x = 2. First, there are no lattice nodes in
the intersection of the marked pyramid AOBC with the plane x = 2, i.e. in the closed
triangle with vertices (1,0, 0), (1,0,4r—8), and (1,4r—8,0). Secondly, there are no lattice
nodes in all triangles obtained from the given one by applying translations by vectors
A(0,4r,0) + (0, r, r) for all integers A and p. In particular, there are no lattice nodes in
the triangle with vertices P(2,3r,3r), Q(2,7r—8,3r), and R(2,3r, 7r—8).

3

R

FIGURE 16. The intersection of P(AOBC') with the plane z = 2.

Suppose that the point (1,4r—2,2r—1), (1,4r—1,2r—1), or (1,4r—1,2r—2) is a lat-
tice node, then (2,8r—4,4r—2), (2,8r—2,4r—2), or (2,8r—2,4r—4) respectively is also
a lattice node. Hence the point (2,4r—4,4r—2), (2,4r—2,4r—2), or (2,4r—2,4r—4) re-
spectively is a lattice node. The last three points are contained in the triangle PQ R with
vertices P(2,3r,3r), Q(2,7r—8,3r), and R(2,3r,7r—8), for r > 3 (see Figure 16), and
hence these points are not lattice nodes. For r = 3, the point (1,11,5) is not a lattice
node by the same reason. The points (1,10,5) and (1,11,4) are not lattice nodes, since
the points (3,30, 15) and (3, 33, 12) are not lattice nodes of the plane x = 3 (all such node
coordinates are (3,4m, 4n) for some integers m and n). From the above we conclude that
r <2.

Suppose now that r = 2 and consider the points (1,6,4), (1,7,3), and (1,7,4). The
points (1,6,4) and (1,7,3) are not lattice nodes, since the points (2,12, 6) and (2,14, 8)
are not lattice nodes of the plane x = 2 (all such nodes coordinates are (2,4m,4n) for
some integers m and n). The point (1,7, 4) defines a unique-possible integer-affine type of

marked pyramids with such base — the integer-affine type of the marked pyramid U,. 0O
Now we will study the general case (b > 2).

Lemma 2.25. Consider an integer multistory marked pyramid with vertex O and triangle
base ABC'. Let the triangle ABC' be integer-affine equivalent to the triangle with vertices
(b,0), (0,—=1), and (0,1), for b > 2. Then the marked pyramid OABC' is two-story and
integer-affine equivalent to the marked pyramid Uy, of List “M-W”.
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Proof. Let the base of r-story (r>2) completely empty marked pyramid O ABC be integer-
affine equivalent to the triangle with vertices (b,0), (0, —1), and (0, 1).

Since the triangle with vertices (b,0), (0,—1), and (0,1) contains the triangle with
vertices (2,0), (0,—1), and (0,1), the marked pyramid OABC' contains a marked sub-
pyramid that is integer-affine equivalent to a marked pyramid of Lemma 2.24. Since the
subpyramid is completely empty, by Lemma 2.24 we have that it is two-story.

Suppose now r = 2. Consider the parallelepiped P(AOBC') and the integer-distance
coordinates corresponding to it (denoted by (z,y, z)). By Corollary 2.7 the coordinates
of O, B, and C equal (2,0,0), (0,4b,0), and (0, 0, 4b) respectively.

Consider the parallelogram at the intersection of P(AOBC) and the plane z = 1. Now
we find all lattice nodes in this parallelogram. By Proposition 2.5 there are exactly 2b
lattice nodes in the parallelogram at intersection. Let us describe all possible positions of
these nodes. First, there are no lattice nodes in the intersection of the marked pyramid
AOBC with the plane x = 1, i.e. in the closed triangle with vertices (1,0,0), (1,0, 2b),
and (1, 2b,0). Secondly, there are no lattice nodes in all triangles obtained from the given
one by applying translations by vectors A{0, 4b, 0) + (0, 2, 2) for all integers A and . We
show some (shaded) triangles that do not contain any lattice nodes on Figure 17.

So the lattice nodes of the intersection of P(AOBC') with the plane = 1 can be only at
integer points in an open triangle obtained from the triangle K(1,4b,2b—4), L(1, 4b, 2b),
M(1,4b—4,2b) by translations by vectors A(0,4b,0) 4+ 1(0,2,2) for all integers A and p
and the symmetry about the plane y = z. Only the points with integer coefficients
(1,4b—2,2b—1), (1,4b—1,2b—1), and (1,4b—1,2b—2) are in the triangle KLM (the case
b =3 is shown on Figure 17).

FIcURE 17. The intersection of P(AOBC') with the plane z = 1.

One of the integer points of this triangle is a lattice node (the other uncovered parts of
the section can be obtained by translations by vectors A(0, 4b, 0) + 1(0, 2,2) for integers
A and p).

Consider the plane z = 2. The point (2, y, z) is a lattice node iff there exist integers m
and n such that z = 2m, and y = 2m + 2bn.

We show that the point (1,4b—2,2b—1) is not a lattice node by reductio ad absurdum.
Suppose that this point is a lattice node. Then the point (2,8b—4,4b—2) is also a lattice
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node. Let us find integers m and n such that 46 — 2 = 2m and 8b — 4 = 2m + 2bn. Then
m=2b—1,n = %T_l If b > 2, then n is not integer. We come to the contradiction.
Therefore the point (1,4b—2,2b—1) is not a lattice node.

By the same reasons the point (1,4b—1,2b—2) is not a lattice node. The last point of
the triangle (1,4b—1,2b—1) determines the pyramid of the integer-affine type Uj. O

2.4.5. Case 5: integer points of the base distinct to the vertices are contained in one edge
of the base. It remains to study the case of the last most simple series of triangular marked
pyramids. Suppose that all integer points of the base ABC distinct to the vertices are
contained in AC, and the integer length of AC is a — 1, for some a > 2. The case of a = 1
is the case of empty marked pyramid, it was studied before in Corollary 2.13. Denote these
points by Dy,..., D, 1 starting from the point closest to A and increasing the indexing
in the direction to C.

Consider an integer multistory marked pyramid with vertex O and triangular base
ABC'. Let the triangle ABC be integer-affine equivalent to the triangle with vertices
(0,0), (0,1), and (a,0), for a > 2.

Lemma 2.26. The marked pyramid OABC is integer-affine equivalent to the marked
pyramid of the following list.

List «“T”:

T Tc?.,l;

— Tafﬂn, where & and 1 are relatively prime and satisfy: ¥ > 2 and 0 < £ < r/2.

All integer marked pyramids listed in “T" are completely empty and integer-linear
nonequivalent to each other.

Proof. 1. Preliminary statement. Let us show that the marked pyramid OABC' is
integer-affine equivalent to the marked pyramid T¢,, for some positive integer £ < r/2.

First of all two single-story marked pyramids with the same a are integer-affine equiv-
alent, since the integer points of the edges of the pyramid generate all integer lattice.

Let the base of r-story (r > 2) completely empty marked pyramid OABC' be integer-
affine equivalent to the triangle with vertices (0,0), (0,1), and (a,0). Consider the paral-
lelepiped P(AOBD;) and the integer-distance coordinates corresponding to it (denoted
by (z,vy,z)). By Corollary 2.7 the coordinates of O, B, and C' equal (r,0,0), (0,r,0), and
(0,0, r) respectively.

By Corollary 2.9 (since the tetrahedron AOBD; is empty) all interior lattice nodes are
contained in one of three diagonal planes: z+z = r, y+2z = r, or z+y = r. Now we
examine all the cases.

Let all interior lattice nodes be contained in the plane z+2z = r. By Lemma 2.6 there
exists exactly one lattice node K contained in the plane x = 1. So, K is in the intersection
of these two planes, and its coordinates are (1,£,r—1), where 0 < £ < r. Now we come
back to the old coordinates associated with the lattice. Since the integer distance from
K to the two-dimensional plane containing the face AD{B equals one, the tetrahedron
AD{BK can be taken by some integer-affine transformation to the tetrahedron with
vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1). By such transformation the vertex O

3



COMPLETELY EMPTY PYRAMIDS ON INTEGER LATTICES 29

maps to (=&, 1—r,r), and C' maps to (a,0,0). Let us translate the obtained pyramid by
the integer vector (£,7—1,7). Finally we get the marked pyramid Tf,r. Hence the marked
pyramid OACB is integer-affine equivalent to the marked pyramid T(f,r, where 0 < & < r.
Consider the integer-affine transformation taking the points O, A, B, C to the points
O, C, B, A respectively, then the point K maps to the point (r—¢&,1—r,7). Choose the
smallest one of £ and r—&. Obviously, this number is not greater than r/2.

Let all interior lattice nodes be contained in the plane y+2z = r in the integer-distance
coordinate system. By Lemma 2.6 there exists exactly one lattice node K contained in
the plane x = 1. So, K is in the intersection of these two planes, and its coordinates are
(1,£,r=¢&), where 0 < £ < r. The intersection of the marked pyramid OABC with the
plane z = 1 is a triangle with vertices (1, 0,0), (1, ar—a,0), and (1,0,r—1). This triangle
contains all integer points (1,¢,r—t), for 2 < ¢ < r. Hence £ = 1. Therefore the point K
is in the plane x4z = r, so, we are in the position of the previous case.

Let all interior lattice nodes be contained in the plane x4y = r in the integer-distance
coordinate system. By Lemma 2.6 there exists exactly one lattice node K contained in
the plane z = 1. So, K is in the intersection of these two planes, and its coordinates are
(&, 7=, 1), where 0 < £ < r. The intersection of the marked pyramid OABC with the
plane z = 1 is a triangle with vertices (0,0,1), (r—1,0,1), and (0, ar—a, 1). This triangle
contains all integer points (t,r—t,1), for 1 < ¢ < r—1. Hence & = r—1. Therefore the
point K is again in the plane z+z =r.

So, the marked pyramid OABC' is integer-affine equivalent to a marked pyramid Taf_/r
for some positive integer & < /2.

2. Completeness of List “T” and completely emptiness of the marked pyra-
mids of “T”. Let us show that the marked pyramids Tf’r of the list “I” are completely
empty. Denote the vertices of the marked pyramids by O, A, B, C', and the integer points
of AC by D;.

Denote also the point A by Dy, and the point C' by D,. Note that the marked pyramid
OD;D; B is integer-affine equivalent to the marked pyramid P¢, for any positive integer
i < a, since the marked pyramid OD;D; ;B can be obtained from the pyramid P¢ by
applying the compositions of the integer-linear transformation defined by the following
matrix

E+i+1 E+01 —&—1
r—-1 r—1 2-r
-r -r r—1

and the translation by the integer vector (—§,1—7r,7).

By Corollary 2.11 if £ and r are relatively prime, then the marked pyramids OAD; B,
OD\D;B, ..., 0D, 1CB are empty, and hence their union OABC' is completely empty.

By the same reasons the marked pyramids Tf’r with relatively prime & and r are com-
pletely empty.

Therefore List “T” is complete, and all listed pyramids are completely empty.

3. Irredundance of List “T”. Now we prove that all marked pyramids T, of List “T”
are integer-affine nonequivalent to each other. Obviously, that the marked pyramids with
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different a are nonequivalent. Since the integer distance from the marked vertex to the two-
dimensional plane of the marked base is an integer-affine invariant, the marked pyramids
with distinct r are nonequivalent.

For the case of pyramids with the same integers a > 1 and r we construct the follo-
wing integer-linear invariant. Consider an arbitrary marked pyramid OABC, where all
its lattice nodes are contained in the edge AC. As it was shown before the empty marked
pyramids OADB, OD1D>B, ..., OD,_1CB are integer-affine equivalent to the marked
pyramid P¢ with 0 < & < r/2. Since the collection of this marked pyramids is defined in
a unique way and by Corollary 2.11, the type of such P¢ is an invariant. This invariant
distinguishes different marked pyramids of List “T”. O

So, we have studied all possible cases of integer-affine types of multistory completely

empty convex three-dimensional marked pyramids. It remains to say a few words about
the irredundance of List “M-W” of Theorem A.

2.4.6. Irredundance of List “M-W”. 1f two marked pyramids have integer-affine nonequiv-
alent bases, then these pyramids are also integer-affine nonequivalent. The integer-affine
types of the base distinguish almost all marked pyramids of List “M-W?”. This does not
work only for pyramids Tf,r with the same a and r, and distinct £ from List “M-W”. Such
pyramids Tf,r are integer-affine nonequivalent by Lemma 2.26 (see List “T”).

The proof of the main theorem is completed. O

3. PROOF OF THEOREM B

3.1. Completeness of Lists “«,” for n > 2 of Theorem B. Consider some marked
pyramid with marked vertex at the origin and some compact two-dimensional face of a
sail as base. It follows from the definition of multidimensional continued fractions that
such pyramid is completely empty.

Lemma 3.1. Two two-dimensional faces are integer-linear equivalent iff the corresponding
completely empty marked pyramids are integer-affine equivalent. 0

The proof of this lemma is straightforward and we leave it for the reader.

Lemma 3.1 and Theorem A (see List “M-W”) imply that for any n > 2, List “a,” of
Theorem B is complete. Now we study the case of two-dimensional continued fractions.
By Theorem A the list of all triangular faces in List “as” is complete.

Lemma 3.2. Any two-dimensional continued fraction does not contain faces that are
integer-linear equivalent to the quadrangle with vertices (2,—1,0), (2, —a—1,1), (2,—1,2),
(2,b—1,1) forb>a>1.

Proof. We prove by reductio ad absurdum. Suppose that there exists a two-dimensional
continued fraction with a face F' integer-linear equivalent to the quadrangle with vertices
(2,-1,0), (2,—a—1,1), (2,-1,2), (2,b—1,1) for b > a > 1. Consider coordinates on the
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plane containing F such the coordinates of the vertices of F are (a,0), (0,1), (=b,0), and

,—1). Note that the point in this plane is a lattice node iff its new coordinates are
0,—1). Note that th int in this pl i latti de iff it dinat
integers.
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The points (1,1), (1,-1), (=1,1), and (=1, —1) are in the complement to F. Three
planes of the two-dimensional continued fraction intersect with the plane containing F' at
three lines. The face F'is in the interior of the triangle T' generated by the intersection
lines. The triangle T' contains F', and the set T \ F' does not contain any integer point.
Notice that the point (1,0) is in F, and the points (1,1) and (1, —1) are not in F. Note
also that the points (1,0), (1,1), and (1, —1) are in one straight line. Then the open angle
with vertex (0,0) and edges passing through the points (1,1), and (1, —1), contains some
vertex of the triangle T, see Figure 18.

FIGURE 18. One of the vertices of T is in the shaded (open) angle.

The same holds for two adjacent angles and for the opposite angle. Therefore the
triangle 1" has at least four vertices. We come to the contradiction. U

The above lemmas yield the completeness of List “a,,” for any dimension n > 2.
3.2. Realizability and nonequivalence of faces.

Lemma 3.3. For any n > 2, any face of List “c,” is realizable. Any two different faces
of this list are integer-linear nonequivalent to each other.

Proof. i) First, let us show that any triangular face (denote it by ABC) of List “ay” is
realizable. Consider the continued fractions ? defined by three planes containing the
segments AB, BC, and AB respectively. It is obvious, that ? contains ABC as a face.

ii) Second, we show how to realize a quadrangular face (denote it by ABCD) of List
“a3”. We remind that ABCD lie in the plane ay, = 0 in the coordinates (a;, as, as, ay). Let
O be the origin, P denote the intersection of the diagonals of ABCD, and E = (0,0,0,1).
Denote also by |[W R| the Euclidean distance between the points W and R. Denote

K = B+ PA+¢|PA||PB|OE, L= B+ PC —¢|PC||PB|OE,

N =B+ PA —¢|PA||PD|OE, M = B+ PC +¢|PC||PD|OE,
for a small positive . The symplex KLMN intersects the plane ay = 0 by ABCD. If
we chose € small enough then the symplex OK LM N contains only the lattice nodes of
the plane a4 = 0, i.e. the nodes of ABCD. Therefore the three-dimensional continued
fraction defined by four planes containing faces OK LM, OKLN, OKMN, and OLMN
contains ABCD as a face.

i1) Suppose now some (n—1)-dimensional continued fraction Q™! contains a face F'.
Let us construct an n-dimensional continued fraction Q" containing F. Suppose Q" ! is
defined by the planes l;(ay,...,a,) =0, for i =1,...,n. Consider than the n-dimensional
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continued fraction Q" defined by the planes [;(a;,...,a,) = 0 for i = 1,...,n and an
additional plane a,.; = 0. It is clear that Q" contains all the faces of Q"~!. In particular,
F is a face of Q".

iv) From 1) it follows that the faces of List “ay” are realizable. This together with i)
and 7)) imply that the faces of List “a3” are realizable. Finally, 74) inductively implies
that all Lists “«,,” for n > 5 are realizable.

v) Nonequivalence follows directly from Lemma 3.1 and Theorem A. L]

Remark 3.4. Actually a more general statement holds. The set of all continued fractions
containing any face of List “o,” is open in the natural topology on the set of all n-
dimensional continued fractions.

Lemmas 3.2 and 3.3 conclude the proof of Theorem B.
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