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The problem of description in integer-invariant terms of integer convex polygons is
still open. At present it is only known that the number of convex integer polygons with
lattice area bounded from above by n growths exponentially in n1/3 (see the works [1]
and [2]). In this note we give a complete description for the case of integer triangles. The
author is grateful to V. I. Arnold, I. Bárány, and A. G. Khovanskii for attention to this
work and useful remarks.

General definitions. Consider a two-dimensional oriented real affine plane. Fix
some system of coordinates OXY in this plane. A point of the plane is said to be integer
if all its coordinates are integers. The convex hull of a finite number of integer points
that do not contained in the same line is said to be an integer convex polygon. Consider
a minimal set of points defining a given polygon. The points of this set are called vertices
of the polygon. Since all vertices are at the boundary of the convex hull, the vertices can
be ordered in a cyclic counterclockwise or clockwise way: A1, . . . , An. Let us call such
polygon positively-oriented or negative-oriented respectively and denote it by A1 . . . An.

By an angle we mean the ordered set of two closed rays with common vertex that
do not contained in the same line. The rays are called the edges of the angle, and their
common vertex is the vertex of the angle. An angle is called integer if its vertex is integer
and both its edges contain integer points distinct from the vertex. An angle ∠ABC of an
oriented integer polygon with consecutive vertices A, B, and C is the integer angle with
integer vertex B and edges BA and BC.

The affine transformation of the plane is called integer-affine if it preserves the set of
all integer points. Polygons A1 . . . An and B1 . . . Bn (angles ∠A1A2A3 and ∠B1B2B3) are
said to be integer-equivalent if there exist an integer-affine transformation of the plane
taking the points Ai to Bi, for i = 1, . . . , n (respectively, rays A2A1 and A2A3 to the rays
B2B1 and B2B3).

For any positive integer n and a point A(x, y) denote by nA the point with the coordi-
nates (nx, ny). A polygon nA0 . . . nAk is called n-homothetic to the polygon P = A0 . . . Ak

and denoted by nP . Polygons P1 and P2 are said to be integer-homothetic if there exist
positive integers m1 and m2 such that m1P1 is integer-equivalent to m2P2.

Finite continued fractions. Let us expand the set of rationals with operations +
and 1/∗ by the element ∞ end denote this expansion by Q. We say that q ±∞ = ∞,
1/0 = ∞, 1/∞ = 0 (the expressions ∞±∞ are not defined).

For any finite sequence of integers (a0, a1, . . . , an) we associate an element a0 +1/(a1 +
1/(a2 + . . .) . . .)) of Q and denote it by ]a0, a1, . . . , an[. If the elements of the sequence
a1, . . . , an are positive, then the expression for q is called the ordinary continued fraction.

Proposition. For any rational there exists a unique ordinary continued fraction with
odd number of elements.
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Let us consider for qi ∈ Q, i = 1, . . . , k the ordinary continued fractions with odd
number of elements: qi =]ai,0, ai,1, . . . , ai,2ni

[. Denote by ]q1, q2, . . . , qk[ the element

]a1,0, a1;1, . . . , a1,2n1 , a2,0, a2,1, . . . , a2,2n2 , . . . ak,0, ak,1, . . . , ak,2nk
[∈ Q.

Integer tangents. An integer length of the segment AB (denoted by l`(AB)) is the
ratio of its Euclidean length and the minimal Euclidean length of integer vectors with
vertices in AB. An integer (non-oriented) area of the polygon P is the doubled Euclidean
area of the polygon, it is denoted by lS(P ).

Consider an arbitrary integer angle ∠ABC. The boundary of the convex hull of the
set of all integer points except B in the convex hull of the angle ∠ABC is called the sail
of the orthant. The sail of the angle is a finite broken line with the first and the last
vertices on different edges of the angle. Let us orient the broken line in the direction from
the ray BA to the ray BC and denote its vertices: A0, . . . , Am+1. Denote ai = l`(AiAi+1)
for i = 0, . . . , m, and also bi = lS(Ai−1AiAi+1) for i = 1, . . . , m. The following rational is
called the integer tangent of the angle ∠ABC:

]a0, b1, a1, b2, a2, . . . , bm, am[, we denote: ltg ∠ABC.

Formulation of the theorem. In Euclidean geometry on the plane the existence
condition for the triangle with given angles can be written with tangents of angles in the
following way. There exists a triangle with angles α, β, and γ iff tg(α+β+γ) = 0 and
tg(α+β) /∈ [0; tg α] (without lose of generality, here we suppose that α is acute). Let us
show the integer analog of the last statement.

Theorem a). Let α0, α1, and α2 be an ordered triple of integer angles. There exists
an oriented integer triangle with the consecutive angles integer-equivalent to the angles
α0, α1, and α2 iff there exists j ∈ {1, 2, 3} such that the angles α = αj, β = αj+1(mod 3),
and γ = αj+2(mod 3) satisfy the following conditions:

i) ] ltg α,−1, ltg β,−1, ltg γ[ = 0; ii) ] ltg α,−1, ltg β[ /∈ [0; ltg α].
b). Two integer triangles with the same sequences of integer tangents are integer-homo-
thetic.

Note that for the conditions for the theorem we always take ordinary continued frac-
tions with odd number of elements for tangents of angles. Let us illustrate the theorem
with the following particular example:

α β

γ ltg α = 3 = ]3[;
ltg β = 9/7 = ]1, 3, 2[;
ltg γ = 3/2 = ]1, 1, 1[.

i) ]3,−1, 1, 3, 2,−1, 1, 1, 1[ = 0;
ii) ]3,−1, 1, 3, 2[ = −3/2 /∈ [0; 3].
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