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1. Introduction

When some interested person asks my PhD adviser Prof. Vladimir Arnold, who is one
of the famous mathematicians of our times, to name his preferable branch of mathematics,
he always says that mathematics is a single entity which is beautiful in total. It is very
often that papers are in the intersection of several branches of mathematics, in some cases
they give birth to new branches or modify the existing ones. In addition he usually says,
smiling thoughtfully, that the difference between physics and mathematics is also very
small, namely in the cost of experiments. Mathematicians do the experiments on paper
or computers and therefore the experiments are usually relatively cheap, while in physics
the experiments are very expensive like in the case of the Large Hadron Collider.

As a former student of Prof. Vladimir Arnold I totally agree with his point of view on
mathematics. Certainly I do not have works in many topics of mathematics, but still I have
written papers on subjects in several distinct fields. Most of my papers are on geometric
continued fractions [4], [5], [6], and [9]. This subject is in the intersection of number theory
and geometry. In addition [H5] is touching the theory of dynamic systems. In [10], we use
topological methods to prove consistency of some continued fraction algorithm. Further,
in papers [2], [3], and [7] we study variational principles of functional of energies of knots,
we apply principles of variational calculus to topology. The subjects of papers [12] and [13]
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(tensegrities and meshes) are in the fields of discrete geometry with several applications
to differential geometry. In a small note [1] and a further paper [11] we solve a problem
of singularity theory which in this particular case can be considered as a combinatorial
problem in algebraic geometry. In the note [8] we describe the difference operators over
finite fields.

As a theme for the habilitation thesis I have chosen geometry of lattices which is con-
sidered to be in the intersection of number theory (in particular, Diophantine approxima-
tions) and discrete geometry.

Lattice geometry. Geometry in general can be interpreted in many different ways.
Ancient Greeks defined geometry as science of land measurement and their geometry was
mostly plane geometry. Still not all measurements can be made within the framework of
plane geometry. Of course in ancient Greece the scientists did not know that the Earth
has the shape of a sphere and hence it is impossible to apply the laws of plane geometry
to measure regions of land that have large area. This is one of the reasons to introduce
spherical (and further, hyperbolic) geometry. Now the notion of geometry itself takes its
own place in mathematics.

We take one of the classical definitions of geometry: geometry is a set of objects and
a congruence relation for these objects (sometimes it is just called equivalence between
objects). Usually a congruence relation is defined by some group of transformations.
For instance in Euclidean geometry in the plane the objects are points, lines, segments,
polygons, circles, etc, and the congruence relation is defined by the orthogonal group
O(2,R) of distance preserving transformations.

In lattice geometry we consider a full rank lattice in Rn which one can think of as
of the set of all points in the space Rn with integer coordinates, i.e., it is Zn. It is
interesting to note that we can introduce a group structure for the integer lattice: we
take the coordinate-wise addition as the group operation. Then it is clear that the sum
of two lattice points is again a lattice point, and the inverse of a lattice point is found by
reflection in the origin.

The objects of interest would be lattice points, lattice segments with lattice endpoints,
lattice lines passing through a couple of lattice points, ordinary lattice angles and cones
with vertex in a lattice point, lattice polygons and lattice polytopes having all vertices in the
lattice. The congruence relation in lattice geometry is the group of affine transformations
of Rn preserving the lattice. This group is generated by all linear transformations that
preserve the integer lattice (it is actually the group SL(n,Z) of all integer matrices with
determinant equal to 1 that acts on the space by a matrix-vector multiplication) and by
translations which preserve the lattice.

It is interesting to compare lattice geometry and Euclidean geometry. Let us fix an
integer lattice in the plane. On one hand these two geometries have a lot in common, but
on the other hand their properties sometimes behave in unexpectedly different ways. For
instance, twice Euclidean area of a polygon is always equivalent to its lattice area, but
there is no such relation between Euclidean length and lattice length. The sine formula
works in both geometries, but the set of values of sines for Euclidean angles is the interval
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[0, 1], while the lattice sines can take all non-negative integers as a value. The arctangents
and lattice arctangents (geometrically) coincide, nevertheless the arithmetics of angles
are different: one can add two angles in lattice geometry in infinitely many ways and all
the resulting angles are non-congruent, which is not the case in Euclidean geometry. We
admit also that the angles ABC and CBA are congruent in Euclidean plane, but they are
not always congruent in lattice case. In addition in lattice case there are only 6 regular
basic lattice polygons in the plane (2 triangles, 2 quadrangles, and 2 hexagons), while in
Euclidean plane we get infinitely many (a regular n-gon for any n ≥ 3). Still in some
dimensions the amount of lattice-regular polytopes can be arbitrarily large (in Euclidean
case we have 3 distinct polytopes for dimensions greater than 4: a symplex, a cube, and
a generalized octahedron).

Relations between lattice geometry and other branches of mathematics. Lat-
tice geometry is interesting by itself, still it has many relations to other branches of math-
ematics. Within algebraic geometry, it translates to the geometry of toric varieties which
is an important part of algebraic geometry. For instance we have the following list of
correspondences. The polygons and polytopes of lattice geometry are toric varieties, their
angles and cones are singularities. The singularities of lattice-congruent angles are alge-
braically the same. The inverse is almost true (actually the angles ABC and CBA define
the same singularity, but still they can be lattice non-congruent). So any description
of lattice polygons and polytopes leads to an analogous algebro-geometric description of
toric varieties. For instance, varieties that correspond to regular polytopes therefore have
the maximal possible group of symmetries.

In the context of toric geometry one of the first aims is to study singularities, i.e. lattice
angles and cones. There is a deep relation between lattice angles and geometric continued
fractions corresponding to these angles. This relation was generalized by F. Klein to the
multidimensional case.

Multidimensional continued fractions in the sense of Klein have many connections with
other branches of mathematics. For example, J.-O. Moussafir and O. N. German stud-
ied the connection between the sails of multidimensional continued fractions and Hilbert
bases. H. Tsuchihashi found the relationship between periodic multidimensional contin-
ued fractions and multidimensional cusp singularities, which generalizes the relationship
between ordinary continued fractions and two-dimensional cusp singularities. M. L. Kont-
sevich and Yu. M. Suhov discussed the statistical properties of the boundary of a random
multidimensional continued fraction. The geometric generalization of Lagrange’s theorem
was obtained by E. I. Korkina, an algebraic generalization was given by G. Lachaud. For
the algorithms of constructing multidimensional continued fractions, see the papers of
R. Okazaki, J.-O. Moussafir and the author. E. Korkina, G. Lachaud, A. D. Bruno and
V. I. Parusnikov, and the author produced a large number of fundamental domains for
periodic algebraic two-dimensional continued fractions.

V. I. Arnold presented a survey of geometrical problems and theorems associated with
one-dimensional and multidimensional continued fractions. In particular, he posed several
problems on an analog of Gauss-Kuzmin formula for statistics of the elements of ordinary
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continued fractions and a question on algebraic multidimensional continued fractions for
the simplest operators. We study the first question in [H5], the answer for the second
question in the case of three dimensions was given by E. Korkina, in [H6] we give the
answer in the case of four dimensions.

In addition I would like to say a few words about a relation between cones and their
geometry and Gauss reduction theory. It turns out that ordinary continued fractions
give a good description of conjugacy classes in the group SL(2,Z). There are almost
no answers for the case of SL(n,Z) where n ≥ 3. The structure of the set of conjugacy
classes is very complicated (note that for closed fields such classes are described by Jordan
Normal Forms). Multidimensional continued fractions in the sense of Klein is a strong
invariant of such classes, which distinguish the classes up to some simple relation. Their
lattice characteristics are good invariants for the conjugacy classes.

Organization of this habilitation thesis. We investigate lattice properties of lattice
objects. In the first three papers we mostly study the two-dimensional case, and in the
last three papers we work with multidimensional objects. In papers [H1] and [H2] we
introduce lattice trigonometric functions and show that the lattice tangent is a complete
invariant for ordinary lattice angles with respect to the group of lattice preserving affine
transformations. Lattice tangents are certain continued fractions whose elements are
constructed by lattice invariants of angles. We find the formula for lattice tangents of
the sums of the angles and show the necessary condition for angles to be the angles of
some polygon. For the case of triangles we get a necessary and sufficient condition, which
was announced in [H3] and studied in a more detailed way in [H1]. Further, in [H4]
we give a classification of all lattice-regular lattice polytopes with lattice lengths of the
edges equal 1 (all the remaining polyhedra are multiple of these). Finally in the last
two papers we deal with lattice cones in the multidimensional case. A multidimensional
continued fraction in the sense of Klein is a natural geometric generalization of an ordinary
continued fraction that is a complete invariant of lattice cones. In paper [H5] we study
the statistical questions related to the generalization of the Gauss-Kuzmin distribution.
Finally in paper [H6] we construct the first algebraic examples of four-dimensional periodic
continued fractions. These fractions are supposed to be the simplest continued fractions
in four-dimensional case.

Acknowledgements. The author is grateful to Prof. J. Wallner, Prof. V. I. Arnold,
and Prof. A. B. Sossinski for constant attention to this work. This work was done at
Technische Universität Graz.

2. Description of main results

2.1. Lattice angles and their trigonometric functions. One of the main themes of
ancient geometry was the study of properties of right triangles (like the triangle with
edges equal 3, 4, and 5 units of measure). The relation between the measurements of the
edges of the right triangles is basically the subject of trigonometry. In trigonometry we
traditionally use the trigonometric functions sine, cosine, and tangent to describe such
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relations. In papers [H1], [H2], and [H3] we study the lattice analog of the trigonometric
functions.

The study of lattice angles is an essential part of modern lattice geometry. Invariants of
lattice angles are used in the study of convex lattice polygons and polytopes. Such poly-
gons and polytopes play the principal role in Klein’s theory of multidimensional continued
fractions (see, for example, the work of F. Klein, V. I. Arnold, E. Korkina, M. Kontsevich,
Yu. Suhov, and G. Lachaud).

As we have already mentioned before, lattice angles are in the limelight of complex
projective toric varieties: they corresponds to singularities. It turns out that these sin-
gularities in many cases define toric varieties that are actually lattice polygons in lattice
geometry. So the study of toric varieties is reduced to the study of convex lattice polygons.
The first classical open problem in this area is on the description of convex lattice poly-
gons. It is only known that the number of such polygons with lattice area ≤ n growths
exponentially in n1/3 as n tends to infinity (this was studied by V. Arnold, I. Bárány, and
A. M. Vershik).

We develop new methods to study lattice angles, which are based on the introduction
of trigonometric functions. A general study of lattice trigonometric functions is given in
papers [H1] and [H2].

Continued fractions. We start with the necessary definitions from the theory of
continued fractions. For any finite sequence of integers (a0, a1, . . . , an) we associate the
expression

q = a0 + 1

a1 +
1

. . .
...

an−1 + 1
an

and denote it by ]a0, a1, . . . , an[. If a1, . . . , an are positive and all the elements are integers,
then the expression for q is called the ordinary continued fraction.

Proposition. For any rational number there exists a unique ordinary continued frac-
tion with an odd number of elements, and another one with an even number of elements.

So there are only two ordinary continued fractions for, say, 7/5:

7/5 = ]1, 2, 2[ = ]1, 2, 1, 1[.

Lattice trigonometric functions. Let us give definitions for lattice trigonometric
functions. In many cases we choose the lattice to be the integer lattice (whose lattice
points has all integer coordinates).

We start with several preliminary definitions. A lattice length of a segment AB (denoted
by l`(AB)) is the ratio of its Euclidean length and the minimal Euclidean length of lattice
vectors with vertices in AB. A lattice area of a triangle ABC (denoted by lS(AB)) is the
index of the sublattice generated by vectors AB and AC in the whole lattice.

Consider an arbitrary lattice angle α with lattice vertex V (having some lattice points
distinct to V on both his edges). The boundary of the convex hull of the set of all lattice
points except V in the angle α is called the sail of the angle. The sail of the angle is a
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Ib1 = 2
Ia0 = 1

Ia1 = 2
Itan 6 AOB = 7/5
Isin 6 AOB = 7
Icos 6 AOB = 5

Figure 1. Left: a lattice angle OAB. Center: the sail of the angle OAB.
Right: the lattice trigonometric functions for OAB. Note that we have
7
5

= 1 + 1
2+1/2

.

finite broken line with the first and the last vertices on different edges of the angle. Let
us orient the broken line in the direction from the first ray to the second ray of the angle
and denote the vertices of this broken line by: A0, . . . , Am+1. Let

ai = l`(AiAi+1) for i = 0, . . . , m;

bi =
lS(Ai−1AiAi+1)

l`(Ai−1Ai) l`(AiAi+1)
for i = 1, . . . , m.

Definition 2.1. The lattice tangent of the angle α is the following rational number:

ltan α := ]a0, b1, a1, b2, a2, . . . , bm, am[.

The lattice sine is the numerator of the irreducible fraction for the rational number ltan α,
denote it by lsin α.
The lattice cosine is the denominator of the irreducible fraction for ltan α, denote it by
lcos α (see the example in Figure 1).

Note that there are several equivalent definitions of the lattice trigonometric functions.
Here we choose the shortest one.

Results on lattice trigonometry. In papers [H1], [H2], and [H3] we study basic
properties of lattice trigonometric functions.

In paper [H1] we define ordinary lattice angles, and the lattice sine, tangent, cosine,
and arctangent (defined for rational numbers ≥ 1). Further we introduce the sum formula
for the lattice tangents of ordinary lattice angles of lattice triangles. The sum formula is a
lattice generalization of the Euclidean statement on the sum of three angles of a triangle
being equal to π. Then we introduce the notion of extended lattice angles and find their
normal forms. This lead to the definition of sums of extended and ordinary lattice angles.
In particular this gives a new extension of the notion of sails in the sense of Klein: we
define and study oriented broken lines at unit distance from lattice points. We give a
necessary and sufficient condition for an ordered n-tuple of angles to be the angles of
some convex lattice polygon. We conclude this paper with criterions of lattice congruence
for lattice triangles.

In paper [H2] we introduce trigonometric functions for angles whose vertices are lattice,
but whose edges may not contain lattice points other than the vertex (we call such angles
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irrational). Further we study equivalence classes (with respect to the group of affine lattice
preserving transformations) of irrational angles and find normal forms for such classes.
Finally in several cases we give definitions of sums of irrational angles.

Paper [H3] is a small note in which we announce the result on sum of lattice angles in
the triangle, which is proved in [H1].

One of the results of paper [H1]. Let us focus on one particular application of lattice
trigonometry, the description of all lattice triangles (see [H1] and [H3]). In toric geometry
this result is a description of all possible sets of singularities of complex projective toric
surfaces whose Euler characteristic equals 3.

Let us consider, for rational qi, i = 1, . . . , k, the ordinary continued fractions with an
odd number of elements:

qi = ]ai,0, ai,1, . . . , ai,2ni
[.

Denote by ]q1, q2, . . . , qk[ the element

]a1,0, a1;1, . . . , a1,2n1 , a2,0, a2,1, . . . , a2,2n2 , . . . ak,0, ak,1, . . . , ak,2nk
[.

The Euclidean condition
α + β + γ = π

can be written in terms of tangents of angles as follows:{
tan(α+β+γ) = 0
tan(α+β) /∈ [0; tan α]

(without loss of generality, here we suppose that α is acute). The lattice version of this
Euclidean sum formula for the triangles is as follows:

Theorem 2.2. [H1] a). Let α0, α1, and α2 be an ordered triple of lattice angles. There
exists an oriented lattice triangle with the consecutive angles lattice-equivalent to the angles
α0, α1, and α2 if and only if there exists j ∈ {0, 1, 2} such that the angles α = αj,
β = αj+1(mod 3), and γ = αj+2(mod 3) satisfy the following conditions:

i) ]ltan α,−1, ltan β,−1, ltan γ[ = 0; ii) ]ltan α,−1, ltan β[ /∈ [0; ltan α].
b). Two lattice triangles with the same sequences of integer tangents are integer-homo-
thetic.

We illustrate the theorem by an example:

α β

γ ltan α = 3 = ]3[;
ltan β = 9/7 = ]1, 3, 2[;
ltan γ = 3/2 = ]1, 1, 1[.

i) ]3,−1, 1, 3, 2,−1, 1, 1, 1[ = 0;
ii) ]3,−1, 1, 3, 2[ = −3/2 /∈ [0; 3].

2.2. Lattice-regular polygons and polytopes. Let us say a few words about pa-
per [H4].

We define a polyhedron to be lattice-regular if for any two complete flags of this poly-
hedron there exists a lattice preserving transformation taking the first flag to the second
one. In [H4] we develop a complete classification of lattice-regular polytopes in all di-
mensions. It turns out that in the plane there are only 2 nonequivalent regular integer
triangles, 2 quadrangles, and 2 hexagons. In three-dimensional space we have 3 regular
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tetrahedra, 3 regular octahedra, and 3 regular cubes. In dimension 4 we have 2 simplices,
3 generalized octahedra, 3 cubes and 2 hyperdiamonds (24-cells). Finally, in dimension n
we always get k simplices, 3 cubes, and 3 octahedra, where k is the number of positive
integer divisors of n+1. Lattice-regular three-dimensional polygons of different types are
shown on Figure 2.

{3, 3}L
1 {3, 3}L

2 {3, 3}L
4 {3, 4}L

1 {3, 4}L
2 {3, 4}L

3

{4, 3}L
1 {4, 3}L

2 {4, 3}L
3

Figure 2. Three-dimensional lattice-regular polytopes.

2.3. Geometry of simplicial lattice cones and multidimensional continued frac-
tions. Here we discuss the papers [H5] and [H6].

Simplicial lattice cones are in one to one correspondence to Klein’s multidimensional
continued fractions (up to the action of the group of affine lattice transformations). The
problem of generalization of ordinary continued fractions to the higher-dimensional case
was posed by C. Hermite in 1839. A large number of attempts to solve this problem
lead to the birth of several different remarkable theories of multidimensional continued
fractions. We consider the geometric generalization of ordinary continued fractions to the
multidimensional case presented by F. Klein in 1895.

The complement of the union of these hyperplanes consists of 2n+1 open cones. Let us
choose an arbitrary cone.

Definition 2.3. Consider a set of n+1 hyperplanes of Rn+1 passing through the origin
in general position and take one of the connected components of the complement to the
unions of these hyperplanes (which is a cone). The boundary of the convex hull of all
integer points except the origin in the closure of the cone is called the sail. The collection of
2n+1 sails for all the connected components in the complement is called the n-dimensional
continued fraction associated to the given n+1 hyperplanes.
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Two n-dimensional continued fractions are said to be equivalent if there exists a linear
transformation that preserves the integer lattice of Rn+1 and maps the sails of the first
continued fraction to the sails of the other.

A few words about my PhD-thesis. In my PhD-thesis (which was supervised by
Prof. V. I. Arnold) I studied infinite series of two-dimensional continued fractions [4].
Further I made a description of polygonal faces lying in planes on integer distance greater
then 1 to the origin [9]. This leads to an effective algorithm to construct periodic multi-
dimensional continued fractions [10].

Gauss-Kuzmin formula and Möbius measure, generalization to multidimen-
sional case ([H5]). For the first time the statement on statistics of numbers as ele-
ments of ordinary continued fractions was formulated by C. F. Gauss in his letters to
P. S. de Laplace. This statement was proven further by R. O. Kuzmin, and further was
proven one more time by P. Lévy. Later investigations in this direction were made by
E. Wirsing. In 1989 V. I. Arnold generalized statistical problems to the case of one-
dimensional and multidimensional continued fractions in the sense of Klein.

The one-dimensional case was studied in details by M. O. Avdeeva and B. A. Bykovskii.
In the two-dimensional and multidimensional cases, V. I. Arnold formulated many prob-
lems on statistics of sail characteristics of multidimensional continued fractions such as
an amount of triangular, quadrangular faces and so on, such as their integer areas, and
length of edges, etc. A major part of these problems is open nowadays, while some are
almost completely solved.

M. L. Kontsevich and Yu. M. Suhov in their work proved the existence of the above
mentioned statistics. In [H5] we explicitly construct a natural Möbius measure of the
manifold of all n-dimensional continued fractions in the sense of Klein and introduce new
integral formulae for the statistics.

Simplest four-dimensional examples ([H6]). The problem of investigation of the
simplest n-dimensional continued fraction for n ≥ 2 was posed by V. I. Arnold. The
answer for the case of n = 2 can be found in the work of E. Korkina and G. Lachaud.
We have studied the case of n = 3 in [H6]. We constructed three examples of three-
dimensional continued fractions that for many reasons (such as additional symmetries,
simplicity of the fundamental domains, characteristic polynomials of special types) seems
to be the simplest examples tree-dimensional continued fractions.

2.4. A few words about my plans for further research. The results obtained in
papers [H1], [H2], and [H3] give the complete global description of singularities of complex
toric varieties whose Euler characteristic is 3. I am planning to continue the research aimed
on the global description of the singularities for general case. Actually there are many
other open problems concerning lattice trigonometry, even elementary ones. For instance,
it is interesting to find the lattice analog of the cosine formula, etc.

The study of lattice-regular polytopes in [H4] is the first step toward the solution of a
famous classical problem of classification of empty tetrahedra in the four-dimensional case.
Recall that White’s theorem gives the complete description of empty lattice tetrahedra in
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R3. We plan to continue to investigate the problem in four dimensions. The next step is
to classify lattice-regular cones over lattice-regular polytopes.

There are several interesting questions related to geometry of cones and corresponding
multidimensional continued fractions. In particular, I am planning to study the problem
of description of conjugacy classes in the group SL(n,Z) using the corresponding cones.
Gauss Reduction Theory gives the answer for the case n = 2, but for n ≥ 3 the problem
is still open. I propose a new approach to this problem based on reduction to reduced
Hessenberg matrices. An important tool used in here is to determine minima of Markoff-
Davenport characteristics at the vertices of Klein-Voronoi continued fractions. Markoff-
Davenport forms play an important role in approximation theory of maximal commutative
subgroups. To develop this idea further is one of the possible directions for further study.

In addition my current interests are in stability of meshes and tensegrities. In the frames
of this subject I am planning to study necessary conditions of flexibility for semidiscrete
surfaces.

3. Teaching experience

I started teaching in 1998, when I was a second year student of the Moscow State
University (MSU) and, in parallel, of the Independent University of Moscow (IUM). As
an absolute winner of the Moscow Mathematical Olympiad and one of the winners of
the XXII Russian Federation Mathematical Olympiad, I was invited to give classes on
solution of olympiad problems. These traditional classes for pupils are organized in MSU.
I was one of the teachers at the classes over 3 academic years. We taught the pupils to
express their solution in an understandable way, acceptable for their peers. An additional
task for us was to explain a difference between correct and wrong arguments.

My further teaching encounter was in School 57, which I graduated myself. School
N57 is one of the best special mathematical schools for senior pupils in Moscow. One
should successively pass a 7-step interview to enter the school. This explains why every
year its pupils make up at least 75 percent of a Moscow team taking part in the Russian
mathematical olympiad. The main strategy of School 57 is to introduce talented pupils
to the beauty of higher mathematics. Therefore, standard school courses in Geometry
and Algebra are usually supplemented by more advanced courses in Calculus and Linear
Algebra which are actually at university level. For 4 years, I was one of the Calculus and
Linear Algebra teachers in this school. The main challenges that I faced as a teacher there
were as follows. The material of the courses should be presented to the students in a vivid
and colorful way, otherwise they will not get involved into the subject. This will not only
slow down their progress in the studies but will also cause problems with the discipline.
Moreover, a teacher must give attractive problems that challenge pupils’ creativity and
open up their imagination. Proposed problems should interest pupils and stimulate them
to find a solution even if the problems are very hard. In 2000 and 2001 I was a deputy
head of the Moscow teams at the Russian Federation Mathematical Olympiads. I was
responsible for the mathematical and psychological support of the team.
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In 2002, I became a PhD-student, again simultaneously, of the MSU and IMU. From
that moment, I started assisting teaching at the IMU. The duties included conducting
problem sessions and preparing and checking exams. I assisted classes in Calculus, Topol-
ogy I, and Complex Analysis. A new experience for me was working with a larger audience.
Here I was not able to control every single student, so I tried to estimate the average rate
of understanding of the audience. In such situation, it is useful to have a collection of
supplementary problems and examples in case certain moments are not sufficiently well
good understood by some students.

During four semesters I was conducting “Topology I” problem sessions in English within
the framework of the International Program “Math in Moscow” for under- and postgrad-
uate students. The majority of the students in the program are coming to Moscow after
selection by American and Canadian Universities. There are also occasional students
from Europe and sometimes even from India. The diversity of the mathematical back-
grounds, habits, and mentalities of the students is one of the most complicated difficulties
for the lecturers. For example, once we had a bright student from India who did not know
Calculus and some other basic mathematical courses but was able to solve complicated
combinatorial and analytic problems. We devoted some extra time to intense the study
of the basics of Calculus, Algebra, etc. After a semester his level became comparable
with the level of the others. So one of the main tasks of a lecturer in the program was to
single out students’ difficulties and give them appropriate advice. We also paid attention
to the educational priorities of our students and made efforts to stimulate their interest
in the studies. This is essentially important since the study motivation varies a lot from
a country to a country.

During two academic years from winter 2006 till summer 2008 I was working as a
postdoc in mathematics in Leiden University; In summer 2007 I developed and taught
an advanced course “Topology II” for bachelor and master students in Leiden. The
Mathematical Department in Leiden is not very big and has main interests in Algebraic
Geometry, Number Theory, and Statistics. Due to that, most of my students were those
who wanted to widen their mathematical knowledge. I identified my main tasks in the
course as follows: to give an exposition of the main ideas of the subject and introduce —
if necessary — appropriate technique, and to explain the interrelations between modern
topology and various branches of mathematics.

In winter 2007 I assisted a Calculus course for students of the Biology department,
where I explained basic mathematical methods to non-mathematical students in an under-
standable way, and showed how powerful they are in applications. I found that it is good
to mention examples from everyday life. Generally, I think that mathematical notions
and theorems normally should be accompanied by emphasizing their physical meanings.

Starting from winter 2008, I have the pleasure to teach at TU Graz. I started with
the exercises part of Algebraic topology, which I taught together with Prof. J. Wallner.
In summer 2009, I read a course on knot theory. It was interesting to read this course
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especially since knot theory develops at high speed nowadays. Hence it is not enough to
use only the classical textbooks in order to read a good course. The main task for me was
to give a colorful introduction to the material which is very fresh and sometimes technical
to interest the students. This semester I am reading a course on geometry of continued
fractions. The topic of this course is particularly based on the first three papers of the
current habilitation thesis, as well as on additional supplementary material.

General consideration of teaching. Let us conclude with a small summary. It
does not seem to make sense to develop common strategies for courses in general, I prefer
to think of any of them separately. Of course, the background of the audience partially
identifies the material of the course. If the level of students is not very high, I reduce
the density of the material and spend time on examples and additional explanations.
Otherwise, if the level is high enough, I would propose to students to listen or to read some
additional material, pose more complicated problems, and show advanced techniques. As
the same audience can be prepared well enough for one subject, and can be completely
surprised by another, it is necessary to control the audience’s level of comprehension.
Usually, it is good to pay attention to the “strongest” and to the “weakest” student. The
style of lectures varies a lot with respect to the quantity of students. For non-mathematical
students I prefer to explain ideas of mathematics, to give a clear understanding of methods,
and to teach how to test the obtained result (ideally after the courses, the students should
be capable of communicating with mathematicians).

Usually while teaching a course, I use notes or follow a good book, so the students do
not need to spend much time for rewriting the material. Of course this depends on the
established rules but in my opinion it is useful to make mid-term exams, since sometimes
students suppose that they understand the material much better than they really do and
start working only a week before the final examination.

Following the ideas of my teacher Prof. Vladimir Arnold, I think that the progress in
education is usually achieved rather with solving problems and studying examples than
with memorizing general theory. In this case the students enjoy the beauty of the theory
and at the same time they feel the challenge of discovery itself. In my opinion this leads
to the establishment of a taste to Mathematics that helps the students in future life, work,
and research.
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