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1. GENERAL DESCRIPTION OF THE TOPIC

Lattice geometry. Geometry in general can be interpreted in many different ways.
We take one of the classical definitions of geometry: geometry is a set of objects and a
congruence relation for these objects. Usually a congruence relation is defined by some
group of transformations. For instance in Fuclidean geometry in the plain the objects are
points, lines, segments, polygons, circles, etc, and the congruence relation is defined by
the orthogonal group O(2,R).

In lattice geometry we have a full rank lattice in R™. The set of objects would be lattice
points, lattice segments with lattice endpoints, lattice lines passing through a couple of
lattice points, ordinary lattice angles and cones with vertex in a lattice point, lattice
polygons and lattice polytopes having all vertices in the lattice. The congruence relation in
lattice geometry is the group of affine transformations of R™ preserving the lattice. This
group is isomorphic to a semidirect product of GL(n,Z) and the group of integer lattice
preserving translations.

It is interesting to compare lattice plane geometry and Euclidean plane geometry. Let
us fix an integer lattice in the plane. From one hand these two geometries has a lot in
common, from the other hand their properties sometimes behave in unexpectedly different
ways. For instance twice Euclidean area of a polygon is always equivalent to its lattice
area, but there is no such relations between Euclidean and lattice lengths. Sine formula
works in both geometries, but the set of values of sines for Euclidean angles is the segment
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[0, 1], while the values of integer sines are non-negative integers. Further if we consider
angles defined by the rays {y = 0,2 > 0}, and {y = ax,x > 0} for some o > 1 then their
tangents and lattice tangents coincide, nevertheless the arithmetics of angles is different:
one can add two angles in lattice geometry in infinitely many ways (and all the resulting
angles are non-congruent). We admit also that the angles ABC' and C'BA are congruent
in Euclidean plane, but they are not always congruent in lattice case. In addition in
lattice case there is less lattice regular polygons in the plane, but in some dimensions the
amount of lattice regular polytopes can be arbitrarily large (in Euclidean case we have 3
distinct polytopes for dimensions greater than 4).

Relations between lattice geometry and other branches of mathematics. Lat-
tice geometry is interesting by itself, still it has many applications to other branches of
mathematics. In translation to algebraic geometry lattice geometry coincides with toric
geometry. The polygons and polytopes in lattice geometry are toric varieties, their angles
and cones are singularities. The singularities of lattice congruent angles are algebraically
the same. The inverse is almost true, actually the angles ABC and C' BA define the same
singularity, but still they can be lattice non-congruent. So any description of lattice poly-
gons and polytopes leads to the analogous algebro-geometric description for toric varieties.
For instance, varieties that correspond to regular polytopes has, therefore, the maximal
possible groups of symmetries.

In the context of toric geometry one of the first aims is to study singularities, i.e. lattice
angles and cones. There is a deep relation between lattice angles and geometric continued
fractions corresponding to these angles. This relation was generalized by F. Klein to the
multidimensional case. Later V. I. Arnold formulated many questions on lattice cones
(or toric singularities) and their multidimensional continued fractions. In particular, he
posed several problems on an analog of Gauss-Kuzmin formula for statistics of the elements
of ordinary continued fractions and a question on algebraic multidimensional continued
fractions for the simplest operators. We study the first question in [H5|, the answer for
the second question in the case of three dimensions was given by E Korkina, in [H6] we
give the answer in the case of four dimensions.

In addition I would like to say a few words about a relation between cones and their
geometry and Gauss reduction theory. It turns out that ordinary continued fractions
give a good description of conjugacy classes in the group SL(2,7Z). There are almost no
answers for the case of SL(n,Z) where n > 3. The structure of the set of conjugacy
classes is very complicated (we remind that for closed fields such classes are described by
Jordan Normal Forms). Multidimensional continued fractions in the sense of Klein is a
strong invariant of such classes, which distinguish the classes up to some simple relation.
Their lattice characteristic are good invariants for the conjugacy classes.

Organization of this habilitation thesis. We investigate lattice properties of lattice
objects. In the first three papers we mostly study the two-dimensional case, and in the
last three papers we work with multidimensional objects. In papers [H1] and [H2] we
introduce lattice trigonometric functions and show that the lattice tangent is a complete
invariant for ordinary lattice angles with respect to the group of lattice preserving affine
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transformations. Lattice tangents are certain continued fractions whose elements are
constructed by lattice invariants of angles. We find the formula for lattice tangents of the
sums of the angles and show the necessary condition for angles to be the angles of some
polygon. For the case of triangles we get the necessary and sufficient condition, it was
announced in [H3] and studied in a more detailed way in [H1]. Further in [H4] we give a
classification of all lattice regular lattice polytopes with lattice lengths of the edges equal
1 (all the rest polyhedra are multiple to these). Finally in the last two papers we deal
with lattice cones in multidimensional case. A multidimensional continued fraction in the
sense of Klein is a natural geometric generalization of an ordinary continued fraction that
is a complete invariant of lattice cones. In paper [H5] we study the statistical questions
related to the generalization of the Gauss-Kuzmin distribution. Finally in paper [H6] we
construct the first algebraic examples of four-dimensional periodic continued fractions.
These fractions are supposed to be the simplest continued fractions in four-dimensional
case.

Acknowledgements. The author is grateful to Prof. J. Wallner, Prof. V. I. Arnold,
and Prof. A. B. Sossinski for constant attention to this work. This work was made at
Technische Universitat Graz.

2. SHORT DESCRIPTION OF NEW RESULTS

2.1. Lattice angles and their trigonometric functions. In this subsection we start
with the observation of papers [H1|, [H2], and [H3].

The study of lattice angles is an essential part of modern lattice geometry. Invariants of
lattice angles are used in the study of lattice convex polygons and polytopes. Such poly-
gons and polytopes play the principal role in Klein’s theory of multidimensional continued
fractions (see, for example, the works of F. Klein [22], V. I. Arnold [3], E. Korkina [27],
M. Kontsevich and Yu. Suhov [24], G. Lachaud [30]).

Lattice angles are in the limelight of complex projective toric varieties (see for more in-
formation the works of V. I. Danilov [11], G. Ewald [12], T. Oda [35], and W. Fulton [13]),
they corresponds to singularities there. The singularities in many cases define toric vari-
eties, that are actually lattice polygons in lattice geometry. So the study of toric varieties
is reduced to the study of convex lattice polygons. The first classical open problem here
is on description of convex lattice polygons. It is only known that the number of such
polygons with lattice area bounded from above by n growths exponentially in n'/3, while
n tends to infinity (see the works of V. Arnold [7], and of I. Bardany and A. M. Vershik [8]).

We develop new methods to study lattice angles, these methods are based on introduc-
tion of trigonometric functions. General study of lattice trigonometric functions is given
in papers [H1] and [H2].
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Continued fractions. We start with necessary definitions from theory of continued

fractions. For any finite sequence of integers (ag, ay, ..., a,) we associate an element
qg = ao+ 1 T
a; +
ap—1 + i
and denote it by |ag, a1, ...,a,[. If the elements of the sequence ay,...,a, are positive,

then the expression for ¢ is called the ordinary continued fraction.

PROPOSITION. For any rational number there exists a unique ordinary continued frac-
tion with odd number of elements.

Lattice trigonometric functions. Let us give definitions of lattice trigonometric
functions. In many cases we choose lattice to be the integer lattice (whose lattice points
has all integer coordinates).

We start with several preliminary definitions. A lattice length of a segment AB (denoted
by l{(AB)) is the ratio of its Euclidean length and the minimal Euclidean length of lattice
vectors with vertices in AB. A lattice area of a triangle ABC' is the index of a lattice
generated by the vertices AB and AC in the whole lattice.

Consider an arbitrary lattice angle a with lattice vertex V' (and having some lattice
points distinct to V' on both his edges). The boundary of the convex hull of the set of all
lattice points except V' in the angle « is called the sail of the angle. The sail of the angle
is a finite broken line with the first and the last vertices on different edges of the angle.
Let us orient the broken line in the direction from the first ray to the second ray of the
angle and denote the vertices of this broken line as follows: Ag, ..., A,,41. Denote

a; = W(A; A1) fori=0,...,m;
CIS(A L AAL)

Definition 2.1. The lattice tangent of the angle « is the following rational number:

bi

fori=1,...,m.

lag, b1, a1,be,as,...,bm, an|, we denote: ltana.

The lattice sine is the numerator of rational number ltan o, denote it by lsin «.
The lattice cosine is the denominator of ltan o, denote it by lcos .

Note that there are several equivalent definitions of the lattice trigonometric functions.
We chose here the shortest one.

Results on lattice trigonometry. In papers [H1|, [H2], and [H3] we study basic
properties of lattice trigonometric functions.

In paper [H1] we define ordinary lattice angles, and the functions of lattice sine, tangent,
and cosine, and lattice arctangent (defined for rational numbers greater than or equal 1).
Further we introduce the sum formula for the lattice tangents of ordinary lattice angles
of lattice triangles. The sum formula is a lattice generalization of the following Euclidean
statement on three angles of the triangle being equal to 7 . Then we introduce the notion
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of extended lattice angles and find their normal forms. This lead to the definition of sums
of extended and ordinary lattice angles. In particular this gives a new extension of the
notion of sails in the sense of Klein: we define and study oriented broken lines at unit
distance from lattice points. We give a necessary and sufficient condition for an ordered
n-tuple of angles to be the angles of some convex lattice polygon. We conclude this paper
with criterions of lattice congruence for lattice triangles.

In paper [H2] we introduce trigonometric functions for angles whose vertices are lattice
but edges may not contain lattice points other than the vertex, we call such angles irra-
tional. Further we study equivalence classes (with respect to the group of affine lattice
preserving transformations) of irrational angles and find normal forms for such classes.
Finally in several cases we give definitions of sums of irrational angles.

Paper [H3] is a small note in which we announce the result on sum of lattice angles in
the triangle, that is further proved in [H1].

One of the results of paper [H1|. Let us focus on one particular application of
lattice trigonometry, the description of all lattice triangles (see in [H1] and [H3]). In
toric geometry this result is a description of all possible sets of singularities of complex
projective toric surfaces whose Euler characteristic equals 3.

Let us consider for a rational ¢;, ¢ = 1,..., k the ordinary continued fractions with odd
number of elements:

qi = ]ai,Oa i1y, ai,2ni[‘

Denote by |q1, g2, - - ., qk| the element

]a1,07 a1;15---,012n,,02,0,021,---,022n5, -+ - Ak0, Ak 1y - - - Ak 20y, [

The Euclidean condition
at+fB+y=m

can be written with tangents of angles as follows:

{ tan(a+5+v) =0
tan(a+03) ¢ [0; tan o

(without lose of generality, here we suppose that « is acute). The lattice version of
Euclidean sum formula for the triangles is as follows.

Theorem 2.2. [H1] a). Let ag, oy, and ay be an ordered triple of lattice angles. There
exists an oriented lattice triangle with the consecutive angles lattice-equivalent to the angles
ap, o, and oo if and only if there exists j € {0,1,2} such that the angles o = «j,
B = Qjti(mod3), and ¥ = Qjiamod3) satisfy the following conditions:

i) ltan o, —1, Itan 3, —1,ltan~y[ = 0;  4) |[ltan o, —1, Itan 5] ¢ [0; ltan «].
b). Two lattice triangles with the same sequences of integer tangents are integer-homo-
thetic.

We illustrate the theorem with the example of [H3]:
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3 Itana = 3 = |3]; N _ —0:
A T R ke v pe v
ltan~y = 3/2 = |1,1,1]. o Y

2.2. Lattice regular polygons and polytopes. Let us say a few words about pa-
per [H4].

We say that a polyhedron is lattice regular if for any two complete flags of this polyhe-
dron there exists a lattice preserving transformation taking the first flag to the second one.
In [H4] we develop a complete classification of lattice regular polytopes in all dimensions.
It turns out that in the plain there are only 2 nonequivalent regular integer triangles,
2 quadrangles, and 2 hexagons. In the three-dimensional space we have 3 regular poly-
hedra, 3 regular octahedra, and 3 regular cubes. In dimension 4 we have 2 simplices, 3
generalized octahedra, 3 cubes and 2 hyperdiamonds (or 24-cells). Finally in dimension n
we always get k simplices, 3 cubes, 3 octahedra, where k is the number of positive integer
divisors of n + 1.

2.3. Geometry of lattice simplicial cones, multidimensional continued fractions.
In this subsection we observe the papers [H5] and [H6].

Lattice simplicial cones are in one to one corresponding to Klein’s multidimensional
continued fractions (up to the action of the group of lattice affine transformations). The
problem of generalization of ordinary continued fractions to the higher-dimensional case
was posed by C. Hermite [16] in 1839. A large number of attempts to solve this problem
lead to the birth of several different remarkable theories of multidimensional continued
fractions (see in [40], [38], etc.). We consider the geometric generalization of ordinary con-
tinued fractions to the multidimensional case presented by F. Klein in 1895 and published
by him in [22] and [23].

Consider a set of n+1 hyperplanes of R"*! passing through the origin in general position.
The complement to the union of these hyperplanes consists of 2"*! open cones. Let us
choose an arbitrary cone.

Definition 2.3. The boundary of the convex hull of all integer points except the origin
in the closure of the cone is called the sail. The set of all 2"*! sails of the space R"*! is
called the n-dimensional continued fraction associated to the given n+1 hyperplanes in
general position in (n+1)-dimensional space.

Two n-dimensional continued fractions are said to be equivalent if there exists a linear
transformation that preserves the integer lattice of the (n+1)-dimensional space and maps
the sails of the first continued fraction to the sails of the other.

Multidimensional continued fractions in the sense of Klein have many connections with
other branches of mathematics. For example, J.-O. Moussafir [32] and O. N. German [15]
studied the connection between the sails of multidimensional continued fractions and
Hilbert bases. In [39] H. Tsuchihashi found the relationship between periodic multidi-
mensional continued fractions and multidimensional cusp singularities, which generalizes
the relationship between ordinary continued fractions and two-dimensional cusp singu-
larities. M. L. Kontsevich and Yu. M. Suhov discussed the statistical properties of the
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boundary of a random multidimensional continued fraction in [24]. The combinatorial
topological generalization of Lagrange theorem was obtained by E. I. Korkina in [26] and
its algebraic generalization by G. Lachaud [29].

V. I. Arnold presented a survey of geometrical problems and theorems associated
with one-dimensional and multidimensional continued fractions in his article [6] and his
book [3]). For the algorithms of constructing multidimensional continued fractions, see
the papers of R. Okazaki [34], J.-O. Moussafir [33] and the author [20].

E. Korkina in [25] and [27] and G. Lachaud in [29], [30], A. D. Bruno and V. I. Parus-
nikov in [10], [36], and [37], the author in [18] and [19] produced a large number of
fundamental domains for periodic algebraic two-dimensional continued fractions. A nice
collection of two-dimensional continued fractions is given in the work [9] by K. Briggs.

A few words about my PhD-thesis. In my PhD-thesis (that was supervised by
V. I. Arnold) I studied infinite series of two-dimensional continued fractions [18]. Further I
made a description of polygonal faces lying in planes on integer distance greater than 1 to
the origin [21]. This leads to an effective algorithm to construct periodic multidimensional
continued fractions [20].

Gauss-Kuzmin formula and Mo6bius measure, generalization to multidimen-
sional case ([H5]). For the first time the statement on statistics of numbers as elements of
ordinary continued fractions was formulated by K. F. Gauss in his letters to P. S. Laplace
(see in [14]). This statement was proven further by R. O. Kuzmin [28], and further was
proven one more time by P. Lévy [31]. Further investigations in this direction were made
by E. Wirsing in [42]. (A basic notions of theory of ordinary continued fractions is de-
scribed in the books [17] by A. Ya. Hinchin and [3] by V. I. Arnold.) In 1989 V. I. Arnold
generalized statistical problems to the case of one-dimensional and multidimensional con-
tinued fractions in the sense of Klein, see in [5] and [4].

One-dimensional case was studied in details by M. O. Avdeeva and B. A. Bykovskii in
the works [1] and [2]. In two-dimensional and multidimensional cases V. I. Arnold for-
mulated many problems on statistics of sail characteristics of multidimensional continued
fractions such as an amount of triangular, quadrangular faces and so on, such as their
integer areas, and length of edges, etc. A major part of these problems is open nowadays,
while some are almost completely solved.

M. L. Kontsevich and Yu. M. Suhov in their work [24] proved the existence of the
mentioned above statistics. In [H5] we write explicitly a natural Mébius measure of the
manifold of all n-dimensional continued fractions in the sense of Klein and introduced
new integral formulae for the statistics.

Simplest four-dimensional examples ([H6]). The problem of investigation of the
simplest algebraic n-dimensional cones and their continued fraction for n > 2 was posed
by V. Arnold. The answers for the case of n = 2 were given by E. Korkina and G. Lachaud.
We have studied the case of n = 3 in [H6]. The two three-dimensional continued fractions
for the cones proposed in the paper seems to be the simplest examples for many reasons
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(such as existence of additional symmetries, simplicities of fundamental domains and
characteristic polynomials).
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ELEMENTARY NOTIONS OF LATTICE
TRIGONOMETRY

OLEG KARPENKOV*

Introduction

0.1. The goals of this paper and some background

Consider a two-dimensional oriented real vector space and fix some full-rank
lattice in it. A triangle or a polygon is said to be lattice if all its vertices belong
to the lattice. The angles of any lattice triangle are said to be lattice.

In this paper we introduce and study lattice trigonometric functions of
lattice angles. The lattice trigonometric functions are invariant under the ac-
tion of the group of lattice-affine transformations (i.e. affine transformations
preserving the lattice), like the ordinary trigonometric functions are invariant
under the action of the group of Euclidean length preserving transformations
of Euclidean space.

One of the initial goals of the present article is to make a complete de-
scription of lattice triangles up to the lattice-affine equivalence relation (see
Theorem 2.2). The classification problem of convex lattice polygons becomes
now classical. There is still no a good description of convex polygons. It is
only known that the number of such polygons with lattice area bounded from
above by n growths exponentially in n'/3, while n tends to infinity (see the
works of V. Arnold [2], and of 1. Bardny and A. M. Vershik [3]).

We extend the geometric interpretation of ordinary continued fractions to
define lattice sums of lattice angles and to establish relations on lattice tangents
of lattice angles. Further, we describe lattice triangles in terms of lattice sums
of lattice angles.

In present paper we also show a lattice version of the sine formula and
introduce a relation between the lattice tangents for angles of lattice triangles
and the numbers of lattice points on the edges of triangles (see Theorem 1.15).

* Partially supported by NWO-RFBR 047.011.2004.026 (RFBR 05-02-89000-NWO_a) grant,
by RFBR SS-1972.2003.1 grant, by RFBR 05-01-02805-CNRSL_a grant, and by RFBR grant
05-01-01012a.

Received October 17, 2006.



162 OLEG KARPENKOV

We conclude the paper with applications to toric varieties and some unsolved
problems.

The study of lattice angles is an essential part of modern lattice geometry.
Invariants of lattice angles are used in the study of lattice convex polygons
and polytopes. Such polygons and polytopes play the principal role in Klein’s
theory of multidimensional continued fractions (see, for example, the works of
F. Klein [14], V. I. Arnold [1], E. Korkina [16], M. Kontsevich and Yu. Suhov
[15], G. Lachaud [17], and the author [10]).

Lattice polygons and polytopes of the lattice geometry are in the limelight
of complex projective toric varieties (see for more information the works of
V.1. Danilov [4], G. Ewald [5], T. Oda [18], and W. Fulton [6]). To illustrate, we
deduce (in Appendix A) from Theorem 2.2 the corresponding global relations
on the toric singularities for projective toric varieties associated to integer-
lattice triangles. We also show the following simple fact: for any collection
with multiplicities of complex-two-dimensional toric algebraic singularities
there exists a complex-two-dimensional toric projective variety with the given
collection of toric singularities (this result seems to be classical, butitis missing
in the literature).

The studies of lattice angles and measures related to them were started by
A. G. Khovanskii, A. Pukhlikov in [12] and [13] in 1992. They introduced and
investigated special additive polynomial measure for the extended notion of
polytopes. The relations between sum-formulas of lattice trigonometric func-
tions and lattice angles in Khovanskii-Pukhlikov sense are unknown to the
author.

0.2. Some distinctions between lattice and Euclidean cases

Lattice trigonometric functions and Euclidean trigonometric functions have
much in common. For example, the values of lattice tangents and Euclidean
tangents coincide in a special natural system of coordinates. Nevertheless,
lattice geometry differs a lot from Euclidean geometry. We show this with the
following four examples.

1. The angles ZABC and /CBA are always congruent in Euclidean geo-
metry, but not necessary lattice-congruent in lattice geometry.

2. In Euclidean geometry for any n > 3 there exist a regular polygon with
n vertices, and any two regular polygons with the same number of vertices are
homothetic to each other. In lattice geometry there are only six non-homothetic
regular lattice polygons: two triangles (distinguished by lattice tangents of
angles), two quadrangles, and two octagons. (See a more detailed description
in [11].)

3. In Appendix B we will consider three natural criteria for triangle congru-
ence in Euclidean geometry. Only the first criterion can be taken to the case of
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lattice geometry. The others two are false in lattice trigonometry. (We refer to
Appendix B.)

4. There exist two non-congruent right angles in lattice geometry. (See
Corollary 1.12.)

0.3. Description of the paper

This paper is organized as follows.

We start in Section 1 with some general notation of lattice geometry. We
define ordinary lattice angles, and the functions lattice sine, tangent, and cosine
on the set of ordinary lattice angles, and lattice arctangent for rationals greater
than or equal 1. Further we indicate their basic properties. We proceed with the
geometrical interpretation of lattice tangents in terms of ordinary continued
fractions. In conclusion of Section 1 we study the basic properties of angles in
lattice triangles.

In Section 2 we introduce the sum formula for the lattice tangents of ordinary
lattice angles of lattice triangles. The sum formula is a lattice generalization of
the following Euclidean statement: three angles are the angles of some triangle
iff their sum equals 7.

Further in Section 3 we introduce the notion of extended lattice angles and
their normal forms and give the definition of sums of extended and ordinary
lattice angles. Here we extend the notion of sails in the sense of Klein: we
define and study oriented broken lines at unit distance from lattice points.

In Section 4 we finally prove the first statement of the theorem on sums of
lattice tangents for angles in lattice triangles. In this section we also describe
some relations between continued fractions for lattice oriented broken lines
and the lattice tangents for the corresponding extended lattice angles. Further
we give a necessary and sufficient condition for an ordered n-tuple of angles
to be the angles of some convex lattice polygon.

We conclude this paper with three appendices. In Appendix A we describe
applications to theory of complex projective toric varieties mentioned above.
Further in Appendix B we formulate criterions of lattice congruence for lattice
triangles. Finally in Appendix C we give a list of unsolved problems and
questions.

ACKNOWLEDGEMENT. The author is grateful to V. I. Arnold for constant
attention to this work, I. Birdny, A. G. Khovanskii, V. M. Kharlamoyv, J.-
M. Kantor, D. Zvonkine, and D. Panov for useful remarks and discussions, and
Université Paris-Dauphine — CEREMADE for the hospitality and excellent
working conditions.
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1. Definitions and elementary properties of lattice trigonometric
functions

1.1. Preliminary notions and definitions

By ged(ny, ..., ni) and by lem(ny, ..., n;) we denote the greater common
divisor and the less common multiple of the nonzero integers ny, ..., n; re-
spectively. Suppose that a, b be arbitrary integers, and ¢ be an arbitrary positive
integer. We write that a = b (mod ¢) if the reminders of a and » modulo ¢
coincide.

1.1.1. Lattice notation. Here we define the main objects of lattice geometry,
their lattice characteristics, and the relation of #-congruence (lattice-congru-
ence).

Consider R? and fix some orientation and some lattice in it. A straight line
is said to be lattice if it contains at least two distinct lattice points. A ray is said
to be lattice if its vertex is a lattice point, and it contains lattice points distinct
from its vertex. An angle (i.e. the union of two rays with the common vertex)
is said to be ordinary lattice (or just ordinary for short) if the rays defining it
are lattice. A segment is called lattice if its endpoints are lattice points.

By a convex polygon we mean a convex hulls of a finite number of points
that do not lie in a straight line. A straight line 7 is said to be supporting
a convex polygon P, if the intersections of P and m is not empty, and the
whole polygon P is contained in one of the closed half-planes bounded by
7. An intersection of a polygon P with its supporting straight line is called a
vertex or an edge of the polygon if the dimension of intersection is zero, or
one respectively.

A triangle (or convex polygon) is said to be lattice if all its vertices are lattice
points. A lattice triangle is said to be simple if the vectors corresponding to its
edges generate the lattice.

The affine transformation is called £ -affine if it preserves the set of all
lattice points. Consider two arbitrary (not necessary lattice in the above sense)
sets. We say that these two sets are £ -congruent to each other if there exist a
-affine transformation of R? taking the first set to the second.

DEerNITION 1.1. The lattice length of a lattice segment AB is the ratio
between the Euclidean length of AB and the length of the basic lattice vector
for the straight line containing this segment. We denote the lattice length by
1£(AB).

By the (non-oriented) lattice area of the convex polygon P we will call the
ratio of the Euclidean area of the polygon and the area of any lattice simple
triangle, and denote it by IS(P).
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Two lattice segments are .#-congruent iff they have equal lattice lengths.
The lattice area of the convex polygon is well-defined and is proportional to
the Euclidean area of the polygon.

1.1.2. Finite ordinary continued fractions. For any finite sequence (ay, aj,
..., ay) where the elements ay, .. ., a, are positive integers and a is an arbit-
rary integer we associate the following rational number ¢g:

1

g =ao+

a; +

1
ap—1 + —
n
This representation of the rational g is called an ordinary continued fraction
for ¢ and denoted by [ag, ay, ..., a,].
An ordinary continued fraction [ag, a1, ..., a,] is said to be odd if n + 1
is odd, and even if n 4 1 is even. Note that if @, # 1 then [ag, ay, ..., a,] =
lag, a1, ..., a, — 1, 1]. Let us formulate the following classical theorem.

THEOREM 1.2. For any rational there exist exactly one odd ordinary con-
tinued fraction and exactly one even ordinary continued fraction.

1.2. Definition of lattice trigonometric functions

In this subsection we define the functions lattice sine, tangent, and cosine
on the set of ordinary lattice angles and formulate their basic properties. We
describe a geometric interpretation of lattice trigonometric functions in terms
of ordinary continued fractions. Then we give the definitions of ordinary angles
that are adjacent, transpose, and opposite interior to the given angles. We use
the notions of adjacent and transpose ordinary angles to define ordinary lattice
right angles.

Let A, O, and B be three lattice points that do not lie in the same straight
line. We denote the ordinary angle with the vertex at O and the rays OA and
OB by /AOB.

One can chose any other lattice point C in the open lattice ray OA and any
lattice point D in the open lattice ray OB. For us the angle ZAOB coincides
with ZCOD. We denote this by ZAOB = /COD.

DEFINITION 1.3. Two ordinary angles ZAOB and /A'O’B’ are said to be
F-congruent if there exist a .Z-affine transformation that takes the point O to
O’ and the rays OA and OB to the rays O’A” and O'B’ respectively. We denote
this as follows: ZAOB = /A'O'B’.
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Here we note that the relation ZAOB = /BOA holds only for special
ordinary angles. (See also below in Subsubsection 1.2.4.)

1.2.1. Definition of lattice sine, tangent, and cosine for an ordinary lattice
angle. Consider an arbitrary ordinary angle ZAOB. Let us associate a special
basis to this angle. Denote by v; and by v, the lattice vectors generating the
rays of the angle:

OA __ OB
1£(0A)’ "~ U(OB)’

v = U2
The set of lattice points at unit lattice distance from the lattice straight line OA
coincides with the set of all lattice points of two lattice straight lines parallel to
OA. Since the vectors v and v are linearly independent, the ray OB intersects
exactly one of the above two lattice straight lines. Denote this straight line by
[. The intersection point of the ray OB with the straight line / divides [ into
two parts. Choose one of the parts which lies in the complement to the convex
hull of the union of the rays OA and OB, and denote by D the lattice point
closest to the intersection of the ray OB with the straight line / (see Figure 1).

Now we choose the vectors ¢, = 7; and &, = OD. These two vectors are
linearly independent and generate the lattice. The basis (e, e;) is said to be
associated to the angle /AOB.

Since (e}, e;) is a basis, the vector v, has a unique representation of the

form:
Uy = x1€1 + x282,

where x| and x; are some integers.

DEFINITION 1.4. In the above notation, the coordinates x, and x; are said
to be the lattice sine and the lattice cosine of the ordinary angle /AOB re-
spectively. The ratio of the lattice sine and the lattice cosine (x,/x1) is said to
be the lattice tangent of ZAOB.

v, =5e; + 7é,
Isin LZAOB =17
Icos LAOB =5
Itan LAOB = 7/5

FIGURE 1. An ordinary angle ZAOB and its lattice trigonometric
functions.
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Figure 1 shows an example of lattice angle with the lattice sine equals 7 and
the lattice cosine equals 5.

Let us briefly enumerate some elementary properties of lattice trigonometric
functions.

PROPOSITION 1.5. a) The lattice sine and cosine of any ordinary angle are
relatively-prime positive integers.

b) The values of lattice trigonometric functions for £ -congruent ordinary
angles coincide.

¢) The lattice sine of an ordinary angle coincide with the index of the
sublattice generated by all lattice vectors of two angle rays in the lattice.

d) For any ordinary angle « the following inequalities hold:

Isina > Icos «, and Itana > 1.

The equalities hold iff the lattice vectors of the angle rays generate the whole
lattice.

e) (Description of lattice angles) Two ordinary angles a and B are £ -
congruent iff Itan o = Itan g.

1.2.2. Lattice arctangent. Let us fix the origin O and a lattice basis e and e;.

DEFINITION 1.6. Consider an arbitrary rational p > 1. Let p = m/n, where
m and n are positive integers. Suppose A = O +ej, and B = O +ne; +me;.
The ordinary angle ZAOB is said to be the arctangent of p in the fixed basis
and denoted by larctan(p).

The invariance of lattice tangents immediately implies the following prop-
erties.

PropoSITION 1.7. a) For any rational s > 1, we have: Itan(larctan s) = s.
b) For any ordinary angle o the following holds: larctan(ltan ) = «.

1.2.3. Lattice tangents, length-sine sequences, sails, and continued fractions.
Let us start with the notion of sails for the ordinary angles. This notion is taken
from theory of multidimensional continued fractions in the sense of Klein (see,
for example, the works of F. Klein [14], and V. Arnold [1]).

Consider an ordinary angle /AOB. Let also the vectors OA and OB be
linearly independent, and of unit lattice length. Denote the closed convex solid
cone for the ordinary angle ZAOB by C(AOB). The boundary of the convex
hull of all lattice points of the cone C (AOB) except the origin is homeomorphic
to the straight line. This boundary contains the points A and B. The closed
part of this boundary contained between the points A and B is called the sail
for the cone C(AOB).
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A lattice point of the sail is said to be a vertex of the sail if there is no
lattice segment of the sail containing this point in the interior. The sail of the
cone C (AOB) is a broken line with a finite number of vertices and without self
intersections. Let us orient the sail in the direction from A to B, and denote
the vertices of the sail by V; (for 0 < i < n) according to the orientation of
the sail (such that V, = A, and V, = B).

DEFINITION 1.8. Let the vectors OA and OB of the ordinary angle / AOB
be linearly independent, and of unit lattice length. Let V;, where 0 < i < n,
be the vertices of the corresponding sail. The sequence of lattice lengths and
sines

@e(VoVh), Isin LV Vi Vo, (Vi VL), Isin LV V, V3,
cees le(vn72vn71)a Isin (Vi 2V 1 Vi, IZ(anl vn))

is called the lattice length-sine sequence for the ordinary angle /AOB. Further
we say LLS-sequence for short.

REMARK 1.9. The elements of the lattice LLS-sequence for any ordin-
ary angle are positive integers. The LLS-sequences of .#-congruent ordinary
angles coincide.

THEOREM 1.10. Let (ag, ay, . .., Aon—3, Goy—2) be the LLS-sequence for the
ordinary angle LAOB. Then the lattice tangent of the ordinary angle /AOB
equals to the value of the following ordinary continued fraction

[ao, a1, ..., ax—3, azn—2].

On Figure 2 we show an example of an ordinary angle with tangent equi-
valent to 7/5.

Yo tevivy) = 2

Vilsin £VyV\V, =2
(Vv =1
A VoV

_ 1 _ 1
FIGURE 2. ltan /AOB = 3 =1+ FIRyiE
Further in Theorem 3.5 we formulate and prove a general statement for general-
ized sails and signed lattice length-sine sequences. In the proof of Theorem 3.5
we refer only on the preceding statements and definitions of Subsection 3.1,
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that are independent of the statements and theorems of all previous sections.
For these reasons we skip now the proof of Theorem 1.10 (see also Remark 3.6).

1.2.4. Adjacent, transpose, and opposite interior ordinary angles. An ordin-
ary angle / B OA is said to be transpose to the ordinary angle /AOB. We denote
itby (/AOB)'. An ordinary angle / B OA’ is said to be adjacent to an ordinary
angle /AOB if the points A, O, and A’ are contained in the same straight line,
and the point O lies between A and A’. We denote the ordinary angle /B OA’
by m — /AOB. The ordinary angle is said to be right if it is #-congruent to
the adjacent and to the transpose ordinary angles.

It immediately follows from the definition, that for any ordinary angle «
the angles («')’ and # — (7 — &) are £-congruent to «.

In the next theorem we use the following notion. Suppose that some integers
a, b and c, where ¢ > 1, satisfy the following: ab = 1 (mod ¢). Then we denote

a=(b(modc)) ™.
THEOREM 1.11. Consider an ordinary angle «. If o« = larctan(1), then

I~

o 7w — a = larctan(1).

Suppose now, that o % larctan(1), then
Isin(a') = Isin , Icos(a') = (Icos o (mod lsin oc))_l;

Isin(r — ) =1Isine,  Icos(mr—a) = (—Ilcos & (mod Isin oz))_l.

Note also, that T — a = larctan’ (hal;"(‘g)"il )-
Theorem 1.11 (after applying Theorem 1.10) immediately reduces to the
theorem of P. Popescu-Pampu. We refer the readers to his work [19] for the

proofs.

1.2.5. Right ordinary lattice angles. It turns out that in lattice geometry there
exist exactly two lattice non-equivalent right ordinary angles.

COROLLARY 1.12. Any ordinary right angle is £ -congruent to exactly one
of the following two angles: larctan(1), or larctan(2).

Consider two lattice parallel distinct straight lines AB and CD, where A, B,
C, and D are lattice points. Let the points A and D be in different open half-
planes with respect to the straight line BC. Then the ordinary angle Z/ABC
is called opposite interior to the ordinary angle /DCB. Further we use the
following proposition on opposite interior ordinary angles.

ProposITION 1.13. Two opposite interior to each other ordinary angles are
F-congruent.

The proof is left for the reader as an exercise.
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1.3. Basic lattice trigonometry of lattice angles in lattice triangles

In this subsection we introduce the sine formula for angles and edges of lattice
triangles. Further we show how to find the lattice tangents of all angles and the
lattice lengths of all edges of any lattice triangle, if the lattice lengths of two
edges and the lattice tangent of the angle between them are given.

Let A, B, C be three distinct and not collinear lattice points. We denote the
lattice triangle with the vertices A, B, and C by AABC. The lattice triangles
AABC and AA’B'C’ are said to be £-congruent if there exist a £ -affine
transformation which takes the point A to A’, B to B’, and C to C’ respectively.
We denote: AABC=AA'B'C'.

ProposiTION 1.14 (The sine formula for lattice triangles). The following
holds for any lattice triangle AABC.

I6(AB)  1(BC)  L(CA)  1L(AB)LL(BC)IL(CA)
Isin/BCA  lsin /CAB ~ lsin /ABC IS(AABC)

ProoF. The statement of Proposition 1.14 follows directly from the defin-
ition of lattice sine.

Suppose that we know the lattice lengths of the edges AB, AC and the
lattice tangent of ZBAC in the triangle AABC. Now we show how to restore
the lattice length and the lattice tangents for the the remaining edge and ordinary
angles of the triangle.

For the simplicity we fix some lattice basis and use the system of coordinates
OXY corresponding to this basis (denoted (x, *)).

THEOREM 1.15. Consider some triangle AABC. Let
1£(AB) = c, L(AC) = b, and  /CAB = a.

Then the ordinary angles / BC A and L ABC are defined in the following way.

7 — larctan (Lfch“;"ih) if clcosa > b
/BCA = { larctan(1) if clcosae =b
larctan’ (hilsli:o(:a) if clcosa < b,

L t
(n — larctan(%)) if blcos(a’) > ¢
LABC = 1 Jarctan(1) if blcos(a') = ¢

blsin(a’) . t
larctan(m) if blcos(a') < c.
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For the lattice length of the edge CB we have

1¢(CB) b B c
Isine  1sin /ABC  Isin/BCA’

PrOOF. Let @ = larctan(p/q), where ged(p,gq) = 1. Then ACAB =
ADOE where D = (b,0), O = (0,0), and E = (gc, pc). Let us now find
the ordinary angle ZEDO. Denote by Q the point (gc, 0). If gc — b = 0, then
LBCA = LEDO = larctan 1. If gc — b # 0, then we have

N cp - clsino
/QDE = larctan = larctan | ——— | .
lcqg — b| |clcosa — b|

The expression for /BCA follows directly from the above expression for
LQDE, since /BCA = /QDE. (See Figure 3: here 1£(0OD) = b, 1£(0Q) =
clcos «, and therefore 1£(DQ) = |clcosa — b|.)

|
QN

c-lcosa>b c-lcosa=>b c-lcosa <b
FIGURE 3. Three possible configuration of points O, D, and Q.

To obtain the expression for ZABC we consider the triangle ABAC. Calculate
/CBA and then transpose all ordinary angles in the expression. Since

IS(ABC) = 1¢(AB) 1¢(AC) Isin LCAB
= 1¢(BA) 1¢(BC) Isin /BCA
— 14(CB) 1¢(CA) Isin ABC,

we have the last statement of the theorem.
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2. Theorem on sum of lattice tangents for the ordinary lattice angles
of lattice triangles. Proof of its second statement

Throughout this section we fix some lattice basis and use the system of co-
ordinates OXY corresponding to this basis.

2.1. Finite continued fractions with not necessary positive elements

We start this section with the notation for finite continued fractions with not
necessary positive elements. Let us extend the set of rationals Q with the
operations + and 1/x* on it with the element co. We pose g = oo = o0,
1/0 = 00, 1/00 = 0 (we do not define 0o + oo here). Denote this extension
by Q.

For any finite sequence of integers (ag, a1, . . . , a,) We associate an element
q of Q: 1
q =ao+ ]
a; +
1
an—1 + —
ay
and denote it by lag, ay, . . ., a,[.

Let ¢; be some rationals, i = 1,..., k. Suppose that the odd contin-
ued fraction for g; is [a; 0, ai 1, ..., ai2,] fori = 1,..., k. We denote by
191, g2, - - ., gu[ the following number

laio, a1, .o, Q1,205 42,0, G215 -+ o, 22055+« - QR0 Ak 15 + - 5 A 2n, [

2.2. Formulation of the theorem and proof of its second statement

In Euclidean geometry the sum of Euclidean angles of the triangle equals 7.
For any 3-tuple of angles with the sum equals 7 there exist a triangle with these
angles. Two Euclidean triangles with the same angles are homothetic. Let us
show a generalization of these statements to the case of lattice geometry.

Let n be an arbitrary positive integer, and A = (x, y) be an arbitrary lattice
point. Denote by n A the point (nx, ny).

DeriNITION 2.1. Consider any convex polygon or broken line with vertices
Ao, ..., Ax. The polygon or broken line nAyg . ..nAyg is called n-multiple (or
multiple) to the given polygon or broken line.

THEOREM 2.2 (On sum of lattice tangents of angles in lattice triangles).
a) Let (o, ap, a3) be an ordered 3-tuple of ordinary angles. There exists a
triangle with three consecutive ordinary angles £ -congruent to a1, o, and
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as iff there exists i € {1, 2, 3} such that the angles o = o, B = Q41 (mod3),
and y = a1+ mod3) Satisfy the following conditions:

i) for A = Jltan o, —1, ltan B[ the following holds A < 0, or A > ltan ¢,
or A = oo,

ii) Jltan@, —1, Itan B, —1, Itan y[ = O.

b) Let the consecutive ordinary angles of some triangle be o, 8, and y.

Then this triangle is multiple to the triangle with vertices Ao = (0, 0), By =
(A lcosa, Ay Isin ), and Cy = (A1, 0), where

lem(Isin ¢, Isin B, Isin )
] =

) and )\,2 = 1cm(ISin «, 1Sin /39 ISin )/)

ged(Isin e, Isin ) ged(Isin «, Isin B)

Let us say a few words about the essence of the theorem. In Euclidean
geometry on the plane the condition on the angles of triangles can be rewritten
with tangent functions in the following way. A triangle with angles exists «,
B, and y iff tan(e+B+y) = 0 and tan(a+pB) ¢ [0; tan o] (here without lose
of generality we suppose that « is acute). Theorem 2.2 is a translation of this
condition into lattice case.

In addition we say that there is no a good description of lattice polygons
terms of lattice invariants at present. Theorem 2.2 gives such description for
the case of triangles.

At this moment we do not have the necessary notation to prove the first
statement of Theorem 2.2. For a proof we need first to define extended angles
and their sums, and study their properties. We give a proof further in Subsec-
tions 4.2 and 4.3. We prove the second statement of the theorem below in this
subsection.

REMARK 2.3. Note that the statement of Theorem 2.2a holds only for odd
continued fractions for the tangents of the correspondent angles. We illustrate
this with the following example. Consider a lattice triangle with the lattice
area equals 7 and all angles .#-congruent to larctan 7/3. If we take the odd
continued fractions 7/3 = [2, 2, 1] for all lattice angles of the triangle, then
we have

12,2,1,-1,2,2,1,-1,2,2, 1[ = 0.

If we take the even continued fractions 7/3 = [2, 3] for all angles of the
triangle, then we have

35
12,3,-1,2,3,-1,2,3[ = e # 0.
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PROOF OF THE SECOND STATEMENT OF THEOREM 2.2. Consider a triangle
AABC with ordinary angles «, 8, and y (at vertices at A, B, and C respect-
ively). Suppose that for any k > 1 and any lattice triangle A KLM the triangle
AABC is not £-congruent to the k-multiple of AKLM. In other world, we

have
ged(16(AB), 16(BC), 1L(CA)) = 1.

Suppose that § is the lattice area of AABC. Then by the sine formula the
following holds
IL(AB)I£(AC) = S/ Isina
(BC)IEL(BA) = S/1IsinB .

16(CA)1¢(CB) = S/1siny

Since gcd(1£(AB), 1£(BC), 1€(CA)) = 1,wehavel¢(AB) = Ajand1£(AC) =
Az

Therefore, the lattice triangle AABC is #-congruent to the lattice triangle
AAgByCy of the theorem.

3. Extension of ordinary lattice angles. Notion of sums of lattice
angles

Throughout this section we work in with an oriented two-dimensional real
vector space and a fixed lattice in it. We again fix some (positively oriented)
lattice basis and use the system of coordinates OXY corresponding to this
basis.

The £ -affine transformation is said to be proper if it is orientation-preser-
ving (we denote it by £, -affine transformation).

We say that two sets are £, -congruent to each other if there exist a £, -
affine transformation of R? taking the first set to the second.

3.1. On a particular generalization of sails in the sense of Klein

In this subsection we introduce the definition of an oriented broken lines at unit
lattice distance from a lattice point. This notion is a direct generalization of the
notion of a sail in the sense of Klein (see page 167 for the definition of a sail). We
extend the definition of LLS-sequences and continued fractions to the case of
these broken lines. We show that extended LLS-sequence for oriented broken
lines uniquely identifies the ., -congruence class of the corresponding broken
line. Further, we study the geometrical interpretation of the corresponding
continued fraction.

3.1.1. Definition of a lattice signed length-sine sequence. Let us extend the
definition of LLS-sequence to the case of certain broken lines.
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For the 3-tuples of lattice points A, B, and C we define the function sgn as
follows:

+1, if the pair of vectors BA and BC defines the positive
orientation.

sgn(ABC) = 0, if the points A, B, and C are contained in the same
straight line.

—1, if the pair of vectors BA and BC defines the negative
orientation.

We also denote by sign : R — {—1, 0, 1} the sign function over reals.

A segment AB is said to be at unit distance from the point C if the lattice
vectors of the segment AB, and the vector AC generate the lattice.

A union of (ordered) lattice segments AgA;, A1As, ..., Ay_1A, (n > 0)is
said to be a lattice oriented broken line and denoted by AgA[A; ... A, if any
two consecutive segments are not contained in the same straight line. We also
say that the lattice oriented broken line A, A,,_1A,_> ... Aq is inverse to the
lattice oriented broken line AgA[A, ... A,.

DEerINITION 3.1. Consider a lattice oriented broken line and a lattice point
V in the complement to this line. The broken line is said to be at unit distance
from the point V (or V -broken line for short) if all edges of the broken line are
at unit distance from V.

Let us now associate to any lattice oriented V -broken line for some lattice
point V the following sequence of non-zero elements.

DEeFINITION 3.2. Let AgA; ... A, be a lattice oriented V-broken line. The
sequence of integers (ao, . . ., d2,—2) defined as follows:

ap = sgn(AgVA;) l(AgAy),
ap = sgn(Ao VA[) Sgl’l(Al VAZ) SgH(AoAlAz) Isin ZA()A[AQ,
ar = sgn(AVAy) (A1 Ar),

a3 = sgn(A,_oVA,_1)sgn(A,_1VA,)
Sgn(An—ZAn—lAn) Isin ZAn—ZAn—lAm

ayp—2 = Sgn(An—lVAn) le(An—lAn)7

is called an lattice signed length-sine sequence for the lattice oriented V -broken
line. Further we will say LSLS-sequence for short.

The element Jag, ai, ..., dy,—>[ of Q is called the continued fraction for
the broken line AgA; ... A,.
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If we take LSLS-sequence for some broken line which is a sail, than LSLS-
sequence is exactly LLS-sequence for the corresponding angle. So LSLS-
sequence is a natural combinatorical-geometrical generalization of LLS-se-
quences. Note also that if we know the whole LSLS-sequence for some V-
broken line and the coordinates of points V, Ay, and A; then the coordinates
of A,, ... can be restored in the unique way.

Let us show how to identify geometrically the signs of elements of the
LSLS-sequence for a lattice oriented V-broken line on Figure 4.

1’41-\A Aiy
Vo’”// Ai*l Vt”’/ Az
ay—>0 ay— <0

FIGURE 4. All possible (non-degenerate) %, -affine decompositions for angles and
segments of a LSLS-sequence.

On Figure 5 we show an example of lattice oriented V-broken line and the
corresponding LSLS-sequence.

ag=1
a; = —1
a, =2
ay =

ay; = —1

FIGURES. A lattice oriented V-broken line and the corresponding LSLS-sequence.

ProposiTION 3.3. A LSLS-sequence for the given lattice oriented broken
line and the lattice point is invariant under the group action of the £ -affine
transformations.

3.1.2. On % -congruence of lattice oriented V -broken lines. Letus formulate
necessary and sufficient conditions for two lattice oriented V-broken lines (for
the same lattice point V) to be £, -congruent.
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THEOREM 3.4. The LSLS-sequences of two lattice oriented V,-broken and
V,-broken lines (for two lattice points V| and V,) coincide iff there exist a
. -affine transformation taking the point Vi to V, and one lattice oriented
broken line to the other.

Proor. The LSLS-sequence for any lattice oriented V-broken line is uni-
quely defined, and by Proposition 3.3 is invariant under the group action of .£-
affine orientation preserving transformations. Therefore, the LSLS-sequences
for two %, -congruent lattice oriented broken lines coincide.

Suppose now that two lattice oriented V;-broken and V,-broken lines
Ag... Ay, and By... B, respectively have the same LSLS-sequence (ag, ay,
..., 0,_3,d2,_2). Let us prove that these broken lines are %, -congruent.
Without loose of generality we consider the point V; at the origin O.

Let & be the .#, -affine transformation taking the point V, to the point
Vi = 0, By to Ay, and the lattice straight line containing By B to the lattice
straight line containing AyA;. Let us prove inductively that £(B;) = A;.

Base of induction. Since ag = by, we have

sgn(AoOA1) 16(AgA) = sgn(§(Bo) O&(B1)) 16(§(Bo)§(B1)).

Thus, the lattice segments AgA; and Ap&(B)) are of the same lattice length
and of the same direction. Therefore, £(By) = A;.

Step of induction. Suppose, that £(B;) = A; holds for any nonnegative
integeri < k,wherek > 1. Letusprove,that§(Bi+1) = Aj+1. Denoteby Cy4q
the lattice point £(By1). Let Ay = (g«, pr). Denote by A; the closest lattice
point of the segment A;_; Ay to the vertex Ax. Suppose that A, = (g, p).
We know also

azxi—1 = sgn(Ag—10A;) sgn(A;O Cpy1) sgn(Ag—1 AxCry1) Isin LAp 1 Ay Gy,
azr = sgn(A O Ciy1) L(ArCry1).
Let the coordinates of Cy; be (x, y). Since 1£(AxCi+1) = |ay| and the
segment A;Cy. 1 is at unit distance to the origin O, we have IS(AOA;Ci11) =

|axk|. Since the segment OA; is of the unit lattice length, the coordinates of
Ci+1 satisfy the following equation:

|—pix + qryl = lax].

Since sgn(Ax O Cr1) I€(ArCry1) = sign(ayi), we have —ppx + qry = ao.
SinceIsin LA} Ay Cry1=1sin LA_ Ay Ciy1=|az—1|, and the lattice lengths

of AyCi41,and A} Ay are |ay| and 1 respectively, we have IS(AA; Ay Cy11) =

|azk—1asi|. Therefore, the coordinates of Cy; satisfy the following equation:

|—(pr — P& — @) + (g — g) (Y — pr)| = laz—1ax].
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Since

sgn(Ax—10A;) sgn(A; O Cryy) sgn(Ag—1 AxCry1) = sign(az—1)
sgn(A; O Cyy1) = sign(an)

we have (px — p)(x — qix) — (qx — @) (Y — pr) = sgn(Ar—1 OAp)az_ax.
We obtain the following:

—prx + qry = ax
(P — PO — q0) — (gx — q) (v — pr) = sgn(Ax—1 OA)azy_1axy

Since

det( ,_pk * ,)‘:1,
Pr — Pk 4k — 4y

there exist a unique integer solution for the system of equations for x and
y. Hence, the points Ay, and Cy,; have the same coordinates. Therefore,
&(Bi+1) = Ag+1. We have proven the step of induction.

The proof of Theorem 3.4 is completed by induction.

3.1.3. Values of continued fractions for lattice oriented broken lines at unit
distance from the origin. Now we show the relation between lattice oriented
broken lines at unit distance from the origin O and the corresponding continued
fractions for them.

THEOREM 3.5. Let AgA;...A, be a lattice oriented O-broken line. Let
also Ag = (1,0), Ay = (1,a9), Ay = (p,q), where gcd(p,q) = 1, and

(ap, ai, ..., ax_2) be the corresponding LSLS-sequence. Then the following
holds: q
; = ]aOa aj, ..., a2n72[-

Proor. To prove this theorem we use an induction on the number of edges
of the broken lines.

Base of induction. Suppose that a lattice oriented O-broken line has a unique
edge, and the corresponding sequence is (ag). Then A = (1, ap) by the as-
sumptions of the theorem. Therefore, we have “TO = Jaol.

Step of induction. Suppose that the statement of the theorem is correct for
any lattice oriented O-broken line with k edges. Let us prove the theorem for
the arbitrary lattice oriented O-broken line with k+1 edges (and satisfying the
conditions of the theorem).

LetAg... Ar4 bealattice oriented O-broken line with the following LSLS-
sequence (ag, a1, - - . , A2k—1, a2k ). Let also

Ag=(1,0), A =(1,a0), and Ayy =(p.q).
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Consider the lattice oriented O-broken line Bj ... Byy; with shorter LSLS-
sequence for it: (az, as, ..., ay—2, ax). Let also

By =(1,0), B, = (1,a4p), and Biy1 = (P, q)).

By the induction assumption we have

/

q
; = las, as, ..., axl.

We extend the lattice oriented broken line B ... By to the lattice oriented
O-broken line ByBj ... Byyi, where By = (14apa;, —ap). Let the lattice
LSLS-sequence for this broken line be (bg, by, ..., bayx_1, bai). Note that

by = sgn(ByOB)) le(ByBy) = sign(ag)|ag| = ay,
bl = sgn(BOOBl) sgn(31 032) Sgl’l(B()Ble) Isin ZB()B] B2

= sign ag sign b, sign(apa; by)|a,| = ay,

by = ay, for 1=2,...,2k.

Consider a .Z, -linear transformation & that takes the point By to the point
(1, 0), and B to (1, ap). These two conditions uniquely define &:

f _ 1 ap
- ap 1+a0a1 ’

Since By = (p', q'), we have £(By11) = (p'+aiq’, q'ap+p'+p'apar).

q'ai + p'+ plaar 1 _
ot arg —a0+m—]ao,al,azvas,---,azn['

Since, by Theorem 3.4 the lattice oriented broken lines ByB; ... Bry; and
AgA; ... Ay are L-linear equivalent, By = Ag, and B; = A, these broken
lines coincide. Therefore, for the coordinates (p, ¢g) the following hold

g _ d'a+p +paa

= lap, ai, az, as, ..., axl.
P p't+ayq

On Figure 6 we illustrate the step of induction with an example of lattice ori-
ented O-broken line with the LSLS-sequence: (1, —1, 2, 2, —1). We start (the
left picture) with the broken line B B, Bs with the LSLS-sequence: (2, 2, —1).
Note that the ratio of the coordinates of the point B3 is —3/—1 =12 :2; —1[.
Then, (the picture in the middle) we extend the broken line BB, B3 to the
broken line ByB;B;Bs with the LSLS-sequence: (1, —1,2,2, —1). Finally
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(the right picture) we apply a corresponding Z, -linear transformation & to
achieve the resulting broken line AgA| A; As. Now the ratio of the coordinates
of the point Az is —1/2 =1]1:—1;2;2; —1[.

A
4o _i_o-L
I I I
I I I
b — b ——&
”T/;’T”T
AL
A,
T T
I 10X
ol oL
A2, —1)
Y
o
—— - — -
=3/-1=12:2; -1l By = (1 + aya;, —ay) 71’,/'2 =01:-1;2;2; -1

FIGURE 6. The case of lattice oriented O-broken line with LSLS-sequence:
1,-1,2,2,—1).

We have proven the step of induction.
The proof of Theorem 3.5 is completed.

REMARK 3.6. Theorem 3.5 immediately implies the statement of The-
orem 1.10. One should put the sail of an angle as an oriented-broken line
ApA; ... A,

3.2. Extended lattice angles. Sums for ordinary and extended lattice angles

3.2.1. Equivalence classes of lattice oriented broken lines and the correspond-
ing extended angles.

DeriNITION 3.7. Consider a lattice point V. Two lattice oriented V -broken
lines /; and I, are said to be equivalent if they have in common the first and
the last vertices and the closed broken line generated by /; and the inverse of
I, is homotopy equivalent to the point in R? \ {V'}.

An equivalence class of lattice oriented V-broken lines containing the
broken line AgA; ... A, is called the extended lattice angle for the equivalence
class of AgA; ... A, atthe vertex V (or, for short, extended angle) and denoted
by Z(V, A()A] . An)

We study the extended angles up to £, -congruence.

DEeFINITION 3.8. Two extended angles ®; and &, are said to be £, -
congruent iff there exist a £ -affine transformation sending the class of lattice
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oriented broken lines corresponding to @ to the class of lattice oriented broken

A

lines corresponding to ®,. We denote this by ®; = &,.

3.2.2. Revolution numbers for extended angles. Letr = {V+Av | A > 0} be
the oriented ray for an arbitrary vector v with the vertex at V, and AB be an
oriented (from A to B) segment not contained in the ray r. Suppose also, that
the vertex V of the ray r is not contained in the segment AB. We denote by
#(r, V, AB) the following number:
0, ABNr=40
#(r,V,AB) = { 3sen(A(A—v)B), ABNr € {A, B}
sgn(A(A—v)B), ABNr e AB\({A, B},

and call it the intersection number of the ray r and the segment AB.

DEFINITION 3.9. Let ApA; ... A, be some lattice oriented broken line, and
let r be an oriented ray {V+Av | A > 0}. Suppose that the ray r does not
contain the edges of the broken line, and the broken line does not contain the
point V. We call the number

Xn:#(}’, V, Ai—lAi)

i=1

the intersection number of the ray r and the lattice oriented broken line
AgAl...A,, and denote it by #(r, V, AgA;1 ... A,).

DEerFINITION 3.10. Consider an arbitrary extended angle Z(V, AgA; ... Ay).
Denote the rays {V + AVAg | A > 0} and {V — AVAy | A > 0} by ry and r_
respectively. The number

1
5(#(r+, V,AgAr...A) +#(r_, V, AgA; ... A)))

is called the lattice revolution number for the extended angle Z(V, ApA;...A,),
and denoted by #(Z(V, AgA ... A,)). We say also that #(Z(V, Ap)) = 0.

Let us give some examples. Let O = (0,0), A = (1,0), B = (0, 1),
C = (—1,—1), then

#(L(0,A)) =0, #(L(0, AB)) = %,
#(L(0,ABCA)) =1, #(L(0,ACB)) = —Z.

Now we show that the definition of revolution number is correct.
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ProrosITION 3.11. The revolution number of any extended angle is well-
defined.

ProoF. Consider an arbitrary extended angle Z(V, AgA; ... A,). Let
ro ={V +AVAy | L >0} and r—={V —AVAg | A > 0}.

Since the lattice oriented broken line AgA; ... A, is at unit distance from
the point V, any segment of this broken line is at unit distance from V. Thus,
the broken line does not contain V, and the rays r; and r_ do not contain edges
of the curve.

Suppose that

L(V, AgAy ... Ay) = L(V', ApA, .. AL).

This implies that V. = V', Ap = Aj, A, = A,,, and the broken line

AoA; ... A Al ... A} A} is homotopy equivalent to the point in R* \ {V}.
Thus,
#(L(V, AoA; ... A)) —#(L(V,) AYA] ... A))
l / / /
= 5(#(r+, V,AoAy... A AL, ... ALAp)
+#(r_, V, AgA1 ... A, A),_ ... ALAD)
=04+0=0.

Hence,
#(L(V, AgA; ... Ap)) = #(L(V', A’OAl .. .A;n)).

Therefore, the revolution number of any extended angle is well-defined.

PROPOSITION 3.12. The revolution number of extended angles is invariant
under the group action of the £ -affine transformations.

3.2.3. Zero ordinary angles. For the next theorem we will need to define zero
ordinary angles and their trigonometric functions. Let A, B, and C be three
lattice points of the same lattice straight line. Suppose that B is distinct to A
and C and the rays BA and BC coincide. We say that the ordinary angle with
the vertex at B and the rays BA and BC is zero. Suppose LABC is zero, put
by definition

Isin(/ABC) = 0, lcos(LABC) =1, Itan(LABC) = 0.

Denote by larctan(0) the angle /A OA where A = (1, 0), and O is the origin.
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3.2.4. On normal forms of extended angles. Let us formulate and prove a
theorem on normal forms of extended angles. We use the following notation:
by the sequence

((ao, ..., Q) X k-times, by, ..., bm),
where k > 0, we denote the following sequence:

(ag, ..., 0y,00,...,0n, oo 00y, 0n,bo, ..., by).

k-times
DEerFINITION 3.13.  I) Suppose O be the origin, A be the point (1, 0). We say
that the extended angle Z (O, Ay) is of the type 1 and denote it by O +larctan(0)
(or 0, for short). The empty sequence is said to be characteristic for the angle
Omr + larctan(0).

. type I,
Example I: 2 Lo £(0,Ag) = 07 + larctan(0),
LSLS-sequence is ().
Consider a lattice oriented O-broken line ApA; ... Ay, where O is the origin.

Let also A be the point (1, 0), and the point A; be on the straight line x = 1.
If the LSLS-sequence of the extended angle ®y = Z(0, ApA; ... Ay) coin-
cides with the following sequence (we call it characteristic sequence for the
corresponding angle):

1) ((1, —-2,1,-2) x (k — I)-times, 1, —2, l), where k > 1, then we de-
note the angle ®( by kx4 larctan(0) (or km, for short) and say that @ is of
the type 1li;

. Al type 1I;,
A
2{1 £(0,A4AA,) = 7 + larctan(0),
0
oot LSLS-sequence is (1,—2,1).

Exampe II:

) ((—=1,2,—1,2) x (k — 1)-times, —1,2, —1), where k > 1, then we
denote the angle ®y by —km+ larctan(0) (or —ks, for short) and say that @
is of the type 1ll;
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type III,,
L(O,AOA1A2A3A4) = =21 + larctan(O),
LSLS-sequence is (—1,2,—1,2, —1,2, —1).

Example III:

IVy) ((1, —2,1, —=2) x k-times, ag, . . ., aZn), where k > 0,n > 0,a; > 0,
fori =0,...,2n, then we denote the angle ® by kx+ larctan([ay, ay, ...,
ary]) and say that @ is of the type 1Vy;

type I'Vy,
£(0,AgA 1Ay A3Ay) = 7 + larctan(3),
LSLS-sequence is (1, —2,1,—2,1,1,1).

Example IV:

Vi) ((=1,2,—1,2) x k-times, ag, . .., a2, ), where k > 0,n > 0, a; > 0,
fori =0, ..., 2n, then we denote the angle ®y by —kx + larctan([ap, ay, . . .,
ary]) and say that @ is of the type V.

W OA T upeVi,
£(0,AgA1ArA3) = —m + larctan(3),
LSLS-sequence is (—1,2, —1,2,3).

Example V:

Az

THEOREM 3.14. For any extended angle ® there exist a unique type among
the types 1-V and a unique extended angle ® of that type such that @ is
L, -congruent to P.

The extended angle @ is said to be the normal form for the extended angle
.

For the proof of Theorem 3.14 we need the following lemma.

LEMmA 3.15. Letm, k > 1, anda; > Ofori =0, ..., 2n be some integers.
a) Suppose the LSLS-sequences for the extended angles ®, and ®, are
respectively

(A, =2,1, =2) x (k—1)-times, 1, =2, 1, =2, ay, . .., az,)

and
(A, =2,1,=2) x (k—1)-times, 1, =2, 1,m, ag, ..., ax),

then @1 is £, -congruent to ®,.
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b) Suppose the LSLS-sequences for the extended angles ®, and ®, are
respectively

((=1,2,-1,2) x (k—1)-times, —1,2, =1, m, ag, ..., az)

and
((=1,2,-1,2) x (k—1)-times, —1,2, 1,2, aq, . .., az,),

then @ is £, -congruent to ®,.

PrROOF. We prove the first statement of the lemma. Suppose that m is integer,
k is positive integer, and a; fori = 0, ..., 2n are positive integers.

Let us construct the angle W, with vertex at the origin for the lattice oriented
broken line Ay . .. Aok+n+1, corresponding to the LSLS-sequence

((1, —-2,1,=2) x (k—1)-times, 1, =2, 1, =2, ay, ...,azn),
such that Ay = (1, 0), A; = (1, 1). Note that

Ay = ((=1)",0), for I <k—1
Ay = (=D, (=1, for | <k—1
Ay = ((=1)*,0) '
Agesr = (=D¥, (=D*ap)

Let us construct the angle W, with vertex at the origin for the lattice oriented
broken line By ... Bog+n+1, corresponding to the LSLS-sequence

(1, =2,1, =2) x (k—1)-times, 1, =2, 1,m, aq, ..., az).
such that By = (1, 0), By = (—m — 1, 1). Note also that

By = ((—=1)",0), for [ <k—1
By = (=D (=m = 1), (=D, for I <k—1
By = ((=1)*,0) ’
Bo1 = (=D, (=D*a)
From the above we know, that the points A,; and Ay;41 coincide with the
points By, and By respectively. Since the remaining parts of both LSLS-

sequences (i. e. (ao, . .., a2,)) coincide, the point A; coincide with the point
B, for ] > 2k.
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Since the lattice oriented broken lines Ay ... Ay and By ... By are of the
same equivalence class, and the point A; coincide with the point B; for [/ > 2k,
we obtain

W = £(0, Ag...Askyns1) = L(O, By ... Boiyny1) = Ws.
Therefore, by Theorem 3.4 we have the following:
O, 2V, =, =D,

This concludes the proof of Lemma 3.15a.
Since the proof of Lemma 3.15b almost completely repeats the proof of
Lemma 3.15a, we omit the proof of Lemma 3.15b here.

ProOF oF THEOREM 3.14. First, we prove that any two distinct extended
angles listed in Definition 3.13 are not ., -congruent. Let us note that the
revolution numbers of extended angles distinguish the types of the angles. The
revolution number for the extended angle of the type I is 0. The revolution
number for the extended angle of the type II; is 1/2(k 4+ 1) where k > 0.
The revolution number for the extended angle of the type III; is —1/2(k + 1)
where k > 0. The revolution number for the extended angles of the type IV,
is 1/4 4+ 1/2k where k > 0. The revolution number for the extended angles of
the type Vi is 1/4 — 1/2k where k > 0.

So we have proven that two extended angles of different types are not %, -
congruent. For the types I, II, and III; the proof is completed, since any such
type consists of the unique extended angle.

Let us prove that normal forms of the same type IV, (or of the same type V)
are not %, -congruent for any integer k > 0 (or k > 0). Consider an extended
angle ® = km + larctan([ap, ay, - . ., az,]). Suppose that a lattice oriented
O-broken line ApA; ... A, where m = 2|k| + n + 1 defines the angle ®. Let
also that the LSLS-sequence for this broken line be characteristic.

Suppose, that k is even, then the ordinary angle ZA¢OA,, is -£;-congruent
to the ordinary angle larctan([ay, ay, .. ., az,]). This angle is a #, -affine in-
variant for the extended angle ®. This invariant distinguish the extended angles
of type IV (or V) with even k.

Suppose, that k is odd, then denote B = O + ApO. The ordinary angle
/BVA,, is £, -congruent to the ordinary angle larctan([ao, a1, . . ., a2, ]). This
angle is a ., -affine invariant for the extended angle ®. This invariant distin-
guish the extended angles of type IV, (or V) with odd k.

Therefore, the extended angles listed in Definition 3.13 are not %, -congru-
ent.

Now we prove that an arbitrary extended angle is £, -congruent to one of
the extended angles of the types I-V.
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Consider an arbitrary extended angle Z(V, ApA; ... A,) and denote it by ®.
If #(®) = k/2 for some integer k, then ® is £, -congruent to an angle of one
of the types I-III. Let #(®) = 1/4, then the extended angle ® is .%, -congruent
to the extended angle defined by the sail of the ordinary angle /Ay VA, of the
type IVy.

Suppose now, that #(®P) = 1/4 + k/2 for some positive integer k, then one
of its LSLS-sequence is of the following form:

((1, —-2,1,-2) x (k — 1)-times, 1, =2, 1, m, ay, .. .,azn),

where ¢; > 0, fori =0, ..., 2n. By Lemma 3.15 the extended angle defined
by this sequence is #, -congruent to an extended angle of the type IV defined
by the sequence

((1,=2,1,=2) x (k — )-times, 1, =2, 1, =2, ag, . .., az).

Finally, let #(®) = 1/4 — k/2 for some positive integer k, then one of its
LSLS-sequence is of the following form:

((=1,2,-1,2) x (k — 1)-times, —1,2, =1, m, ag, ..., az),

where ¢; > 0, fori =0, ...,2n. By Lemma 3.15 the extended angle defined
by this sequence is £, -congruent to an extended angle of the type V, defined
by the sequence

((=1,2,-1,2) x (k — )-times, —1,2, —1,2, ag, ..., az,).

This completes the proof of Theorem 3.14.

Let us finally give the definition of trigonometric functions for the extended
angles and describe some relations between ordinary and extended angles.

DEFINITION 3.16. Consider an arbitrary extended angle ® with the normal
form km + ¢ for some ordinary (possible zero) angle ¢ and for an integer k.

a) The ordinary angle ¢ is said to be associated with the extended angle ®.

b) The numbers Itan(¢), Isin(¢), and lcos(¢) are called the lattice tangent,
the lattice sine, and the lattice cosine of the extended angle .

Since all sails for ordinary angles are lattice oriented broken lines, the set
of all ordinary angles is naturally embedded into the set of extended angles.

DEeFINITION 3.17. For an ordinary angle ¢ the angle
Om + larctan(Itan @)

is said to be corresponding to the angle ¢ and denoted by @.
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From Theorem 3.14 it follows that for every ordinary angle ¢ there exists
and unique an extended angle @ corresponding to ¢. Therefore, two ordinary
angles ¢ and ¢, are £-congruent iff the corresponding lattice angles @, and
¥, are £, -congruent.

3.2.5. Opposite extended angles. Sums of extended angles. Sums of ordinary
angles. Consider an extended angle ® with the vertex V for some equivalence
class of a given lattice oriented broken line. The extended angle W with the
vertex V for the equivalence class of the inverse lattice oriented broken line is
called opposite to the given one and denoted by —®.

ProrosiTION 3.18. For any extended angle ® =k +¢@ we have:

—® = (—k — D7 + (7 — ¢).

Let us introduce the definition of sums of ordinary and extended angles.

DEerINITION 3.19. Consider arbitrary extended angles ®;,i = 1,...,[. Let
the characteristic sequences for the normal forms of ®; be (ag ;, a1, . . . , azn,.i)
fori =1,...,l.Let M = (my,...,m_;) be some (I — 1)-tuple of integers.

The normal form of any extended angle, corresponding to the following LSLS-
sequence

((10,1, al,l’ ey aZn,,la mlv a0,27 ey a2n2,2’ m29 AR ml—19 a0,17 ey a2n,,l)’
is called the M -sum of extended angles ®; (i =1, ...,[) and denoted by

1
Z ®;, orequivalently by &4, ®2+u, -+, P
M,i=1

ProposSITION 3.20. The M-sum of extended angles ©; (i = 1,...,1) is
well-defined.

Let us say a few words about properties of M-sums.
Notice that M-sum of extended angles is non-associative. For example, let
®, = larctan 2, &, = larctan(3/2), and ®3 = larctan 5. Then

(Dl +_1 d)z +_1 q)3 =7+ larctan(4),
D+ (P2 +-1 P3) = 2m,
(CDI +_1 q)z) +_1 d)3 = larctan(l).
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12>

The M-sum of extended angles is non-commutative. For example, let ®
larctan 1, and ®, = larctan 5/2. Then

®| 4+ &, = larctan(12/7) # larctan(13/5) = &, 4+ D;.

REMARK 3.21. The M-sum of extended angles is naturally extended to the
sum of classes of .%, -congruences of extended angles.

We conclude this section with the definition of sums of ordinary angles.

DEerFINITION 3.22. Consider ordinary angles «;, where i = 1,...,[. Let
o; be the corresponding extended angles for «;, and M = (my,...,m;_1)
be some (I—1)-tuple of integers. The ordinary angle ¢ associated with the
extended angle

q) = al +m1 52 +m2 e +m,,1 al'

is called the M-sum of ordinary angles «; (i = 1, ..., 1) and denoted by

I
Z a;, orequivalently by o 4, @2 Fm, 0 Am, .
M,i=1

REMARK 3.23. Note that the sum of ordinary angles is naturally extended
to the classes of #-congruences of lattice angles.

4. Relations between extended and ordinary lattice angles. Proof of
the first statement of Theorem 2.2

Throughout this section we again fix some lattice basis and use the system of
coordinates OXY corresponding to this basis.

4.1. On relations between continued fractions for lattice oriented broken
lines and the lattice tangents of the corresponding extended angles

For a real number r we denote by |r ]| the maximal integer not greater than r.

THEOREM 4.1. Consider an extended angle ® = /(V, AgA; ... A,). Sup-
pose, that the normal form for ® is kwr + ¢ for some integer k and an ordinary
angle ¢. Let (ag, ay, . .., ax,—2) be the LSLS-sequence for the lattice oriented
broken line AypA, ... A,. Suppose that

lag, ai, ..., a2 =q/p.
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Then the following holds:

larctan(1), if q/p =00
larctan(q/p), ifq/p=1

o laretan (= 2 ) ’:fo <a/p <1
0, ifq/p=0
T — larctan(m), if—1<gq/p<0
7 — larctan(—q/ p), ifq/p < —1

Proor. Consider the following linear coordinates (x, %)’ on the plane, as-
sociated with the lattice oriented V -broken line AgA; ... A,. Let the origin O’
be at the vertex V, (1,0) = Ap, and (1, 1) = Ay + % sgn(AgO’ A1) ApA;.
The other coordinates are uniquely defined by linearity. We denote this system
of coordinates by O’X'Y".

The set of integer points for the coordinate system O’X’Y’ coincides with
the set of lattice points of the plane. The basis of vectors (1,0)" and (0, 1)’
defines a positive orientation.

Suppose that the new coordinates of the point A, are (p’, ¢’)’. Then by
Theorem 3.5 we have ¢’/ p’ = ¢/ p. This directly implies the statement of the
theorem for the cases ¢’ > p'>0,q'/p’ =0,and ¢’/ p’ = oc.

Suppose now that p’ > g’ > 0. Consider the ordinary angle ¢ = ZAoP A,,.
Let By . .. By, be the sail for it. The direct calculations show that the point

By B,

D=By+ 021
O F (BB

coincides with the point (1+[(p’ — 1)/¢’], 1) in the system of coordinates
o'X'y’.

Consider the .#, -linear (in the coordinates O’ X’Y’) transformation & that
takes the point Ag = By to itself, and the point D to (1, 1)’. These conditions

uniquely identify £.
5_(1 —L(p/—l)/q/J)
~\o 1

The transformation & takes the point A, = B,, with the coordinates (p’, g")
to the point with the coordinates (p’'— [ (p'—1)/q’1q’, ¢) . Sinceq’/p' = q/p,
we obtain the following

©= larctan( a ) = larctan( q )
p =L =D/q'lq p—Lp—D/qlq
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The proof for the case ¢’ > 0 and p’ < 0 repeats the described cases after
taking to the consideration the adjacent angles.

Finally, the case of ¢’ < Orepeats all previous cases by the central symmetry
(centered at the point O’) reasons.

This completes the proof of Theorem 4.1.

COROLLARY 4.2. The revolution number and the continued fraction for a
lattice oriented broken line at unit distance from the vertex uniquely define the
Z.-congruence class of the corresponding extended angle.

4.2. Proof of Theorem 2.2a: two preliminary lemmas

We say that the lattice point P is at lattice distance k from the lattice segment
AB 1if the lattice vectors of the segment AB and the vector AP generate a
sublattice of the lattice of index k.

DEFINITION 4.3. Consider a lattice triangle AABC. Denote the number of
lattice points at unit lattice distance from the segment A B and contained in the
(closed) triangle AABC by 1£,(AB; C) (see on Figure 7).

Note that all lattice points at lattice unit lattice distance from the segment
AB in the (closed) lattice triangle AABC are contained in one straight line
parallel to the straight line AB. Besides, the integer 1£;(AB; C) is positive for
any triangle AABC.

c
FIGURE 7. For the given triangle AABC we have 1£,(AB; C) = 5.

Now we prove the following lemma.

LEmMMA 4.4. For any lattice triangle AABC the following holds

LCAB +l£(AB)—lZl(AB;C)—1 LABC +12(BC)—1£1(BC;A)_1 /BCA = m.

ProoF. Consider an arbitrary lattice triangle AABC. Suppose that the pair
of vectors BA and BC defines the positive orientation of the plane (otherwise
we apply to the triangle AABC some Z-affine transformation changing the
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orientation and come to the same position). Denote (see Figure 9 below):
D=A+BC,and E = A+ AC.

Since CADB is a parallelogram, the triangle A BAD is £, -congruent to the
triangle AABC. Thus, the angle / BAD is %, -congruent to the angle /ABC,
and 14, (BA; D) = 1¢,(AB; C). Since EABD is a parallelogram, the triangle
AAED is Z,-congruent to the triangle ABAD, and hence is -, -congruent
to the triangle AABC. Thus, Thus, /DAE is £, -congruent to /BCA, and
6 (DA; E) =16,(BC; A).

Let Ag... A, be the sail of ZCAB with the corresponding LLS-sequence
(ag, ...,ax_»). Let ByB;...B,, be the sail of /BAD (where By = A,)
with the corresponding LLS-sequence (by, ..., by,y—2). And let CoCy ... C;
be the sail of ZDAE (where Cy = B,,) with the corresponding LLS-sequence
(cos ..y C22).

Consider now the lattice oriented broken line

Ay...A,B1By...B,CiCy...Cy.
The LSLS-sequence for this broken line is
(ags .-, @m—2,1,bo, ..., bom—2,u, o, ..., C2-2),

where integers ¢ and u are integers defined by the broken line. By definition
of the sum of extended angles this sequence defines the extended angle

/CAB +, /BAD +, /DAE.

By Theorem 4.1, we have /CAB +; /BAD +, /DAE = .

We compute now the integer 7. Denote by A/, the closest lattice point to
the point A, and distinct to A, in the segment A,_;A,. Consider the set of
lattice points at unit lattice distance from the segment AB and lying in the half-
plane with the boundary straight line AB and containing the point D. This set
coincides with the following set (See Figure 8):

{Ani = An+ AL A, + kAA, | k€Z}.

Since A, _» = A —|—A;l_A, the points A, ; fork < —2 are in the closed half-plane
bounded by the straight line AC and not containing the point B.

Since A, 1 = A+ m the points A, for k > —1 are in the open
half-plane bounded by the straight line AC and containing the point B.

The intersection of the parallelogram AEDB and the open half-plane boun-
ded by the straight line AC and containing the point B contains exactly 1£(AB)
points of the described set: only the points A, ; with —1 <k <1¢{(AB) — 2.
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FIGURE 8. Lattice points A, ;.

Since the triangle ABAD is £, -congruent to AABC, the number of points
A, i in the closed triangle ABAD is 1£,(AB; C): the points A, ; for

16(AB) — 1¢,(AB; C) — 1 < k <1¢(AB) — 2.

Denote the integer 1¢(AB) — 14 (AB; C) — 1 by k.

The point A, 4, is contained in the segment By B; of the sail for the ordinary
angle /BAD (see Figure 9). Since the angles /BAD and /ABC are %, -
congruent, we have

= Sgn(An—lAAn) Sgn(AnABl) Sgn(An—lAnBl) Isin ZAn—lAn Bl
=1-1-sgn(A,—1A,Ank)1sinLA,_1A,Ank,
= sign (ko) |ko| = ko = l€L(AB) —1£,(AB; C) — 1.

. D B .

FIGURE 9. The point A, 4.
Exactly by the same reasons,
u=1(DA) -1 (DA E)—1=1(BC) —1£,(BC; A) — 1.

Therefore, ZCAB +i¢(aB)—1¢,(aB:c)—1 LABC +14Bc)—1,(BC:A)—1 LBCA =
.
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LEMMA 4.5. Let o, B, and y be nonzero ordinary angles. Suppose that
o+, B+, Y = 7, then there exist a triangle with three consecutive ordinary
angles £ -congruent to a, B, and y.

ProoF. Denote by O the point (0, 0), by A the point (1, 0), and by D the
point (—1, 0) in the fixed system of coordinates OXY .

Let us choose the points B = (py, ¢1) and C = (p», ¢») with integers py,
P> and positive integers ¢, g, such that

/AOB = larctan(ltan o), and LAOC = /AOB +, B.

Thus the vectors OB and OC defines the positive orientation, and /BOC = .

Since _ N
da+, B+, y=m and a+, B=/LAOC,

the ordinary angle ZCOD is .£-congruent to y .

Denote by B’ the point (p1¢2, q1¢2), and by C’ the point (p2q1, g1¢2) and
consider the triangle B‘OC’. Since the ordinary angle /B’OC’ coincides with
the ordinary angle /BOC, we obtain

/B'OC' = .

Since the ordinary angle § is nonzero, the points B’ and C’ are distinct and
the straight line B’C’ does not coincide with the straight line OA. Since the
second coordinate of the both points B” and C’ equal ¢;q>, the straight line
B’C’ is parallel to the straight line OA. Thus, by Proposition 1.13 it follows
that

/C'B'O = /AOB' = /AOB=«a, and [OC'B'=/C'OD = /COD = y.

So, we have constructed the triangle A B'OC’ with three consecutive ordin-
ary angles .#-congruent to «, 8, and y.

4.3. Proof of Theorem 2.2a: conclusion of the proof

Now we return to the proof of the first statement of the theorem on sums of
lattice tangents for ordinary angles in lattice triangles.

PrOOF OF THEOREM 2.2A. Let o, B, and y be nonzero ordinary angles
satisfying the conditions i) and ii) of Theorem 2.2a.

The second condition: ]ltan(«), —1, ltan(8), —1, Itan(y)[ = 0 implies that

a+_ 1 B+_1y =km.

Since all three tangents are positive, we have k = 1, or k = 2.
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Consider the first condition: ]ltan o, —1, Itan B[ is either negative or greater
than Itan o. It implies that @ 4+_; B = 07 + @, for some ordinary angle ¢, and
hence k = 1.

Therefore, by Lemma 4.5 there exist a triangle with three consecutive or-
dinary angles .#-congruent to «, 8, and y.

Let us prove the converse. We prove that condition ii) of Theorem 2.2a
holds by reductio ad absurdum. Suppose, that there exist a triangle AABC
with consecutive ordinary angles « = /CAB, 8 = LABC, and y = /BCA,

such that Jtan(a), —1, ltan(B), —1, ltan(y)[ # 0
Jltan(8), —1, Itan(y), —1, ltan(x)[ # O .
Jltan(y), —1, Itan(«), —1, ltan(B)[ £ O
These inequalities and Lemma 4.4 imply that at least two of the integers
1£(AB) — 1¢41(AB; C) — 1,
14(BC) —1¢41(BC; A) — 1,

and
14(CA) —1£,(CA; B) — 1
are nonnegative.
Without losses of generality we suppose that

WW(AB) — 14,(AB;C) —1>0
(BC) —14;(BC;A) —1>0"

Since all integers of the continued fraction

r = Jltan(@), 1£(AB) — 14, (AB; C) — 1,
Itan(B), LU(BC) — 1£,(BC; A) — 1, ltan(y)[

are non-negative and the last one is positive, we obtain that r > 0 (or r = 00).
From the other hand, by Lemma 4.4 and by Theorem 4.1 we have that r =
0/—1 = 0. We come to the contradiction.

Now we prove that condition 1) of Theorem 2.2a holds. Suppose that there
exist a triangle AABC with consecutive ordinary angles « = ZCAB, B =
LABC, and y = /BCA, such that

Jltan(«), —1, Itan(B), —1, Itan(y)[ = 0.

Since@ +_; B +_1y = 7w, we have @ +_; B = O + ¢ for some ordinary
angle ¢. Therefore, the first condition of the theorem holds.
This concludes the proof of Theorem 2.2.
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4.4. Theorem on sum of lattice tangents for ordinary lattice angles of
convex polygons

A satisfactory description for .Z-congruence classes of lattice convex polygons
has not been yet found. It is only known that the number of convex polygons
with lattice area bounded from above by n growths exponentially in n!/3, while
n tends to infinity (see [2] and [3]). We conclude this section with the following
theorem on necessary and sufficient condition for the lattice angles to be the
angles of some convex lattice polygon.

THEOREM 4.6. Let ay, ..., o, be an arbitrary ordered n-tuple of ordinary
non-zero (lattice) angles. Then the following two conditions are equivalent:

— there exist a convex n-vertex polygon with consecutive ordinary angles ¥ -

congruent to the ordinary angles a; fori =1, ...,n;
— there exist a set of integers M = {my, ..., m,_,} such that
n
Z T — o = 27.
M,i=1

Proor. Consider an arbitrary n-tuple of ordinary angles «;, here i =
l,...,n.

Suppose that there exist a convex polygon A;A, ... A, with consecutive
angles «; for i = 1,...,n. Let also the pair of vectors A;A; and AyA;
defines the positive orientation of the plane (otherwise we apply to the polygon
A1A; ... A, some ¥ -affine transformation changing the orientation and come
to the initial position).

Let By = O + A, A, and B; = O + A;_1A; fori =2, ..., n. We put by
definition

ZB,'OBL'+1, lflzl,,l’l—l
"\ ¢/B,0B,, ifi=n '

Consider the union of the sails for all §;. This lattice oriented broken line is
of the class of the extended angle with the normal form 27 + 0. The LSLS-
sequence for this broken line contains exactly n — 1 elements that are not
contained in the LLS-sequences for the sails of ;. Denote these numbers by
my,...,my,_1, and the set {m, ..., m,_} by M. Then

n

Z E:Zn.
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From the definition of 8; fori = 1,...,n it follows that §; = 7 — «;.
Therefore, ;
Z T — o =27.
M,i=1

The proof of the first part of the statement is completed.

Suppose now, that there exist a set of integers M = {m, ..., m,_1} such
that "
Z T — o = 27.
M,i=1

This implies that there exist lattice points B; = (1,0), B; = (x;, y;), for
i=2,...n—1,and B, = (—1, 0) such that

/B;OB;_1 =mn —aj_y, fori=2,...,n, and /BOB, =1 — «,.

Denote by M the lattice point
0+ OB;.
i=1

Since all «; are non-zero, the angles m — «; are ordinary. Hence, the origin
O is an interior point of the convex hull of the points B; fori =1, ..., k. This
implies that there exist two consecutive lattice points By and B, (or B, and
B1), such that the lattice triangle A B;M B, contains O and the edge BBy
does not contain O. Therefore,

O = A\ OM + ), OB; + »30Bi1,

where A; is a positive integer, and A, and A3 are nonnegative integers. So there
exist positive integers a;, where i = 1, ..., n, such that

0=0+ Zn:(a,-O_Bi).

i=1

Put by definition Ag = O, and A; = A;_; +a;OB; fori =2,...,n. The
broken line AgA; ... A, is lattice and by the above itis closed (i. e. Ag = A,).
By construction, the ordinary angle at the vertex A; of the closed lattice broken
line is £, -congruent to o; (i = 1, ...n). Since the integers a; are positive for
i = 1,...,n and the vectors OB; are all in the counterclockwise order, the
broken line is a convex polygon.

The proof of Theorem 4.6 is completed.
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REMARK 4.7. Theorem 4.6 generalizes the statement of Theorem 2.2a. Note
that the direct generalization of Theorem 2.2b is false: the ordinary angles do
not uniquely determine the ., -affine homothety types of convex polygons.
See an example on Figure 10.

[ ERN

FIGURE 10. An example of different types of polygons with the £, -
congruent ordinary angles.

Appendix A. On global relations on algebraic singularities of complex
projective toric varieties corresponding to integer-lattice
triangles

In this appendix we describe an application of theorems on sums of lattice tan-
gents for the angles of lattice triangles and lattice convex polygons to theory
of complex projective toric varieties. We refer the reader to the general defini-
tions of theory of toric varieties to the works of V. I. Danilov [4], G. Ewald [5],
W. Fulton [6], and T. Oda [18].

Let us briefly recall the definition of complex projective toric varieties as-
sociated to lattice convex polygons. Consider a lattice convex polygon P with
vertices Ag, Ay, ..., A,. Let the intersection of this (closed) polygon with the
lattice consists of the points B; = (x;, y;) fori =0, ..., m. Letalso B; = A;
fori =0, ..., n. Denote by €2 the following set in CP™:

(8 ™ Py ™ e ) | b, € €\ {0}

The closure of the set €2 in the natural topology of CP™ is called the complex
toric variety associated with the polygon P and denoted by X p.

Foranyi =0, ..., m wedenote by A; thepoint (0:...:0:1:0:...:0)
where 1 stands on the (i+1)-th place.

From general theory it follows that:

a) the set Xp is a complex projective complex-two-dimensional variety
with isolated algebraic singularities;

b) the complex toric projective variety contains the points A; for i =
0,...,n (where n+1 is the number of vertices of convex polygon);

c¢) the points of Xp \ {AO, Al, e, A,,} are non-singular;

d) the point A; for any integer i satisfying 0 < i < n is singular iff the
corresponding ordinary angle «; at the vertex A; of the polygon P is not
#-congruent to larctan(1);
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e) the algebraic singularity at A; for any integer i satisfying 0 < i < n is
uniquely determined by the .#-affine type of the non-oriented sail of the
lattice angle «;.

The algebraic singularity is said to be foric if there exists a projective toric
variety with the given algebraic singularity.

Note that the . -affine classes of non-oriented sails for angles o and S
coincide iff 8 = «, or B = «'. This allows us to associate to any complex-two-
dimensional toric algebraic singularity, corresponding to the sail of the angle
«a, the unordered pair of rationals (a, b), where a = ltan « and b = ltano’.

REMARK A.1. Note that the continued fraction for the sail « is slightly
different to the Hirzebruch-Jung continued fractions for toric singularities (see
the works [9] by H. W. E. Jung, and [8] by F. Hirzebruch). The relations between
these continued fractions is described in the paper [19] by P. Popescu-Pampu.

COROLLARY A.2. Suppose, that we are given by three complex-two-dimen-
sional toric singularities defined by pairs of rationals (a;, b;) fori = 1,2, 3.
There exist a complex toric variety associated with some triangle with these
three singularities iff there exist a permutation o € Sz and the rationals c;
from the sets {a;, b;} fori = 1, 2, 3, such that the following conditions hold:

1) the continued fraction Jcq(1y, —1, ¢ )| is either negative, or greater than
Co(1), OF equals 00;

i) les1y, —1, ¢52), — 1, co3)[ = 0.

We note again that we use odd continued fractions for cj, ¢;, and ¢3 in
the statement of the above proposition (see Subsection 2.1 for the notation of
continued fractions).

ProOF. The proposition follows directly from Theorem 2.2a.

PRrROPOSITION A.3. For any collection (with multiplicities) of complex-two-
dimensional toric algebraic singularities there exist a complex-two-dimen-
sional toric projective variety with exactly the given collection of toric singu-
larities.

For the proof of Proposition A.3 we need the following lemma.

LEMMA A.4. For any collection of ordinary anglesa; (i = 1, ..., n), there
exist an integer k > n—1 and a k-tuple of integers M = (my, ..., my), such
that

ai +my - tm,, Oy +m, larctan(1) +,, . - -+, larctan(l) = 27.

Proor. Consider any collection of ordinary angles o; i = 1,...,n) and

denote o .
O=0or+i0+1 -+
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There exist an oriented lattice broken line for the angle & with the LSLS-
sequence with positive elements. Hence, ® = ¢ + Or.
If ¢ = larctan(1), we have

® +_, larctan(1) +_, larctan(1) +_, larctan(1) = 2.

Thenk =n+2,and M =(1,...,1,-2,-2,=-2).
Suppose now ¢ Z larctan(1), then the following holds

@ +_1 m—¢ +_, larctan(1l) +_, larctan(1) = 2.

Consider the sail for the angle w —¢. Suppose the sequence of all its lattice
points (not only vertices) is By, ..., By (with the order coinciding with the
order of the sail). Then we have

/B;OB; ~ larctan(1) forany i=1,...,s.
Denote by b; the values of Isin /B; OB; 1 fori =1, ..., s. Then we have

@ +_, larctan(1) +_, larctan(1) 4_, larctan(1)
=y +1 a2 +1 -+ - +1 @, +-1 larctan(1) +, larctan(1)+,
-+ +p, larctan(1) 4+_; larctan(1) +_; larctan(1) 4_, larctan(1)

= 2.
Therefore, k = n + s + 3, and
M=Q,1,...,1,1,=1,by,...,bs, =2, =2, =2).
—————
(n—1)-times
The proof of Lemma A.4 is completed.

PROOF OF THE STATEMENT OF THE PROPOSITION A.3. Consider an arbitrary
collection of two-dimensional toric algebraic singularities. Suppose that they

are represented by ordinary angles «; (i = 1,...,n). By Lemma A.4 there
exist an integer k > n—1 and a k-tuple of integers M = (my, ..., my), such
that

(m — o) +m, -+, (T — )+, larctan(l) +,, - - -+, larctan(1) = 27.

By Theorem 4.6 there exist a convex polygon P = Ay ... A, with angles
., -congruent to the ordinary angles o; (i = 1,...,n), and k — n + 1 angles
larctan(1).

By the above, the toric variety X p is nonsingular at points of Py \ {Ag, Ay,

, Ag}. Ttis also nonsingular at the points A; with the corresponding ordinary
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angles Z-congruent to larctan(1). The collection of the toric singularities at
the remaining points coincide with the given collection.
This concludes the proof of Proposition A.3.

On Figure 11 we show an example of the polygon for a projective toric
variety with the unique toric singularity, represented by the sail of larctan(7/5).
The ordinary angle « on the figure is -Z; -congruent to larctan(7/5), the angles
B and y are £, -congruent to larctan(1).

FIGURE 11. Constructing a polygon with all angles %, -congruent to
larctan(1) except one angle that is £, -congruent to larctan(7/5).

Appendix B. On #-congruence criterions for lattice triangles

Here we discuss the .#-congruence criterions for lattice lattice triangles. By the
first criterion of .#-congruence for lattice triangles we obtain that the number
of .£-congruence classes for lattice triangles with bounded lattice area is finite.
We write down the numbers of .#-congruence classes for triangles with lattice
area less then or equal to 20.

On criterions of lattice triangle .#-congruence. We start with the study of
lattice analogs for the first, the second, and the third Euclidean criterions of
triangle congruence.

STATEMENT B.1 (The first criterion of lattice triangle .#-congruence). Con-
sider two lattice triangles AABC and AA'B'C’. Suppose that the edge AB is
F-congruent to the edge A'B’, the edge AC is £ -congruent to the edge A'C’,
and the ordinary angle / CAB is £ -congruent to the ordinary angle /C'A’B’,
then the triangle AA'B'C’ is £ -congruent to the AABC.

It turns out that the second and the third criterions taken from Euclidean
geometry do not hold. The following two examples illustrate these phenomena.
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ExampLE B.2. The second criterion of triangle #-congruence does not
hold in lattice geometry. On Figure 12 we show two lattice triangles AABC
and AA’B’C’. The edge AB is £-congruent to the edge A’B’ (here 1£(A’B’) =
1¢(AB) = 4). The ordinary angle /ABC is £-congruent to the ordinary
angle /A’B'C’ (since /ABC = /A’B'C’' = larctan(1)), and the ordinary
angle /CAB is #-congruent to the ordinary angle /C’A’B’ (since /CAB =
/C'A’B’ = larctan(1)), The triangle AA’B’C’ is not .£-congruent to the tri-
angle AABC, since IS(AABC) = 4 and IS(AA’B'C’) = 8.

. . C/ . .
B A B A

FIGURE 12. The second criterion of triangle -£-congruence does not hold.

ExaMPLE B.3. The third criterion of triangle .#-congruence does not hold
in lattice geometry. On Figure 13 we show two lattice triangles AABC and
AA'B'C’. All edges of both triangles are . -congruent (of length one), but the
triangles are not .£-congruent, since IS(AABC) = 1 and IS(AA'B'C’) = 3.

C[ . ﬂc’
B~ A AT

FIGURE 13. The third criterion of triangle .#-congruence does not hold.

Instead of the second and the third criterions there exists the following
additional criterion of lattice triangles #-congruence.

STATEMENT B.4 (An additional criterion of lattice triangle integer-congru-
ence). Consider two lattice triangles AABC and AA'B'C’ of the same lattice
area. Suppose that the ordinary angle / ABC is £ -congruent to the ordinary
angle /A’B'C’, the ordinary angle /CAB is £-congruent to the ordinary
angle /C'A’'B’, the ordinary angle [ BCA is ¥-congruent to the ordinary
angle [ B'C'A’, then the triangle ANA'B'C’ is £ -congruent to the triangle
AABC.

In the following example we show that the additional criterion of lattice
triangle .#-congruence is not improvable.

ExampLE B.5. On Figure 14 we show an example of two lattice non-
equivalent triangles AABC and AA’B’C’ of the same lattice area equals 4
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and the same ordinary angles /ABC, /CAB, and /A’B'C’, /C’A’B’ all £-
equivalent to the angle larctan(1), but AABC % AA'B'C’.

C’ . .
. . C’ . . .
B’ A B’ Y

FIGURE 14. The additional criterion of lattice triangle .#-congruence
is not improvable.

Lattice triangles of small area. The above criterions allows to enumerate
all lattice triangles of small lattice area up to the lattice equivalence. In the
following table we write down the numbers N(d) of nonequivalent lattice
triangles of lattice area d for d < 20.

d |1(2(3]4|5]|6]|7]|8 1011|1213 (14 |15|16(17]|18(19]20
N@d)|1|1(2(3]|2]|4]|4|5|5|6|4 (106 |88 |11|6|13]|8 |14

=}

As it is easy to show, we always have d/3 < N(d) < d. The asymptotic
behaviour of N (d) and even of the average of N (d) (if they exist) is unknown
to the author.

Appendix C. Some unsolved question on lattice trigonometry

We conclude this paper with a small collection of unsolved questions.

Let us start with some questions on elementary definitions of lattice tri-
gonometry. In this paper we do not show any geometrical meaning of lattice
cosine. Here arise the following question.

ProOBLEM 1. Find a natural description of lattice cosine for ordinary angles
in terms of lattice invariants of the corresponding sublattices.

This problem seems to be close to the following one.

ProBLEM 2. Does there exist a lattice analog of the cosine formula for the
angles of triangles in Euclidean geometry?

Let us continue with questions on lattice analogs of classical trigonomet-
ric formulas for trigonometric functions of angles of triangles in Euclidean
geometry.

PrOBLEM 3. a) Knowing the lattice trigonometric functions for lattice
angles «, § and integer n, find the explicit formula for the lattice trigono-

metric functions of the extended angle o +;, .
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b) Knowing the lattice trigonometric functions for a lattice angle «, an
integer m, and positive integer m, find the explicit formula for the lattice
trigonometric functions of the extended angle

l
2 @
M, i=1

where M = (m, ..., m) is an n-tuple.

Now we formulate a problem on generalization of the statement of The-
orem 2.2b to the case of n ordinary angles. Such generalization is important
in toric geometry and theory of multidimensional continued fractions.

ProBLEM 4. Find a necessary and sufficient conditions for the existence of
an n-gon with the given ordered sequence of ordinary angles («y, ..., «;) and
the consistent sequence of lattice lengths of the edges (1, ..., /,) in terms of
continued fractions for n > 4.

We conclude this paper with the following problem. We remind that (N (d))
is the numbers of nonequivalent lattice triangles having the lattice area being
equal to d (see Appendix B).

PrOBLEM 5. Find an explicit formula for the numbers N (d).
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Abstract The aim of this paper is to generalize the notions of ordinary and expanded lattice
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Introduction

The aim of this paper is to generalize the notions of ordinary and expanded lattice angles and
their sums studied in the work [7] by the author to the case of angles with lattice vertices but
not necessarily with lattice rays. We find normal forms and extend the definition of lattice
sums to a certain special case of such angles. The sum of angles described in the paper seems
to be a natural notion of ordinary continued fractions “addition”.

The study of lattice angles is an imprescriptible part of modern lattice geometry. Invari-
ants of lattice angles are used in the study of lattice convex polygons and polytopes. Such
polygons and polytopes play the principal role in Klein’s theory of multidimensional contin-
ued fractions (see, for example, the works of F. Klein [9], V.1. Arnold [1], E. Korkina [11],
M. Kontsevich and Yu. Suhov [10], G. Lachaud [12], and the author [5]). Lattice polygons
and polytopes of the lattice geometry are in the limelight of complex projective toric vari-
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and W. Fulton [4]).
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The studies of lattice angles and measures related to them were started by A.G. Kho-
vanskii and A.V. Pukhlikov in [15] and [16] in 1992. They introduced and investigated
special additive polynomial measure for the expanded notion of polytopes. The relations be-
tween sum-formulas of lattice trigonometric functions and lattice angles in the Khovanskii—
Pukhlikov sense are unknown to the author.

In the work [7], the trigonometry of rational angles and their relation to the triangles
was studied in details. Some properties of rational trigonometric functions follows from the
statements of the work [14].

This paper is organized as follows. In Sect. 1 we remind the definition and main prop-
erties of ordinary continued fractions, and give definitions of ordinary lattice angles. The
aim of Sect. 2 is to introduce trigonometric functions of ordinary lattice angles. Further in
Sect. 3 we denote and study expanded irrational angles. These angles are necessary for the
definition of sum of lattice angles. We study equivalence classes (with respect to the group
of affine lattice preserving transformations) of expanded lattice angles and show a normal
form for such classes. Finally, in Sect. 4 we give definitions of sums of lattice angles. We
conclude the paper in Sect. 5 with related questions and problems.

1 Basic definitions

1.1 Ordinary continued fractions

With any finite sequence (ao, ay, . . . , a,) where the elements ay, .. ., a, are positive integers
and ay is an arbitrary integer, we associate the following rational g:

1

q=ag+
a; +

1
a,—1 + —
n
This representation of the rational ¢ is called an ordinary continued fraction for g and de-
noted by [ao, ay, ..., a,]. An ordinary continued fraction [ag, ay, ..., a,] is said to be odd if
the number of the elements of the sequence (i.e., n + 1) is odd, and even if the number is
even.

Theorem 1.1 For any rational there exist exactly one odd ordinary continued fraction and
exactly one even ordinary continued fraction. a

We continue with the standard definition of infinite ordinary continued fraction.

Theorem 1.2 Consider a sequence (ay, ay, - .., ay,, . ..) of positive integers. There exists the
following limit: r = lim ([ao, ai, ..., ak]). O
k—00

This representation of r is called an (infinite) ordinary continued fraction for r and de-
noted by [ag, a1, ..., a,,...].

Theorem 1.3 For any irrational there exists a unique infinite ordinary continued fraction.
Any rational has no infinite ordinary continued fractions. O
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For the proofs of these theorems, we refer to the book [8] by A. Ya. Khinchin.
1.2 Lattice ordinary angles

A linear (affine) lattice preserving transformation is said to be lattice.

Let A, B, and C do not lie in the same straight line. Suppose also that B is lattice. We
denote the angle with the vertex at B and the rays BA and BC by ZABC. If both open rays
BA and BC contain lattice points, then we say that the angle ZABC is an ordinary rational
angle. If the open ray B A (the open ray BC) contains lattice points, and the remaining open
ray of the angle does not contain lattice points, then we say that the angle ZABC is an
ordinary R-irrational (L-irrational) angle. If the union of open rays BA and BC does not
contain lattice points, then we say that the angle ZABC is an ordinary lattice LR-irrational
angle.

Definition 1.4 Two ordinary lattice angles ZAO B and ZA’O’B’ are said to be L-congruent
if there exist a lattice-affine transformation which takes the vertex O to the vertex O’ and
the rays OA and OB to the rays O’A’ and O’B’ respectively. We denote this as follows:
LZAOB=/A'O'B'.

2 Some properties of ordinary lattice angles
2.1 A few L-congruence invariants

We start this section with definitions of some important invariants of the group of lattice-
affine transformations.

For a lattice segment AB (i.e., a segment with lattice endpoints) we define its lattice
lengths to be equal to the number of lattice inner points plus one and denote it by 1£(AB).

The lattice area of a parallelogram A BC D with lattice points A, B, C, D is the index
of the sublattice generated by the vectors AB and AC in the whole lattice. We denote the
lattice area by IS(ABC D).

Consider an arbitrary rational angle ZABC.Let D = C + BA. The lattice sine of ZABC
is the following positive integer:

IS(ABCD)
1¢(BA)1¢(BC)’

we denote it by Isin ZABC.

Suppose some points A, B, and V are not in the same straight line. The integer distance
from the lattice segment AB to the lattice point V is an index of sublattice generated by
lattice vectors contained in AB and a vector AV in the whole lattice.

For the triples of lattice points A, B, and C, we define the function sgn as follows:

+1, if the ordered pair of vectors BA and BC
defines the positive orientation,
sgn(ABC) =10, if the points A, B, and C are contained in the same straight line,
—1, if the ordered pair of vectors BA and BC
defines the negative orientation.
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Fig. 1 LR-irrational angle ZAO B, its sail and LLS-sequence.

2.2 LLS-sequences for ordinary angles

Consider an ordinary angle ZAO B. Let also the vectors O A and O B be linearly indepen-
dent.

Denote the closed convex solid cone for the ordinary irrational angle ZAO B by C(AO B).
The boundary of the convex hull of all lattice points of the cone C(AO B) except the ori-
gin is homeomorphic to a straight line. The closure in the plane of the intersection of this
boundary with the open cone A O B is called the sail for the cone C(AO B). A lattice point
of the sail is said to be a vertex of the sail if there is no segment of the sail containing this
point in the interior. The sail of the cone C(AO B) is a broken line with a finite or infinite
number of vertices and without self-intersections. We orient the sail in the direction from
‘O A to OB. (For the definition of the sail and its higher dimensional generalization, see, for
instance, the works [1], [11], and [5].)

In the case of ordinary R-irrational and rational angle we denote the vertices of the sail
by V;, for i > 0, according to the orientation of the sail (such that V}, is contained in the
ray O A). In the case of ordinary L-irrational angle we denote the vertices of the sail by V_;,
for i > 0, according to the orientation of the sail (such that Vj is contained in the ray O B).
In the case of ordinary LR-irrational angle we denote the vertices of the sail by V_;, for
i € Z, according to the orientation of the sail (such that Vj is an arbitrary vertex of the sail).

Definition 2.1 Suppose that the vectors O A and O B of an ordinary angle ZAO B are lin-
early independent. Let V; be the vertices of the corresponding sail. The sequence of lattice
lengths and sines

1L(Vo V), Isin LV Vi Vo, (Vi Vo), Isin LV Vo Vs, L Isin £V, oV, Vy 18(V2 V),
or (Vo V), Isin LV Vi Vo, 1(V V), Isin LV Vo Vs, L L),
or (.., SinZV_3V_o Vo1, 10(V_aVoy), Isin ZV_, Vo Vo, (V-1 V),
or (.., 1sSin ZV_, V_ 1 Vo, 6(V_1 Vi), Isin LV_1 Vo, Vi, 1E(Vo V1), .. )

is called the LLS-sequence for the ordinary angle ZAOB, if this angle is rational, R-
irrational, L-irrational, or LR-irrational respectively.

In Fig. 1 we show an example of an LR-irrational ordinary angle ZA O B. The convex
hull of all lattice points inside is colored with gray, its boundary is the sail of the angle. The
lattice lengths of the segments are in black and the lattice sines of the angles are in white
respectively. The LLS-sequence of the angleis (..., 1,1,2,3,1,1,2,...).

Proposition 2.2 a) The elements of the LLS-sequence for any ordinary rational/irrational

angle are positive integers. b) The LLS-sequences of L-congruent ordinary rational/
irrational angles coincide. O

@ Springer



On irrational lattice angles 225

2.3 Lattice tangents for ordinary rational and R-irrational angles
Let us give the definitions of lattice tangents for ordinary rational angles.

Definition 2.3 Let the vectors O A and O B of an ordinary rational angle ZA O B be linearly
independent. Suppose that V; are the vertices of the corresponding sail. Let

(M(V()VI), ISiHZV()Vl Vz, ey ISiHZanzv,,,l Vn, lZ(Vn,l Vn))

be the LLS-sequence for the angle ZA O B. The lattice tangent of the ordinary angle ZAO B
is the following rational:

[IZ(V()Vl), Isin ZV()Vl V2, ey Isin 4‘/,1,2‘/”,1 Vn, IZ(V,[,1 Vn)]
We denote it by ltan ZAO B.

Definition 2.4 Let the vectors OA and OB of an ordinary R-irrational angle ZAO B be
linearly independent. Suppose that V; are the vertices of the corresponding sail. Let

ALV V), Isin LVy Vi Vo, .. 18In £V, o Vo Vi , (V21 V), L)

be the LLS-sequence for the angle ZA O B. The lattice tangent of the ordinary R-irrational
angle ZAO B is the following irrational:

[IZ(V()Vl), Isin 4VOV1 V2, ey Isin 4Vn,2Vn,1 V,,, M(Vn,1 Vn), .. ]
We denote it by Itan ZAO B.

Let A, B, O, V_;, V; be as in Fig. 1, then
10 10
ItanZV_,0V, =[1,2,3] = = ItanZV,0V_; =[3,2,1] = ER
Itan/V_;0B =11,2,3,1,1,2,...], ItanZViOA=1[3,2,1,1,...].
Proposition 2.5 a) For any ordinary rational/R-irrational angle ZA O B with linearly inde-
pendent vectors O A and O B the rational/irrational ltan ZA O B is greater than or equiva-
lent to 1. b) The values of the function ltan at two L-congruent ordinary angles coincide. [
2.4 Lattice arctangent for ordinary rational and R-irrational angles
Consider a coordinate system OXY in the space R? with coordinates (x, y) and origin O.
We work with the integer lattice of O XY
For any reals p, and p,, we denote by «,, ,, the angle with the vertex at the origin and

two edges {(x, p;x) | x > 0}, where i =1, 2.

Definition 2.6 For any real s > 1, the ordinary angle ZA O B with the vertex O at the origin,
A=(1,0),and B = (1, s), is called the lattice arctangent of s and denoted by larctans.

The following theorem shows that Itan and larctan are actually inverse to each other.
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Theorem 2.7 a) For any real s, such that s > 1,
Itan(larctans) = s.
b) For any ordinary rational or R-irrational angle a the following holds:

larctan(Itan ) = «.

Proof Both statements of the theorem for rational angles were proven in the paper [6].

Let us prove the first statement of Theorem 2.7 for the irrational case. Let s > 1 be some
irrational real. Suppose that the sail of the angle larctan s is an infinite broken line ApA; ...
and the corresponding ordinary continued fraction is [ay, a;, a,, . . .]. Let also the coordinates
of A; be (x;, yi).

‘We consider the ordinary angles «;, corresponding to the broken lines Ay ... A;, fori > 0.
Then,

lim (y;/x;) = s/1.

By the statement of the theorem for rational angles, for any positive integer i the ordinary

angle o; coincides with larctan([ag, a1, . . ., a2 —2]), and hence the coordinates (x;, y;) of A;
satisfy
yi/xi =lag,ai, ..., axj-].
Therefore,
lim ([ag, ai, ..., ax_2]) =s.
1—>00

So, we obtain the first statement of the theorem:
Itan(larctans) = s.

Now we prove the second statement. Consider an ordinary lattice R-irrational angle «.
Suppose that the sail of the angle « is the infinite broken line AgA; ... .

For any positive integer i, we consider the ordinary angle «;, corresponding to the broken
lines Ag ... A;.

For an ordinary angle 8, denote by C(8) the cone, corresponding to 8. Note that C(8’)
and C(B") are L-congruent iff 8 = g’.

By the statement of the theorem for rational angles we have:

larctan(Itan ;) = «;.

Since for any positive integer n the following is true:

| €l = charctan(itan ),
i=1 i=1
we obtain
Cla)= U Ca) = U C (larctan(Itan ;) = C (larctan(Itan @)).

i=1 i=1
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Therefore,
larctan(Itan ) = «.

This concludes the proof of Theorem 2.7. O
Now we give the following description of ordinary rational and R-irrational angles.

Theorem 2.8 (Description of ordinary rational and R-irrational angles)

a) For any finite/infinite sequence of positive integers (ag, a, az, .. .) there exists some ordi-
nary rational/R-irrational angle o such that ltana = [ag, a1, az, . . .].

b) Two ordinary lattice rational/R-irrational angles are L-congruent iff they have equivalent
lattice tangents.

Proof Theorem 2.7a implies the first statement of the theorem.

Let us prove the second statement. Suppose that the ordinary rational/R-irrational angles
o and B are L-congruent, then their sails are also £-congruent. Thus their LLS-sequences
coincide. Therefore, ltana = Itan 3.

Suppose now that the lattice tangents for two ordinary rational/R-irrational angles «
and B are equivalent. Now we apply Theorem 2.7b and obtain

o = larctan(Itan o) = larctan(Itan 8) = .

Therefore, the angles o and B are £-congruent. a

Corollary 2.9 (Description of ordinary L-irrational and LR-irrational angles)

a) For any sequence of positive integers (...,a_p,a_y,ap) (or (...a_y,ap,a,...)) there
exists an ordinary L-irrational (LR-irrational) angle with the LLS-sequence equivalent to
the given one.

b) Two ordinary L-irrational (LR-irrational) angles are L-congruent iff they have the same
LLS-sequences.

Proof The statement on L-irrational angles follows immediately from Theorem 2.8.
Let us construct an LR-angle with a given LLS-sequence (...a_;, ag, ay, ...). First we
construct

oy = larctan([ag, a1, as, . . .]).

Denote the points (1,0) and (1,ay) by Ay and A, and construct the angle «, that is £-
congruent to the angle

larctan([ag, a_1,a_», ...]),

and that has the first two vertices A; and A, respectively. Now the angle obtained by the rays
of ) and «; that do not contain lattice points is the LR-angle with the given LLS-sequence.

Suppose now we have two LR-angles 8, and 8, with the same LLS-sequences. Consider
a lattice transformation taking the vertex of B, to the vertex of f;, and one of the segments
of B, to the segment ByB; of ; with the appropriate order in LLS-sequence. Denote this
angle by B. Consider the R-angles B; and ﬂ_é corresponding to the sequences of vertices of
B and B starting from V; in the direction towards V;. These two angles are £-congruent
by Theorem 2.8, therefore 8, and ﬂ_é coincide. So the angles 8, and ) have a common ray.
By the same reason the second ray of B, coincides with the second ray of ;. Therefore o,
coincides with 8} and is £-congruent to f3,. O
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Remark on zero ordinary angles Further we use zero ordinary angles and their trigonometric
functions. Let A, B, and C be three lattice points of the same lattice straight line. Suppose
that B is distinct from both A and C, and the rays BA and BC coincide. We say that the
ordinary lattice angle with the vertex at B and the rays BA and BC is zero. Suppose ZABC
is zero, put by definition

Isin(ZABC) =0, Ilcos(ZABC)=1, Iltan(LZABC)=0.

Denote by larctan(0) the angle ZAO A where A = (1, 0), and O is the origin.

3 Lattice expanded angles
3.1 Signed LLS-sequences

In this subsection we work in the oriented two-dimensional real vector space with a fixed
lattice. As previously, we fix a coordinate system O XY in this space.

A finite (infinite to the right, to the left, or in both directions) union of ordered lattice
segments ..., A;_1A;, AjAi+1, Ait+14i42, - . . 1s said to be a lattice oriented finite (R-infinite,
L-infinite, or LR-infinite) broken line, if any segment of the broken line is not of zero length,
and any two consecutive segments are not contained in the same straight line. We denote
this broken line by ... A;_1A; A;+1A; 12 ... . We also say that the lattice oriented broken line
. Ai2Ai 1A Ay .. . is inverse to the broken line ... A;_jA;Aj 1 Aivs ... .

Definition 3.1 Consider a lattice infinite oriented broken line and a point not in this line.
The broken line is said to be at the unit distance from the point if all edges of the broken
line are at the unit lattice distance from the given point.

Now, let us associate with any lattice oriented broken line at the unit distance from some
point the following sequence of nonzero elements.

Definition 3.2 Let ... A; _|A;A;11A;4>... be a lattice oriented broken line at the unit dis-
tance from some lattice point V. Let

azi—3 =sgn(A; 2VA;_1)sgn(A;_1VA;)sgn(A; 2A;1A)Isin ZA; 1 A; 1 A;,
a2 =sgn(A;_|VA)IL(A;_1A)

for all possible indices i. The sequence (...as—3, a2 2, a1 ...) is called a signed LLS-
sequence for the lattice oriented finite/infinite broken line at the unit distance from V (or for
simplicity just LSLS-sequence).

In Fig. 2 we identify geometrically the signs of elements of the LSLS-sequence for a
lattice oriented V -broken line.

Proposition 3.3 An LSLS-sequence for the given lattice oriented broken line and the point
is invariant under the group action of orientation preserving lattice-affine transformations.

Proof The statement holds, since the functions sgn, 1€, and Isin are invariant under the group
action of orientation preserving lattice-affine transformations. a
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Fig. 2 All possible different combinatorial cases for angles and segments of an LSLS-sequence.

3.2 L -congruence of lattice oriented broken lines at the unit distance from the lattice
points

Two lattice oriented broken lines at the unit distance from lattice points V; and V, are said
to be L-congruent iff there exists an orientation preserving lattice-affine transformation
taking V) to V, and the first broken line to the second.

Let us formulate a necessary and sufficient conditions for two lattice oriented broken
lines at the unit distance from two lattice points to be £ -congruent.

Theorem 3.4 The LSLS-sequences of two lattice finite or infinite oriented broken lines at
the unit distance from lattice points V| and V, respectively coincide, iff there exists an ori-
entation preserving lattice-affine transformation taking the point Vi to V, and one oriented
broken line to the other.

Proof The case of finite broken lines was studied in [7], we skip the proof here.

The LSLS-sequence for any lattice infinite oriented broken line at the unit distance is
invariant under the group action of orientation preserving lattice-affine transformations,
since the functions sgn, 1¢, Isin are invariant. Therefore, the LSLS-sequences for two £ -
congruent broken lines coincide.

Suppose now that we have two lattice oriented infinite broken lines ... A;_1A;A;1; ...
and ... B;_1B;B;.; ... at the unit distance from the points V; and V,, and with the same
LSLS-sequences. Consider the lattice-affine transformation & that takes the point V; to V»,
A; to B;, and A; 4 to B;;; for some integer i. Since sgn(A;V A;y1) =sgn(B;V B;;1), the
lattice-affine transformation £ is orientation preserving. By Theorem 3.4 for the finite case
the transformation £ takes any finite oriented broken line A;A;.; ... A, containing the seg-
ment A;A;;; to the oriented broken line B;Bs...B;. Therefore, the transformation &
takes the lattice oriented infinite broken line ... A;_;A;A;1; ... to the oriented broken line
...B;_1B;B;1; ... and the lattice point V] to the lattice point V.
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This concludes the proof of Theorem 3.4 for the infinite broken lines. a

3.3 Equivalence classes of almost positive lattice infinite oriented broken lines and
corresponding expanded infinite angles

We start this section with the following general definition.

Definition 3.5 We say that the lattice infinite oriented broken line at the unit distance from
some lattice point is almost positive if the elements of the corresponding LSLS-sequence
are all positive, except for a finite number of elements.

Let [ be the lattice (finite or infinite) oriented broken line ... A, 1A, ... AnAnutr--. .
Denote by I[(—o0, A,,) the broken line ... A,_;A,. Denote by [(A,,, +00) the broken line
ApApyr ... Denote by [(A,, A,) the broken line A, ... A,,.

Definition 3.6 Two lattice oriented infinite broken lines /; and /, at the unit distance from V
are said to be equivalent if there exist two vertices W, and Wy, of the broken line /; and
two vertices W, and Wy, of the broken line /, such that the following three conditions are
satisfied:

i) the broken line [;(W),, +00) coincides (edge by edge) with the broken line
[,(Wp,, +00);
ii) the broken line /; (—o0, W) coincides with the broken line I, (—o0, W);
iii) the closed broken line generated by I;(W,;, W},) and the inverse of I,(W;, W) is
homotopy equivalent to a point in R? \ {V}.

Now we give the definition of expanded angles.

Definition 3.7 An equivalence class of lattice finite (R/L/LR-infinite) oriented broken lines
at the unit distance from V containing the broken line / is called the expanded finite (R/L/LR-
infinite) angle for the equivalence class of | at the vertex V and denoted by Z(V; ) (or, for
short, expanded R/L/LR-infinite angle).

Remark 1 Since all the sails for ordinary angles are lattice oriented broken lines, the set of
all ordinary irrational angles is naturally embedded into the set of expanded irrational angles.
An ordinary angle with a sail § corresponds to the expanded angle with the equivalence class
of the broken line S.

Definition 3.8 Two expanded angles @; and @, are said to be L -congruent iff there exists
an orientation preserving lattice-affine transformation sending the class of lattice oriented
broken lines corresponding to @, to the class of lattice oriented broken lines corresponding
to @,. We denote it by q)léq)g.

In Fig. 3 we show two LR-infinite broken lines, we also indicate their LSLS-sequences.
(We suppose that outside of the pictures the broken lines are the same.) These broken lines
define two non-equivalent expanded LR-infinite angles. The broken line of Fig. 3a and the
sail of Fig. 1a define equivalent expanded angles.
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- =
@(...,1,2,—-1,-1,-2,-1,3,1,2,...). ®)(..,1,2,-2,3,-2,1,-2,2,1,1,2,..).

Fig. 3 Examples of expanded angles for two particular LSLS-sequences.

3.4 Revolution number for expanded rational, L- and R-irrational angles

First we define the revolution number for the case of finite broken lines.

Let r = {V+Av | A > 0} be the oriented ray for an arbitrary vector v with the vertex at V,
and A B be an oriented (from A to B) segment not contained in the ray ». Suppose also, that
the vertex V of the ray r is not contained in the segment A B. We denote by #(r, V, AB) the
following number:

0, if the segment A B does not intersect the ray r,
% sgn(A(A—i—ﬁ)B), if the segment A B intersects the ray r
#(r,V,AB) = at A or at B,

sgn(A(A+v)B),  if the segment AB intersects the ray r

at an interior point of AB,

and call it the intersection number of the ray r and the segment AB.

Definition 3.9 Let AgA; ... A, be some lattice oriented broken line, and let r be an oriented
ray {V+4Av | A > 0}. Suppose that the ray r does not contain the edges of the broken line,
and the broken line does not contain the point V. We call the number

n
Z#(V, V,Ai_1A)

i=1
the intersection number of the ray r and the lattice oriented broken line AgA;...A,, and
denote it by #(r, V, AgA; ... Ay).

Definition 3.10 Consider an arbitrary expanded angle Z(V, AgA; ... A,). Denote the rays
{V4+AIVAg|A>0}and {V — AV Ay | A > 0} by r; and r_ respectively. The number

1
5(#(r+, V,AgAr...A) +#(r_, V, A¢A, ... A)))

is called the lattice revolution number for the expanded angle Z(V, AgA;...A,), and de-
noted by #(Z(V, AgA; ... A,)).

The revolution number of any expanded angle is well-defined and is invariant under the
group action of the orientation preserving lattice-affine transformations (see [7] for more
details).

Let now us extend the revolution number to the case of almost positive infinite oriented
broken lines.
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Definition 3.11 Let...A;_jA;A;1; ... be some lattice R-, L- or LR-infinite almost positive
oriented broken line, and r = {V + Av | A > 0} be the oriented ray for an arbitrary vector v
with the vertex at V. Suppose that all straight lines containing the edges of the broken line
do not pass through the vertex V. We call the number

liT #(r,V,ApA ... A)) if the broken line is R-infinite,

liT #r,V,A_,...A_1Ag) if the broken line is L-infinite,
n——+0o0

liT #(r,V,A_,A_,4+1...A,) if the broken line is LR-infinite
n——+00

the intersection number of the ray r and the lattice almost positive infinite oriented broken
line broken line ... A;_1A;A;; ... and denote it by #(r, V, ... A;_1 A;j Aiy1 .. .).

Proposition 3.12 The intersection number of a ray r and an almost positive lattice infinite
oriented broken line is well-defined.

Proof Consider an almost positive lattice infinite oriented broken line /. Let us show that
the broken line / intersects the ray r only finitely many times.

By Definition 3.5 there exist vertices W, and W, of this broken line such that the LSLS-
sequence for the lattice oriented broken line /(—oo, W;) contains only positive elements,
and the LSLS-sequence for the oriented broken line /(W,, +00) also contains only positive
elements.

The positivity of the LLS-sequences implies that the lattice oriented broken lines
[(—o0, W), and [(W,, +00) are the sails for some angles with the vertex V. Thus, these
two broken lines intersect the ray » at most once each. Therefore, the broken line / intersects
the ray r at most once in the part /(—oo, W}), only finitely many times in the part [(W;, W),
and at most once in the part [(W,, +00).

So, the lattice infinite oriented broken line / intersects the ray » only finitely many times,
and, therefore, the corresponding intersection number is well-defined. O

Now we give a definition of the lattice revolution number for expanded R-irrational and
L-irrational angles.

Definition 3.13 Consider an arbitrary R-infinite (or L-infinite) expanded angle Z(V,1),
where V is some lattice point, and / is a lattice infinite oriented almost-positive broken
line. Let Ay be the first (the last) vertex of /. Denote the rays {V + AVAq | A > 0} and
{V —AV Ay | X >0} by ry and r_ respectively. The number

1
5(#(r+, VD) +#(r_,V,D)

is called the lattice revolution number for the expanded irrational angle Z(V, [), and denoted
by #(£(V,1)).

The revolution numbers for the angles defined by the broken lines of Fig. 3a and 3b are
respectively: 1/4 and 5/4.

Proposition 3.14 The revolution number of an R-irrational (or L-irrational) expanded an-
gle is well-defined.
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Proof Consider an arbitrary expanded R-irrational angle Z(V, AgA;...). Let
ry ={V4+AVAy|A>0} and r_={V —-AVAx|A>0}
Suppose that

LV, AgAAy ... =LV AL AL A) ...

This implies that V = V', Ag = Ay, A, = A, for some integers n and m and any non-
negative integer k, and the broken line AgA; ... A, A/, _, ... A] A} is homotopy equivalent to
a point in R? \ {V}. Thus,

H(LV, AgAy..) —#(LV', AQA] ..

L ALAD)

m—1" m—1"

= %(#(r+,AoA1 L AGAL LAVAY) F#(r, AgAy L. ALA]
=0+0=0,
and hence
H(LV, ApA 1Ay, ) =#(LV', AjALAS . ).

Therefore, the revolution number of any expanded R-irrational angle is well-defined.
The proof for L-irrational angles repeats the proof for R-irrational angles and is omitted
here. ]

Proposition 3.15 The revolution number of expanded R/L-irrational angles is invariant un-
der the group action of the orientation preserving lattice-affine transformations. |

Let us finally give the definition of trigonometric functions for the expanded angles and
describe some relations between ordinary and expanded angles.

Definition 3.16 Consider an arbitrary expanded angle @ with the normal form kx + ¢ for
some ordinary (possible zero) angle ¢ and for an integer k.

a) The ordinary angle ¢ is said to be associated with the expanded angle @.

b) The numbers Itan(¢), Isin(¢), and Icos(g) are called the lattice tangent, the lattice sine,
and the lattice cosine of the expanded angle @.

3.5 Normal forms of expanded rational angles

In this section we list the results of [7] in rational case.
We use the following notation. By the sequence

((ao, ..., a,) X k-times, by, ..., bm),
where k > 0, we denote the following sequence:

(ag,...,qy, Qg,...,dn, ..., QQ,...,0n, bo,...,bp).

k times
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Definition 3.17 I) Let O be the origin, Ay be the point (1,0). We say that the expanded
angle Z(0, Ay) is of the type 1 and denote it by O + larctan(0) (or O, for short). The empty
sequence is said to be characteristic for the angle O + larctan(0).

Consider a lattice oriented broken line AgA;...A, at the unit distance from the ori-
gin O. Let also A be the point (1, 0), and the point A; be on the straight line x = 1. If the
LSLS-sequence of the expanded angle @y = Z(0, AgA; ... Ay) coincides with the follow-
ing sequence (we call it the characteristic sequence for the corresponding angle):

1I;) ((1, —2,1,-2) x (k—1)-times, 1, =2, 1), where k > 1, then we denote the angle @,
by km + larctan(0) (or kur, for short) and say that @y is of the type 11;;

;) ((—1,2,—1,2) x (k — 1)-times, —1, 2, —1), where k > 1, then we denote the angle @,
by —km + larctan(0) (or —kr, for short) and say that @ is of the type 111;;

IV ((1, =2, 1, =2) x k-times, ay, ..., az,), where k > 0,n > 0, a; > 0, fori =0, ..., 2n,

then we denote the angle @ by km + larctan([ay, a;, ..., az,]) and say that @ is of the
type IVy;

Vi) ((—1, 2,—1,2) x k-times, ag, ...,az,l), where k >0,n>0,a; >0, fori =0,...,2n,
then we denote the angle @, by —km + larctan([ao, ay, ..., az,]) and say that @y is of the
type Vi.

Theorem 3.18 For any expanded rational angle @ there exist a unique type among the types
I-V and a unique rational expanded angle @ of that type such that ®q is L, -congruent
to @. The expanded angle @, is said to be the normal form for the expanded angle . [

Further we use the following lemma of [7].

Lemma 3.19 Letm, k> 1,and a; > 0 fori =0, ...,2n be some integers.
a) Suppose the LSLS-sequences for the expanded angles @, and ®, are respectively

((1, —-2,1,-2) x (k — 1)-times, 1, -2,1, -2, ay, ..., azn) and
((1, —2,1,-2) x (k — 1)-times, 1, =2, 1, m, ay, .. .,aZn),

then @ is L -congruent to ®,.
b) Suppose the LSLS-sequences for the expanded angles &, and ®, are respectively

((=1,2,-1,2) x (k — 1)-times, —1,2, =1, m,aq, ..., az,)  and

((—1, 2,—1,2) x (k — 1)-times, —1,2,—1,2, ay, .. .,az,,),
then @, is L -congruent to P,. O
3.6 Normal forms of expanded R- and L-irrational angles

In this section we formulate and prove a theorem on normal forms of expanded lattice R-
irrational and L-irrational angles.
For the theorems of this section we introduce the following notation. By the sequence

((ao, ..., a,) X k-times, by, by, .. .),
where k > 0, we denote the sequence:

(ll(),...,an, apg, ..., Ay, ey ap, ..., a,, bo,bl,...).

k times
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By the sequence
(coosbo2. by, by, (ag, ..., a,) x k-times),

where k > 0, we denote the sequence:

(ceosbo,b_y,bo, ao,...,an, ao,....Qn, ..., Qo,...,0q).

k times

We start with the case of expanded R-irrational angles.

Definition 3.20 Consider a lattice R-infinite oriented broken line AyA; ... at the unit dis-
tance from the origin O. Let also A be the point (1, 0), and the point A; be on the line
x = 1. If the LSLS-sequence of the expanded R-irrational angle @y, = Z(O, ApA; ...) coin-
cides with the following sequence (we call it the characteristic sequence for the correspond-
ing angle):

IVy) ((1, —2,1,—=2) x k-times, ag, ai, .. .), where k > 0, a; > 0, for i > 0, then we denote
the angle @, by kmr + larctan([ay, a;, ...]) and say that @ is of the type IVy;

Vi) ((—1, 2,—1,2) x k-times, ay, ai, .. .), where k > 0, a; > 0, for i > 0, then we denote
the angle @, by —km + larctan([ay, ay, . . .]) and say that @ is of the type V.

Theorem 3.21 For any expanded R-irrational angle @ there exist a unique type among the
types IV-V and a unique expanded R-irrational angle @ of that type such that @y is L -
congruent to ®y. The expanded R-irrational angle @ is said to be the normal form for the
expanded R-irrational angle @.

Proof First, we prove that any two distinct expanded R-irrational angles listed in Defini-
tion 3.20 are not £ -congruent. Let us note that the revolution numbers of expanded angles
distinguish the types of the angles. The revolution number for the expanded angles of the
type IV is 1/4 4+ 1/2k where k > 0. The revolution number for the expanded angles of the
type Vi is 1/4 — 1/2k where k > 0.

We now prove that the normal forms of the same type I'V, (or V) are not £, -congruent
for any integer k. Consider the expanded R-infinite angle @ = km + larctan([ay, ay, .. .]).
Suppose that a lattice oriented broken line AgA;A; ... at the unit distance from O defines
the angle @. Let also the LSLS-sequence for this broken line be characteristic.

If k is even, then the ordinary R-irrational angle with the sail Ay Agiy; ... is £ -congru-
ent to larctan([ay, ay, ...]). This angle is a proper lattice-affine invariant for the expanded
R-irrational angle @ (since Ay, = Ag). This invariant distinguish the expanded R-irrational
angles of type IV, (or V,) for even k.

If k is odd, then denote B; = V + A;V. The ordinary R-irrational angle with the sail
By Boyi - - . is L -congruent to the angle larctan([ay, a;, .. .]). This angle is a proper lattice-
affine invariant of the expanded R-irrational angle @ (since By, =V + ‘Ao V). This invariant
distinguish the expanded R-irrational angles IV, (or V) for odd k.

Therefore, the expanded angles listed in Definition 3.20 are not £ -congruent.

Secondly, we prove that an arbitrary expanded R-irrational angle is £, -congruent to
some of the expanded angles listed in Definition 3.20.

Consider an arbitrary expanded R-irrational angle @ = Z(V, ApA; ...). Suppose that
#(®) = 1/4+4k/2 for some nonnegative integer k. By Proposition 3.12, there exist an integer
positive number 7, such that the lattice oriented broken line A,; A+ ... does not intersect
the rays r. = {V+AV Ay | A >0} and r_ = {V — AV Aq | A > 0}, and the LSLS-sequence
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(@2ny—2, A2ny—1, - - -) for the oriented broken line A, A, 4 ... does not contain nonpositive
elements.
By Theorem 3.18, there exist integers k and m, and a lattice oriented broken line
AoB1B;...ByBoi1 ... BoymA

no
with LLS-sequence of the form
(1, =2,1,=2) x k-times, by, by, ..., bom—2).

where all b; are positives.
Consider now the lattice oriented infinite broken line AgB B> ... Bytym—1AngAng+1 -« - -
The LLS-sequence for this broken line is as follows:

(1, =2, 1, =2) x k-times, by, by, ..., bay—2, V, A2pg—2G2ng—1, - - .),

where v is (not necessarily positive) integer.

Note that the lattice oriented broken line AgB|B;... ByymAy, is a sail for the angle
ZAyV A, and the broken line A, A, +1 ... is a sail for some R-irrational angle (we denote
it by «). Let H; be the convex hull of all lattice points of the angle ZAyV A, except the
origin, and H, be the convex hull of all lattice points of the angle « except the origin. Note
that H, intersects H, in the ray with the vertex at A, .

The lattice oriented infinite broken line BoiBoki2 ... BokymAnyAng+1 - - . intersects the
ray r4 in the unique point By, and does not intersect the ray r_. Hence there exists a straight
line / intersecting both boundaries of H; and H,, such that the open half-plane with the
boundary straight line / containing the origin does not intersect the sets H, and H,.

Denote By = Ao and Bjiypq1 = Ay, The intersection of the straight line / with H; is
either a point By (for 2k < s <2k +m + 1), or a boundary segment B, B, for some integer
s satisfying 2k < s < 2k + m. The intersection of [ with H, is either a point A, for some
integer ¢ > ng, or a boundary segment A,_; A, for some integer t > ny.

Since the triangle AV A; B; does not contain interior points of H; and H,, the lattice
points of AV A, B distinct from B are on the segment A, B;. Hence, the segment A, By is at
the unit lattice distance from the vertex V. Therefore, the lattice infinite oriented broken line

AoB1B;... BSA[AH_] ..

is at the lattice unit distance.

Since the lattice oriented broken line By ... B;A;A;4 ... is convex, it is a sail for some
R-irrational angle. (Actually, the case B, = A, = A, is also possible, then delete one of
the copies of A,, from the sequence.) We denote this broken like by Cp41Co42 ... . The
corresponding LSLS-sequence is (cak, Cag+15 Cag+2, - - -), Where ¢; > 0 for i > 4k. Thus the
LSLS-sequence for the lattice ordered broken line AgB; B ... BoxCox4+1Cox2 - - - 18

((1, =2,1,-2) x (k — 1)-times, 1, =2, 1, w, cat, Cak+1, Car42, - - )

where w is an integer that is not necessarily equivalent to —2.

Consider an expanded angle Z(V, AgB1B; ... By Cy+1). By Lemma 3.19, there exists
a lattice oriented broken line Cy ... Cy41 With the vertices Co = Ag and Cpy of the same
equivalence class, such that Co; = By, and the LSLS-sequence for it is

((1, =2, 1, =2) x k-times, cu, Cap+1).
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Therefore, the lattice oriented R-infinite broken line CyC; ... for the angle Z(V, ApA;...)
has the LSLS-sequence coinciding with the characteristic sequence for the following angle
km + larctan([c4k, Caxt1, - - .]). Therefore,

¢ékﬂ' + larctan([cak, Capr1s ---])-

This concludes the proof of the theorem for the case of nonnegative integer k.
The proof for the case of negative k repeats the proof for the nonnegative case and is
omitted here. ]

Let us give the definition of trigonometric functions for expanded R-irrational angles.

Definition 3.22 Consider an arbitrary expanded R-irrational angle ¢ with the normal form
km + ¢ for some integer k.

a) The ordinary R-irrational angle ¢ is said to be associated with the expanded R-irrational
angle @.

b) The number ltan(¢) is called the lattice tangent of the expanded R-irrational angle @.

We continue now with the case of expanded L-irrational angles.

Definition 3.23 The expanded irrational angle Z(V,...A;2A;+1A;...) is said to be

transpose to the expanded irrational angle Z(V,...A;A;;1A;4>...) and denoted by
t

LV, Aj A A )

Definition 3.24 Consider a lattice L-infinite oriented broken line ... A_; A at the unit dis-
tance from the origin O. Let also A be the point (1, 0), and the point A_; be on the straight
line x = 1. If the LSLS-sequence of the expanded L-irrational angle @y = Z(0, ... A_ Ayp)
coincides with the following sequence (we call it the characteristic sequence for the corre-
sponding angle):

IV (...,a_1, a9, (=2,1,-2,1) x k-times), where k > 0, a; > 0, for i <0, then we denote
the angle @ by kr + larctan’ ([ag, a_1, . ..]) and say that @y is of the type IVy;

Vi) (....a_1, a0, (2,—1,2,—1) x k-times), where k > 0, a; > 0, for i <0, then we denote
the angle @ by —km + larctan’ ([ag, a_1, ...]) and say that @ is of the type V.

Theorem 3.25 For any expanded L-irrational angle @ there exist a unique type among the
types IV-V and a unique expanded L-irrational angle @y of that type such that @ is L -
congruent to @,. The expanded L-irrational angle @ is said to be the normal form for the
expanded L-irrational angle @.

Proof After transposing the set of all angles and change of the orientation of the plane the
statement of Theorem 3.25 coincides with the statement of Theorem 3.21. ]
4 Sums of expanded angles and expanded irrational angles

Now we can give definitions of sums of ordinary angles, and ordinary R-irrational or/and
L-irrational angles.
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Definition 4.1 Consider expanded angles @;, where i =1, ..., ¢, an expanded R-irrational
angle @,, and an expanded L-irrational angle @;. Let the characteristic LSLS-sequences for
the normal forms of the angles ®; be (ao;, a1, ..., au,; ); of &, —be (ag,,ai,,...), and
of d)] —be ( a1, (10,]).

Let M = (my,...,m,_;) be some (¢ — 1)-tuple of integers. The normal form of any
expanded angle, corresponding to the LSLS-sequence

(@01, @11 - -\ Gony 1 M1, 02, Q12 -y Aoy 20 M, <o M1, Q0,0 At - -y A2y 1)
is called the M-sum of expanded angles ®@; (i =1, ...,1).

Let Mg = (my,...,m;—_1,m,) be some ¢-tuple of integers. The normal form of any ex-
panded angle, corresponding to the LSLS-sequence

(ao,ual,l,~--,a2n1,1,m1,610,2»€11.2,~--,azn2,2,m2,~--
e M, A0 g ey Gy My Ay, )
is called the M g-sum of expanded angles ®; (i =1, ...,t) and P,.

Let M, = (m;, my, ..., m,_;) be some t-tuple of integers. The normal form for any ex-
panded angle, corresponding to the LSLS-sequence

(- e A1,1,Q0,1, M, A0,1, A1, 15« -5 A2py 1, M1, 002,012, -+, A2py 2, M2, ...
e My 1,401,115 - - azn,,t)
is called the M| -sum of expanded angles ®;, and ®; (i =1, ...,1).

Let My g = (my,my, ..., m;_y1,m,) be some (¢ + 1)-tuple of integers. Any expanded LR-
irrational angle, corresponding to the LSLS-sequence

(. ce,a_17,401,M;,A0,1,1,15 -+ - az,,lql, miy,aop2,a12, .-, aznzvz, no, ...
s My 1,401, A1 gy o vy azn[,,m,, aogr, Al - - )
is called a My g-sum of expanded angles ®@;, ®; (i =1,...,t) and ®,.
We denote the (a;, a, ..., a,—1)-sum of angles @4, ..., P, by
D+ Pr4ay - Fa, P

Finally, we give a few examples of sums.

larctan 1 +,, larctan 1= larctan (n>0),

n—+

5 .
larctan 3 +_ larctan 3 +_, larctan 1=27,

54
=larctan

3
larctan 3 + larctan
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5 Related questions and problems

We conclude the paper with the following questions and problems.

Problem 1 a) Find a natural definition of lattice tangents for L-irrational angles, and LR-
irrational angles.
b) Find a natural definition of lattice sines and cosines for irrational angles (see also in [7]).

Problem 2 Does there exist a natural definition of the sums of
a) any expanded LR-irrational angle and any expanded angle;
b) any expanded R-irrational angle and any expanded angle;

¢) any expanded angle and any expanded L-irrational angle?

Problem 3 Find an effective algorithm to verify whether or not two given almost-positive
LSLS-sequences define £-congruent expanded irrational angles.

Acknowledgements The author is grateful to V. I. Arnold for constant attention to this work, A. G. Khovan-
skii for useful remarks and discussions, and Mathematisch Instituut of Universiteit Leiden for the hospitality
and excellent working conditions.
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On existence and uniqueness conditions
for an integer triangle with given angles

O.N. Karpenkov

The problem of describing integer convex polygons in integer-invariant terms is still
open. At present it is known only that the number of integer convex polygons with
integer area bounded above by n grows exponentially with respect to n'/3 (see the papers
[1] and [2]). In this note we give a complete description for the case of integer triangles.
The author is grateful to V.I. Arnold, I. Bardny, and A.G. Khovanskii for their attention
to this work and for useful remarks.

General definitions. We consider a two-dimensional oriented real affine plane and fix
some system of coordinates OXY in this plane. A point of the plane is called an integer
point if all its coordinates are integers. The convex hull of a finite number of integer points
not all contained in one line is called an integer convex polygon. Consider a minimal set
of points defining a given polygon. The points of this set are called the wvertices of the
polygon. Since all the vertices are on the boundary of the convex hull, they can be
ordered in a cyclic counterclockwise or clockwise way: A1, ..., A,. We call such a polygon
positively or negatively oriented, respectively, and denote it by A; ... A,.

By an angle we mean an ordered set of two closed rays with common vertex and not
contained in the same line. The rays are called sides of the angle, and their common
vertex the vertex of the angle. An angle is called an integer angle if its vertex is an integer
point and both sides contain integer points distinct from the vertex. An angle ZABC of
an oriented integer polygon with consecutive vertices A, B, and C is the integer angle
with integer vertex B and sides BA and BC.

An affine transformation of the plane is said to be integer-affine if it preserves the set
of all integer points. Two polygons Ai...A, and Bi...B, (two angles ZA;A2As and
ZB1B3Bs3) are said to be integer-equivalent if there exists an integer-affine transformation
of the plane taking the points A; to the points B;, for i = 1,...,n (respectively, taking
the rays A2A1 and A As to the rays BaBq and B2 Bs).

For any positive integer n and a point A(x,y) we denote by nA the point with coordi-
nates (nz,ny). The polygon nAy...nAy is said to be n-homothetic to the polygon P =
Ap ... A and is denoted by nP. Two polygons P; and P> are said to be integer-homothetic
if there exist positive integers m1 and ms such that m; P; is integer-equivalent to ma Ps.

Finite continued fractions. Let us complete the set of rationals with the operations +
and 1/% by the element oo and denote this completion by Q. We set ¢ £ co = oo,
1/0 = o0, and 1/00 = 0 (the expressions oo + oo are not defined).

To any finite sequence (ao, a1,...,an) of integers we assign the element

ao +1/(a1 +1/(az + -+ 1/(an-1 +1/an)---))

of Q and denote it by ¢ = Jag, a1, . . ., axn[. If the terms of a sequence a1, . . ., an, are positive,
then the expression for g is called an ordinary continued fraction.

This research was supported by grants NSh-1972.2003.1, NWO-RFFI 047.011.2004.026 (RFBR
05-02-89000-NWO_a), RFBR 05-01-02805-CNRSL_a, and RFBR-05-01-01012a.
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Proposition. For any rational number there exists a unique ordinary continued fraction
with an odd number of elements.

For ¢; € Q, ¢ = 1,...,k, we consider the corresponding ordinary continued fractions
¢ = ]ai,0,ai1,...,0i2,;] with an odd number of elements. Denote by ]q1, g, ..., k[ the
element

}a1,07 ai,1y.---,0a1,2n1,02,0,02,15--.,A22n5,...,Ak,0,Ak, 15+, ak,an[ S Q~

Integer tangents. The integer length of a segment AB (denoted by 1£(AB)) is the ratio
of its Euclidean length to the minimal Euclidean length of integer vectors with vertices
in AB. The integer (non-oriented) area of a polygon P (denoted by 1S(P)) is twice the
Euclidean area of the polygon.

Consider an arbitrary integer angle ZABC'. The boundary of the convex hull of the set
of all integer points except B in the convex hull of ZABC is called the sail of the angle.
The sail of the angle is a finite broken line with the first and the last vertices on different
sides of the angle. Let us orient the broken line in the direction from the ray BA to the
ray BC and denote its vertices by Ao, ..., Am+1. Let a; = 1£(A;As41) for i =0,...,m,
and let b; =1S(A;—1A4;A;4+1) for i = 1,...,m. The following rational number is called the
integer tangent of the angle ZABC":

lao, b1, a1,b2,a2,. .., bm, am] (notation: ltan ZABC).

Statement of the theorem. In plane Euclidean geometry an existence condition for a
triangle with given angles can be written using the tangents of the angles in the following
way. There exists a triangle with angles «, 8, and v if and only if tan(a+ 3+ ) = 0 and
tan(a + B) ¢ [0,tan o] (without loss of generality, we suppose here that « is acute). We
present an integer analogue of the latter statement.

Theorem. a) Let ag, a1, andas be an ordered triple of integer angles. There exists an ori-
ented integer triangle with consecutive angles integer-equivalent to the angles oo, a1, and
oz if and only if there exists j € {1,2,3} such that the angles o = o, = @11 (mod3)s
and vy = j12 (moa3) Satisfy the following conditions: i) |ltan o, —1,1tan 3, —1,ltan [ = 0;
ii) |ltan o, —1,1tan B[ ¢ [0, ltan o].

b) Two integer triangles with the same sequence of integer tangents are integer-
homothetic.

Note that in the hypothesis of the theorem we always take ordinary continued fractions
with an odd number of elements for the tangents of the angles. We illustrate the theorem
with the following particular example:

Itana = 3 = |3[;
ltan 8 =9/7 =]1,3,2];
Itany =3/2 =11,1,1[;

1) ]37 717 15332a 717 17 15 1[ = 0;
i) 13,-1,1,3,2[ = —-3/2 ¢ [0, 3].
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CLASSIFICATION OF LATTICE-REGULAR LATTICE CONVEX POLYTOPES.

OLEG KARPENKOV

ABSTRACT. In this paper for any dimension n we give a complete description of lattice convex
polytopes in R™ that are regular with respect to the group of affine transformations preserving the

lattice.
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INTRODUCTION.

Consider an n-dimensional real vector space. Let us fix a full-rank lattice in it. A convex polytope
is a convex hull of a finite number of points. A hyperplane 7 is said to be supporting for a (closed)
convex polytope P, if the intersections of P and 7 is not empty, and the whole polytope P is
contained in one of the closed half-spaces bounded by 7. An intersection of any polytope P with
any its supporting hyperplane is called a face of the polytope. Zero- and one-dimensional faces are
called vertices and faces.

Consider an arbitrary n-dimensional convex polytope P. An arbitrary unordered (n+1)-tuple of
faces containing the whole polytope P, some its hyperface, some hyperface of this hyperface, and
so on (up to a vertex of P) is called a face-flag for the polytope P.
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A convex polytope is said to be lattice if all its vertices are lattice points. An affine transformation
is called lattice-affine if it preserves the lattice. Two convex lattice polytopes are said to be lattice-
congruent if there exist a lattice-affine transformation taking one polytope to the other. A lattice
polytope is called lattice-reqular if for any two its face-flags there exist a lattice-affine transformation
preserving the polytope and taking one face-flag to the other.

In this paper we give a complete description of lattice-regular convex lattice polytopes in R™ for
an arbitrary n (Theorem 2.2 in Section 2).

The study of convex lattice polytopes is actual in different branches of mathematics, such as
lattice geometry(see, for example [3], [4], [8], [18]), geometry of toric varieties (see [7], [10], [17])
and multidimensional continued fractions (see [1], [11], [9], [12], [16]). Mostly, it is naturally to
study such polytopes with respect to the lattice-congruence equivalence relation.

Now we formulate two classical examples of unsolved problems on convex lattice polytopes. The
first one comes from the geometry of toric varieties.

Problem 1. Find a complete invariant of lattice-congruence classes of convex lattice (two-
dimensional) polygons.

Only some estimates are known at this moment (see for example [2] and [4]).

The second problem comes from lattice geometry and theory of multi-dimensional continued
fractions. A lattice symplex is called empty if the intersection of this (solid) symplex with the
lattice coincides with the set of its vertices.

Problem 2. Find a description of lattice-congruence classes of empty symplices.

The answer to the second problem in the two-dimensional case is simple. All empty triangles
are lattice-congruent. Tree-dimensional case is much more complicated. The key to the description
gives White’s theorem (1964) shown in [20] (for more information see [18], [16], and [9]).

The problems similar to the shown above are complicated and seem not to be solved in the nearest
future. Nevertheless, specialists of algebraic geometry or theory of multidimensional continued
fractions usually do not need the complete classifications but just some special examples.

In the present paper we make the first steps in the study of the lattice polytopes with non-
trivial group of lattice-symmetries (i.e. the group of lattice-affine transformations, preserving the
polytope). We describe the “maximally” possible lattice-symmetric polytopes: the lattice-regular
polytopes.

Let us formulate statement for the second step in the study of the lattice polytopes with non-
trivial group of lattice-symmetries. A convex lattice pyramid P with the base B is said to be
lattice-reqular if B is a lattice-regular polytope, and the group of lattice-symmetries of the base
B (in the hyperplane containing B) is expandable to the group of lattice-symmetries of the whole
pyramid P.

Problem 3. Find a description of lattice-regular convex lattice pyramids.

This paper is organized as follows. We give a well-known classical description of Euclidean and
abstract regular polytopes in terms of Schléafli symbols in Section 1. In Section 2 we give necessary
definitions of lattice geometry and formulate a new theorem on lattice-affine classification of lattice-
regular convex polytopes. Further in Section 2 we prove this theorem for the two-dimensional
case. We study the cases (in any dimension) of lattice-regular symplices, cubes, and generalized
octahedra in Sections 4, 5, and 6 respectively. Finally in Section 7 we investigate the remaining
cases of low-dimensional polytopes and conclude the proof of the main theorem.

Acknowledgement. The author is grateful to professors V. I. Arnold and A. G. Khovanskii for
useful remarks and discussions, and Université Paris-Dauphine — CEREMADE for the hospitality
and excellent working conditions.
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1. EUCLIDEAN AND ABSTRACT REGULAR POLYTOPES.

For the proof of the main theorem on lattice-regular polytopes we use the classification of abstract
convex polytopes. We start this section with the description of Euclidean regular polytopes and
Schlafli symbols for them, and then continue with the case of abstract regular polytopes.

1.1. Euclidean regular polytopes. Consider an arbitrary n-dimensional Fuclidean regular poly-
tope P. Let (F,=P, F,,_1,...,Fi, Fy) be one of its flags. Denote by O; the mass center of the face
F; considered as a homogeneous solid body (for @ = 0,...,n). The n-dimensional tetrahedron
001 ...0,-10,, is called the chamber of a regular polytope P corresponding to the given flag.
Denote by r; (for i = 0,...,n — 1) the reflection about the (n—1)-dimensional plane spanning the
points Fy,, ..., Fiy1, Fi_1,..., Fy. See Figure 1. These reflections are sometimes called basic.

The following classical statement holds.

Statement 1.1. The reflections 1o, 71, ...,rn_1 generate the group of Euclidean symmetries of the
FEuclidean regular polytope P.
For i =1,...,n—1 the angle between the fized hyperplanes of the symmetries r;_1 and r; equals

7 /a;, where a; is an integer greater than or equivalent to 3.

The symbol {aq,...,a,—1} is said to be the Schldfli symbol for the polygon P. Traditionally, the
string a, a,...,a of the length s in Schlafli symbol is replaced by the symbol a®.
Since all face-flags of any regular polytope are congruent, the Schlifli symbol is well-defined.

7“0: 7“0: 7 Tor 7/5,
1 S
:77/4 e
| 7
I,/
Lo
0oLl ) Oy
|01 SO
{4} {5}

FIGURE 1. Basic reflections and Schlafli symbols for some regular polygons.

Theorem A. On classification of regular Euclidean polytopes. Any regular convexr Eu-
clidean polytope is homothetic to some polytope of the following list.

List of regular Euclidean polytopes.
Dimension 1: a segment with Schlafli symbol {}.
Dimension 2: a regular polygon with m vertices (for any m > 3) with Schlifli symbol {m}.
Dimension 3: a regular tetrahedron ({3,3}), a regular octahedron ({3,4}), a reqular cube ({4,3}),
a reqular icosahedron ({3,5}), a reqular dodecahedron ({5,3}).
Dimension 4: a regular symplex ({3,3,3}), a regular cube ({4,3,3}), a reqular generalized octa-
hedron (or cross polytope, or hyperoctahedron; with Schlifli symbol {3,3,4}), a regular 24-cell (or
hyperdiamond, or icositetrachoron; with Schlafli symbol {3,4,3}), a regular 600-cell (or hypericosa-
hedron, or hexacosichoron; with Schlafli symbol {3,3,5}), a regular 120-cell (or hyperdodecahedron,
or hecatonicosachoronor; with Schlifli symbol {5,3,3}). Dimension n (n>4): a regular symplex
({3"71}), a regular cube ({4,3""2}), a regular generalized octahedra ({3"2,4}).

Remark 1.2. The cases of dimension one, two, and three were already known to the ancient math-
ematicians. The cases of higher dimensions were studied by Schlifli (see in [19]).
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1.2. Abstract regular polytopes. In this subsection we consider arbitrary convex polytopes.
Consider two n-dimensional polytopes. A homeomorphism of two n-dimensional polytopes is said
to be combinatorical if it takes any face of one polytope to some face of the same dimension of the
other polytope. Two polytopes are called combinatorically isomorphic if there exist a combinatorical
homeomorphism between them.

A convex polytope is called combinatorical regular if for any two its face-flags there exist a
combinatorical homeomorphism taking the polytope to itself and one face-flag to the other.

Theorem B. (McMullen [13].) A polytope is combinatorical reqular iff it is combinatorically
isomorphic to a regular polytope.

The proof of this statement essentially uses the work of Coxeter [5].

Remark 1.3. Theorem B implies the classification of real affine and projective polytopes (see [14]).
Both classifications coincide with the classification of Euclidean regular polytopes. For further
investigations of abstract polytopes see for example the work of L. Danzer and E. Schulte [6] and
the book on abstract regular polytopes by P. McMullen and E. Schulte [15].

2. DEFINITIONS AND FORMULATION OF THE MAIN RESULT.

Let us fix some basis of lattice vectors g; for ¢ = 1,...,n generating the lattice in R™. Denote
by O the origin in R™.

Consider arbitrary non-zero integers ni,...,n; for k& > 2. By ged(nq,...,n;) we denote the
greater common divisor of the integers n;, where i = 1,... k. We write that a = b(mod ¢) if the

reminders of ¢ and b modulo ¢ coincide.

2.1. Some definitions of lattice geometry. Let ) be an arbitrary lattice polytope with the
vertices A; = O +T; (where 7; — lattice vectors) for i = 1,...,m, and ¢t be an arbitrary positive
integer. The polygon P with the vertices B; = O + tv; for i = 1,...,m is said to be the t-multiple
of the polygon Q.

Definition 2.1. A lattice polytope P is said to be elementary if for any integer ¢ > 1 and any
lattice polytope @ the polytope P is not lattice-congruent to the t-multiple of the lattice polytope

Q.

2.2. Notation for particular lattice polytopes. We will use the following notation.
Symplices. For any n > 1 we denote by {3"‘1}5 the n-dimensional symplex with the vertices:

n—1
Vo =0, Vi=0+g;, fori=1,...,n—1, and V, = (p—1) Zék + pe,.
k=1
Cubes. Any lattice cube is generated by some lattice point P and a n-tuple of linearly inde-
pendent lattice vectors v;:

n
{P+Zam 0<a; <1,i= 1n}

i=1
We denote by {4, 3"‘2}1L for any n > 2 the lattice cube with a vertex at the origin and generated
by all basis vectors.
By {4,372} for any n > 2 we denote the lattice cube with a vertex at the origin and generated
by the first n—1 basis vectors and the vector e + € + ... +¢€,_1 + 2¢,.
By {4,3"2}L for any n > 3 we denote the lattice cube with a vertex at the origin and generated
by the vectors: €1, and e; + 2¢; for i = 2,...,n.

Generalized octahedra. We denote by {3772 4} for any n > 2 the lattice generalized

octahedron with the vertices O +¢€; fori=1,...,n.
By {3"72,4}% for any positive n we denote the lattice generalized octahedron with the vertices



CLASSIFICATION OF LATTICE-REGULAR LATTICE CONVEX POLYTOPES. 5

O+te fori=1,...,n—1,and O+ (€1 + & + ... + €1 + 2&y,).
By {3"72,4}} for any positive n we denote the lattice generalized octahedron with the vertices O,
O—-¢,0—-¢e —¢fori=2,...,n,and ¢; fori =2,...,n.

A segment, octagons, and 24-sells. Denote by {}” the lattice segment with the vertices O
and O +¢;.
By {6} we denote the hexagon with the vertices O £2;, O & &, O £ (€] — &3).
By {6}% we denote the hexagon with the vertices O & (221 + &), O £ (€1 + 2832), O £ (81 — &).
By {3,4,3}} we denote the 24-sell with 8 vertices of the form

O+x2@Ex+es+es), Ox2@e+ex+es), Ox2(e+e3+es), O=x2ey,
and 16 vertices of the form
O+ (€ + 83+ €4) £ (€1 + €3 +24) + (€1 + €3 + 24) + 4.
By {3,4,3}% we denote the 24-sell with 8 vertices of the form

O:|:2(€1 + é2 +€3+E4), Oi2(51—€2+53—|—€4),
O:|:2(€1 —1—52—534—54), OiQ(El +€2+53—€4),

and 16 vertices of the form
O+ (El + é2 +§3+§4) + (El — €9 +§3+§4) + (51 + é2 —§3+§4) + (51 + ey +e3 —54).

2.3. Theorem on enumeration of convex elementary lattice-regular lattice polytopes.
Now we formulate the main statement of the work.

Theorem 2.2. Any elementary lattice-reqular convex lattice polytope is lattice-congruent to some
polytope of the following list.
List of the polygons.
Dimension 1: the segment {}*.
Dimension 2: the triangles {3} and {3}%;
the squares {4} and {4} ;
the octagons {6} and {6}L.
Dimension 3: the tetrahedra {3,3}F, fori=1,2,4;
the octahedra {3,4}F, fori=1,2,3;
the cubes {4,3}F, fori=1,2,3.
Dimension 4: the symplices {3,3,3}Y and {3,3,3}%;
the generalized octahedra {3,3,4}F, fori=1,2,3;
the 24-sells {3,4,3} and {3,4,3}L;
the cubes {4,3,3}F, fori=1,2,3.
Dimension n (n>4): the symplices {3"‘1}5 where positive integers i are divisors of n+1;
the generalized octahedra {372 4L, fori=1,2,3;
the cubes {4,3" 2}t fori=1,2,3.
All polytopes of this list are lattice-regular. Any two polytopes of the list are not lattice-congruent
to each other.

On Figure 2 we show the adjacency diagram for the elementary lattice-regular convex lattice
polygons of dimension not exceeding 7. Lattice-regular lattice polygons of different (six) types
are shown on Figure 3 in the next section. Lattice-regular lattice three-dimensional polygons of
different (nine) types are shown on Figures 4, 5, and 6 further in Sections 4, 5, and 6 respectively.

Further in the proofs we will use the following definition. Consider a k-dimensional lattice
polytope P. Let its Euclidean volume equal V. Denote the Euclidean volume of the minimal
k-dimensional symplex in the k-dimensional plane of the polytope by Vj. The ratio V/Vj is said to
be the lattice volume of the given polytope (if k = 1, or 2 — the lattice length of the segment, or
the lattice area of the polygon respectively).



6 OLEG KARPENKOV
n=1n=2 n=3 n=4 n=215 n==~06 n="7
o {3, 3} bae {3, 3, 3} gt {34} iyt {37} e {30}
(BHA—{3.3}% \ T 13.3,3}1 {3115 {37} {3°}%
(31 \ 3.3} {31}L (30}
: \ %3,3,4& {34}§ | {36}8
' 3,3,41% '
1L (3,43F  1M{3,3,4}F (32, 43k o3443 V{30, 43E
e O (3%, 4)L {34 gt M

{3, 4}k M3, 4}k

3,4 a1
' %3 4i3\{374’3}2L :
| \.*{37 43 | |

{4}L~=:::::{4 3}L~<:::{4 3, 3}L'<::::{4 B {4 3 e {4,371
{4}2 {4.3}% {4.3,3}7 {4, 33}2~<::{4 34}2~<::{4 3°}%
{4 By {4,3, 3}y e {4, 3} e {4, 31 e {4,3%)5

FIGURE 2. The adjacency diagram for the elementary lattice-regular convex lattice polytopes.

3. TWO-DIMENSIONAL CASE.
In this section we prove Theorem 2.2 for the two-dimensional case.

Proposition 3.1. Any elementary lattice-reqular (two-dimensional) lattice convex polygon is
lattice- congruent to one of the following polygons (see Figure 3):

1) {3} 2) {317, 3) {4}1: 9) {4}7: 5) {6}, 6) {6}

{3}f \ 2 R (S

F1GURE 3. The lattice-regular polygons with edges of unit length.

Proof. Suppose that the lattice polygon A1 A, ... A,, where n > 3, is primitive and lattice-regular.

Let us prove that all edges of A1 Ay ... A, are of unite lattice lengths. Since the polygon is lattice-
regular, all its edges are lattice-congruent, and hence they are of the same lattice length. Suppose
that the lattice lengths of all edges equal some positive integer k. Then our polygon is lattice-
congruent to the k-tuple of the polygon A} A5 ... A}, where A] = Ay, and A] = Aj+1/k(A;A14)
for [ =2,...,n—1. Therefore, k = 1.
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Denote by B; the midpoint of the edge A;A;11 for ¢ = 1,...,n—1, and by B, the midpoint
of the edge A, A;. Suppose that n is even (n = 2n). Denote by M the midpoint of the segment
A1 Ajz11. Note that the point M is the common intersection of the segments A; A1 fori=1,... 7.
Suppose that n is odd (n = 2n+1). Denote by M the intersection point of the segments AlB and
Ay Bji+1. Note that the point M is the common intersection of the segments A; By, Anti+18; for
i=1,...,n, and the segment Aj; Bojy1.

For any integer ¢ such that 1 <1 < n the following holds. The transformation that preserves the
points M and B;, and taking the point A; to the point 4,11 (or A, to A in the case of i = n) is
lattice-affine and preserve the polygon A1 A, ... A,.

Suppose that the polygon A;As ... A, contains some lattice point not contained in the union of
its vertices and segments M B; for ¢ = 1,...,n. Then by symmetry reasons the triangle Ay M By
contains at least one lattice point, that is not contained in the edges A; B and M By. Denote one
of such points by P. Let Q) be the point symmetric to the point P about the line M By. The
segment P(Q is parallel to the segment, and hence the lattice point A; + PQ is contained in the
interior of the segment A;As. Then the lattice length of the edge A1 A5 is not unit. We come to
the contradiction with the above.

Therefore, all inner lattice points of the polygon A1As... A, are contained in the union of the
segments M B; for i = 1,...,n and vertices. Now we study all different cases of configurations of
lattice points on the segment M Bj.

Case 1. Suppose that M By does not contain lattice points. Then by symmetry reasons the
polygon A;As...A, does not contain lattice points different to its vertices. Hence the vectors
Ao Ay and AsAs generate the lattice. Consider the linear system of coordinates such that the
points A, As, and Az have the coordinates (0,1), (0,0), and (1,0) in it respectively.

If n = 3, then the triangle A;A3Aj is lattice-congruent to the triangle {3}

Let n > 3. Since the vectors A; Ay and Ay A3 generate the lattice, and the vectors A, Az and
AsA, generate the lattice, the point A4 has the coordinates (a,1) for some integer a. Since the
segment A; A4 does not contain lattice points distinct to the endpoints, Ay = (1,1). By the same
reasons A, = (1,1). Therefore, n = 4, and the lattice polygon A;A;A3A, is lattice-congruent to
the lattice-regular quadrangle {4}F.

Case 2. Suppose that the point M is lattice and the segment M B; does not contain lattice
points distinct to M. Then the vectors M A; and M As generate the lattice. Consider the linear
system of coordinates such that the points Ay, M, and Az have the coordinates (0,1), (0,0), and
(1,0) in it. Since the vectors A1 M and M A generate the lattice, and the vectors Ay M and M As
generate the lattice, the point Az has the coordinates (—1,a) for some integer a.

If @ > 2, then the polygon is not convex or it contains straight angles.

If a = 1, then the vectors A1 Ay and As Az generate the lattice. Since the vectors A3M and M Ay
generate the lattice, and the vectors A3 A3 and AsA4 generate the lattice, the new coordinates of
the point Ay are (0,—1). Since Ay = A1+2A; M, we have

As = Ay +2A5M = (O, —1), Ag = Az + 2A3M = (1, —1), and n =06.

Therefore, the lattice-regular polygon AjAs A3A4A5Ag is lattice-congruent to the lattice-regular
hexagon {6}F.

If a = 2, then A3 = A;+2A; M. Hence A3 = Ay+2A5M = (0,—1), and n = 4. Therefore, the
polygon AjAsA3A, is lattice-congruent to the lattice-regular quadrangle {4}%.

If a = 3, then Aj is contained in the line M B;. Hence n = 3. Therefore, the lattice triangle
A A1 Az As is lattice-congruent to the lattice-regular triangle {3}s.

Since A,, = (a,—1), the edges A, A; and A;As intersect for the case of a > 3.

Case 3. Suppose that the segment M B; contains the unique lattice point P distinct from the
endpoints of the segment M B;. Then the vectors PA; and PAy generate the lattice. Consider the
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linear system of coordinates such that the points Ay, P, and As have the coordinates (0, 1), (0,0),
and (1,0) in it. Since the polygon is lattice-regular, the point M+PM is also a lattice point, and
hence M = (—1/2,—1/2). Denote the point (-1,-2) by M’. (Note that the point M is the midpoint
of the segment M'B).

The vectors A;M' and M'A, generate a sublattice of index 3. The vectors A, M’ and M’'Ag
generate a sublattice of index 3. The segment Az A3 is of unit lattice length. Therefore, the point
As has the coordinates (2a—1,6a+2) for some integer a.

If a > 0, then the polygon is not convex, or it contains straight angles. Since A,, = (6a+2,2a—1),
the edges A, Ay and Ay A, intersect for the case of a < 0.

Case 4. Suppose that the point M is lattice and the segment M B; contains the unique interior
lattice point P. Then the vectors PA; and PA; generate the lattice. Consider the linear system of
coordinates such that the points Ay, P, and Ay have the coordinates (0,1), (0,0), and (1,0) in it.
Since the polygon is lattice-regular, the point M + PM is also lattice, and hence M = (—1, —1).

The vectors A1 M’ and M'’A, generate a sublattice of index 3. The vectors A;M’ and M’'As
generate a sublattice of index 3. The segment A As is of unit lattice length. Therefore, the point
Az has the coordinates (a—1,2a+2) for some integer a, such that a Z 1(mod 3).

If @ > 0, then the polygon is not convex, or it contains straight angles, but this is impossible.

If a = —1, then the vectors A;As and Ay A3 generate a sublattice of index 3. Since the vectors
AsM’ and M’A4 generate a sublattice of index 3, and the vectors A A3 and A3zA4 generate a
sublattice of index 3, the point A4 = (—3,—2). Since Ay = A1+2A, M, we have

As = Ay +2AM = (—2, —3), Ag = A3+ 2A3M = (0, —2), and n = 6.
Therefore, the lattice polygon A;AsA3A4AsAg is lattice-congruent to the lattice-regular hexagon

{6}5.

Since A,, = (2a+2,a—1), the edges A, A; and A; A, are intersecting for the case of a < —1.

The remaining cases. Suppose that the segment M By contains at least two interior lattice points.
Let P, and P be two distinct interior lattice points of the segment M B;. Let also the segment
M P, contains the point P;.

Consider an lattice-affine transformation & taking the point M to itself, and the segment A;As
to the segment Ay As. The points Q1 = {(P1) and Qo = £(FP») are contained in the segment M Bs.
Since the lines P;@Q1 and P>(@)s are parallel and the triangle P,M Q)2 contains the segment P;Q1,
the lattice point S = P,+QyP, is contained in the interior of the segment P;@Q;. Hence the lattice
point S of the polygon A1As... A, is not contained in the union of segments M B; for i = 1,...,n.
We come to the contradiction.

We have studied all possible cases of configurations of lattice points contained inside lattice
polygons. The proof of Proposition 3.1 is completed. O

4. LATTICE-REGULAR LATTICE SYMPLICES.

In this section we study all lattice-regular lattice symplices for all integer dimensions.
Let us fix some basis of lattice vectors €;, for i = 1,...,n generating the lattice in R™ and the
corresponding coordinate system. Denote by O the origin in R".

Proposition 4.1. Sym;. All elementary lattice-reqular one-dimensional lattice symplices are lat-
tice segments of unit lattice length.

Sym,, (for n > 1). i) The symplex {3"~1}£ where p is a positive divisor of n+1 is elementary
and lattice-reqular;
i) any two symplices listed in (i) are not lattice-congruent to each other;
i11) any elementary lattice-reqular n-dimensional lattice symplex is lattice-congruent to one of the
symplices listed in (7).

The three-dimensional tetrahedra {3,3}¥, {3,3}% and {3,3}} are shown on Figure 4.
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FIGURE 4. Three-dimensional elementary lattice-regular convex lattice tetrahedra.

Proof. We start the proof of studying of some low-dimensional cases. The one-dimensional case
is trivial and is omitted here. The two-dimensional case was described in Proposition 3.1. Let us
study the three-dimensional case.

Three-dimensional case. Consider an arbitrary elementary lattice-regular three-dimensional lat-
tice tetrahedron S. Since its faces are lattice-regular, by Proposition 3.1 the faces are lattice-
congruent either to {3} or to {3}%.

Suppose that the faces of S are lattice-congruent to {3}1. Then there exist a positive integer b,
nonnegative integers a1, as less than b, and a lattice-affine transformation taking the the tetrahedron
S to the tetrahedron S’ with the vertices

Vo=0, Vi=0+¢e, Vo=0+%e, V3=0 +aie;+ azes + bes.

Since S’ is also a lattice-regular tetrahedron, the group of its symmetries is isomorphic to the
group of permutations of order 4. This group is generated by the following transpositions of
vertices: V; and Vo, Vo and V3, and Vj and Vh. The first two transpositions are linear, and the
third one is linear after shifting by the vector —e;. Direct calculations shows, that the matrices of
the corresponding linear transformations are the following:

0 1 a1ga2 1 o _al(ag'f‘l) 1 0 0
10 =254 |, 0 as 1—;”% , and -1 -1 Zwtu-l +é“ —1
0 0 1 0 b —as 0 0 1

Since the listed transformations are lattice-linear we have only the following possibilities, all these
matrices are integer. Therefore, a; = as = b—1(modb). Since, positives a; and ay was chosen to
be smaller than b, we have a; = as = b—1. Since the matrix Ag is integer, the coefficient 3—4/b is
also integer. So we have to check only the following cases for a1, ao, and b: b =1, and a1 = ay = 0;
b=2,and a; = ay = 1; b =4, and a; = az = 3. These cases corresponds to the tetrahedra {3, 3}1L,
{3,3}% and {3, 3}F respectively. Since the lattice volume of {3, 3}5 equals p, the above tetrahedra
are not lattice-congruent.

Let us prove that the faces of S are not lattice-congruent to {3}% by reductio ad absurdum.
Suppose it is so. Let Vj, V4, Vo, and V3 be the vertices of S. Since the faces VyVoV3 and V1 Vo3
are congruent to {3}, the face VpV2V3 contains a unique lattice point in its interior (we denote
it by Py), and the face V1V,V3 contains a unique lattice point in its interior (we denote it by P»).
Consider a lattice-symmetry of S permuting Vj and V7 and preserving Vo and V3. This symmetry
takes the face VVoV3 to the face V41 V5 V3, and hence it maps the point P, to P». Thus, the lattice
vector P, P, is parallel to the vector VyV;. Hence, the point Vy + P, P, is interior lattice point of
the segment VyVq. Therefore, the segment VyV; is not of unit lattice length and the face VpVq Vs is
not lattice-congruent to {3}%. We come to the contradiction.

This completes the proof of Proposition 4.1 for the three-dimensional case.
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In the higher dimensional case we first study two certain families of symplices.

The first type of n-dimensional symplices. Consider any symplex (for n > 3) with the vertices

Vo =0, Vi=0+¢,fork=1,...,n—1, and Vn:O—i—ZaiEi,
i=1

we denote it by S™(aq,...,a,). We suppose that all a; are nonnegative integers satisfying ax < a,
for k=1,...,n—1. Let us find the conditions on a; for the symplex to be lattice-regular.

If S™(p;aq,...,a,) is a lattice-regular symplex then the group of its symmetries is isomorphic to
the group of permutations of order n+1. This group is generated by the following transpositions
of vertices: the transposition exchanging Vj;, and Vi1 for k = 1,... ,n—1, and the transposition
exchanging V and V5. The first n—1 transpositions are linear (let their matrices be Ay for k =
1,...,n—1), and the last one is linear after shifting by the vector —€; (denote the corresponding
matrix by A,,). Let us describe the matrices of these transformations explicitly.

The matrix Ay for k =1,...n—2 coincides with the matrix transposing the vectors e, and €x41,
except the last column. The n-th column contains the coordinates of the vector

L (€, — Bpr1) + .
The matrix A,,_1 coincides with the matrix of identity transformation except the last two columns.
These columns contain the coefficients of the following two vectors respectively:

n 2

_ —aj(an—1+1) 1-a
> ajej, and z(#em iz | — o1
]:

The matrix A, coincides with the unit matrix except the second row. This row is as follows:
(_1 _1 ai—+.. +an 1— 1+a2)

The determlnants of all such matrices equal —1. So the corresponding affine transformations are
lattice iff all the coefficients of all the matrices are lattice. The matrices A;, for k < n—2 are lattice
iff

a; =ay... = ap—1(moday,).

Since a < a,, we have the equalities. Suppose a1 = ... = a,_1 = p—1 for some positive integer
p. The matrix A,_; is integer, iff 1—p? = p(p+1) = 0(mod a,,). Therefore, r+1 is divisible by a,,
and hence a,, = p. The matrix A, is integer, iff n(p—1)—1 is divisible by p, or equivalently n+1 is
divisible by p.

So, we have already obtained that the symplex S™(aq,...,a,) where n > 3 and 0 < ay < a,, for
k=1,...,n—1 is lattice-regular iff it is coincides with some {3"‘1}5 for some p dividing n. Since
the lattice volume of S} equals p, the above symplices are not lattice-congruent.

The second type of n-dimensional symplices. Here we study symplices (for n > 3) with the
vertices

Vo =0, Vi=0+¢,fork=1,...,n-2,
n—2 n
Vie1=0+(p—1) Z € +pén_1, and V, =0+ Z a;€;,

i=1 i=1
denote such symplices by S™(p;az,...,a,). We also suppose, that all a; are nonnegative integers
satisfying ar < a, for k = 1,...,n—1, and p > 2. Let us show that all these symplices are not
lattice-regular. Consider an arbitrary symplex S™(p;aq,...,ay), satisfying the above conditions.

Consider the symmetry exchanging V,,_1 and V,,. This transformation is linear. Its matrix
coincide with the matrix of identity transformation, except for the last two columns. These columns
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contains the coefficients of the following two vectors respectively:

n—2
CL'+1 — an—1— Ay —
> < I 1) €j + = en—1 1+ Pen, and

=87

n—2

Z P(anfl_aj‘i’p_l)_anfl_ajanflE, + PQ—aiflé _ anflé
= pan J pan nl p

If this transformation is lattice-linear, then as+1 is divisible by p.

Consider the symmetry exchanging V7 and V,,. This transformation is linear. Its matrix coincide
with the matrix of identity transformation, except for the first column and the last two columns.
These columns contains the coefficients of the following three vectors respectively:

n n
= a;j(p—1) p=lo | o
> ajej, - (JTej + € +e€-1, and
Jj=1 Jj=1
n
an—1Pp—pPai—an—1—p =, ptai— =
pan 321 @j€j T Da, €11 En:

If this transformation is lattice-linear then as is divisible by r.
Since ay and as+1 are divisible by r and r > 2, the symplex S™(p;aq,...,a,) is not lattice-
regular.

Conclusion of the proof.

Statement (i) is already proven. Since p is a lattice volume of S}, Statement (ii) holds. We
prove Statement (i) of the proposition by the induction on the dimension n. For n = 1,2, 3 the
statement is already proven. Suppose that it is true for an arbitrary n > 3. Let us prove the
statement for n+1.

Consider any lattice-regular (n+1)-dimensional lattice symplex S. Since it is lattice-regular, all
its faces are lattice-regular. By the induction assumption there exist a positive integer p divid-
ing n+1 such that the faces of S are lattice-congruent to {3"‘1}5 . Therefore, S is lattice-affine
equivalent to the symplex S"*!(p;ay,...,an11), where p > 1, and ax < a,, for k=1,...,n—1. By
the above cases the lattice-regularity implies, that p = 1, and that there exist a positive integer
p' dividing n+2 such that the symplex S"*1(1;a1,...,an+1) coincides with {3"}5,. This concludes
the proof of the Statement (744) for the arbitrary dimension.

Proposition 4.1 is proven. O

5. LATTICE-REGULAR LATTICE CUBES.

In this section we describe all lattice-regular lattice cubes for all integer dimensions.

Proposition 5.1. Cube;. All elementary lattice-reqular one-dimensional lattice cubes are lattice
segments of unit lattice length.

Cubey. All elementary lattice-reqular two-dimensional lattice cubes are lattice-congruent to
{4}F, or to {4}k, The cubes {4} and {4}% are not lattice-congruent.

Cube,, (for n > 2). All elementary lattice-reqular n-dimensional lattice cubes are lattice-con-
gruent to {4,3"2}E {4,372V or {4,372}k The cubes {4,372}, {4,3""2}L and {4,3""2}L
are not lattice-congruent to each other.

The three-dimensional cubes {4,3"~2}L, {4,3"=2}} and {4, 3"~2}£ are shown on Figure 5.
We use the following two facts.

Lemma 5.2. Any elementary lattice-reqular n-dimensional lattice cube contains at most one lattice
point in its interior. If the cube contains an interior lattice point, this point coincides with the
intersection point of the diagonals of the cube.
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(4,3} (.3} iy

FIGURE 5. Three-dimensional elementary lattice-regular convex lattice cubes.

Proof. Suppose the converse is true. There exist a primitive n-dimensional cube with an interior
lattice point A distinct to the intersections of the diagonals. Then there exist a lattice-linear
reflection £ of the cube above some n—1 dimensional plane, that do not preserve A. So the line of
vector A{(A) coincide with the line containing one of the generating vectors of the cube. Hence,
the one-dimensional faces of the cube are not elementary. Therefore, the cube is not elementary.
We come to the contradiction. O

Let us give the following important definition. Consider some hyperplane containing a sublattice
of the lattice of corank 1 and a lattice point in the complement to this hyperplane. Let the
Euclidean distance from the given point to the given hyperplane equals [. The minimal value
of nonzero Euclidean distances from the points of the lattice to the hyperplane is denoted by .
The ratio I/ly is said to be the lattice distance from the given lattice point to the given lattice
hyperplane.

Corollary 5.3. The lattice distances from any wvertexr of any elementary lattice-reqular n-
dimensional lattice cube to any its (n—1)-dimensional face (that does not containing the given
vertez) equals either 1, or 2. O

Proof of Proposition 5.1. The one-dimensional case is trivial. The two-dimensional case was
described in Proposition 3.1. Let us study higher-dimensional cases.

The lattice cubes {4,3" 2} {4,372}k and {4,3"2}L. First, let us study the cases of the
polytopes {4,3"~2}L {4,372}k and {4,372} for any n > 3. Since lattice volumes of {4, 3" 2}}
{4,3""2}L and {4,3"72}% are n!, 2n!, and 2" !n! respectively, the listed cubes are not lattice-
congruent to each other. Let us prove that these polytopes are lattice-regular for any n > 3.

Since the vectors of {4,372} generate lattice, it is lattice-regular.

Now we study the case of {4,3""2}%. Denote by 7; the vector &; for i = 1,...,n—1 and by T,
the vector 1 + € + ... +€,_1 + 2€,. The group of lattice symmetries of the cube {4,3"‘2}5 is
generated by the linear operators Ay transposing the vectors 7; and 7,41 fori = 1,...,n—1, and the
last one: the composition of the symmetry A,, sending v; to —v; and preserving v; for i =2,...,n
and the lattice shift on the vector 7.

Let us check that all the linear transformations Ay are lattice-linear. We show explicitly the
matrices of Ay in the basis €; for ¢ = 1,...,n. The matrix of Ay for £k = 1,...,n—2 coincides
with the the matrix of the transposition of the vectors €, and €x,1. The matrix of A4, _1 coincides
with the matrix of identity transformation except the last two columns. These columns contain
the coefficients of the vectors v,, and €,_1 + €, — U, respectively. The matrix of A,, coincides with
the matrix of identity transformation except the first row, which is (—1,0,...,0,1). Since all these
matrices are in SL(n,Z), the cube {4,3" 2} is lattice-regular.

Let us consider now the case of {4,3" 2}%. Put by definition 7; = &, and 7; = & + 2g;
for i = 2,...,n. The group of lattice symmetries of the cube {4,3""2}% is generated by the
linear operators Ay transposing the vectors 7; and 7;11 for i = 1,...,n—1, and the last one: the
composition of the symmetry A, sending 77 to —7; and preserving v; for i = 2,...,n, and the
lattice shift on the vector 7.
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Let us check that all the linear transformations A;, are lattice-linear. The matrix of Ay coincides
with the matrix of identity transformation except the second row, which is (2,—1,...,—1). The
matrix of Ay for k = 2,...,n—1 coincides with the matrix transposing the vectors €, and €j1.
The matrix of A,, coincides with the matrix of identity transformation except the first row, which
s (—=1,1,...,1). Since all these matrices are in SL(n,Z), the cube {4,372} is lattice-regular.

Conclusion of the proof of Proposition 5.1. Now we prove, that any elementary lattice-regular
n-dimensional lattice cube for n > 3 is lattice-congruent to {4,3" 2}L, {4,3"=2}L or {4,3"2}1.
by the induction on n.

The base of induction. Any face of any three-dimensional lattice-regular cube is lattice-regular.

Suppose, that the faces of three-dimensional lattice-regular cube C are lattice-congruent to
{4}{3 . Then C is lattice-congruent to the cube generated by the origin and the vectors €, és,
and a1€1 + ages + azes. By Corollary 5.3 we can choose ag equals either 1 or 2. If ag = 1 then
C is lattice-congruent to {4,3}¥. If a3 = 2, then we can choose a; and ay being 0, or 1. Direct
calculations show, that the only possible case is a1 = 1, and ay = 0, i.e. the case of {4, 3}5

Suppose now, that the faces of three-dimensional lattice-regular cube C' are lattice-congruent to
{4}% Then C' is lattice-congruent to the cube generated by the origin and the vectors €1, € + 2é,,
and a1 + asés + ages. By Corollary 5.3 we can choose ag equals either 1 or 2. Then we can also
choose a; and a9 being 0, or 1. Direct calculations show, that the only possible case a; = 1, ag =0,
and a3 = 2 corresponds to {4,3}%.

The step of induction. Suppose that any elementary lattice-regular (n—1)-dimensional lat-
tice cubes (n > 3) are lattice-congruent to {4,3" 3} {4,3"3}% or {4,3"3}L. Let us prove
that any elementary lattice-regular n-dimensional lattice cubes are lattice-congruent to {4, 3"~2}¥
{4,3""2}L or {4,372}L.

Any face of any lattice-regular cube is lattice-regular. Suppose, that the faces of (n—1)-
dimensional lattice-regular cube C' are lattice-congruent to {4,373 }IL Then C is lattice-congruent
to the cube C’ generated by the origin and the vectors v; = ¢; for i = 1,...,n — 1 and the vector
en =aie] + ...+ anén.

By Corollary 5.3 we can choose a,, equals either 1 or 2. If a,, = 1, then the lattice volume of C
is n! and it is lattice-congruent to {4, 3”_2}1L . If a,, = 2, then we can choose a; being 0, or 1 for
i=1,...,n—1. Consider a symmetry of C’ transposing the vectors vy and ;1 for k =1,... n—2.
This transformation is linear and its matrix coincides with the matrix of the transposition of the
vectors € and €11, except the last column. The n-th column contains the coordinates of the
vector

AL (8, — €py1) + Cn.

Since the transformation is lattice,
ar = agy+1(mod?2) for k=1,...,n—2.

Since any a; is either zero or unit, the above imply a1 = a2 = ... = ap_1. If a; = 0, then the
vector U, is not of the unit lattice length, but the vector 7y is of the unit length, so C’ is not
lattice-regular. If a; = 1 then C’ coincides with {4,3"~2}Z.

Suppose, that the faces of (n—1)-dimensional lattice-regular cube C' are lattice-congruent to
{4,3"‘3}5 . Then C is lattice-congruent to the cube C’ generated by the origin and the vectors
vi=¢,fori=1,....n—-2, v, 1=€1+...+€, 9+ 2€,_1, and U, = a1€1 + ... + ay€y,.

Consider a symmetry of C’ transposing the vectors v,,_1 and 7,,. This transformation is linear
and its matrix coincides with the matrix of identity transformation except the last two columns.
These columns contain the coefficients of the following two vectors respectively:

n n—2 n—2
aj = l = an—1— 20/3 Qan— la]+2— 14— an 1= _ an-15
Z 3¢ —3 2, €, and > ( Tan € )+ —2a, €n-1 7 Cn-
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Since the described transformation is lattice, the integers a,_1 and a, are even, and a,_s is odd.
Consider now a symmetry of C’ transposing the vectors 7,,_s and 7,,_1. This transformation

is linear and its matrix coincides with the matrix of identity transformation except the last three

columns. These columns contain the coefficients of the following three vectors respectively:

n—3 n—3

Up—1, — Z €; —€en—1, and anilaﬂ Z €; + ZCmilaﬂén_l + ey
j=1 A "
Since the described transformation is lattice, the integer a,,_1 —a,_9 is even, and thus a,,_5 is even.
We come to the contradiction with the divisibility of a,_o by 2. So C' is not lattice-regular.

Suppose, that the faces of (n—1)-dimensional lattice-regular cube C' are lattice-congruent to
{4,3"‘3}§ . Then C is lattice-congruent to the cube C’ generated by the origin and the vectors
v, =¢€, v; =e +2¢ fori=2,...,n—1, and v,, = a1€1 + ... + ané,. By Corollary 5.3 we can
choose a,, equals either 1 or 2. Then we choose a; being 0, or 1 fori =1,...n—1.

Consider a symmetry of C’ transposing the vectors v,,_1 and 7,,. This transformation is linear
and its matrix coincides with the matrix of identity transformation except the last two columns.
These columns contain the coefficients of the following two vectors respectively:

n n—2 2
- aj— (-a)tan-1)5 _ aj(an—1+2)_ d—a;_, _ an_1-
€1 + Zl 5€j, and S €1 22 5o € ) T e En—1 .
J= J=

D=

Since the described transformation is lattice, the integer a; is odd, and the integers a; fori =1,...n
are even. Thus
an = 2, ap=1, and ay=...=a,_1=0.
Therefore C’ coincides with {4,3" 2},
We have already studied all possible n-dimensional cases. This proves the statement for the
dimension 7n.

All statements of Proposition 5.1 are proven. O

6. LATTICE-REGULAR LATTICE GENERALIZED OCTAHEDRA.

In this section we describe all lattice-regular lattice generalized octahedra for all integer dimen-
sions greater than 2.

Proposition 6.1. All elementary lattice-regular n-dimensional lattice generalized octahedra for
n > 3 are lattice-congruent to {372, 4} {372 4}L  or {372 4}k, The generalized octahedra
{3n=2 4}L {372 4}k and {3772 4} are not lattice-congruent to each other.

We show the (three-dimensional) octahedra {3,4}), {3,4}% and {3,4}% on Figure 6.

L
AREY SRRy iy

[5.4)F (3.4}t

FIGURE 6. Three-dimensional elementary lattice-regular convex lattice tetrahedra.
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Proof. Consider an arbitrary elementary n-dimensional lattice-regular generalized octahedron P.
Let the vertices V1,..., Vs, of P be enumerated in such a way that for any positive integer i <
n there exist a lattice symmetry exchanging V; and V;;, and preserving any other vertex. So,
ViViVienVjqn is a lattice-regular square for ¢ # j. Therefore, the midpoints of the segments V;V;,,
coincide for i = 1,2,...,n. Denote the common midpoint of the segments V;V;,, by A.

Suppose the point A is lattice. Consider the lattice cube with the vertices A+ AV £ AVo+.. .+
AV,,, we denote it by C(P). The cube C(P) is also lattice-regular.

Note that the lattice-regular generalized octahedra P’ and P” have lattice-congruent cubes C'(P’)
and C(P") iff P’ and P” are lattice-congruent.

Since P is elementary, the segment AV; is of unit lattice length. Therefore, the cube C(P) is
lattice-congruent to the 2-multiple of some {4, 3"‘2}£, for k =1,2,3. If C(P) is lattice-congruent
to the 2-multiple of {4,3""2}L or to the 2-multiple of {4,3"2}% then P is lattice-congruent
to {3772, 4} or to {3"72,4}L respectively. If C(P) is lattice-congruent to the 2-multiple of
{4,372}%  then P is not elementary.

Suppose now, the common midpoint A of the diagonals is not lattice. If the lattice length of
ViViai1 equals 2k+1 for some positive k, then the generalized octahedron P is not elementary.
Suppose the segment V1V,11 is of unite lattice length. Consider a 2-multiple to the polygon P
and denote in by 2P. Since the segment V1V, 11 is of unit lattice length, the cube C'(2P) is the
2-multiple of some {4,3" 2} for k = 1,2,3. If C(2P) is lattice-congruent to the 2-multiple of
{4,3"2}L or of {4,3" 2}k then P is not a lattice polytope. If C(2P) is lattice-congruent to the
2-multiple of {4,3""2}% then P is lattice-congruent to {372 4}%.

The generalized octahedra {372 4} {3772 4}L and {3772 4} are lattice-regular, since so are
the cubes C({3"72,4}), C({3"72,4}L), and C(2{3"72,4}L).

The generalized octahedra {3772 4}F {3772 4}L and {3772 4}} are not lattice-congruent
to each-other, since the corresponding elementary cubes C({3"724}F), C({3"72,4}L), and
C(2{3"2,4}%) are not lattice-congruent. O

7. PROOF OF THEOREM 2.2.

In this section we obtain proof of Theorem 2.2 by combining the results of propositions from the
previous sections and describing the remaining low-dimensional cases.

Consider any convex lattice-regular lattice polytope. Since it is lattice-regular and convex it is
combinatorically regular. Therefore, by Theorem B it is combinatorically isomorphic to one of the
Euclidean polytopes of Theorem A. In Section 3 we gave the description of the two-dimensional
case. In Sections 4, 5, and 6 we studied the cases of lattice-regular polytopes combinatorically iso-
morphic to regular symplices ({3"71}), regular cubes ({4, 3"~2}), and regular generalized octahedra
({3"72,4}) respectively.

Now we will study the remaining special cases of three- and four-dimensional regular polytopes.

7.1. Three-dimensional icosahedra and dodecahedra. We have already classified all lattice-
regular elementary tetrahedra, cubes, and octahedra. There is no lattice-regular dodecahedron,
since there is no lattice-regular pentagon. There is no lattice-regular icosahedron, since there is no
lattice-affine transformation with a fixed point of order 5.

So, the classification in the three-dimensional case is completed.

7.2. Four-dimensional 24-sells, 120-sells, and 600-sells. The case of 24-sell. Suppose that
P is a lattice-regular 24-sell. It contains 16 vertices such that the subgroup of the group of all
lattice-symmetries of P preserving these 16 vertices is isomorphic to the group of the symmetries
of the four-dimensional cube. So we can naturally define a combinatorial-regular cube associated
with this 16 vertices. Any two-dimensional face of this cube is an Euclidean parallelogram, since
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such face is the diagonal section containing four lattice points of some lattice-regular octahedron.
If all two-dimensional faces are parallelograms, then all three-dimensional faces are parallelepipeds
and these 16 vertices are vertices of a four-dimensional parallelepiped. Denote this parallelepiped
by C. Since all transformations of C' are lattice-affine, the polytope C' is a lattice-regular cube.
(Note that for any 24-sell there exist exactly three such (distinct) cubes).

Suppose that C is a lattice-regular cube generated by the origin and some vectors T; for i =
1,2,3,4. Consider also the coordinates (x,x,3%*,x%), corresponding to this basis. Let the point
(a1,a2,a3,a4), of P connected by edges with the vertices of C' is in the plane with the unit last
coordinate. Then, the point (2—ay, ag, as,2—ay), is also a vertex. Thus, the point (a1, ag, a3, as—1)
is also a vertex. Note that the points (a1,as2,as,as4), and (a1, as,as, a4—2), are symmetric about
the center of the cube: (1/2,1/2,1/2,1/2),. So as—1/2 = 1/2 — ay—2. Thus, a4 = 3/2. Similar
calculations show that a; = as = ag = 1/2. Therefore, the eight points do not contained in C
coincide with the following points:

O + 1/2(v1+02+03+04) £7;, for i =1,2,3,4.

Consider a lattice-regular primitive 24-sell P and C one of the corresponding cubes. Since the
edges of C' are the edges of P, the cube C' is also primitive. Let us study all three possible cases of
lattice-affine types of C.

Suppose C coincides with {4,3,3}{. Then the remaining points

O +1/2(e;+es+es+ey) £, fori=1,234

are not lattice. Therefore, the case of {4,3,3}¥ is impossible.

In the case of {4,3,3}% and {4,3,3}% all the vertices are lattice and in our notation coincide
with {3,4,3}1 and {3,4, 3} respectively. Straightforward calculations shows, that both resulting
24-sells are lattice-regular.

The case of 120-sell. The 120-sell is non-realizable as an lattice-regular lattice polytope, since
its two-dimensional faces should be lattice-regular lattice pentagons. By the above, lattice-regular
lattice pentagons are not realizable.

The case of 600-sell. Consider an arbitrary polytope with topological structure of 600-sell having
one vertex at the origin O. Let OV be some edge of this 600-sell. The group of symmetries of
an abstract 600-sell with fixed vertex O is isomorphic to the group of symmetries of an abstract
icosahedron. The group of symmetries of an abstract 600-sell with fixed vertices O and Vj is
isomorphic to the group of symmetries of an abstract pentagon. So, there exist a symmetry A
of the 600-sell of order 5 preserving the vertices O and V;. If the polytope P is lattice-regular,
then this symmetry is lattice-linear. Since A° is the identity transformation and the space is four-
dimensional, the characteristic polynomial of A in the variable z is either x—1 or z*4+a3+2?4+x+1.
Since A(OV4) = OVj, the characteristic polynomial of A is divisible by x—1. If the characteristic
polynomial is xz—1, then the operator A is the identity operator of order 1 and not of order 5.
Therefore, there is no lattice-regular lattice polytope with the combinatorial structure of the 600-
sell.

7.3. Conclusion of the proof of Theorem 2.2. We have studied all possible combinatorical
cases of lattice-regular polytopes. The proof of Theorem 2.2 is completed. O
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Abstract—We study Mobius measures of the manifold of n-dimensional continued fractions in
the sense of Klein. By definition any M&bius measure is invariant under the natural action of the
group of projective transformations PGL(n+ 1) and is an integral of some form of the maximal
dimension. It turns out that all M6bius measures are proportional, and the corresponding forms
are written explicitly in some special coordinates. The formulae obtained allow one to compare
approximately the relative frequencies of the n-dimensional faces of given integer-affine types
for n-dimensional continued fractions. In this paper we make numerical calculations of some
relative frequencies in the case of n = 2.
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INTRODUCTION

Consider an n-dimensional real vector space with a lattice of integer points in it. The boundary
of the convex hull of all integer points contained inside one of the n-dimensional invariant cones for
a hyperbolic n-dimensional linear operator without multiple eigenvalues is called a sail in the sense
of Klein. The set of all sails of such an n-dimensional operator is called an (n — 1)-dimensional
continued fraction in the sense of Klein (see Section 2 for more detail). Any sail is a polyhedral
surface. In this work we study the frequencies of faces of multidimensional continued fractions.

On the manifold of n-dimensional continued fractions in the sense of Klein, there exists a unique,
up to multiplication by a constant function, form of the highest dimension that is invariant under
the natural action of the group of projective transformations PGL(n+1). A measure corresponding
to the integral of such a form is called a Mdbius measure. In the present paper we deduce explicit
formulae for calculating invariant forms in special coordinates. These formulae can be used to answer
some statistical questions of the theory of multidimensional continued fractions. As an example, we
present the results of approximate calculations of the frequencies for certain two-dimensional faces
of two-dimensional continued fractions.

The problem of generalizing ordinary continued fractions was posed by C. Hermite [39] in 1839.
One of the most interesting geometrical generalizations was introduced by F. Klein in 1895 in [20]
and [21]. Unfortunately, due to the computational complexity of multidimensional continued frac-
tions, no significant advances in the study of their properties were made 100 years ago. While
originally studying A-graded algebras [3], V.I. Arnold faced with the theory of multidimensional
continued fractions in the sense of Klein. Since 1989 he has formulated many problems on the
geometry and statistics of multidimensional continued fractions, reviving the interest in the study
of multidimensional continued fractions (see [4, 7]).
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Multidimensional continued fractions in the sense of Klein are used in various branches of
mathematics. J.-O. Moussafir [31] and O.N. German [12] studied the connection between the
sails of multidimensional continued fractions and Hilbert bases. In [36] H. Tsuchihashi established
a relationship between periodic multidimensional continued fractions and multidimensional cusp
singularities. This relationship generalizes the classical relationship between ordinary periodic con-
tinued fractions and two-dimensional cusp singularities known before. The combinatorial topolog-
ical multidimensional generalization of the Lagrange theorem for ordinary continued fractions was
obtained by E.I. Korkina in [24], and the corresponding algebraic generalization, by G. Lachaud
(see [28]).

A large number of examples of two-dimensional periodic continued fractions were constructed
by E.I. Korkina [23, 25, 26|, G. Lachaud [28, 29], A.D. Bruno and V.I. Parusnikov [9, 35|, as well
as by the present author [13, 14]. A part of these two-dimensional continued fractions can be found
at the website [8] by K. Briggs. A few examples of three-dimensional continued fractions in the
four-dimensional space were constructed by the author in [19]. Algorithms for constructing multi-
dimensional continued fractions are described in the works by R. Okazaki 33|, J.-O. Moussafir [32],
and the present author [15].

For the first time the statement on the statistics of numbers as elements of ordinary continued
fractions was formulated by C.F. Gauss in his letters to P.-S. Laplace (see [11]). This statement
(see Section 1) was proven later by R.O. Kuzmin [27], and still later was reproven by P. Lévy [30].
Further investigations in this direction were made by E. Wirsing in [10]. (The basic notions of the
theory of ordinary continued fractions are described in the books [38] by A.Ya. Khinchin and |7] by
V.I. Arnold.) In 1989 V.I. Arnold generalized statistical problems to the case of one-dimensional and
multidimensional continued fractions in the sense of Klein (see [6] (in particular, Problem 1993-11)
and [4, 5]).

The one-dimensional case was studied in detail by M.O. Avdeeva and V.A. Bykovskii in [1, 2|.
In the two-dimensional and multidimensional cases, V.I. Arnold formulated many problems on
the statistics of sail characteristics of multidimensional continued fractions such as the amount
of triangular, quadrangular, etc., faces, as well as their integer areas, lengths of edges, etc. The
major part of these problems is open nowadays, while some of them have been solved almost
completely.

M.L. Kontsevich and Yu.M. Suhov in [22] proved the existence of the above-mentioned statistics.
Recently V.A. Bykovskii and M.A. Romanov used the Monte-Carlo method to calculate the fre-
quencies for some types of faces of sails. In the present paper we calculate a natural Mo6bius measure
on the manifold of all n-dimensional continued fractions in the sense of Klein in special coordinates.
In particular, this allows us to approximately calculate the relative frequencies of multidimensional
faces of multidimensional continued fractions.

Note that the Mobius measure is also used in the theory of energies of knots and graphs (see
the works of M.H. Freedman et al. [37], J. O’Hara [34], and the present author [16]). In the case of
one-dimensional continued fractions, the Mobius measure is induced by the relativistic measure of
the three-dimensional de Sitter world.

This paper is organized as follows. In Section 1 we give necessary notions of the theory of
ordinary continued fractions. In particular, we give a definition of the Gauss—Kuzmin statistics.
Further, in Section 2 we describe a smooth manifold structure for the set of all n-dimensional
continued fractions and define a Mdbius measure on it. In Section 3 we study the relative fre-
quencies of faces of one-dimensional continued fractions. These frequencies are proportional to the
frequencies of the Gauss—Kuzmin statistics. In Section 4 we study the relative frequencies of faces
of multidimensional continued fractions. Finally, in Section 5 we present the results of approximate
calculations of relative frequencies for some faces of two-dimensional continued fractions.
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1. ONE-DIMENSIONAL CONTINUED FRACTIONS
AND GAUSS-KUZMIN STATISTICS

Let a be an arbitrary rational number. Suppose that
a=ao+1/(a1+1/(az+ ...+ 1/(an-1+ 1/ay)...)),

where ag is an integer and the remaining a;, ¢ = 1,...,n, are positive integers. The expression on
the right-hand side of this equality is called a decomposition of « into a finite ordinary continued
fraction and denoted by [ag, a1, ..., a,]. If the total number n + 1 of elements of the decomposition
is even, then the continued fraction is said to be even, and if this number is odd, then the continued
fraction is said to be odd.

Let ag be an integer and aq, ..., a,,... be an infinite sequence of positive integers. Denote by 7,
the rational number [ag, ..., a,—1]. For such integers a;, the sequence (r,) always converges to some
real a. The limit

lim [ag,a1,...,an—1]
n—od

is called the decomposition of « into an infinite ordinary continued fraction and denoted by
[ag, a1, as, .. .].
Ordinary continued fractions possess the following basic properties.

Proposition 1.1. (a) Any rational number has exactly two distinct decompositions into a finite
ordinary continued fraction; one of them is even, and the other is odd.

(b) Any irrational number has a unique decomposition into an infinite ordinary continued
fraction.

(¢) A decomposition into a finite ordinary continued fraction is rational.
(d) A decomposition into an infinite ordinary continued fraction is irrational.

Notice that for any finite continued fraction [ag, aq,...,a,], where a, # 1, the following holds:
[a()aala"'aan] = [a()’ala"'aan - 171]

This equality determines a one-to-one correspondence between the sets of even and odd finite
continued fractions.

Let v be some irrational number between zero and unity, and let [0, a1, as, asg, . . .| be its ordinary
continued fraction. Denote by z,(«) the real [0, an, apnt1, anta,-- .|

Let my(z) denote the measure of the set of reals a contained in the interval [0;1] such that
zn(a) < x. In his letters to P.-S. Laplace, C.F. Gauss formulated without proofs the following
theorem. Later it was proved by R.O. Kuzmin [27], and still later by P. Lévy [30].

Theorem 1.2 (Gauss-Kuzmin). For 0 <z <1 the following relation holds:

lim m,(z) = a1 + x)

n—o00 ln 2

For an arbitrary integer k& > 0, denote by P, (k) the measure of the set of all reals « of the
interval [0; 1] such that each of them has the number & at the nth position. The limit lim,,_, P, (k)
is called the frequency of k for ordinary continued fractions and denoted by P(k).

Corollary 1.3. For any positive integer k the following equality holds:

Pik) = 152 ln<1 - k:(k1+2)> '
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Proof. Notice that P, (k) = my(}) — mn(k_lH) Now the statement of the corollary follows
from the Gauss-Kuzmin theorem. [

The problem of V.I. Arnold on the asymptotic behavior of the frequencies of integers as elements
of ordinary continued fractions for rational numbers with bounded numerators and denominators
was completely studied by V.A. Bykovskii and M.O. Avdeeva in [1, 2]. It turns out that such
frequencies coincide with the frequencies P(k) defined above.

2. MULTIDIMENSIONAL CONTINUED FRACTIONS IN THE SENSE OF KLEIN

2.1. Geometry of ordinary continued fractions. Consider a two-dimensional plane with
standard Euclidean coordinates. A point is said to be integer if both its coordinates are integer.
The integer length of a segment AB with integer vertices A and B is the ratio of its Euclidean
length to the minimum Euclidean length of integer vectors contained in the segment AB; we denote
it by 1{(AB). The integer (nonoriented) area of a polygon P is the ratio of its Euclidean area to
the minimum Euclidean area of triangles with integer vertices; we denote it by 1S(P). The quantity
IS(P) coincides with the doubled Euclidean area of the polygon P.

For an arbitrary real a > 1 we consider an angle in the first orthant defined by the rays
{(z,y) |y =0,z > 0} and {(z,y) |y = az, x > 0}. The boundary of the convex hull of the set
of all integer points in the closure of this angle, except the origin O, is a broken line consisting of
segments and possibly of a ray or two rays contained in the sides of the angle. The union of all
segments of this broken line is called the sail of the angle. The sail of the angle is a finite broken
line for rational @ and an infinite broken line for irrational a. Denote the point with coordinates
(1,0) by Ag, and denote all the other vertices of the broken line consecutively by Aj, Ag,.... Let
a; = W(A;Aj4q) for i = 0,1,2,... and b; = 1S(A;_1A4;4,41) for i = 1,2,3,...; then the following
equality holds:

o = [a05b17a17b25a25b37a37‘ . ]

In Fig. 1 we examine an example with a = 7/5 =[1,2,2].

2.2. Definition of multidimensional continued fractions. Based on the geometrical con-
struction described in the previous subsection, F. Klein introduced the following geometrical gen-
eralization of ordinary continued fractions to the multidimensional case (see |20, 21]).

Consider arbitrary n + 1 hyperplanes in R"*! such that their intersection consists of a unique
point, the origin. The complement of the union of these hyperplanes consists of 2°*! open orthants.
Consider one of them. The boundary of the convex hull for the set of all integer points of the closure
of the orthant except the origin is called the sail of the orthant. The set of all 2”1 sails is called

or, y="la
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Fig. 1. The sail for the continued fraction of 7/5 = [1, 2, 2].
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the n-dimensional continued fraction related to the given n 4+ 1 hyperplanes. The intersection of
a hyperplane with the sail is said to be a k-dimensional face of the sail if it is contained in some
k-dimensional plane and is homeomorphic to a k-dimensional disc. (See also [14].)

Two multidimensional faces of multidimensional continued fractions are said to be integer-linear
(-affine) equivalent if there exist a linear (affine) transformation preserving the integer lattice and
taking one face to the other. A class of all integer-linear (-affine) equivalent faces is called the
integer-linear (-affine) type of any face of this class.

Let us define one useful integer-linear invariant of a plane. Consider an arbitrary k-dimensional
plane 7 that does not contain the origin and whose integer vectors generate a sublattice of rank k in
the lattice of all integer vectors. Let the Euclidean distance from the origin to the plane 7 equal /.
Denote by £y the minimum nonzero Euclidean distance to 7 from the integer points of the plane (of
dimension k + 1) spanned by the given plane 7 and the origin. The ratio ¢/{; is called the integer
distance from the origin to the plane .

Let us now describe one of the original problems of V.I. Arnold on the statistics of faces of
multidimensional continued fractions. Note that for any real hyperbolic operator with distinct
eigenvalues, there exists a unique multidimensional continued fraction corresponding to it. One
should take invariant hyperplanes for the action of the operator as hyperplanes that define the cor-
responding multidimensional continued fraction. Let us consider only three-dimensional hyperbolic
operators that are defined by integer matrices with rational eigenvalues. Denote the set of all such
operators by As. A continued fraction for any operator in As consists of finitely many faces. Denote
by As(m) the set of all operators in Az such that the sum of absolute values of all coefficients of each
of these operators is no greater than m. The number of such operators is finite. Let us calculate
the number of triangles, quadrangles, and so on, among the continued fractions constructed for the
operators in Az(m). As m tends to infinity, we have a general distribution of the frequencies for
triangles, quadrangles, and so on. Arnold’s problem includes the study of the properties of such a
distribution (for instance, what is more frequent, triangles or quadrangles? what is the frequency of
integer points inside the faces? etc.). Note that this problem has not yet been completely studied.
Surely, the questions formulated above can be easily generalized to the multidimensional case.

V.I. Arnold has also formulated statistical problems for special algebraic periodic multidimen-
sional continued fractions. For more information, see [4, 5].

2.3. Smooth manifold of n-dimensional continued fractions. Denote the set of all con-
tinued fractions of dimension n by CF,,. Let us describe a natural structure of a smooth nonsingular
nonclosed manifold on the set CF,,.

Consider an arbitrary continued fraction that is defined by an unordered collection of hyperplanes

(71,...,Tpt1). The enumeration of planes here is arbitrary, without any ordering. Denote by [;,
i=1,...,n4 1, the intersection of all the above hyperplanes except the hyperplane 7;. Obviously,
li,...,lh+1 are independent straight lines (i.e., they are not contained in a hyperplane) passing

through the origin. These straight lines form an unordered collection of independent straight lines.
On the other hand, any unordered collection of n+ 1 independent straight lines uniquely determines
some continued fraction.

Denote the sets of all ordered collections of n + 1 independent and dependent straight lines
by FCF,, and A, respectively. We say that FCF,, is a space of n-dimensional framed continued
fractions. Also denote by S,11 the permutation group acting on ordered collections of n+ 1 straight
lines. In this notation we have

FCF,, = (I\RP" x RP" x ... x RPZ) \ A, and CF,, = FCF,,/Sp1.

~
n4+1 times

Therefore, the sets FCF,, and CF,, admit natural structures of smooth manifolds that are induced
by the structure of the Cartesian product of n+ 1 projective spaces RP". Note also that FCF,, is an
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(n+1)!-fold covering of CF,,. We call the map of “forgetting” the order in the ordered collections the
natural projection of the manifold FCF,, to the manifold CF,, and denote it by p, p: FCF,, — CF,,.

2.4. Mdbius measure on the manifolds of multidimensional continued fractions.
The group PGL(n + 1,R) of transformations of RP™ takes the set of all straight lines passing
through the origin in the (n + 1)-dimensional space into itself. Hence, PGL(n + 1, R) naturally acts
on the manifolds CF,, and FCF,,. Furthermore, the action of PGL(n+ 1, R) is transitive; i.e., it takes
any (framed) continued fraction to any other. Note that for any n-dimensional (framed) continued
fraction, the subgroup of PGL(n 4 1,R) taking this continued fraction to itself is of dimension n.

Definition 2.1. A form of the manifold CF,, (respectively, FCF,,) is said to be a Mdbius form
if it is invariant under the action of PGL(n + 1, R).

The transitivity of the action of PGL(n + 1,R) implies that all n-dimensional M&bius forms of
the manifolds CF,, and FCF,, are proportional, if they exist.

Let w be some volume form of a manifold M. Denote by p, a measure on the manifold M that
is defined by the equality

for any open measurable set S contained in the same connected component of M.

Definition 2.2. A measure p on the manifold CF,, (FCF),) is said to be a Mdbius measure if
there exists a Mobius form w of CF,, (FCF,,) such that p = p,.

Note that any two M&bius measures of CF,, (FCF,,) are proportional.

Remark 2.3. The projection p takes the Mobius measures of the manifold FCF,, to the M&bius
measures of the manifold CF,,, thus establishing an isomorphism between the spaces of M&bius
measures for CF,, and FCF,,. Since the manifold of framed continued fractions possesses a simpler
chart system, all formulae of the work are given for the manifold of framed continued fractions.
To calculate a measure of some set [’ of the manifold of unframed continued fractions, one should
take p~1(F'), calculate the Mobius measure of the obtained set of the manifold of framed continued
fractions, and divide the result by (n + 1)!.

3. ONE-DIMENSIONAL CASE

3.1. Explicit formulae for the Mdbius form. Let us write out explicitly the M&bius forms
of the manifold FCF; of framed one-dimensional continued fractions in special charts.

Consider a vector space R? equipped with a standard metric. Let [ be an arbitrary straight line
in R? that does not pass through the origin, and let us choose some Euclidean coordinates O;X; on
it. Denote by FCF; a chart of the manifold FCF; that consists of all ordered pairs of straight lines
each of which intersects I. Let us assign to any point of FCFy; (i.e., to a collection of two straight
lines) coordinates (z;,y;), where z; and y; are the coordinates on [ for the intersections of [ with
the first and the second straight lines of the collection, respectively. Denote by |v|; the Euclidean
length of a vector v in the coordinates O;X;Y; of the chart FCF; ;. Note that the chart FCFq; is
the space R x R minus its diagonal.

Consider the following form in the chart FCF ;:

dxy A dy;
wl(xlayl) = |xl o yl‘g‘
l

Proposition 3.1. The measure p, coincides with the restriction of some Mdbius measure
to FCF1 l-
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Proof. The transformations of the group PGL(2,R) are in one-to-one correspondence with the
set of all projective transformations of the projectivization of the straight line . Note that the
expression

Ax Ay,
|z — yil?

is an infinitesimal cross-ratio of four points with coordinates x;, y;, x; + Ax;, and y; + Ay;. Hence,
the form wy(z;,y;) is invariant under the transformations (of the everywhere dense set) of the chart
FCFq; that are induced by projective transformations of [. Therefore, the measure p,, coincides
with the restriction of some Mébius measure to FCFy ;. [

Corollary 3.2. The restriction of an arbitrary Mdbius measure to the chart FCFq; is propor-
tional to fi, -

Proof. The statement follows from the proportionality of any two Mobius measures. [

Consider now the manifold FCF; as a set of ordered pairs of distinct points on a circle R/7Z (this
circle is a one-dimensional projective space obtained from the unit circle by identifying its antipodal
points). The doubled angular coordinate ¢ of the circle R/7Z induced by the coordinate z of the
straight line R naturally defines coordinates (1, ¢2) of the manifold FCF;.

Proposition 3.3. The form wi(xz;,y;) is extendable to some form wy of FCF1. In the coordi-
nates (¢1,p2) the form wy can be written as follows:

1 _
w) = 400t2<gp1 5 @2) dp1 N dps.

We leave the proof of Proposition 3.3 as an exercise for the reader.

3.2. Relative frequencies of faces of one-dimensional continued fractions. Without
loss of generality, in this subsection we consider only the M6bius form wq of Proposition 3.3. Denote
the natural projection of the form g, to the manifold of one-dimensional continued fractions CF;
by pa.

Consider an arbitrary segment F' with endpoints at integer points. Denote by CF;(F') the set
of continued fractions that contain the segment F' as a face.

Definition 3.4. The quantity p;(CF{(F)) is called the relative frequency of the face F.

Note that the relative frequencies of faces of the same integer-linear type coincide. Any face
of a one-dimensional continued fraction lies at unit integer distance from the origin. Thus, the
integer-linear type of a face is defined by its integer length (the number of inner integer points plus
one). Denote the relative frequency of an edge of integer length k by puq("k”).

Proposition 3.5. For any positive integer k the following equality holds:

w1, )

Proof. Consider a particular representative of the integer-linear type of a length-k segment:
the segment with endpoints (0,1) and (k,1). A one-dimensional continued fraction contains this
segment as a face if and only if one of the straight lines defining the fraction intersects the interval
with endpoints (—1,1) and (0, 1) while the other straight line intersects the interval with endpoints
(k,1) and (k+1,1) (see Fig. 2).

For the straight line [ defined by the equation y = 1, we calculate the Mdbius measure of the
Cartesian product of the described pair of intervals. According to the previous subsection, this
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Fig. 2. The rays defining a continued fraction should lie in the domain colored in gray.

quantity coincides with the relative frequency puq(”k”). So,

0 k+1
d.%'l dyl 1 1 (k + 1)(k + 1) 1
”k” / — / < — ) dy =1 < =In(1+ .
w o owr1) T Rk 2) ! k(k +2)
-1 k

This proves the proposition. [

Remark 3.6. Note that the argument of the logarithm,
points (—1,1), (0,1), (k,1), and (k+1,1).

Corollary 3.7. The relative frequency pi("k") coincides up to the factor

1

(k+1)(k+1)

K(et2) is the cross-ratio of the

0+ood J
1112_// x yz
wl—yl

-1 1

with the Gauss—Kuzmin frequency P(k) of occurrence of k in a continued fraction. O

4. MULTIDIMENSIONAL CASE

4.1. Explicit formulae for the Mdbius form. Let us now write out explicitly the Mobius
forms for the manifold FCF,, of framed n-dimensional continued fractions for arbitrary n.

Consider R™™! with the standard metric on it. Let 7 be an arbitrary hyperplane of the space
R"*1 with chosen Euclidean coordinates OX; ... X, that does not pass through the origin. By a
chart FCF,,  of the manifold FCF,, we mean the set of all collections of n 41 ordered straight lines
each of which intersects 7. Let the intersection of m with the ith line be a point with coordinates
(1,,...,%pn,;) on the plane w. For an arbitrary tetrahedron A; ... A, in the plane 7, we denote
by Vz(Ai...A,41) its oriented Euclidean volume in the coordinates OX11... Xp1X12... Xyt
of the chart FCF,, . Denote by |v|; the Euclidean length of the vector v in the coordinates
OX11...Xp1X12... X5 541 of the chart FCF,, .. Note that the chart FCF,, . is everywhere dense
in (Rn)n-i-l'

Consider the following form in the chart FCF,, ;:

Wr(T1 15y Tntl) = /\?Jrll(/\ Ldz;) |
™ 1 y In,n+ (Vw(Al"'An+1))n+1

Proposition 4.1. The measure (i, coincides with the restriction of some Mdbius measure
to FCF,, 1.

Proof. The transformations of the group PGL(n+ 1,R) are in one-to-one correspondence with
the set of all projective transformations of the hyperplane 7. Let us show that the form w; is
invariant under the transformations (of the everywhere dense set) of the chart FCF,, ; that are
induced by projective transformations of the hyperplane .

At each point of the tangent space to FCF,, ., define a new basis corresponding to the directions
of edges of the corresponding tetrahedron in 7. Namely, consider an arbitrary point (z11,...,Zn n41)
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of the chart FCF,, » and the tetrahedron A;... A, 1 in the hyperplane 7 corresponding to this
point. Let
A A;
foo= AT G i= 1 n+ 1, Q]
YA Al

The basis constructed above continuously depends on the point of the chart FCF,, . By dv;;
we denote the 1-form corresponding to the coordinate along the vector f;; of FCF,, 7.

Denote by A; = Aj(x14,...,%p,;) the point with coordinates (z1,,...,2Zpn4), ¢ = 1,...,n+ 1,
which depends on the coordinates of the plane 7. Let us rewrite the form w, in the new coordinates:

n+1

VW(AiAl LA A A, 1) dvor ANdvgy A ... A dvmnﬂ

wﬂ($1,17 ou 7xn,n+1) - H n+1 + + ntl
Hk:L ki |ApAilx (Vﬂ(Al . An+1))

=1
_ (_1)[7113] dvoy N dvig  duss A dugg dvn+1’n A dvn,n“
[ A1 As 7 [ A2 As3 [AnApial2

where [a] denotes the maximal integer not exceeding a.
As in the one-dimensional case, the expression

Avij Avji
| A A |

for the infinitesimal increments Av;; and Avj; is the infinitesimal cross-ratio of the four points A;,
Aj A+ Avjifjl-, and A; + Avijfl-j of the straight line A;A;. Therefore, the form w; is invariant
under the transformations (of the everywhere dense set) of the chart FCF, . that are induced
by projective transformations of the hyperplane m. Hence, the measure pu,_  coincides with the
restriction of some M&bius measure to FCF,, . [

Corollary 4.2. The restriction of an arbitrary Mdébius measure to the chart FCF,,  is propor-
tional to p,., .

Proof. The statement follows from the proportionality of any two Mobius measures. [

Let us fix an origin O;; on the straight line A;A;. The integral of the form dv;; (respectively,
dvj;) over the segment O;; P defines a coordinate v;; (vj;) of the point P on the straight line A;A;.
As in the one-dimensional case, consider a projectivization of the straight line A;A;. Denote the
angular coordinates by ¢;; and j;, respectively. In these coordinates

dvig Ndvgg 1o (@5 — @ji
= t dei; A\ dp;;.
OV N A

Then, the following is true.

Corollary 4.3. The form w; extends to some form wy, of FCF,. In the coordinates v;; the
form wy, is as follows:

)[”*3 ntl ntl n+l / n+l
wn: on(nt1) (H H cot2((p” S0”))(/\( /\ d@ijAdwji>>.

=1 j=i+1 =1 \j=t+1

2. Relative frequencies of faces of multidimensional continued fractions. As in
the one-dimensional case, without loss of generality, we consider the form w, of Corollary 4.3.
Denote by p,, the projection of the measure i, to the manifold CF,, of multidimensional continued
fractions.
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Consider an arbitrary polytope F' with vertices at integer points. Denote by CF,,(F') the set of
n-dimensional continued fractions that contain the polytope F' as a face.

Definition 4.4. The value u(CF,,(F)) is called the relative frequency of a face F.
The relative frequencies of faces of the same integer-linear type coincide.

Problem 1. Find integer-linear types of n-dimensional faces with the highest relative frequen-
cies. Is it true that the number of integer-linear types of faces with relative frequencies greater than
some constant is finite? Find its asymptotics as the constant tends to infinity.

Problem 1 is open for n > 2.

Conjecture 2. The relative frequencies of faces are proportional to the frequencies of faces in
the sense of Arnold (see Subsection 2.2).

This conjecture is checked in the present paper for the case of one-dimensional continued frac-
tions. It is still open in the n-dimensional case for n > 2.

5. EXAMPLES OF CALCULATING RELATIVE FREQUENCIES
FOR FACES IN THE TWO-DIMENSIONAL CASE

5.1. A method for calculating relative frequencies. Let us describe in detail a method
for calculating relative frequencies in the two-dimensional case.

Consider the space R? with the standard metric on it. Let 7 be an arbitrary plane in R? that
does not pass through the origin and is endowed with a fixed system of Euclidean coordinates
OrX:Y:. Let FCF3  be the corresponding chart of the manifold FCFy (see the previous section).
For an arbitrary triangle ABC' on the plane 7, we denote by S;(ABC) its oriented Euclidean area
in the coordinates O, XY X2Y2X3Y3 of the chart FCFg ;. Denote by |v|, the Euclidean length of
the vector v in the coordinates O, XY X2Y5X3Y3 of the chart FCF3 . Consider the following form
in the chart FCFq ,:

dxy N dyi A\ dxg N dys A dxs A dys

wr(T1, Y1, T2, Y2, T3, Y3) =
1, Y1, T2, Y2, 3, Y3 (Sﬂ((xhyl)(xg,yg)(x3,93)))3

Note that the oriented area Sy of the triangle (z1,y1)(x2,y2)(x3,y3) can be expressed in the
coordinates x;,y; as follows:

1
Sr((z1,91) (22, y2) (23, y3)) = 5 (z3y2 — Tays + T1Y3 — T3Y1 + Tay1 — T1Y2).

For the approximate computation of relative frequencies of faces, it is useful to rewrite the
form w, in the dual coordinates (see Remark 5.2 below). Define a triangle ABC' in the plane 7 by
three straight lines Iy, lo, and I3, where [ passes through B and C, [y passes through A and C', and
I3 passes through A and B. Define the straight line /; (i = 1,2,3) in 7 by an equation (but first we
move the origin to some inner point of the triangle by a parallel translation of )

a;x + by =1

for the variables z and y. Then, if we know the 6-tuple of numbers (aq, b1, a2,bs, as, bs), we can
restore the triangle in a unique way.

Proposition 5.1. In the coordinates ay, by, as,ba,as, bs the form w, can be written as follows:

8daq A dby A dag A dby A das A dbs

— .o
(agby — agbs + a1bs — asby + agby — a1be)?
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So, we reduce the computation of the relative frequency for the face F, i.e., the value of
p2(CFo(F)), to the computation of the measure p,,(p~'(CFo(F))). Consider a plane 7 in R?
that does not pass through the origin. By Corollary 4.3,

Hos (P H(CF2(F))) = pos, (7 (CFa(F)) N FCFo 7).

Finally, the computation should be carried out for the measure p,,, (p~*(CF2(F)) NFCFs,) in the
dual coordinates a;, b; (see Proposition 5.1).

Remark 5.2. In the coordinates a;, b; the computation of the relative frequency often reduces
to the estimation of the integral over the disjoint union of a finite number of six-dimensional Carte-
sian products of three triangles in the coordinates a;, b; (see Proposition 5.1). The integration over
such a simple domain greatly increases the speed of approximate computations. In particular, the
integration can be reduced to the integration over some 4-dimensional domain.

5.2. Some results. In conclusion, we give some results of calculating the relative frequencies
for some two-dimensional faces of two-dimensional continued fractions.

It is hardly possible to explicitly calculate the relative frequencies for faces. Nevertheless, one can
make approximations of the corresponding integrals. Normally, the greater the area of the integer-
linear type of a polygon, the smaller its relative frequency. The most complicated approximate
calculations are those for the simplest faces, such as an empty triangle.

Figure 3 shows examples of the following faces: triangular (0,0,1), (0,1,1), (1,0,1) and (0,0, 1),
(0,2,1), (2,0,1) and a quadrangular (0,0, 1), (0,1,1), (1,1,1), (1,0,1) faces. For each face the figure
presents the plane containing this face. The points painted in light gray correspond to the points
at which the rays defining the two-dimensional continued fraction may intersect the plane of the
chosen face.

For the majority of integer-linear types, the faces of two-dimensional continued fractions lie at
unit integer distance from the origin. Only three infinite series and three particular examples of
faces lie at a greater integer distance from the origin (see a detailed description in [17, 18]). As
the distance to a face increases, the frequency of the face decreases on the average. The average
decrease rate of the frequency is unknown to the author.

In the table we show calculated relative frequencies for 12 integer-linear types of faces. In
column “No.” we write a special symbol for the integer-affine type of a face. The index denotes the
integer distance from the corresponding face to the origin. In column “Face” we give a picture of
the integer-affine type of the face. Further, in column “1S” we write out the integer areas of faces,
and in column “1d” we write out the integer distances from the planes of faces to the origin. Finally,
in column “us” we show the results of the approximate calculations of the relative frequencies for
the corresponding integer-linear types of faces.

Note that in these examples the integer-affine type and the integer distance to the origin deter-
mine the integer-linear type of the face.

Fig. 3. The points painted in light gray correspond to the points at which the rays defining the
two-dimensional continued fraction may intersect the plane of the chosen face.
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Some calculated relative frequencies

No. Face IS U ) No. Face IS I 12
L 3 1 139901072 VI A 7 1 3.1558-107"

I3 3 3 1.0923 - 1073 VI, 7 2  3.1558-107%

I1, 'q 5 1 1.5001 - 1073 VII, . 11 1 3.4440-107°

111, 7 1 3.0782-107%  VIIIL : 7 1 5.6828-107*

IV, "G 9 1 94173-107°  IX, A - 7 1 1.1865-1073
v, @ 11 1 36391-10° X, 0 6

In conclusion of this section we give two simple statements on the relative frequencies of faces.

9.9275- 1074

—_

Statement 5.3. Faces of the same integer-affine type that lie at an integer distance of 1 from
the origin and at an integer distance of 2 from the origin always have the same relative frequencies
(see, for example, VI; and Vg in the table).

Denote by A, the triangle with vertices (0,0, 1), (n,0,1), and (0,n,1). Denote by B,, the square
with vertices (0,0,1), (n,0,1), (n,n,1), and (0,n,1).

Statement 5.4. The following equality holds:

. u(CF,(Ay))
lim = 8.
n—0o0 M(CFn(Bn))
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Abstract

The problem of the investigation of the simplest n-dimensional continued fraction in the sense of Klein for n > 2 was posed by
V. Arnold. The answer for the case n = 2 can be found in the works of E. Korkina (1995) and G. Lachaud (1995). In present Note
we study the case n = 3. To cite this article: O. Karpenkov, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Trois exemples des fractions continues trois-dimensional en sens de Klein. Le probleme de 1’étude les plus simple fractions
continues n-dimensional en sens de Klein pour n > 2 a été poser de V. Arnold. Le solution pour la case de n = 2 a presenté
dans les articles de E. Korkina (1995) et G. Lachaud (1995). Dans la Note présente, on étude la case de n = 3. Pour citer cet
article : O. Karpenkov, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Definitions

A point of R**! is called integer if all its coordinates are integers. A hyperplane is called integer if all its integer
vectors generate an n-dimensional sublattice of integer lattice. Consider some integer hyperplane and an integer point
in the complement to this plane. Let the Euclidean distance from the given point to the given plane equal /. The
minimal value of nonzero Euclidean distances from integer points of the space R"*! to the plane is denoted by /o. The
ratio [/l is said to be the integer distance from the given integer point to the given integer hyperplane.

2. Definition of multidimensional continued fraction in the sense of Klein

Consider arbitrary n+1 hyperplanes in R"*! that intersect at the unique point: at the origin. Assume also that all
the given planes do not contain any integer point different to the origin. The complement to these hyperplanes consists

E-mail address: karpenk @ceremade.dauphine.fr (O. Karpenkov).
1 Partially supported by RFBR grant SS-1972.2003.1 and by RFBR grant 05-01-01012a.

1631-073X/$ — see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2006.04.023
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of 2"*1 open orthants. Consider one of these orthants. The boundary of the convex hull of all integer points except the
origin in the closure of the orthant is called the sail of the orthant. The set of all 2"+ sails is called the n-dimensional
continued fraction constructed accordingly to the given n+1 hyperplanes. Two n-dimensional continued fractions are
said to be equivalent if there exists a linear lattice preserving transformation of R”*! taking all sails of one continued
fraction to the sails of the other continued faction.

We associate to any hyperbolic irreducible operator A of SL(n+1, Z) an n-dimensional continued fraction con-
structed according to the set of all n+1 eigen-hyperplanes for A. Any sail of such continued fraction is homeomorphic
to R”. From Dirichlet unity theorem it follows that the group of all SL(n+1, Z)-operators commuting with A and pre-
serving the sails is homeomorphic to Z" and its action is free (we denote this group by = (A)). A fundamental domain
of the sail with respect to the action of the group = (A) is a face union that contains exactly one face of the sail from
each orbit. (For more information see [1-5].)

3. The examples

Denote by A, .4 the following integer operator
01 00

0 0 1 0
0 0 0 1
a b ¢ d

Example 1. Consider the operator A = A1 _3,04. The group Z (A1) is generated by the operators Byj; = Al_z,

By = (Al—E)ZA_Z, and Bz = (Al—E)Z(A1+E)A1_2. Let us enumerate all three-dimensional faces for one of
the fundamental domains of the sail containing the vertex (0,0,0,1). Let Vig = (=3,-2,—1,1), Vigi2j1x =

BilB{ZB{‘3(V10) for i, j,k € {0,1}. One of the fundamental domains of the sail contains the following three-
dimensional faces: T11 = VigV12V14Vis, Tz = Vi2V1aVisVie, Tiz = Vi2VisVieViz, Tia = Vi2VizVisVig, Tis =
VioV12V13 Vis, Tie = Vio V11 V13 Vis, and T17 = VioV11Vi2Viz (see Fig. 1 (left)). All listed tetrahedra are taken by
some integer affine transformations to the unit basis tetrahedron. The integer distance from the origin to the planes
containing the faces Ty, ..., 717 equal 4, 3, 2, 4, 3, 2, and 1, respectively.

Statement 1. The continued fraction constructed for any hyperbolic matrix of SL(4, Z) with irreducible characteristic
polynomial over rationals and with the sum of absolute values of the elements smaller than 8 is equivalent to the
continued fraction of Example 1.

Statement 2. The symmetry (not commuting with A) defined by the matrix

4 —-16 17 -3
3 —11 11 =2
3 8 6 -1
6 -8 -2 1

acts on the sail of Example 1. This symmetry permutes the equivalence classes (with respect to the action of & (A1))
of tetrahedra 771 and T4, T2 and Tis, T13 and Tj¢, and takes the class of 777 to itself.

Example 2. Let us consider the operator Ay = Ay, _4,1,4. The group E'(A») is generated by the operators By = A, 2,
By = (A,—E )2A2_ 2, and Bo3 = (A2+E)A; ! Let us enumerate all three-dimensional faces for one of the fundamen-
tal domains of the sail containing the vertex (0, 0,0, 1). Let Voo = (=4, =3, -2,0), V2 4i12j4k = B§1B£2B§3(V20)
for i, j,k € {0, 1}. One of the fundamental domains of the sail contains the following three-dimensional faces:
11 = Voo V21 Va3 Vou, Top = Vo1 VazVaaVas, Toz = Voo Var Vaz Vaa, Toa = V22 Va3 VaaVas, Tos = Va3 VoaVosVaz, and
Tre = Va3 V24 Va6 Vo7 (see Fig. 1 (middle)). All listed tetrahedra are taken by some integer affine transformations
to the unit basis tetrahedron. The integer distance from the origin to the planes containing the faces 751, ..., T>¢ equal
1,2,2,4,8, and 13, respectively.
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Fig. 1. Gluing faces; see text for details.

Example 3. Consider the operator A3 = A_1,—3,1,3. The group Z(A3) is generated by the operators B3; = A5 2,
B3, = (A3—E)A3 1, and B33z = A3+E. Any fundamental domain of the sail with (0, 0,0, 1) as a vertex contains a
unique three-dimensional face. The polyhedron V3o V31 V32 Va3 V34 V35 V36 V37 shown on Fig. 1 (right) is an example of
such face, here V3o = (=1, =1, —1,0), V31 = B33(V30), V32 = B32B33(V30), V33 = 3313521(V30), Vi = 3521(V30),
V35 = B3y B323(V30), V36 = B31 B33(Vag), V37 = B3 B3_21 B33(V30). The described face is contained in the plane on the
unit distance from the origin. The integer volume of the face equals 8.

Example 3 provides the negative answer to the following question for the case of n = 3: is it true, that any n-
periodic n-dimensional sail contains an n-dimensional face in some hyperplane on integer distance to the origin
greater than one? The answers for n = 2,4,5,6, ... are unknown. The answer to the following question is also
unknown to the author: is it true, that any n-periodic n-dimensional sail contains an n-dimensional face in some
hyperplane on unit integer distance to the origin?

We show with dotted lines (Fig. 1) how to glue the faces to obtain the combinatorial scheme of the described
fundamental domains.
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