Corrections for the paper
 https://doi.org/10.1016/j.jnt.2020.01.010

1 Definitions

Recall the definition of $\tilde{\Sigma}$ (Equation (6) on page 50 of the paper)

$$
\tilde{\Sigma}((\alpha, a),(\beta, b),(\gamma, c))=\breve{K}(\alpha \beta) .
$$

By the definitions of \otimes on page 50 and of L_{σ} and R_{σ} on page 36 we have

$$
\begin{aligned}
L_{\otimes}((\alpha, a),(\beta, b),(\gamma, c)) & =((\alpha, a), \otimes((\alpha, a),(\beta, b),(\gamma, c)),(\beta, b)) \\
& =((\alpha, a),(\alpha \beta, \tilde{\Sigma}((\alpha, a),(\beta, b),(\gamma, c))),(\beta, b)) \\
& =((\alpha, a),(\alpha \beta, \breve{K}(\alpha \beta)),(\beta, b)), \\
R_{\otimes}((\alpha, a),(\beta, b),(\gamma, c)) & =((\alpha, a), \otimes((\beta, b),(\gamma, c),(\alpha, a)),(\beta, b)) \\
& =((\beta, b),(\beta \gamma, \tilde{\Sigma}((\beta, b),(\gamma, c),(\alpha, a))),(\gamma, c)) \\
& =((\beta, b),(\beta \gamma, \breve{K}(\beta \gamma)),(\gamma, c)) .
\end{aligned}
$$

2 Corollary 7.19

Corollary 7.19 says

$$
\tilde{\Sigma}((\alpha, a),(\alpha \beta, \breve{K}(\alpha \beta)),(\beta, b))=\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}\left(\alpha^{2}\right)} \breve{K}(\alpha \beta)-\breve{K}(\beta)
$$

This misleading since this formula holds only for a triple formed by concatenation

$$
((\alpha, a),(\alpha \beta, \breve{K}(\alpha \beta)),(\beta, b)) .
$$

This formula does not work for an arbitrary triple

$$
((\alpha, a),(\beta, b),(\gamma, c))
$$

It should read like this

Corollary (Corollary 7.19). Let $a=\breve{K}(a), b=\breve{K}(\alpha \beta)$, and $c=\breve{K}(\beta)$. Then

$$
\begin{aligned}
\tilde{\Sigma}((\alpha, a),(\alpha \beta, b),(\beta, c)) & =\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)} \breve{K}(\alpha \beta)-\breve{K}(\beta) \\
& =\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)} b-c,
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{\Sigma}((\alpha \beta, b),(\beta, c),(\alpha, a)) & =\frac{\breve{K}\left(\beta^{2}\right)}{K(\beta)} \breve{K}(\alpha \beta)-\breve{K}(\alpha) \\
& =\frac{\breve{K}\left(\beta^{2}\right)}{K(\beta)} b-a .
\end{aligned}
$$

From this, the last line in Remark 6.19 should read

$$
\begin{aligned}
& \tilde{\Sigma}((\alpha, a),(\alpha \beta, b),(\beta, c))=\Sigma(a, b, c)=3 a b-c \\
& \tilde{\Sigma}((\alpha \beta, b),(\beta, c),(\alpha, a))=\Sigma(b, c, a)=3 c b-a .
\end{aligned}
$$

3 Examples

With this corrected corollary in place we give an example. We use the following notation for a triple (α, β, γ)

$$
P(\alpha, \beta, \gamma)=(\breve{K}(\alpha), \breve{K}(\beta), \breve{K}(\gamma))
$$

Example 1. Let $\alpha=(1,1,1,1)$ and $\beta=(2,2)$. For the triple $(\alpha, \alpha \beta, \beta)$ we have

$$
P(\alpha, \alpha \beta, \beta)=(3,13,2) .
$$

Then

$$
\begin{aligned}
& P(L(\alpha, \alpha \beta, \beta))=P(\alpha, \alpha \alpha \beta, \alpha \beta)=(3,89,13), \\
& P(R(\alpha, \alpha \beta, \beta))=P(\alpha \beta, \alpha \beta \beta, \beta)=(13,75,2) .
\end{aligned}
$$

Further,

$$
\begin{aligned}
P\left(L^{2}(\alpha, \alpha \beta, \beta)\right) & =P(\alpha, \alpha \alpha \alpha \beta, \alpha \alpha \beta)=(3,610,89), \\
P(R L(\alpha, \alpha \beta, \beta)) & =P(\alpha \alpha \beta, \alpha \alpha \beta \alpha \beta, \alpha \beta)=(89,3468,13), \\
P(L R(\alpha, \alpha \beta, \beta)) & =P(\alpha \beta, \alpha \beta \alpha \beta \beta, \alpha \beta \beta)=(13,2923,75), \\
P\left(R^{2}(\alpha, \alpha \beta, \beta)\right) & =P(\alpha \beta \beta, \alpha \beta \beta \beta, \beta)=(75,437,2) .
\end{aligned}
$$

Now we use $\tilde{\Sigma}$. First note that

$$
\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)}=7, \quad \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)}=6
$$

$$
\begin{aligned}
L_{\otimes}((\alpha, 3),(\alpha \beta, 13),(\beta, 2)) & =((\alpha, 3),(\alpha \alpha \beta, \tilde{\Sigma}((\alpha, 3),(\alpha \beta, 13),(\beta, 2))),(\alpha \beta, 13)) \\
& =\left((\alpha, 3),\left(\alpha \alpha \beta, \frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)} 13-2\right),(\alpha \beta, 13)\right) \\
& =((\alpha, 3),(\alpha \alpha \beta, 7 \cdot 13-2=89),(\alpha \beta, 13)), \\
R_{\otimes}((\alpha, 3),(\alpha \beta, 13),(\beta, 2)) & =((\alpha \beta, 13),(\alpha \beta \beta, \tilde{\Sigma}((\alpha \beta, 13),(\beta, 2),(\alpha, 3))),(\beta, 2)) \\
& =\left((\alpha \beta, 13),\left(\alpha \beta \beta, \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)} 13-3\right),(\beta, 2)\right) \\
& =((\alpha \beta, 13),(\alpha \beta \beta, 6 \cdot 13-3=75),(\beta, 2)),
\end{aligned}
$$

For the next triples we just calculate $\tilde{\Sigma}$. We have

$$
\frac{\breve{K}(\alpha \beta \alpha \beta)}{\breve{K}(\alpha \beta)}=39
$$

Then

$$
\begin{aligned}
(\alpha \alpha \alpha \beta, \tilde{\Sigma}((\alpha, 3),(\alpha \alpha \beta, 89),(\alpha \beta, 13))) & =\left(\alpha \alpha \alpha \beta, \frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)} \breve{K}(\alpha \alpha \beta)-\breve{K}(\alpha \beta)\right) \\
& =(\alpha \alpha \alpha \beta, 7 \cdot 89-13=610), \\
(\alpha \alpha \beta \alpha \beta, \tilde{\Sigma}((\alpha \alpha \beta, 89),(\alpha \beta, 13),(\alpha, 3))) & =\left(\alpha \alpha \beta \alpha \beta, \frac{\breve{K}(\alpha \beta \alpha \beta)}{\breve{K}(\alpha \beta)} \breve{K}(\alpha \alpha \beta)-\breve{K}(\alpha)\right) \\
& =(\alpha \alpha \beta \alpha \beta, 39 \cdot 89-3=3468), \\
(\alpha \beta \alpha \beta \beta, \tilde{\Sigma}((\alpha \beta, 13),(\alpha \beta \beta, 75),(\beta, 2))) & =\left(\alpha \beta \alpha \beta \beta, \frac{\breve{K}(\alpha \beta \alpha \beta)}{\breve{K}(\alpha \beta)} \breve{K}(\alpha \beta \beta)-\breve{K}(\beta)\right) \\
& =(\alpha \alpha \alpha \beta, 39 \cdot 75-2=2923), \\
(\alpha \beta \beta \beta, \tilde{\Sigma}((\alpha \beta \beta, 75),(\beta, 2),(\alpha \beta, 13))) & =\left(\alpha \beta \beta \beta, \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)} \breve{K}(\alpha \beta \beta)-\breve{K}(\alpha \beta)\right) \\
& =(\alpha \alpha \alpha \beta, 6 \cdot 75-13=437),
\end{aligned}
$$

4 Theorem 7.15

We change this theorem to the following.
Theorem (Theorem 7.15). Let n be a positive even integer. Let m and r be nonnegative integers such that $m+r>0$. Let α, λ, and ρ be the following sequences of positive integers

$$
\begin{aligned}
\alpha & =\left(a_{1}, \ldots, a_{n}\right), \\
\lambda & =\left(b_{1}, \ldots, b_{m}\right), \\
\rho & =\left(c_{1}, \ldots, c_{r}\right) .
\end{aligned}
$$

Then we have that

$$
\begin{equation*}
\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)}=\frac{\breve{K}\left(\lambda \alpha^{2} \rho\right)+\breve{K}(\lambda \rho)}{\breve{K}(\lambda \alpha \rho)} . \tag{1}
\end{equation*}
$$

Proof. The proof when m and r are both positive is the same as in the paper. Let $\rho=()$. Equation (11) becomes

$$
K(\alpha) \breve{K}(\lambda \alpha)+K_{2}^{n-1}(\alpha) \breve{K}(\lambda \alpha)-\breve{K}\left(\lambda \alpha^{2}\right)-\breve{K}(\lambda)=0 .
$$

Substituting

$$
\breve{K}\left(\lambda \alpha^{2}\right)=K(\lambda \alpha) \breve{K}(\alpha)+\breve{K}(\lambda \alpha) K_{2}^{n-1}(\alpha)
$$

into this equation we get

$$
K(\alpha) \breve{K}(\lambda \alpha)+K_{2}^{n-1}(\alpha) \breve{K}(\lambda \alpha)-K(\lambda \alpha) \breve{K}(\alpha)-\breve{K}(\lambda \alpha) K_{2}^{n-1}(\alpha)-\breve{K}(\lambda)=0
$$

which, after cancelling terms, becomes

$$
K(\alpha) \breve{K}(\lambda \alpha)-K(\lambda \alpha) \breve{K}(\alpha)-\breve{K}(\lambda)=0 .
$$

Into this equation we substitute the equalities

$$
\begin{aligned}
& \breve{K}(\lambda \alpha)=K(\lambda) \breve{K}(\alpha)+\breve{K}(\lambda) K_{2}^{n-1}(\alpha), \\
& K(\lambda \alpha)=K(\lambda) K(\alpha)+\breve{K}(\lambda) K_{2}^{n}(\alpha),
\end{aligned}
$$

from which we get

$$
\begin{aligned}
& K(\alpha) K(\lambda) \breve{K}(\alpha)+K(\alpha) \breve{K}(\lambda) K_{2}^{n-1}(\alpha) \\
&-\breve{K}(\alpha) K(\lambda) K(\alpha)-\breve{K}(\alpha) \breve{K}(\lambda) K_{2}^{n}(\alpha)-\breve{K}(\lambda)=0 .
\end{aligned}
$$

Cancelling terms this becomes

$$
K(\alpha) \breve{K}(\lambda) K_{2}^{n-1}(\alpha)-\breve{K}(\alpha) \breve{K}(\lambda) K_{2}^{n}(\alpha)-\breve{K}(\lambda)=0
$$

This equation holds since $K(\alpha) K_{2}^{n-1}(\alpha)-\breve{K}(\alpha) K_{2}^{n}(\alpha)=1$, as n is even.
The proof when $\lambda=()$ is similar, so we don't give as much detail here. Equation (11) is now

$$
K(\alpha) \breve{K}(\alpha \rho)+K_{2}^{n-1}(\alpha) \breve{K}(\alpha \rho)-\breve{K}\left(\alpha^{2} \rho\right)-\breve{K}(\rho)=0 .
$$

Splitting the continuant $\breve{K}\left(\alpha^{2} \rho\right)$ and cancelling terms leads us to the equation

$$
K_{2}^{n-1}(\alpha) \breve{K}(\alpha \rho)-\breve{K}(\alpha) K_{2}^{n+r-1}(\alpha \rho)-\breve{K}(\rho)=0 .
$$

Once more splitting the continuants $\breve{K}(\alpha \rho)$ and $K_{2}^{n+r-1}(\alpha \rho)$ and cancelling terms leads us to the equation

$$
K_{2}^{n-1}(\alpha) K(\alpha) \breve{K}(\rho)-\breve{K}(\alpha) K_{2}^{n}(\alpha) \breve{K}(\rho)-\breve{K}(\rho)=0,
$$

which holds since $K(\alpha) K_{2}^{n-1}(\alpha)-\breve{K}(\alpha) K_{2}^{n}(\alpha)=1$, as n is even.

5 Example 7.22

A triple $(\breve{K}(\mu), \breve{K}(\mu \nu), \breve{K}(\nu))$ in a graph is followed by the triples

$$
\begin{aligned}
& \left(\breve{K}(\mu), \breve{K}\left(\mu^{2} \nu\right), \breve{K}(\mu \nu)\right)=\left(\breve{K}(\mu), \frac{\breve{K}\left(\mu^{2}\right)}{\breve{K}(\mu)} \breve{K}(\mu \nu)-\breve{K}(\nu), \breve{K}(\mu \nu)\right), \\
& \left(\breve{K}(\mu \nu), \breve{K}\left(\mu \nu^{2}\right), \breve{K}(\nu)\right)=\left(\breve{K}(\mu \nu), \frac{\breve{K}\left(\nu^{2}\right)}{\breve{K}(\nu)} \breve{K}(\mu \nu)-\breve{K}(\mu), \breve{K}(\nu)\right) .
\end{aligned}
$$

Let us call the values

$$
\frac{\breve{K}\left(\mu^{2}\right)}{\breve{K}(\mu)} \quad \text { and } \quad \frac{\breve{K}\left(\nu^{2}\right)}{\breve{K}(\nu)}
$$

the Markov values of μ and ν respectively.
Example 2. Let $\alpha=(1,1)^{n}$ and $\beta=(2,2)^{m}$ for some positive integers n and m. Consider the graph $T_{\alpha, \beta}$. The starting triple in this graph is

$$
(\breve{K}(\alpha), \breve{K}(\alpha \beta), \breve{K}(\beta)),
$$

followed by the triples

$$
\left(\breve{K}(\alpha), \breve{K}\left(\alpha^{2} \beta\right), \breve{K}(\alpha \beta)\right), \quad\left(\breve{K}(\alpha \beta), \breve{K}\left(\alpha \beta^{2}\right), \breve{K}(\beta)\right) .
$$

Let $(\breve{K}(\gamma), \breve{K}(\gamma \rho), \breve{K}(\rho))$ be any triple in the graph other than the triples

$$
\begin{align*}
& \left(\breve{K}(\alpha), \breve{K}\left(\alpha^{i} \beta\right), \breve{K}\left(\alpha^{i-1} \beta\right)\right)=\left(\breve{K}(\alpha), \frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)} \breve{K}\left(\alpha^{i-1} \beta\right)-\breve{K}\left(\alpha^{i-2} \beta\right), \breve{K}\left(\alpha^{i-1} \beta\right)\right) \\
& \left(\breve{K}\left(\alpha \beta^{i-1}\right), \breve{K}\left(\alpha \beta^{i}\right), \breve{K}(\beta)\right)=\left(\breve{K}\left(\alpha \beta^{i-1}\right), \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)} \breve{K}\left(\alpha \beta^{i-1}\right)-\breve{K}\left(\alpha \beta^{i-2}\right), \breve{K}(\beta)\right) \tag{2}
\end{align*}
$$

for $i \geq 1$, which we deal with separately. Then both sequences γ and ρ are of the form

$$
(1,1, \ldots, 2,2)
$$

As such they satisfy the conditions of Proposition 7.21, from which we have that

$$
\frac{\breve{K}\left(\gamma^{2}\right)}{\breve{K}(\gamma)}=3 \breve{K}(\gamma) \quad \text { and } \quad \frac{\breve{K}\left(\rho^{2}\right)}{\breve{K}(\rho)}=3 \breve{K}(\rho)
$$

From this we can build the entire tree $T_{\alpha, \beta}$ if we know the starting triple

$$
(\breve{K}(\alpha), \breve{K}(\alpha \beta), \breve{K}(\beta))
$$

and the two Markov values

$$
\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)} \quad \text { and } \quad \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)}
$$

There are two paths in the tree, given in Equation (2), that depend on the Markov values

$$
\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)}, \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)} .
$$

These have the values

$$
\frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)}=3 \breve{K}(\alpha), \quad \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)}=3 \breve{K}(\beta)
$$

if $n=1$ and $m=1$. This is the case of regular Markov numbers. However this is not true for $n>1$ and $m>1$, as we show now in Proposition 1 .

Remark. We use the following notation for continued fractions. In $\left[4 ;(4,4)^{i}: 7\right]$ the sequence $(4,4)$ is repeated i-times. In $[2 ;\langle 4\rangle]$ the number 4 is repeated infinitely.

Proposition 1. Let $\alpha=(1,1)^{n}$ and $\beta=(2,2)^{m}$ for some integers $n>1$ and $m>1$. Prove that

$$
\begin{aligned}
& \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)^{2}}=\left[2 ; 1:(4,1)^{n-2}: 5\right], \\
& \frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)^{2}}= \begin{cases}{\left[2 ;(4,4)^{i-1}: 3\right]} & i=\frac{m+1}{3}, i \in \mathbb{Z}, \\
{\left[2 ;(4,4)^{i-1}: 4\right]} & i=\frac{m}{3}, i \in \mathbb{Z}, \\
{\left[2 ;(4,4)^{i-1}: 4: 5\right]} & i=\frac{m-1}{3}, i \in \mathbb{Z},\end{cases}
\end{aligned}
$$

Example 3. For $n=1, \ldots, 5$ and $m=1, \ldots, 5$ we have

$$
\begin{array}{ll}
\frac{\breve{K}\left((1,1)^{2}\right)}{\breve{K}((1,1))^{2}}=[3] & \frac{\breve{K}\left((2,2)^{2}\right)}{\breve{K}((2,2))^{2}}=[3] \\
\frac{\breve{K}\left((1,1)^{4}\right)}{\breve{K}\left((1,1)^{2}\right)^{2}}=[2 ; 3] & \frac{\breve{K}\left((2,2)^{4}\right)}{\breve{K}\left((2,2)^{2}\right)^{2}}=[2 ; 1: 5] \\
\frac{\breve{K}\left((1,1)^{6}\right)}{\breve{K}\left((1,1)^{3}\right)^{2}}=[2 ; 4] & \frac{\breve{K}\left((2,2)^{6}\right)}{\breve{K}\left((2,2)^{3}\right)^{2}}=[2 ; 1: 4: 1: 5] \\
\frac{\breve{K}\left((1,1)^{8}\right)}{\breve{K}\left((1,1)^{4}\right)^{2}}=[2 ; 4: 5] & \frac{\breve{K}\left((2,2)^{8}\right)}{\breve{K}\left((2,2)^{4}\right)^{2}}=[2 ; 1: 4: 1: 4: 1: 5] \\
\frac{\breve{K}\left((1,1)^{10}\right)}{\breve{K}\left((1,1)^{5}\right)^{2}}=[2 ; 4: 4: 3] & \frac{\breve{K}\left((2,2)^{10}\right)}{\breve{K}\left((2,2)^{5}\right)^{2}}=[2 ; 1: 4: 1: 4: 1: 4: 1: 5]
\end{array}
$$

Remark. Note that

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \frac{\breve{K}\left(\alpha^{2}\right)}{\breve{K}(\alpha)^{2}}=[2 ;\langle 4\rangle]=\sqrt{5}, \\
& \lim _{n \rightarrow \infty} \frac{\breve{K}\left(\beta^{2}\right)}{\breve{K}(\beta)^{2}}=[2 ;\langle 1,4\rangle]=2 \sqrt{2} .
\end{aligned}
$$

The statement in Example 7.22 is therefore not correct. However, if we know the starting sequences $\alpha=(1,1)^{n}$ and $\beta=(2,2)^{m}$, then we have can derive the graph $T_{\alpha, \beta}$ using $\tilde{\Sigma}$, the formula in Question 1, and the triple

$$
(\breve{K}(\alpha), \breve{K}(\alpha \beta), \breve{K}(\beta)) .
$$

6 Other corrections

At the start of Subsection 5.3 we have the formula for Σ. This should be

$$
\Sigma(a, b, c)=3 a b-c .
$$

Typo in Theorem 6.20: The second bullet point should read "The maps P, Q, and T are as in Fig. 6".

In Figure 8, the box labelled "Generalised Markov triples in $\mathcal{G}_{\otimes}(\mu, \nu)$ (or in $\left.T_{\mu, \nu}\right)$ " is not clear. We add the following remark replacing Remark 6.21.

Remark. Triples in the graph $\mathcal{G}_{\otimes}(\mu, \nu)$ are of the form

$$
((\alpha, a),(\alpha \beta, c),(\beta, b)) .
$$

There is a trivial map Q from these triples to triples of sequences

$$
((\alpha, a),(\alpha \beta, c),(\beta, b)) \mapsto(\alpha, \alpha \beta, \beta) .
$$

Maps S and Y are derived from this trivial map.
It is not known to the authors whether there exists a map Q from the triples in $T_{\mu, \nu}$

$$
(a, c, b) \mapsto(\alpha, \alpha \beta, \beta) .
$$

Similarly, maps S and Y are not known to exist from $T_{\mu, \nu}$. For this reason they are marked with dashed lines.

