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Euclidean Algorithm and Gauss Map

By Euclidean algorithm, any rational number a/b > 1 can be
expressed as

x =
a

b
= a0 +

1

c1 + 1
c2+ 1

.

.

.

cn−1 + 1
cn

,

where c0, . . . , cn are natural numbers with cn > 1, except for n = 0.
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where c0, . . . , cn are natural numbers with cn > 1, except for
n = 0. Note cn(x) = cn−1(Tx) for n ≥ 1, where

Tx =

{{
1
x

}
if x 6= 0;

0 if x = 0,

is the famous Gauss map circa 1800.



Regular Continued fraction Expansions

For arbitrary real x we have the regular continued fraction
expansion of a real number
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For arbitrary real x we have the regular continued fraction
expansion of a real number

x = [c0; c1, c2, . . . ] = c0 +
1

c1 +
1

c2 +
1

c3 +
1

c4
. . .

.

Again cn(x) = cn−1(Tx) for n ≥ 1. The terms c0, c1, · · · are called
the partial quotients of the continued fraction expansion and the
sequence of rational truncates

[c0; c1, · · · , cn] =
pn

qn
, (n = 1, 2, · · · )

are called the convergents of the continued fraction expansion.



Continued fraction map on [1, 0)

 



Dynamical System

By a dynamical system (X , β, µ,T ) we mean a set X , together
with a σ-algebra β of subsets of X , a probability measure µ on the
measurable space (X , β) and a measurable self map T of X that is
also measure preserving. i.e. if given an element A of β if we set
T−1A = {x ∈ X : Tx ∈ A} then µ(A) = µ(T−1A).
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By a dynamical system (X , β, µ,T ) we mean a set X , together
with a σ-algebra β of subsets of X , a probability measure µ on the
measurable space (X , β) and a measurable self map T of X that is
also measure preserving. i.e. if given an element A of β if we set
T−1A = {x ∈ X : Tx ∈ A} then µ(A) = µ(T−1A). We say
a dynamical system is ergodic if T−1A = A for some A in β
means that µ(A) is either zero or one in value. We say T is
weak-mixing, if (X ×X , β × β, µ× µ,T ×T ) is ergodic Note weak
mixing is strictly stronger than ergodicity.



Birkhoff’s theorem

If (X , β, µ,T ) is measure preserving and ergodic and f is
integrable we have Birkhoff’s pointwise ergodic theorem

f (x) := lim
N→∞

1

N

N∑
n=1

f (T nx) =

∫
X

f (x)dµ a.e..

If (X , β, µ,T ) is not ergodic, we just know this limit is T invariant
almost everywhere i.e. f (Tx) = f (x)



Gauss dynamical system and its natural extention

(i) If X = [0, 1], β is the σ-algebra of Borel sets on X ,
µ(A) = 1

log 2

∫
A

dx
x+1 , for A ∈ β and T is the Gauss map then

(X , β, µ,T ) is weak mixing.



Gauss dynamical system and its natural extention

(i) If X = [0, 1], β is the σ-algebra of Borel sets on X ,
µ(A) = 1

log 2

∫
A

dx
x+1 , for A ∈ β and T is the Gauss map then

(X , β, µ,T ) is weak mixing.

(ii) If X = Ω = ([0, 1) \Q)× [0, 1], γ is the σ-algebra of Borel
subsets of Ω, ω is the probability measure on the measurable space
(Ω, β) defined by ω(A) = 1

(log 2)

∫
A

dxy
(1+xy)2 , and

T (x , y) = (Tx , 1
[ 1
x

]+y
). Then the map T preserves the measure ω

and the dynamical system (Ω, γ, ω,T ) called the natural extention
of (X , β, µ,T ) is weak mixing.



Means of convergents

Suppose the function F with domain the non-negative real
numbers and range the real numbers is continuous and increasing.
For each natural number n and arbitrary non-negative real
numbers a1, · · · , an we define

MF ,n(a1, · · · , an) = F−1[
1

n

n∑
j=1

F (aj)].

Then C. Ryll-Nardzewski observed that

lim
n→∞

MF ,n(c1(x), · · · , cn(x)) = F−1[
1

log 2

∫ 1

−0
F (c1(t))d

dt

1 + t
],

almost every where with respect to Lebesgue measure.



Means of convergents

Suppose the function F with domain the non-negative real
numbers and range the real numbers is continuous and increasing.
For each natural number n and arbitrary non-negative real numbers
a1, · · · , an we define MF ,n(a1, · · · , an) = F−1[ 1

n

∑n
j=1 F (aj)].

Then C. Ryll-Nardzewski ob served
limn→∞MF ,n(c1(x), · · · , cn(x)) = F−1[ 1

log 2

∫ 1
−0 F (c1(t))d dt

1+t ],
almost every where with respect to Lebesgue measure.

Special cases due to A. Khinchin

(i) limN→∞
1
N

∑N
n=1 cn(x) =∞a.e.;

(ii) limN→∞(c1(x) . . . cN(x))N
−1

= Πk≥1(1 + 1
k(k+2) )

log k
log 2 a.e.



Hurwitz’s constants

Recall the inequality |x − pn
qn
| ≤ 1

q2
n
, which is classical and well

known. One can check

θn(x) =
1

(T nx)−1 + qn−1q−1
n

= q2
n|x −

pn

qn
| ∈ [0, 1)

for each natural number n. Set

F (x) =

{
z

log 2 x ∈ [0, 1
2 );

1
log 2 (1 − z + log 2z) if x ∈ [ 1

2 , 1]

Then

lim
n→∞

1

n
|{1 ≤ j ≤ n : θj(x) ≤ z}| = F (z),

almost everywhere with respect to Lebesgue measure.
W. Bosma, H. Jager andF. Wiedijk 1983. Conjectured H.W.
Lenstra Jr.



Good Universality

A sequence of integers (an)∞n=1 is called Lp-good universal if for
each dynamical system (X ,B, µ,T ) and f ∈ Lp(X ,B, µ) we have

f (x) = lim
N→∞

1

N

N∑
n=1

f (T anx)

existing µ almost everywhere.



Uniform distribution modulo 1

A sequence of real numbers (xn)∞n=1 is uniformly distributed modulo
one if for each interval I ⊆ [0, 1), if |I | denotes its length, we have

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ I} = |I |.



Subsequence ergodic theory

Lemma (Nair)

If ({anγ})∞n=1 is uniformly distributed modulo one for each
irrational number γ, the dynamical system (X ,B, µ,T ) is
weak-mixing and (an)n≥1 is L2-good universal then f (x) exists and

f (x) =

∫
X

fdµ

µ almost everywhere.



Polynomial like sequences

1. The natural numbers: The sequence (n)∞n=1 is L1-good
universal. This is Birkhoff’s pointwise ergodic theorem.



Polynomial like sequences

1. The natural numbers: The sequence (n)∞n=1 is L1-good
universal. This is Birkhoff’s pointwise ergodic theorem.
2. Polynomial like sequences: Note if φ(x) is a polynomial such
that φ(N) ⊆ N (Bourgain, Nair) and p > 1 then (φ(n))∞n=1 and
(φ(pn))∞n=1 (Nair) where pn is nth prime are Lp good universal
sequences.



Hartman uniformly distributed sequences

A sequence of integers (an)n≥1 is Hartman uniformly distributed if

lim
N→∞

1

N

N∑
n=1

e(anx) = 0

for all non-integer x . Equivalenty a sequence is Hartmann
uniformly distributed if ({anγ})n≥1 is uniform distributed modulo 1
for each irrational number γ, and the sequence (an)n≥1 is
uniformly distributed in each residue class modm for each natural
number m > 1.



Hartman uniformly distributed sequences

A sequence of integers (an)n≥1 is Hartman uniformly distributed if

lim
N→∞

1

N

N∑
n=1

e(anx) = 0

for all non-integer x . Equivalenty a sequence is Hartmann
uniformly distributed if ({anγ})n≥1 is uniform distributed modulo 1
for each irrational number γ, and the sequence (an)n≥1 is
uniformly distributed in each residue class modm for each natural
number m > 1.

Note if n ∈ N then n2 6≡ 3 mod 4 so in general the sequences
(φ(n))∞n=1 and (φ(pn))∞n=1 are not Hartman uniformly distributed.
We do however know that if β ∈ R \Q then (φ(n)β)∞n=1 and
(φ(pn)β)∞n=1 are uniformly distributed modulo one. Condition H
sequences to follow are Hartman uniformly distributed.
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3. (an)∞n=1 that are Lp-good universal and Hartman uniformly
distributed are constructed as follows.
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g : [1,∞)→ [1,∞) is a differentiable function whose derivation
increases with its argument. Let An denote the cardinality of the
set {n : an ≤ n} and suppose for some function a : [1,∞)→ [1,∞)
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bM = sup
{z}∈[ 1

a(M)
, 1

2
)
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∣∣∣∣∣∣ .
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g : [1,∞)→ [1,∞) is a differentiable function whose derivation
increases with its argument. Let An denote the cardinality of the
set {n : an ≤ n} and suppose for some function
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Condition H sequences of integers

3. (an)∞n=1 that are Lp-good universal and Hartman uniformly
distributed are constructed as follows. Denote by [y ] the integer
part of real number y . Set an = [g(n)] (n = 1, . . . ) where
g : [1,∞)→ [1,∞) is a differentiable function whose derivation
increases with its argument. Let An denote the cardinality of the
set {n : an ≤ n} and suppose for some function
a : [1,∞)→ [1,∞) increasing to infinity as its argument does,

that we set bM = sup{z}∈[ 1
a(M)

, 1
2

)

∣∣∣∑n:an≤M e(zan)
∣∣∣ . Suppose also

for some decreasing function c : [1,∞)→ [1,∞), with∑∞
s=1 c(θs) <∞ for θ > 1 and some positive constant C > 0 that

b(M) + A[a(M)] + M
a(M)

AM
≤ Cc(M).

Then we say that k = (an)∞n=1 satisfies condition H. (Nair)



Examples of Hartman uniformly distribution sequences

Sequences satisfying condition H are both Hartman uniformly
distributed and Lp-good universal.
Specific sequences of integers that satisfy conditions H include
kn = [g(n)] (n = 1, 2, . . . ) where
I. g(n) = nω if ω > 1 and ω /∈ N.
II. g(n) = e logγ n for γ ∈ (1, 3

2 ).
III. g(n) = P(n) = bknk + . . .+ b1n + b0 for bk , . . . , b1 not all
rational multiplies of the same real number.



Bourgain’s random sequences

4. Suppose S = (nk)∞n=1 ⊆ N is a strictly increasing sequence of
natural numbers. By identifying S with its characteristic function
IS we may view it as a point in Λ = {0, 1}N the set of maps from
N to {0, 1}.
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we have Xn = {0, 1} and specify the probability πn on Xn by
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that limn→∞ qnn = ∞.
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4. Suppose S = (nk)∞n=1 ⊆ N is a strictly increasing sequence of
natural numbers. By identifying S with its characteristic function
IS we may view it as a point in Λ = {0, 1}N the set of maps from
N to {0, 1}. We may endow Λ with a probability measure by
viewing it as a Cartesian product Λ =

∏∞
n=1 Xn where for each

natural number n we have Xn = {0, 1} and specify the probability
πn on Xn by πn({1}) = qn with 0 ≤ qn ≤ 1 and
πn({0}) = 1 − qn such that limn→∞ qnn = ∞.

The desired probability measure on Λ is the corresponding product
measure π =
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n=1 πn. The underlying σ-algebra β is that

generated by the “cylinders”

{λ = (λn)∞n=1 ∈ Λ : λi1 = αi1 , . . . λir = αir }

for all possible choices of i1, . . . , ir and αi1 , . . . , αir .



Bourgain’s random sequences

4. Suppose S = (nk)∞n=1 ⊆ N is a strictly increasing sequence of
natural numbers. By identifying S with its characteristic function
IS we may view it as a point in Λ = {0, 1}N the set of maps from
N to {0, 1}. We may endow Λ with a probability measure by
viewing it as a Cartesian product Λ =

∏∞
n=1 Xn where for each

natural number n we have Xn = {0, 1} and specify the probability
πn on Xn by πn({1}) = qn with 0 ≤ qn ≤ 1 and
πn({0}) = 1 − qn such that limn→∞ qnn = ∞. The desired
probability measure on Λ is the corresponding product measure
π =

∏∞
n=1 πn. The underlying σ-algebra β is that generated by

the “cylinders”

{λ = (λn)∞n=1 ∈ Λ : λi1 = αi1 , . . . λir = αir }

for all possible choices of i1, . . . , ir and αi1 , . . . , αir .
Let (kn)∞n=1 be almost any point in Λ with respect to the measure
π.



Means of convergents for subsequences

Suppose the function F with domain the non-negative real
numbers and range the real numbers is continuous and increasing.
For each natural number n and arbitrary non-negative real
numbers a1, · · · , an we define

MF ,n(a1, · · · , an) = F−1[
1

n

n∑
j=1

F (aj)].

Then if (an)n≥1 is Lp good universal and ({anγ})n≥1 is uniformly
distributed modulo one for irrational γ we have

lim
n→∞

MF ,n(ca1(x), · · · , can(x)) = F−1[
1

log 2

∫ 1

−0
F (c1(t))d

dt

1 + t
],

almost every where with respect to Lebesgue measure.



Means of convergents for subsequences

Suppose the function F with domain the non-negative real
numbers and range the real numbers is continuous and increasing.
For each natural number n and arbitrary non-negative real numbers
a1, · · · , an we define MF ,n(a1, · · · , an) = F−1[ 1

n

∑n
j=1 F (aj)].

Then if (an)n≥1 is Lp good universal and ({anγ})n≥1 is uniformly
distributed modulo one for irrational γ we have

lim
n→∞

MF ,n(ca1(x), · · · , can(x)) = F−1[
1

log 2

∫ 1

−0
F (c1(t))d

dt

1 + t
],

almost every where with respect to Lebesgue measure.
Special cases

(i) limN→∞
1
N

∑N
n=1 can(x) =∞a.e.;

(ii) limN→∞(ca1(x) . . . caN (x))N
−1

= Πk≥1(1 + 1
k(k+2) )

log k
log 2 a.e.



Hurwitz’s constants for subsequences

Recall the inequality

|x − pn

qn
| ≤ 1

q2
n

,

which is classical and well known. Clearly

θn(x) = q2
n|x −

pn

qn
| ∈ [0, 1).

if for each natural number n. Set

F (x) =

{
z

log 2 x ∈ [0, 1
2 );

1
log 2 (1 − z + log 2z) if x ∈ [ 1

2 , 1]



Hurwitz’s constants for subsequences

Recall the inequality |x − pn
qn
| ≤ 1

q2
n
, which is classical and well

known. Clearly θn(x) = q2
n|x −

pn
qn
| ∈ [0, 1). if for each natural

number n. Set

F (x) =

{
z

log 2 x ∈ [0, 1
2 );

1
log 2 (1 − z + log 2z) if x ∈ [ 1

2 , 1]

Then if [ (an)n≥1 is Lp good universal and ({anγ})n≥1 is uniformly
distributed modulo one for irrational γ]* we have

lim
n→∞

1

n
|{1 ≤ j ≤ n : θaj (x) ≤ z}| = F (z),

almost everywhere with respect to Lebesgue measure.



Hurwitz’s constants for subsequences

Recall the inequality |x − pn
qn
| ≤ 1

q2
n
, which is classical and well

known. Clearly θn(x) = q2
n|x −

pn
qn
| ∈ [0, 1). if for each natural

number n. Set

F (x) =

{
z

log 2 x ∈ [0, 1
2 );

1
log 2 (1 − z + log 2z) if x ∈ [ 1

2 , 1]

Then if [ (an)n≥1 is Lp good universal and ({anγ})n≥1 is uniformly
distributed modulo one for irrational γ]* we have

lim
n→∞

1

n
|{1 ≤ j ≤ n : θaj (x) ≤ z}| = F (z),

almost everywhere with respect to Lebesgue measure.

D. Hensley dropped condition * using a different method.



Other sequences attached to the regular continued fraction
expansion. I

Suppose z is in [0, 1] and for irrational x in (0, 1) set

Qn(x) =
qn−1(x)

qn(x)

for each positive integer n. Suppose also that (an)∞n=1 satisfies *.
Then

lim
n→∞

1

n
|{1 ≤ j ≤ n : Qaj (x) ≤ z}| = F2(z) =

log(1 + z)

log 2

almost everywhere with respect to Lebesgue measure.



Other sequences attached to the regular continued fraction
expansion II

For irrational x in (0, 1) set

rn(x) =
|x − pn

qn
|

|x − pn−1

qn−1
|
. (n = 1, 2, · · · )



Other sequences attached to the regular continued fraction
expansion II

For irrational x in (0, 1) set

rn(x) =
|x − pn

qn
|

|x − pn−1

qn−1
|
. (n = 1, 2, · · · )

Further for z in [0, 1] let

F3(z) =
1

log 2
(log(1 + z) − z

1 + z
log z).



Other sequences attached to the regular continued fraction
expansion II

For irrational x in (0, 1) set

rn(x) =
|x − pn

qn
|

|x − pn−1

qn−1
|
. (n = 1, 2, · · · )

Further for z in [0, 1] let

F3(z) =
1

log 2
(log(1 + z) − z

1 + z
log z).

Suppose also that (an)∞n=1 satisfes *. Then

lim
n→∞

1

n
|{1 ≤ j ≤ n : raj (x) ≤ z}| = F3(z),

almost everywhere with respect to Lebesgue measure.
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Markov Partitions

Let T be a self map of [0, 1] and let

P0 = {P(j) : j ∈ Λ}

be a partition of [0, 1] into open intervals, disregarding a set of
Lebesgue measure 0.
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Pk = Pk−1 ∨ T−1(Pk−1).



Markov Partitions

Let T be a self map of [0, 1] and let P0 = {P(j) : j ∈ Λ} be a
partition of [0, 1] into open intervals, disregarding a set of
Lebesgue measure 0. We may for instance take Λ to be
{1, 2, · · · , n} (n = 1, 2, · · · ) or we may take Λ to be the natural
numbers. Define further partitions

Pk = {P(j0, · · · , jk) : (j0, · · · , jk) ∈ Λk+1}

of [0, 1] inductively for k in N by setting

P(j0, · · · , jk) = P(j0, · · · , jk−1) ∩ T−k(P(jk)),

so that
Pk = Pk−1 ∨ T−1(Pk−1).

Of course some of these sets P(j0, · · · , jk) may be empty. We shall
disregard these.
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We say the map T is Markov with partition P0 if the following
conditions hold :
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conditions hold :
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Markov Maps of the unit interval

We say the map T is Markov with partition P0 if the following
conditions hold :
(i) for each j in Λ there exists Λj ⊂ Λ such that
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Markov Maps of the unit interval

We say the map T is Markov with partition P0 if the following
conditions hold :
(i) for each j in Λ there exists Λj ⊂ Λ such that

T (P(j)) = int ∪i∈Λj
P(i);

(ii) we have
inf j∈Λλ(T (P(j)) > 0;

(iii) the derivative T ′ of T is defined and 1
T ′ is bounded on U0;

(iv) there exists β > 1 such that (T n)′ � βn on Un and
(v) there exists γ in (0, 1) such that

|1 − T ′(x)

T ′(y)
| � |x − y |γ ,

for x and y belonging to the same element of P0.
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Examples of Markov Maps

(a) For a Pisot-Vijayaraghavan number β > 1 let

Tβ(x) = {βx};

and let
(b)

Tx =

{{
1
x

}
if x 6= 0;

0 if x = 0,

The example (a) is known as the β-transformation. Note that in
the special case where β is an integer Tβ(Tβ(x)) = {β2x}. This
is not true for non-integer β and this gives the dynamics a quite
different character. The example (b) is the famous Gauss map
which is associated to the continued fraction expansion of a real
number.
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Invariant Measures for Markov Measures

If the map T : [0, 1] → [0, 1] is Markov in the sense described
above then it preserves a measure η equivalent to Lebesgue
measure.
Further the dynamical system ([0, 1], β, η,T ), where β denotes the
usual Borel σ-algebra on [0, 1], is exact. In particular it is ergodic.



Invariant Measures for Markov Measures

If the map T : [0, 1] → [0, 1] is Markov in the sense described
above then it preserves a measure η equivalent to Lebesgue
measure.
Further the dynamical system ([0, 1], β, η,T ), where β denotes the
usual Borel σ-algebra on [0, 1], is exact. In particular it is ergodic.
As a consequence, G. Birkhoff’s pointwise ergodic theorem tells us
that

(1.1) lim
N→∞

1

N

N∑
n=1

χB(T n(x)) = η(B),

almost everywhere with respect to Lebesgue measure.
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An exceptional set

For x in [0, 1] let Ω(x) = ΩT (x) denote the closure of the set
{T n(x) : n = 1, 2, · · · }. Henceforth we denote N ∪ {0} by N0.
For a subset A of [0, 1] let d(x ,A) denote infa∈A|x − a|. If
x = (xr )∞r=0 is a sequence of real numbers such that
0 ≤ xr ≤ 1 and f : N0 → R is positive, set

E (x , f ) = {x ∈ [0, 1] : | log d(xr ,Ω(x))| � f (r)}.

As a consequence of Birkhoff’s theorem and the fact that η is
equivalent to Lebesgue measure λ we see that λ(E (x , f )) = 0.
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Hausdorff Dimension

Suppose M is a metric space endowed with a metric d . Also
suppose E ⊆ M. Suppose δ > 0. We say a collection of subsets of
M denoted Cδ is a δ–cover for E if E ⊆ ∪U∈CδU, and if we set

diam(U) := sup
x ,y∈U

d(x , y),

then U ∈ Cδ implies diam(U) ≤ δ. We set

Hs
δ(E ) = sup

Cδ

∑
i

(diamUi )
s ,

where the supremum is taken over all δ-covers Cδ. We set

Hs(E ) := lim
δ→0
Hs
δ(E ),

which always exists. We call the specific s0 where Hs changes from
∞ to 0 the Hausdorff dimension of E .
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Some examples

(i) If M = Rn for n > 1 and E ⊆ M has positive lebesgue measure
then s0 = n i.e. dim(E ) = n.
(ii) If E ⊆ M is countable then dim(E ) = 0.
(iii) Cantor’s middle third set : Let

C = {x ∈ [0, 1) : x =
∞∑
n=1

xn
3n

s.t.xn ∈ {0, 2}}.

C is well known to be uncountanle.
One can show dim(C ) = log 2

log 3 .



Abercrombie, Nair

For each sequence x = (xr )∞r=0 of real numbers in [0, 1] and
positive function f : N0 → R such that f (r) � r 2, the
Hausdorff dimension of E (x , f ) is 1.



A special case

An immediate consequence is the following result.
For x0 ∈ [0, 1] set

E (x0) = {x ∈ [0, 1] : x0 ∈ [0, 1] \ ΩT (x)}.
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A special case

An immediate consequence is the following result.
For x0 ∈ [0, 1] set

E (x0) = {x ∈ [0, 1] : x0 ∈ [0, 1] \ ΩT (x)}.

Then for each x0 in [0, 1] the Hausdorff dimension of E (x0) is 1.

Take x0 = 0 and T is the Gauss continued fraction map.

Thus the set of x ∈ [0, 1] with bound convergents had dimension 1.
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Equivalent characterisations of badly approximability

(i) We say an irrational real number α is badly approximable if

there exists a constant c(α) > 0 such that |α − p
q | >

c(α)
q2 , for

every rational p
q .

(ii) Suppose α has a continued fraction expansion [a0; a1, a2, . . . ].
We say α has bounded partial quotients if there exists a constant
K (α) such that

|cn| ≤ K (α). (n = 1, 2, · · · )

(i) and (ii) are equivalent.

Corollary : (V. Jarnik 1929) : The set of badly approximable
numbers has Hausdorff dimension 1
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The Field of Formal Power series

Let Fq denote the finite field of q elements, where q is a power of
a prime p. If Z is an indeterminate, we denote by Fq[Z ] and Fq(Z )
the ring of polynomials in Z with coefficients in Fq and the
quotient field of Fq[Z ], respectively. For each P,Q ∈ Fq[Z ] with
Q 6= 0, define |P/Q| = qdeg(P)−deg(Q) and |0| = 0. The field
Fq((Z−1)) of formal Laurent series is the completion of Fq(Z )
with respect to the valuation | · |.

That is,

Fq((Z−1)) = {anZn + · · ·+ a0 + a−1Z−1 + · · · : n ∈ Z, ai ∈ Fq}

and we have |anZn + an−1Zn−1 + · · · | = qn (an 6= 0) and |0| = 0,
where q is the number of elements of Fq.
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Haar measure on the field of Formal Power Series

It is worth keeping in mind that | · | is a non-Archimedean norm,
since |α + β| ≤ max(|α|, |β|). In fact, Fq((Z−1)) is the
non-Archimedean local field of positive characteristic p. As a
result, there exists a unique, up to a positive multiplicative
constant, countably additive Haar measure µq on the Borel subsets
of Fq((Z−1)).

Sprindžuk found a characterization of Haar measure on Fq((Z−1))
by its value on the balls
B(α; qn) = {β ∈ Fq((Z−1)) : |α− β| < qn}.

It was shown that the equation µq(B(α; qn)) = qn completely
characterizes Haar measure here.
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Continued fractions on Fq((Z−1))

For each α ∈ Fq((Z−1)), we can uniquely write

α = A0 +
1

A1 +
1

A2 +
.. .

= [A0; A1,A2, . . . ],

where (An)∞n=0 is a sequence of polynomials in Fq[Z ] with |An| > 1
for all n ≥ 1. We define recursively the two sequences of
polynomials (Pn)∞n=0 and (Qn)∞n=0 by

Pn = AnPn−1 + Pn−2 and Qn = AnQn−1 + Qn−2,

with the initial conditions P0 = A0, Q0 = 1, P1 = A1A0 + 1 and
Q1 = A1.
Then we have QnPn−1 − PnQn−1 = (−1)n, and whence Pn and Qn

are coprime. In addition, we have Pn/Qn = [A0; A1, . . . ,An].
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Define Tq on the unit ball
B(0; 1) = {a−1Z−1 + a−2Z−2 + · · · : ai ∈ Fq} by

Tqα =

{
1

α

}
and T 0 = 0.

Here

{anZn + · · ·+ a0 + a−1Z−1 + · · · } = a−1Z−1 + a−2Z−2 + · · ·

denotes its fractional part.
We note that if α = [0; A1(α),A2(α), . . . ], then we have, for all
m, n ≥ 1,

T nα = [0; An+1(α),An+2(α), . . . ] and Am(T nα) = An+m(α).
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transformation T : X → X . We say that (X ,B, µ,T ) is
measure-preserving if, for all E ∈ B, µ(T−1E ) = µ(E ).
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Exactness the CF map on Fq((Z−1))

Let (X ,B, µ,T ) be a dynamical system consisting of a set X with
the σ-algebra B of its subsets, a probability measure µ, and a
transformation T : X → X . We say that (X ,B, µ,T ) is
measure-preserving if, for all E ∈ B, µ(T−1E ) = µ(E ). Let
N = {E ∈ B : µ(E ) = 0 or µ(E ) = 1} denote the trivial σ-algebra
of subsets of B of either null or full measure. We say that the
measure-preserving dynamical system (X ,B, µ,T ) is exact if

∞⋂
n=0

T−nB = N ,

where T−nB = {T−nE : E ∈ B}.

Theorem
The dynamical system (B(0; 1),B, µq,Tq) is exact.
(Lertchoosakul, Nair)
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Exactness implies mixing, ergodicity
If (X ,B, µ,T ) is exact, then a number of strictly weaker properties
arise. Firstly, for any natural number n and any E0,E1, . . . ,En ∈ B,
we have

lim
j1,...,jn→∞

µ(E0 ∩ T−j1E1 ∩ · · · ∩ T−(j1+···+jn)En) = µ(E0)µ(E1) · · ·µ(En).

This is called mixing of order n. This implies

lim
m→∞

1

m

m∑
j=1

|µ(E0 ∩ T−jE1)− µ(E0)µ(E1)| = 0

which is called weak mixing.
Weak-mixing property implies the condition that if E ∈ B and if
T−1E = E , then either µ(E ) = 0 or µ(E ) = 1. This last property
is referred to as ergodicity in measurable dynamics. All these
implications are known to be strict in general.



Good Universality

• A sequence of integers (an)∞n=1 is called Lp-good universal if
for each dynamical system (X ,B, µ,T ) and f ∈ Lp(X ,B, µ)
we have

f (x) = lim
N→∞

1

N

N∑
n=1

f (T anx)

existing µ almost everywhere.

• A sequence of real numbers (xn)∞n=1 is uniformly distributed
modulo one if for each interval I ⊆ [0, 1), if |I | denotes its
length, we have

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ I} = |I |.



Subsequence ergodic theory

Lemma
If ({anγ})∞n=1 is uniformly distributed modulo one for each
irrational number γ, the dynamical system (X ,B, µ,T ) is
weak-mixing and (an)n≥1 is L2-good universal then f (x) exists and

f (x) =

∫
X

fdµ

µ almost everywhere.(Nair)



V. Berthe, H. Nakada

Specializing for instance to the case where F (x) = logq x , we
recover the positive characteristic analogue of Khinchin’s famous
result that

lim
n→∞

|A1(α) · · ·An(α)|
1
n = q

q
q−1

almost everywhere with respect to Haar measure.



Let (an)∞n=1 be an Lp-good universal sequence with, for any
irrational number γ, ({anγ})∞n=1 is uniformly distributed modulo 1.
Suppose that F : R≥0 → R is a continuous increasing function with∫

B(0;1)
|F (|A1(α)|)|p dµ <∞.

For each n ∈ N and arbitrary non-negative real numbers d1, . . . , dn,
we define

MF ,n(d1, . . . , dn) = F−1

(
F (d1) + · · ·+ F (dn)

n

)
.

Then we have

lim
n→∞

MF ,n(|Aa1(α)|, . . . , |Aan(α)|) = F−1

(∫
B(0;1)

F (|A1(α)|) dµ

)

almost everywhere with respect to Haar measure.



Let (an)∞n=1 be an Lp-good universal sequence with, for any
irrational number γ, ({anγ})∞n=1 is uniformly distributed modulo 1.
Suppose that H : Nm → R is a function with∫

B(0;1)
|H(|A1(α)|, . . . , |Am(α)|)|p dµ <∞.

Then we have

lim
n→∞

1

n

n∑
j=1

H(|Aaj (α)|, . . . , |Aaj+m−1(α)|)

=
∑

(i1,...,im)∈Nm

H(qi1 , . . . , qim)

(
(q − 1)m

qi1+···+im

)

almost everywhere with respect to Haar measure.



New application 1

Let (an)∞n=1 be an Lp-good universal sequence with, for any
irrational number γ, ({anγ})∞n=1 is uniformly distributed modulo 1.
Then

lim
n→∞

1

n

n∑
j=1

deg(Aaj (α)) =
q

q − 1

almost everywhere with respect to Haar measure. (Lertchoosakul,
Nair)
Apply with f (α) =

∑∞
n=1 n · χ{qn}(|A1(α)|).



New application 2

Let (an)∞n=1 be an Lp-good universal sequence with, for any
irrational number γ, ({anγ})∞n=1 is uniformly distributed modulo 1.
Then, for any A ∈ Fq[Z ]∗,

lim
n→∞

1

n
·#{1 ≤ j ≤ n : Aaj (α) = A} = |A|−2

almost everywhere with respect to Haar measure. (Lertchoosakul,
Nair)
Apply with f (α) = χ{A}(A1(α)).



New application 3

Let (an)∞n=1 be an Lp-good universal sequence with, for any
irrational number γ, ({anγ})∞n=1 is uniformly distributed modulo 1.
Then, for any natural numbers k < l ,

lim
n→∞

1

n
·#{1 ≤ j ≤ n : deg(Aaj (α)) = l} =

q − 1

ql
,

lim
n→∞

1

n
·#{1 ≤ j ≤ n : deg(Aaj (α)) ≥ l} =

1

ql−1
,

lim
n→∞

1

n
·#{1 ≤ j ≤ n : k ≤ deg(Aaj (α)) < l} =

1

qk−1

(
1− 1

ql−k

)
almost everywhere with respect to Haar measure. (Lertchoosakul,
Nair)

Apply with f1(α) = χ{ql}(|A1(α)|), f2(α) = χ[ql ,∞)(|A1(α)|), and
f3(α) = χ[qk ,ql )(|A1(α)|), respectively.



The Gal-Koksma Theorem

Let S be a measurable set. For any non-negative integers M and
N, let ϕ(M,N; x) ≥ 0 be a function defined on S such that

(i) ϕ(M, 0; x) = 0 for all M ≥ 0;

(ii) ϕ(M,N; x) ≤ ϕ(M,N ′; x) + F (M + N ′,N − N ′; x) for all
M,N ≥ 0 and 0 ≤ N ′ ≤ N.

Suppose that, for all M ≥ 0,∫
S
ϕ(M,N; x)p dx = O(φ(N)),

where φ(N)/N is a non-decreasing function. Then, given any
ε > 0, we have

ϕ(0,N; x) = o(φ(N)
1
p (log N)1+ 1

p
+ε)

almost everywhere x ∈ S .



New application 4

Suppose that F : R≥0 → R is a function such that∫
B(0;1)

|F (|A1(α)|)|2 dµ(α) <∞.

Then, given any ε > 0, we have

1

N

N∑
n=1

F (|A1(T nα)|) =

∫
B(0;1)

F (|A1(α)|) dµ(α) + o(N−
1
2 (log N)

3
2

+ε)

almost everywhere with respect to Haar measure.



New application 5

Suppose that H : Nm → R is a function such that∫
B(0;1)

|H(|A1(α)|, |A2(α)|, . . . , |Am(α)|)|2 dµ(α) <∞.

Then, given any ε > 0, we have

1

N

N∑
n=1

H(|A1(T nα)|, |A2(T nα)|, . . . , |Am(T nα)|)

=
∑

(i1,...,im)∈Nm

H(qi1 , . . . , qim)

(
(q − 1)m

qi1+···+im

)
+ o(N−

1
2 (log N)

3
2

+ε)

almost everywhere with respect to Haar measure.



A special case

Specializing for instance to the case F (x) = logq x , we establish
the positive characteristic analogue of the quantitative version of
Khinchin’s famous result that

|A1(α) · · ·AN(α)|
1
N = q

q
q−1 + o(N−

1
2 (log N)

3
2

+ε) (1)

almost everywhere with respect to Haar measure. Results for
means other than the geometric mean can be obtained by making
different choices of F and H.



New application 6

Given any ε > 0, we have

1

N

N∑
n=1

deg(An(α)) =
q

q − 1
+ o(N−

1
2 (log N)

3
2

+ε)

almost everywhere with respect to Haar measure.



New application 7

Given any A ∈ Fq[Z ]∗ and ε > 0, we have

1

N
·#{1 ≤ n ≤ N : An(α) = A} = |A|−2 + o(N−

1
2 (log N)

3
2

+ε)

almost everywhere with respect to Haar measure.



New application 8

Let k < l be two natural numbers. Given any ε > 0, we have

1

N
·#{1 ≤ n ≤ N : deg(An(α)) = l} =

q − 1

ql
+ o(N−

1
2 (log N)

3
2

+ε),

1

N
·#{1 ≤ n ≤ N : deg(An(α)) ≥ l} =

1

ql−1
+ o(N−

1
2 (log N)

3
2

+ε),

1

N
·#{1 ≤ n ≤ N : k ≤ deg(An(α)) < l} =

1

qk−1

(
1− 1

ql−k

)
+ o(N−

1
2 (log N)

3
2

+ε)

almost everywhere with respect to Haar measure.



Definition
The p-adic absolute value of a ∈ Q is defined by

|a|p = p−α and |0|p = 0.



p-adic numbers

Let p be a prime. Any nonzero rational number a can be written in
the form a = pα(r/s) where α ∈ Z, r , s ∈ Z and p - r , p - s.
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The p-adic field Qp is constructed by completing Q w.r.t. p-adic
absolute value.



p-adic numbers
Let p be a prime. Any nonzero rational number a can be written in
the form a = pα(r/s) where α ∈ Z, r , s ∈ Z and p - r , p - s.

Definition
The p-adic absolute value of a ∈ Q is defined by

|a|p = p−α and |0|p = 0.

The p-adic field Qp is constructed by completing Q w.r.t. p-adic
absolute value.

The p-adic absolute value |.|p satisfies the following properties:

1. |a|p = 0 if and only if a = 0,

2. |ab|p = |a|p|b|p for all a, b ∈ Qp,

3. |a + b|p ≤ |a|p + |b|p for all a, b ∈ Qp,

4. |a + b|p ≤ max{|a|p, |b|p} for all a, b ∈ Qp.

The p-adic absolute value is non-archimedian.



The topology of Qp

Let a ∈ Qp and r ≥ 0 be a real number. The open ball of radius r
centered at a is the set

B(a, r) = {x ∈ Qp : |x − a|p < r}.

The closed ball of radius r and center a is the set

B(a, r) = {x ∈ Qp : |x − a|p ≤ r}.



The topology of Qp

Let a ∈ Qp and r ≥ 0 be a real number. The open ball of radius r
centered at a is the set

B(a, r) = {x ∈ Qp : |x − a|p < r}.

The closed ball of radius r and center a is the set

B(a, r) = {x ∈ Qp : |x − a|p ≤ r}.

The ring of p-adic integers is

Zp = {x ∈ Qp : |x |p ≤ 1}.

Next, we will consider the set
pZp = {px : x ∈ Zp} = {x ∈ Qp : |x |p < 1}.



p-adic continued fraction expansion

Let p be a prime. We will consider the continued fraction
expansion of a p-adic integer x ∈ pZp in the form

x =
pa1

b1 +
pa2

b2 +
pa3

b3 + .. .

(2)

where bn ∈ {1, 2, . . . , p − 1}, an ∈ N for n = 1, 2, . . . .



p-adic continued fraction map

For x ∈ pZp define the map Tp : pZp → pZp to be

Tp(x) =
pv(x)

x
−

(
pv(x)

x
mod p

)
=

pa(x)

x
− b(x) (3)

where v(x) is the p-adic valuation of x , a(x) ∈ N and
b(x) ∈ {1, 2, . . . , p − 1}.



p-adic continued fraction map

For x ∈ pZp define the map Tp : pZp → pZp to be

Tp(x) =
pv(x)

x
−

(
pv(x)

x
mod p

)
=

pa(x)

x
− b(x) (4)

where v(x) is the p-adic valuation of x , a(x) ∈ N and
b(x) ∈ {1, 2, . . . , p − 1}.
We will consider the dynamical system (pZp,B, µ,Tp) where B is
σ-algebra on pZp and µ is Haar measure on pZp.
For the Haar measure it it is the case that µ(pa + pmZp) = p1−m.



Properties of the p-adic continued fraction map

The following properties are due to Hirsch and Washington (2011).

• Tp is measure-preserving with respect to µ, i.e.
µ(T−1

p (A)) = µ(A) for all A ∈ B.
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• Tp is ergodic, i.e. µ(B) = 0 or 1 for any B ∈ B with

T−1
p (B) = B.



Properties of the p-adic continued fraction map

The following properties are due to Hirsch and Washington (2011).

• Tp is measure-preserving with respect to µ, i.e.
µ(T−1

p (A)) = µ(A) for all A ∈ B.
• Tp is ergodic, i.e. µ(B) = 0 or 1 for any B ∈ B with

T−1
p (B) = B.

• The p-adic analogue of Khinchin’s Theorem: For almost all
x ∈ pZp the p-adic continued fraction expansion satisfies

lim
n→∞

a1 + a2 + · · ·+ an
n

=
p

p − 1
.



Other properties of the p-adic continued fraction map

Definition
Let T be a measure-preserving transformation of a probability
space (X ,B, µ). The transformation T is exact if

∞⋂
n=0

T−nB = N .

where N = {B ∈ B |B = ∅ a.e. or B = X a.e.}.

Theorem (Hančl, Nair, Lertchoosakul, Jaš̌sová)

The p-adic continued fraction map Tp is exact.



Other properties of the p-adic continued fraction map

Because (pZp,B, µ,Tp) is exact, it implies other strictly weaker
properties:

• Tp is strong-mixing, i.e. for all A,B ∈ B we have

lim
n→∞

µ(T−np A ∩ B) = µ(A)µ(B)

which impies

• Tp is weak-mixing, i.e. for all A,B ∈ B we have

lim
n→∞

1

n

n−1∑
j=0

|µ(T−jp A ∩ B)− µ(A)µ(B)| = 0

which implies

• Tp is ergodic, i.e. µ(B) = 0 or 1 for any B ∈ B with
T−1
p (B) = B.



Good Universality

• A sequence of integers (an)∞n=1 is called Lp-good universal if
for each dynamical system (X ,B, µ,T ) and f ∈ Lp(X ,B, µ)
we have

f (x) = lim
N→∞

1

N

N∑
n=1

f (T anx)

existing µ almost everywhere.

• A sequence of real numbers (xn)∞n=1 is uniformly distributed
modulo one if for each interval I ⊆ [0, 1), if |I | denotes its
length, we have

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ I} = |I |.



Subsequence ergodic theory

Lemma
If ({anγ})∞n=1 is uniformly distributed modulo one for each
irrational number γ, the dynamical system (X ,B, µ,T ) is
weak-mixing and (an)n≥1 is L2-good universal then f (x) exists and

f (x) =

∫
X

fdµ

µ almost everywhere.



Results

Theorem (Hančl, Nair, Lertchoosakul, Jaš̌sová)

For any Lp-good universal sequence (kn)n≥1 where ({knγ})∞n=1 is
uniformly distributed modulo one for each irrational number γ we
have

lim
N→∞

1

N

N∑
n=1

akn =
p

p − 1
,

and

lim
N→∞

1

N

N∑
n=1

bkn =
p

2
,

almost everywhere with respect to Haar measure on pZp.



Results

Theorem (Hančl, Nair, Lertchoosakul, Jaš̌sová)

For any Lp-good universal sequence (kn)n≥1 where ({knγ})∞n=1 is
uniformly distributed modulo one for each irrational number γ we
have

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn = i} =

p − 1

pi
;

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn ≥ i} =

1

pi−1
;

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ akn < j} =

1

pi−1

(
1− 1

pj

)
;

almost everywhere with respect to Haar measure on pZp.



Partitions

Let (X ,A,m) be a probability space where X is a set, A is a
σ-algebra of its subsets and m is a probability measure. A partition
of (X ,A,m) is defined as a denumerable collection of elements
α = {A1,A2, . . . } of A such that

Ai ∩ Aj = ∅

for all i , j ∈ I , i 6= j and ⋃
i∈I

Ai = X .
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Partitions

Let (X ,A,m) be a probability space where X is a set, A is a
σ-algebra of its subsets and m is a probability measure. A partition
of (X ,A,m) is defined as a denumerable collection of elements
α = {A1,A2, . . . } of A such that Ai ∩ Aj = ∅ for all i , j ∈ I , i 6= j
and

⋃
i∈I Ai = X . For a measure-preserving transformation T we

have T−1α = {T−1Ai |Ai ∈ α} which is also a denumerable
partition.
Given partitions α = {A1,A2, . . . } and β = {B1,B2, . . . } we define
the join of α and β to be the partition

α ∨ β = {Ai ∩ Bj |Ai ∈ α,Bj ∈ β}

.



Entropy of a Partition

For a finite partition α = {A1, . . . ,An} we define its entropy
H(α) = −

∑n
i=1 m(Ai ) log m(Ai ). Let A′ ⊂ A be a sub-σ-algebra.

Then we define the conditional entropy of α given A′ to be
H(α|A′) = −

∑n
i=1 m(Ai |A′) log m(Ai |A′).

Here of course m(A|A′) means E(χA|A′) where E(.|A′) denotes
the projection operator L1(X ,A,m)→ L1(X ,A′,m) and χA is the
characteristic function of the set A.



Entropy of a transformation

The entropy of a measure-preserving transformation T relative to a
partition α is defined to be

hm(T , α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iα

)

where the limit always exists.



Entropy of a transformation

The entropy of a measure-preserving transformation T relative to a
partition α is defined to be

hm(T , α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iα

)

where the limit always exists. The alternative formula for hm(T , α)
which is used for calculating entropy is

hm(T , α) = lim
n→∞

H

(
α|

n∨
i=1

T−iα

)
= H

(
α|
∞∨
i=1

T−iα

)
. (5)



Entropy of a transformation

The entropy of a measure-preserving transformation T relative to a
partition α is defined to be

hm(T , α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iα

)

where the limit always exists. The alternative formula for hm(T , α)
which is used for calculating entropy is

hm(T , α) = lim
n→∞

H

(
α|

n∨
i=1

T−iα

)
= H

(
α|
∞∨
i=1

T−iα

)
. (6)

We define the measure-theoretic entropy of T with respect to the
measure m (irrespective of α) to be hm(T ) = supα hm(T , α) where
the supremum is taken over all finite or countable partitions α
from A with H(α) <∞.



Theorem (Jaš̌sová,Nair)

Let B denote the Haar σ-algebra restricted to pZp and let µ
denote Haar measure on pZp. Then the measure-preserving
transformation (pZp,B, µ,Tp) has measure-theoretic entropy
p

p−1 log p.



Isomorphism of measure preserving transformations

Suppose (X1, β1,m1,T1) and (X2, β2,m2,T2) are two dynamical
systems.



Isomorphism of measure preserving transformations

Suppose (X1, β1,m1,T1) and (X2, β2,m2,T2) are two dynamical
systems.

They are said to be isomorphic if there exist sets M1 ⊆ X1 and
M2 ⊆ X2 with m1(M1) = 1 and m2(M2) = 1 such that
T1(M1) ⊆ M1 and T2(M2) ⊆ M2 and such that there exists a map
φ : M1 → M2 satisfying φT1(x) = T2φ(x) for all x ∈ M1 and
m1(φ−1(A)) = m2(A) for all A ∈ β2.



Isomorphism of measure preserving transformations

Suppose (X1, β1,m1,T1) and (X2, β2,m2,T2) are two dynamical
systems.

They are said to be isomorphic if there exist sets M1 ⊆ X1 and
M2 ⊆ X2 with m1(M1) = 1 and m2(M2) = 1 such that
T1(M1) ⊆ M1 and T2(M2) ⊆ M2 and such that there exists a map
φ : M1 → M2 satisfying φT1(x) = T2φ(x) for all x ∈ M1 and
m1(φ−1(A)) = m2(A) for all A ∈ β2.

The importance of measure theoretic entropy, is that two
dynamical systems with different entropies can not be isomorphic.
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Suppose (Y , α, l) is a probability space, and let
(X , β,m) = Π∞−∞(Y , α, l) i.e. the bi-infinite product probability
space.
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(X , β,m) = Π∞−∞(Y , α, l) i.e. the bi-infinite product probability
space.

For shift map τ({xn}) = ({xn+1}), the measure preserving
transformation (X , β,m, τ) is called the Bernoulli process with
state space (Y , α, l). Here {xn} is a bi-infinite sequence of
elements of the set Y .



Bernoulli Space

Suppose (Y , α, l) is a probability space, and let
(X , β,m) = Π∞−∞(Y , α, l) i.e. the bi-infinite product probability
space.

For shift map τ({xn}) = ({xn+1}), the measure preserving
transformation (X , β,m, τ) is called the Bernoulli process with
state space (Y , α, l). Here {xn} is a bi-infinite sequence of
elements of the set Y .

Any measure preserving transformation isomorphic to a Bernoulli
process will be refered to as Bernoulli.



Ornstein’s theorem

The fundamental fact about Bernoulli processes, famously proved
by D. Ornstein in 1970, is that Bernoulli processes with the same
entropy are isomorphic.



The natural extention

To any measure-preserving transformation, (X , β,m,T0) set
X∞ = Π∞n=0X and set

XT0 = {x = (x0, x1, . . . ) ∈ X∞ : xn = T0(xn+1), xn ∈ X , n = 0, 1, 2, . . . }.

Let T : XT0 → XT0 be defined by

T ((x0, x1, . . . , )) = (T (x0), x0, x1, . . . , ).
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To any measure-preserving transformation, (X , β,m,T0) set
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Let T : XT0 → XT0 be defined by

T ((x0, x1, . . . , )) = (T (x0), x0, x1, . . . , ).

The map T is bijective on XT0 . If T0 preserves a measure m, then
we can define a measure m on XT0 , by defining m on the cylinder
sets C (A0,A1, . . . ,Ak) = {x : x0 ∈ A0, x1 ∈ A1, . . . , xk ∈ Ak} by
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0 (A1) ∩ . . . ∩ Ak),

for k ≥ 1.



The natural extention
To any measure-preserving transformation, (X , β,m,T0) set
X∞ = Π∞n=0X and set

XT0 = {x = (x0, x1, . . . ) ∈ X∞ : xn = T0(xn+1), xn ∈ X , n = 0, 1, 2, . . . }.

Let T : XT0 → XT0 be defined by

T ((x0, x1, . . . , )) = (T (x0), x0, x1, . . . , ).

The map T is bijective on XT0 . If T0 preserves a measure m, then
we can define a measure m on XT0 , by defining m on the cylinder
sets C (A0,A1, . . . ,Ak) = {x : x0 ∈ A0, x1 ∈ A1, . . . , xk ∈ Ak} by

m(C (A0,A1, . . . ,Ak)) = m(T−k0 (A0) ∩ T−k+1
0 (A1) ∩ . . . ∩ Ak),

for k ≥ 1. One can check that the invertable transformation
(XT0 , β,m,T0) called the natural extention of (X , β,m,T0) is
measure preserving as a consequence of the measure preservation
of the transformation (X , β,m,T0).



Fundamental Dynamical property of the Schneider Map

Theorem (Jaš̌sová,Nair)

Suppose (pZp,B, µ,Tp) is the Schneider continued fraction map.
Then the dynamical system (pZp,B, µ,Tp) has a natural extention
that is Bernoulli.

This property implies all the mixing properties of the map and via
ergodic theorems all the properties of averages of convergents.
Also, via Ornstein’s theorem, it is isomphorphic as a dynamical
system to all Bernoulli shifts with the same entropy and hence is
completely classified.



Absolute values on topological fields

Let K denote a topological field. By this we mean that the field K
is a locally compact group under the addition , with respect a
topology (which in our case is discrete). This ensures that K
comes with a translation invariant Haar measure µ on K , that is
unique up to scalar multiplication. For an element a ∈ K , we are
now able it absolute value, as

|a| =
µ(aX )

µ(X )
,

for every µ masureable X ⊆ K of finite µ measure.



Absolute values on topological fields

Let K denote a topological field. By this we mean that the field K
is a locally compact group under the addition , with respect a
topology (which in our case is discrete). This ensures that K
comes with a translation invariant Haar measure µ on K , that is
unique up to scalar multiplication. For an element a ∈ K , we are
now able it absolute value, as

|a| =
µ(aX )

µ(X )
,

for every µ masureable X ⊆ K of finite µ measure.

An absolute value is a function |.| : K → R≥0 such that (i) |a| = 0
if and only if a = 0; (ii) |ab| = |a||b| for all a, b ∈ K and (iii)
|a + b| ≤ |a|+ |b| for all pairs a, b ∈ K . The absolute value just
defined gives rise to a metric defined by d(a, b) = |a− b| with
a, b ∈ K , whose topology coincides with original topology on the
field K .



Archemedian and Non-Archemedian

Topological fields come in two types:
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Archemedian and Non-Archemedian

Topological fields come in two types:

(a)The first where (iii) can be replaced by the stronger condition
(iii)* |a + b| ≤ max(|a|, |b|) a, b ∈ K , called non-archimedean
spaces and

(b) spaces where (iii)* is not true called archimedean spaces.

From now on we shall concern ourselves solely with
non-archimedean fields.



Valuations and absolute values

Another approach to defining a non-archimedan field is via discrete
valuations
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Let K ∗ = K\{0}. A map v : K ∗ → R is a valuation if
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(ii) v(xy) = v(x) + v(y) for x , y ∈ K
and
(iii) v(x + y) ≥ min{v(x), v(y)}.
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v(x + y) ≥ min{v(x), v(y)}. Two valuations v and cv , for c > 0 a
real constant, are called equivalent.

A valuation determines a non-trivial non-Archimedean absolute
value and vice versa.
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Another approach to defining a non-archimedan field is via discrete
valuations. Let K ∗ = K\{0}. A map v : K ∗ → R is a valuation if
(i) v(K ∗) 6= {0}; (ii) v(xy) = v(x) + v(y) for x , y ∈ K and (iii)
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Valuations and absolute values

Another approach to defining a non-archimedan field is via discrete
valuations. Let K ∗ = K\{0}. A map v : K ∗ → R is a valuation if
(i) v(K ∗) 6= {0}; (ii) v(xy) = v(x) + v(y) for x , y ∈ K and (iii)
v(x + y) ≥ min{v(x), v(y)}. Two valuations v and cv , for c > 0 a
real constant, are called equivalent. A valuation determines a
non-trivial non-Archimedean absolute value and vice versa. We
extend v to K formally by letting v(0) = 1. The image v(K ∗) is
an additive subgroup of R, called the value group of v . If it is
discrete, i.e., isomorphic to Z, we say v is a discrete valuation. If
v(K ∗) = Z, we call v normalised discrete valuation.

To our initial valuation we associate the valuation described as
follows. Pick 0 < α < 1 and write |a| = αv(a), i.e., let
v(a) = logα |a|. Then v(a) is a valuation, an additive version of |a|.
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Rings of integers and maximal ideals

Let v : K ∗ → R be a valuation corresponding to the absolute value
|.| : K → R≥0.

Then

O = Ov := {x ∈ K : v(x) ≥ 0} = OK := {x ∈ K : |x | ≤ 1}

is a ring, called the valuation ring of v .

K is its field of fractions, and if x ∈ K\O then 1
x ∈ O.

The set of units in O are
O× = {x ∈ K : v(x) = 0} = {x ∈ K : |x | = 1}
andM = {x ∈ K : v(x) > 0} = {x ∈ K : |x | < 1} is an ideal in O.
k = O/M is a field, called the residue field of v or of K .
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The structure of maximal ideals

In the sequel throughout these lectures we assume that k is a finite
field.

Suppose v : K ∗ → Z is normalised discrete.

Take π ∈M such that v(π) = 1. We call π a uniformiser.

Then every x ∈ K can be written uniquely as x = uπn with
u ∈ O× and n ∈ Z≥0. Also every x ∈M can be written uniquely
as x = uπn for a unit u ∈ O× and n ≥ 1.

In particular, M = (πn) is a principal ideal .

Moreover, every ideal I ⊂ O is principal, as (0) 6= I ⊂ O implies
I = (πn) where n = min{v(x) : x ∈ I}, so O is a principal ideal
domain (PID).
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There are two examples

(i) The p-adic numbers Qp and their finite extentions. For instance
if K = Qp then O = Zp M = pZp. Here we can take π = p.

(ii) The field of formal power series K = Fq((X−1)) for q = pn for
some prime p, with O = Fq[X ] and M = I (x)Fq[X ] for some
irreducible polynomial I . Here we can take π = I .

These two are the only two possibilities. This is the structure
theorem for non-archemedian fields.



Schneider’s Map on an arbitrary non-archemedean field

We define the map Tv :M→M defined by

Tv (x) =
πv(x)

x
− b(x)

where b(x) denotes the residue class to which πv(x)

x in k .
This gives rise to the continued fraction expansion of x ∈M in the
form

x =
πa1

b1 +
πa2

b2 +
πa3

b3 + .. .

(7)

where bn ∈ k×, an ∈ N for n = 1, 2, . . . .



The start of continued fractions on a non-archemedean
field

The rational approximants to x ∈M arise in a manner similar to
that in the case of the real numbers as follows. We suppose
A0 = b0,B0 = 1,A1 = b0b1 + πa1 ,B1 = b1. Then set

An = πanAn−2 + bnAn−1 and Bn = πanBn−2 + bnBn−1 (8)

for n ≥ 2. A simple inductive argument gives for n = 1, 2, . . . .

An−1Bn − AnBn−1 = (−1)nπa1+...+an . (9)



Dynamics of the Schneider’s map on a non-archemedean
field

The map Tv :M→M preserves Haar measure on M. We also
have the following.

Theorem
Let B denote the Haar σ-algebra restricted to M and let µ denote
Haar measure on M. Then the measure-preserving transformation
(M,B, µ,Tv ) has measure-theoretic entropy |k|

|k×| log(|k|).
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Dynamics of the Schneider’s map on a non-archemedean
field

The map Tv :M→M preserves Haar measure on M. We also
have the following.

Theorem
Let B denote the Haar σ-algebra restricted to M and let µ denote
Haar measure on M. Then the measure-preserving transformation
(M,B, µ,Tv ) has measure-theoretic entropy |k|

|k×| log(|k|).

Theorem
Suppose (M,B, µ,Tv ) is as in our first theorem. Then the
dynamical system (M,B, µ,Tv ) has a natural extension that is
Bernoulli.
This tells us the isomorphism class of the dynamical system
(M,B, µ,Tv ) is determined by its residue class field irrespective of
the characteristic. This means for different p each Sneider map on
the p-adics non-isomorphic.



Results

Theorem (Nair,Jaš̌sová)

For any Lp-good universal sequence (kn)n≥1 where ({knγ})∞n=1 is
uniformly distributed modulo one for each irrational number γ we
have

lim
N→∞

1

N

N∑
n=1

akn =
|k |
|k×|

,

and

lim
N→∞

1

N

N∑
n=1

bkn =
|k |
2
,

almost everywhere with respect to Haar measure on M.



Results

Theorem (Nair, Jaš̌sová)

For any Lp-good universal sequence (kn)n≥1 where ({knγ})∞n=1 is
uniformly distributed modulo one for each irrational number γ we
have

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn = i} =

|k×|
|k|i

;

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn ≥ i} =

1

|k |i−1
;

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ akn < j} =

1

|k |i−1

(
1− 1

|k |j

)
;

almost everywhere with respect to Haar measure on M.



Thank you for your attention.


