Lattice structures of multidimensional continued fractions

Oleg Karpenkov, University of Liverpool

8 October 2014

Oleg Karpenkov, University of Liverpool Lattice structure of MCF

- I. Introduction.
- II. Klein continued fractions.
- III. Minkovskii-Voronoi continued fractions.

・ 回 ト ・ ヨ ト ・ ヨ ト

I. Introduction.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Oleg Karpenkov, University of Liverpool Lattice structure of MCF

- 4 回 2 - 4 □ 2 - 4 □

Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)

- Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)
- Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)

- Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)
- Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)
- Dynamical generalizations (Farey tessellation and triangle sequences, etc.)

- Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)
- Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)
- Dynamical generalizations (Farey tessellation and triangle sequences, etc.)
- Combinatorial description (tangles and rational knots)

 Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Algebraic irrationalities (multidimensional Lagrange's theorem)

回 と く ヨ と く ヨ と

- Algebraic irrationalities (multidimensional Lagrange's theorem)
- Invariants of integer lattices (finite CF)

白 ト イヨト イヨト

- Algebraic irrationalities (multidimensional Lagrange's theorem)
- Invariants of integer lattices (finite CF)
- Applications to dynamics (Anosov maps)

ヨット イヨット イヨッ

- Algebraic irrationalities (multidimensional Lagrange's theorem)
- Invariants of integer lattices (finite CF)
- Applications to dynamics (Anosov maps)
- Applications to algebraic geometry (toric singularities)

向下 イヨト イヨト

MCF = invariants for lattices w.r.t. Aff (n, \mathbb{Z}) .

回 と く ヨ と く ヨ と

MCF = invariants for lattices w.r.t. $Aff(n, \mathbb{Z})$. There are two approaches to lattices

MCF = invariants for lattices w.r.t. $Aff(n, \mathbb{Z})$. There are two approaches to lattices

MCF = invariants for lattices w.r.t. $Aff(n, \mathbb{Z})$. There are two approaches to lattices

MCF = invariants for lattices w.r.t. $Aff(n, \mathbb{Z})$. There are two approaches to lattices

Minkowski-Voronoi complex.

II. Klein polyhedron.

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

 $rac{7}{5} =$

$$\frac{7}{5}=1+\frac{2}{5}$$

Oleg Karpenkov, University of Liverpool Lattice structure of MCF

$$\frac{7}{5} = 1 + \frac{1}{5/2}$$

Oleg Karpenkov, University of Liverpool Lattice structure of MCF

$$\frac{7}{5} = 1 + \frac{1}{2 + \frac{1}{2}}$$

Oleg Karpenkov, University of Liverpool Lattice structure of MCF

- 4 回 2 - 4 回 2 - 4 回 2 - 4

$\frac{7}{5} = 1 + \frac{1}{2 + \frac{1}{2}} = 1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1}}}$

Proposition

Any rational number has a unique odd and even ordinary continued fractions.

Geometry of continued fractions

 $l\ell(AB)$ — the number of primitive vectors in AB.

3

個 と く ヨ と く ヨ と …

Geometry of continued fractions

・ 回 と ・ ヨ と ・ モ と …

3

Geometry of continued fractions

 $a_0 = l\ell(A_0A_1) = 1;$ $a_1 = lsin(A_0A_1A_2) = 2;$ $a_2 = l\ell(A_1A_2) = 2.$

$$7/5 = [1; 2: 2]$$

白 と く ヨ と く ヨ と …

3

 (a_0, \ldots, a_{2n}) — lattice length-sine sequence (LLS-sequence).

Consider *n* hyperplanes passing through *O*.

The *sail* for one of the cones, i.e. the boundary of the convex hull of all integer inner points.

The set of all sails is called *geometric continued fraction* (Klein, 1895).

A sail in 3D.

□ > < ∃ >

-≣->

First question: Which two-dimensional faces can a sail have?

同 と く ヨ と く ヨ と

Question: Which two-dimensional faces can a sail have?

▲□→ ▲圖→ ▲厘→ ▲厘→

3

Question: Which two-dimensional faces can a sail have?

Intermediate answer: Such faces are represented by convex empty marked pyramids

・日・ ・ ヨ・ ・ ヨ・
Question: Which two-dimensional faces can a sail have?

Intermediate answer: Such faces are represented by convex empty marked pyramids

A marked pyramid is *empty* if all lattice points distinct to the vertex are in the base.

Question: Which two-dimensional faces can a sail have?

Intermediate answer: Such faces are represented by convex empty marked pyramids

Two different cases

- The face is at distance 1.
- The face is at distance greater than 1.

A simplex is *empty* if it does not contain lattice points distinct to vertices.

回 と く ヨ と く ヨ と

æ

A simplex is *empty* if it does not contain lattice points distinct to vertices.

Proposition

All lattice empty triangles are congruent.

- ∢ ⊒ →

Oleg Karpenkov, University of Liverpool Lattice structure of MCF

ヘロン ヘヨン ヘヨン ヘヨン

æ

Theorem

(Equivalent to G. K. White, 1964) If ABCD is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

Theorem

(Equivalent to G. K. White, 1964) If ABCD is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

Corollary

Complete list of empty simplices: — (0,0,0), (0,1,0), (1,0,0), (1,0,0); — (0,0,0), (0,1,0), (1,0,0), $(\xi, r - \xi, r)$ for $r \ge 2$, $0 < \xi < r$, $gcd(r,\xi) = 1$.

Next step: empty marked pyramids

A marked pyramid is *empty* if all lattice points distinct to the vertex are in the base.

伺 ト イヨト イヨト

Next step: empty marked pyramids

A marked pyramid is *empty* if all lattice points distinct to the vertex are in the base.

Lattice distance equals 1 – any base.

Next step: empty marked pyramids

A marked pyramid is *empty* if all lattice points distinct to the vertex are in the base.

Lattice distance equals 1 – any base.

Lattice distance is greater than 1 - ???

Theorem

(Karpenkov, 2008) A complete list of 3D empty marked multistory pyramids.

- the quadrangular marked pyramids $M_{a,b}$, with $b \ge a \ge 1$;
- triangular $T_{a,r}^{\xi}$, where $a \ge 1$, and $gcd(\xi, r) = 1$, $r \ge 2$, and $0 < \xi \le r/2$;
- the triangular marked pyramids U_b , where $b \ge 1$;
- two triangular marked pyramids V and W.

個 と く ヨ と く ヨ と …

Theorem

(Karpenkov, 2008) A complete list of 3D empty marked multistory pyramids.

- the quadrangular marked pyramids $M_{a,b}$, with $b \ge a \ge 1$;
- triangular $T_{a,r}^{\xi}$, where $a \ge 1$, and $gcd(\xi, r) = 1$, $r \ge 2$, and $0 < \xi \le r/2$;
- the triangular marked pyramids U_b , where $b \ge 1$;
- two triangular marked pyramids V and W.

Vertex at the origin. Bases

$$M_{a,b}$$
: (2,-1,0), (2,-a-1,1), (2,-1,2), (2, b-1,1)
 $T_{a,r}^{\xi}$: (ξ , r - 1, - r), (a + ξ , r - 1, - r), (ξ , r , - r)
 U_{b} : (2, 1, b - 1), (2, 2, -1), (2, 0, -1)
 V : (2, -2, 1), (2, -1, -1), (2, 1, 2)
 W : (3,0,2), (3, 1, 1), (3, 2, 3)

個 と く ヨ と く ヨ と …

Bases empty marked pyramids

a ►

Bases empty marked pyramids

Corollary

Any face of MCF at distance > 1 from O is from the list above. This corollary is used in for the algorithm to construct MCF.

回 と く ヨ と く ヨ と

æ

Useful filtrations: volume and widths of pyramids or of their faces, distances to the base.

Useful filtrations: volume and widths of pyramids or of their faces, distances to the base.

Problem What faces on distance 1 three dimensional MCF can have?

Useful filtrations: volume and widths of pyramids or of their faces, distances to the base.

Problem What faces on distance 1 three dimensional MCF can have?

Problem What about 3D faces?

III. Minkovskii-Voronoi continued fractions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A subset $S \subset \mathbb{R}^n_{\geq 0}$ is **axial** if S contains points on each of the coordinate axes.

A subset $S \subset \mathbb{R}^n_{\geq 0}$ is **axial** if S contains points on each of the coordinate axes.

Definition

An axial subset is in general position if:

- ► Each coordinate plane contains exactly n 1 points of S none of which are at the origin; these points are on different coordinate axes.
- ► No two points on other plane parallel to a coordinate plane.

A subset $S \subset \mathbb{R}^n_{\geq 0}$ is **axial** if S contains points on each of the coordinate axes.

Definition

An axial subset is in general position if:

- ► Each coordinate plane contains exactly n 1 points of S none of which are at the origin; these points are on different coordinate axes.
- ► No two points on other plane parallel to a coordinate plane.

Minkovskii-Voronoi minima and minimal sets

Set

$$\max(A, i) = \max\{x_i \mid (x_1, \ldots, x_n) \in A\}$$

and define the parallelepiped

 $\Pi(A) = \{(x_1, \dots, x_n) \mid 0 \le x_i \le \max(A, i), i = 1, \dots, n\}.$

コマン くほう くほう

Minkovskii-Voronoi minima and minimal sets

Set

$$\max(A, i) = \max\{x_i \mid (x_1, \ldots, x_n) \in A\}$$

and define the parallelepiped

$$\Pi(A) = \{ (x_1, \dots, x_n) \mid 0 \le x_i \le \max(A, i), i = 1, \dots, n \}.$$

< E → < E →</p>

Let S be an arbitrary subset of $\mathbb{R}^n_{\geq 0}$ (csgp). An element $\gamma \in S$ is called a **Voronoi relative minimum** if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \setminus \{\gamma\}$.

Definition

Let S be an arbitrary subset of $\mathbb{R}^n_{\geq 0}$ (csgp). An element $\gamma \in S$ is called a **Voronoi relative minimum** if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \setminus \{\gamma\}$.

Definition

Let S be an arbitrary subset of $\mathbb{R}^n_{\geq 0}$ (csgp). An element $\gamma \in S$ is called a **Voronoi relative minimum** if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \setminus \{\gamma\}$.

Definition

Let S be an arbitrary subset of $\mathbb{R}^n_{\geq 0}$ (csgp). An element $\gamma \in S$ is called a **Voronoi relative minimum** if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \setminus \{\gamma\}$.

Definition

MV-complex is an (n-1)-dimensional complex such that

- ► the k-dimensional faces are enumerated by the minimal (n-k)-element subsets
- a face with minimal subset F₁ is adjacent to a face with a minimal subset F₂ ≠ F₁ if and only if F₁ ⊂ F₂.

ヨット イヨット イヨッ

MV-complex is an (n-1)-dimensional complex such that

- ► the k-dimensional faces are enumerated by the minimal (n-k)-element subsets
- a face with minimal subset F₁ is adjacent to a face with a minimal subset F₂ ≠ F₁ if and only if F₁ ⊂ F₂.

Definition

MV-complex is an (n-1)-dimensional complex such that

- ► the k-dimensional faces are enumerated by the minimal (n-k)-element subsets
- a face with minimal subset F₁ is adjacent to a face with a minimal subset F₂ ≠ F₁ if and only if F₁ ⊂ F₂.

Consider

$$S_0 = \{\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6\},\$$

where

▲御▶ ▲理▶ ▲理≯

Consider

$$S_0 = \{\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6\},\$$

where

Relative minima: $\gamma_1, \ldots, \gamma_5$.

(4回) (4回) (日)

MV-complex contains 5 vertices, 6 edges, and 5 faces. Vertices:

Edges:

$$\begin{array}{ll} e_1 = \{\gamma_1, \gamma_3\}, & e_2 = \{\gamma_3, \gamma_2\}, & e_3 = \{\gamma_1, \gamma_2\}, \\ e_4 = \{\gamma_3, \gamma_4\}, & e_5 = \{\gamma_1, \gamma_4\}, & e_6 = \{\gamma_4, \gamma_5\}, \\ e_7 = \{\gamma_3, \gamma_5\}, & e_8 = \{\gamma_1, \gamma_5\}, & e_9 = \{\gamma_2, \gamma_5\}. \end{array}$$

Faces:

$$f_1 = \{\gamma_1\}, \quad f_2 = \{\gamma_2\}, \quad f_3 = \{\gamma_3\}, \quad f_4 = \{\gamma_4\}, \quad f_5 = \{\gamma_5\}.$$

回 と く ヨ と く ヨ と

MV(S) as a tessellation of an open two-dimensional disk.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Question: How to describe MV-complexes in 3D?

Oleg Karpenkov, University of Liverpool Lattice structure of MCF

同 と く ヨ と く ヨ と

Question: How to describe MV-complexes in 3D?

Useful tools:

Minkowski polyhedron for an arbitrary *S*; Tessellations of the plane.

伺 ト イヨト イヨト

Tessellations of the plane

Minkowski polyhedron for a set S (some sort of convex hull):

$$S \oplus \mathbb{R}^3_{\geq 0} = \{s + r \mid s \in S, r \in \mathbb{R}^3_{\geq 0}\}.$$

Tessellations of the plane

The Minkowski polyhedron (left)

Minkowski–Voronoi tessellation (right).

< ∃⇒

Tessellations of the plane

Definition

Step 1. Project the Minkowski polyhedron to x + y + z = 0. Step 2. Remove relative minima (i.e., minima of x + y + z). Remove also all edges adjacent to them. Step 3. Rays to vertices of valence 1.

A (1) > A (1) > A

Linearisation of faces

Linearisation of faces

Theorem

Every linearized finite face is as follows (up to size rescaling):

where $n_1, n_2, n_3 \ge 0$.

Linearisation of faces

Theorem

Every linearized finite face is as follows (up to size rescaling):

where $n_1, n_2, n_3 \ge 0$. In our example: $n_1 = 0, n_2 = 4$, and $n_3 = 2$.

Definition

A diagram of a tessellation is **canonical** if all its faces are linearized.

回 と く ヨ と く ヨ と

Definition

A diagram of a tessellation is **canonical** if all its faces are linearized.

- 4 回 2 - 4 □ 2 - 4 □

Definition

A diagram of a tessellation is **canonical** if all its faces are linearized.

Proposition

Every vertex of the MV-complex that is one of one of

Definition

A diagram of a tessellation is **canonical** if all its faces are linearized.

Proposition

Every vertex of the MV-complex that is one of one of

Proposition

Every finite tessellation of the plane admits a canonical diagram.

Э

Э

Э

(4回) (1) (1)

< ≣ >

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >

Remark. Here the continued fraction has 5 elements.

Theorem on combinatorics of continued fractions.

The number of relative minima for a general lattice generated by (N, 0) and (a, 1) coincides with the number of elements for the longest continued fractions of $\frac{a}{N}$.

Lattice examples in 3D

Notation: L(a, b, N)

Definition Let $a, b, N \in \mathbb{Z}_+$. The lattice

$$\Gamma(a,b,N) := \left\langle (1,a,b), (0,N,0), (0,0,N) \right\rangle$$

is said to be the 1-rank lattice.

・日・ ・ヨ・ ・ヨ・

Definition Let $a, b, N \in \mathbb{Z}_+$. The lattice

$${\sf F}({\sf a},{\sf b},{\sf N}):=\left\langle (1,{\sf a},{\sf b}),(0,{\sf N},0),(0,0,{\sf N})
ight
angle$$

is said to be the 1-rank lattice.

Proposition

All local minima are in $[-N/2, N/2] \times [-N/2, N/2]$ (or on axes).

伺 ト イヨト イヨト

Definition Let $a, b, N \in \mathbb{Z}_+$. The lattice

$${\sf F}({\sf a},{\sf b},{\sf N}):=\left\langle (1,{\sf a},{\sf b}),(0,{\sf N},0),(0,0,{\sf N})
ight
angle$$

is said to be the 1-rank lattice.

Proposition

All local minima are in $[-N/2, N/2] \times [-N/2, N/2] \times [-N/2, N/2]$ (or on axes).

Proposition

Let gcd(a, N) = gcd(b, N) = 1.

Then the set of all local minima for $|\Gamma(a, b, N)|$ is a finite axial set in general position.

伺 ト イヨ ト イヨ ト

Observation of regularities (A.Ustinov, O.K. '13):

L(2, b, N): b = 6t + 1, N = b(2u + 0) + 3.

Observation of regularities (A.Ustinov, O.K. '13):

 $L(2, b, N): b = 2 \cdot 30t + 17, N = b(2u + 1) + 30.$

→ 御 → → 注 → → 注 注

Observation of regularities (A.Ustinov, O.K. '13):

 $L(3, b, N): b = 3 \cdot 5t + 7, N = b(3u + 0) + 5.$

→ 御→ → 注→ → 注→ → 注

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

► *a* ∈ ℤ₊.

回下 ・ヨト ・ヨト

æ

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- ▶ *a* ∈ ℤ₊.
- α and β satisfy: $0 < \beta < \alpha a$, and $gcd(\alpha, \beta) = 1$.
- an integer γ satisfy $0 \leq \gamma < a$.

同 と く ヨ と く ヨ と …

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- ▶ a ∈ Z₊.
- α and β satisfy: $0 < \beta < \alpha a$, and $gcd(\alpha, \beta) = 1$.
- an integer γ satisfy $0 \leq \gamma < a$.

Put

$$egin{array}{ll} b(t) = lpha extbf{at} + eta; \ N(t,u) = b(t)(extbf{au} + \gamma) + lpha = (lpha extbf{at} + eta)(extbf{au} + \gamma) + lpha, \end{array}$$

白 と く ヨ と く ヨ と …

where t and u are positive integer parameters.

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- ▶ a ∈ Z₊.
- α and β satisfy: $0 < \beta < \alpha a$, and $gcd(\alpha, \beta) = 1$.
- an integer γ satisfy $0 \leq \gamma < a$.

Put

$$egin{array}{ll} b(t) = lpha extbf{at} + eta; \ N(t,u) = b(t)(extbf{au} + \gamma) + lpha = (lpha extbf{at} + eta)(extbf{au} + \gamma) + lpha, \end{array}$$

白 と く ヨ と く ヨ と …

where t and u are positive integer parameters.

• Suppose
$$gcd(a, N) = 1$$
.

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- ▶ *a* ∈ ℤ₊.
- α and β satisfy: $0 < \beta < \alpha a$, and $gcd(\alpha, \beta) = 1$.
- an integer γ satisfy $0 \leq \gamma < a$.

Put

$$\begin{aligned} b(t) &= \alpha at + \beta; \\ N(t, u) &= b(t)(au + \gamma) + \alpha = (\alpha at + \beta)(au + \gamma) + \alpha, \end{aligned}$$

回 と く ヨ と く ヨ と … ヨ

where t and u are positive integer parameters.

Suppose
$$gcd(a, N) = 1$$
.
NOTICE:
 $gcd(a, N) = 1$ and $gcd(\alpha, \beta) = 1$

 $Vrm(|\Gamma(a, b, N)|)$ is a finite axial set in general position.

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- ▶ a ∈ Z₊.
- α and β satisfy: $0 < \beta < \alpha a$, and $gcd(\alpha, \beta) = 1$.
- an integer γ satisfy $0 \leq \gamma < a$.

Put

$$\begin{aligned} b(t) &= \alpha at + \beta; \\ N(t, u) &= b(t)(au + \gamma) + \alpha = (\alpha at + \beta)(au + \gamma) + \alpha, \end{aligned}$$

where t and u are positive integer parameters.

▶ Suppose gcd(a, N) = 1.

Then the following holds (for L(a, b, N)):

- t-stabilization.
- u-stabilization.
- (t, u)-stabilization.

Oleg Karpenkov, University of Liverpool

白 と く ヨ と く ヨ と

1). Consider a canonical diagram for some S.

向下 イヨト イヨト

2). Rotate it by $\frac{\pi}{3}$ clockwise.

同 と く ヨ と く ヨ と

3). Cut it in several parts by parallel cuts.

4). Redraw it in the symbolic form.

同 ト イヨ ト イヨト

This is the word

- 4 回 2 - 4 □ 2 - 4 □

Theorem

(Equivalent to G. K. White, 1964) If ABCD is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

Theorem

(Equivalent to G. K. White, 1964) If ABCD is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

The vectors AB, AC, and AD in this case generate the lattice L(1, b, N).

Theorem

(Equivalent to G. K. White, 1964) If ABCD is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

The vectors AB, AC, and AD in this case generate the lattice L(1, b, N).

So L(1, b, N) are White's lattices.

Special case I: White's lattices

Theorem Let gcd(b, N) = 1 and $b \le \frac{N}{2}$. Then the canonical diagram of |L(1, b, N)| is

where $\#\left(\sqrt[m]{7}n\right) = \#\left(\text{ elements in the shortest regular c.f. of }\frac{N}{b}\right).$

577 7

白 ト く ヨ ト く ヨ ト

Conjecture

Let gcd(b, N) = 1 and $b \le \frac{N}{2}$. Then the canonical diagram of L(2, b, N) is written in the alphabet

白 ト く ヨ ト く ヨ ト

Conjecture

Let gcd(b, N) = 1 and $b \le \frac{N}{2}$. Then the canonical diagram of L(2, b, N) is written in the alphabet

Remark. Letters 0 and *A* always take the first position. The rest is separated into blocks.

A simple block: 0, 1, 2, 3, or 4.

A nonsimple block

- starts with A, a, b, or c
- have none or several letters p and q in the middle
- ends with x, y, or z.

We separate such blocks with spaces.

Example: $\Gamma(2, 26, 121)$:

(1日) (1日) (日)

Э

Example: $\Gamma(2, 26, 121)$:

(1日) (1日) (日)

Э

Example: $\Gamma(2, 26, 121)$:

Symbolically: 0 apz bx.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$\alpha = 1$	$eta=$ 1, $\gamma=$ 0	$u \ge 2, v \ge 2$	032
$\alpha = 2$	$\beta = 1, 3; \ \gamma = 1$	$u \ge 1$, $v \ge 1$	Az 2
$\alpha = 3$	$\beta = 1; \ \gamma = 0$	$u \ge 2, v \ge 2$	0232
	$eta=$ 2; $\gamma=$ 0, 1	$u\geq 1$, $v\geq 1$	Ax bx
	$eta=$ 4; $\gamma=$ 0,1	$u\geq 1$, $v\geq 1$	0 2 <i>bx</i>
	$eta=$ 5; $\gamma=$ 0	$u\geq 2$, $v\geq 1$	Ax 3 2
$\alpha = 4$	$eta=1,5;\ \gamma=1$	$u\geq 1$, $v\geq 1$	0 <i>bz</i> 2
	$eta=$ 3, 7; $\gamma=$ 1	$u\geq 1$, $v\geq 1$	0 <i>apz</i> 2
$\alpha = 5$	$eta=1;\ \gamma=0$	$u \ge 2, v \ge 2$	0332
	$eta=$ 2; $\gamma=$ 0, 1	$u\geq 1$, $v\geq 1$	Az bx
	$eta=$ 3; $\gamma=$ 0	$u \ge 2$, $v \ge 2$	Apy 3 2
	$eta=$ 4; $\gamma=$ 0, 1	$u\geq 1$, $v\geq 1$	04 <i>bx</i>
	$eta=$ 6; $\gamma=$ 0, 1	$u\geq 1$, $v\geq 1$	0 3 <i>bx</i>
	$\beta = 7; \ \gamma = 0$	$u\geq 2$, $v\geq 1$	Az 3 2
	$eta=$ 8; $\gamma=$ 0,1	$u\geq 1$, $v\geq 1$	Apy bx
	$eta=$ 9; $\gamma=$ 0	$u\geq 2,\;v\geq 1$	0432

Oleg Karpenkov, University of Liverpool

Lattice structure of MCF

→ 御 → → 注 → → 注 →

æ

Problem (General) Which tessellations are realizable for 1-rank L(a, b, N) lattices?

個 と く ヨ と く ヨ と

Problem

(General) Which tessellations are realizable for 1-rank L(a, b, N) lattices?

Problem

Which words are realizable for $\Gamma(2, b, N)$ lattices?

Problem

(General) Which tessellations are realizable for 1-rank L(a, b, N) lattices?

Problem

Which words are realizable for $\Gamma(2, b, N)$ lattices?

Problem

Let $a \ge 2$. Does there exist a finite alphabet describing all the diagrams for $\Gamma(a, b, N)$?

(3)

Problem

(General) Which tessellations are realizable for 1-rank L(a, b, N) lattices?

Problem

Which words are realizable for $\Gamma(2, b, N)$ lattices?

Problem

Let $a \ge 2$. Does there exist a finite alphabet describing all the diagrams for $\Gamma(a, b, N)$?

Problem

What are the explicit bounds for the asymptotic theorem (is it always 2)?

向下 イヨト イヨト