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Why to study?

Why to study geometric CF?

I Algebraic irrationalities (multidimensional Lagrange’s
theorem)

I Invariants of integer lattices (finite CF)

I Applications to dynamics (Anosov maps)

I Applications to algebraic geometry (toric singularities)
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How to study lattices?

MCF = invariants for lattices w.r.t. Aff(n,Z).

There are two approaches to lattices
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II. Klein polyhedron.
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Proposition

Any rational number has a unique odd and even ordinary continued
fractions.
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Geometry of continued fractions

a1 = lsin(A0A1A2) = 2;

OX

OY
y = 7/5x

O

1

2

2

A0

A1

B2 = A2

B0

B1

a0 = l`(A0A1) = 1;

a1 = l`(B0B1) = 2;

a2 = l`(A1A2) = 2.

7/5 = [1; 2 : 2].

l`(AB) — the number of primitive vectors in AB.
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a1 = lsin(A0A1A2) = 2;

a2 = l`(A1A2) = 2.

7/5 = [1; 2 : 2].

lsin(ABC ) =
S(ABC )

l`(AB) l`(BC )
(integer sin-formula).
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Geometry of continued fractions
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a0 = l`(A0A1) = 1;

a1 = lsin(A0A1A2) = 2;

a2 = l`(A1A2) = 2.

7/5 = [1; 2 : 2].

(a0, . . . , a2n) — lattice length-sine sequence (LLS-sequence).
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Multidimensional continued fractions

O

Consider n hyperplanes passing through O.
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Multidimensional continued fractions

O

The sail for one of the cones, i.e. the boundary of the convex hull
of all integer inner points.
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Multidimensional continued fractions

O

The set of all sails is called geometric continued fraction (Klein,
1895).
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Multidimensional continued fractions

X

Y

Z

A sail in 3D.

First question: Which two-dimensional faces can a sail have?
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Faces of MCF

Question: Which two-dimensional faces can a sail have?

Intermediate answer: Such faces are represented by convex
empty marked pyramids

Two different cases

I The face is at distance 1.

I The face is at distance greater than 1.
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Intermediate answer: Such faces are represented by convex
empty marked pyramids
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C

A marked pyramid is empty if all lattice points distinct to the
vertex are in the base.

Two different cases

I The face is at distance 1.

I The face is at distance greater than 1.
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Empty simplices

Definition
A simplex is empty if it does not contain lattice points distinct to
vertices.

Proposition

All lattice empty triangles are congruent.
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Empty tetrahedra

Theorem
(Equivalent to G. K. White, 1964) If ABCD is empty then the
lattice points of the corresponding parallelepiped (except for the
vertices) are on one of the planes:

A B

C

D

A B

C

D

A B

C

D

Corollary

Complete list of empty simplices:
— (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 0);
— (0, 0, 0), (0, 1, 0), (1, 0, 0), (ξ, r − ξ, r) for r ≥ 2, 0 < ξ < r ,
gcd(r , ξ) = 1.
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Next step: empty marked pyramids

A marked pyramid is empty if all lattice points distinct to the
vertex are in the base.

O

A

B

C

O

A

B

C

Lattice distance equals 1 – any base.

Lattice distance is greater than 1 – ???
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Awful slide

Theorem
(Karpenkov, 2008) A complete list of 3D empty marked
multistory pyramids.
— the quadrangular marked pyramids Ma,b, with b ≥ a ≥ 1;

— triangular T ξ
a,r , where a ≥ 1, and gcd(ξ, r) = 1, r ≥ 2, and

0 < ξ ≤ r/2;
— the triangular marked pyramids Ub, where b ≥ 1;
— two triangular marked pyramids V and W .

Vertex at the origin. Bases
Ma,b: (2,−1, 0), (2,−a−1, 1), (2,−1, 2), (2, b−1, 1)

T ξ
a,r : (ξ, r − 1,−r), (a + ξ, r − 1,−r), (ξ, r ,−r)

Ub: (2, 1, b − 1), (2, 2,−1), (2, 0,−1)
V : (2,−2, 1), (2,−1,−1), (2, 1, 2)
W : (3, 0, 2), (3, 1, 1), (3, 2, 3)
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Bases empty marked pyramids

(0,−1)

(0, 1)

(b, 0)

Ub

(−1, 0)

(0,−2)

(2, 1)

V

(−1,−1)

(1, 0)

(0, 1)

W

(0,−1)

(0, 1)

(−a, 0) (b, 0)

Ma,b

(0, 0) (a, 0)

(0, 1)

T ξa,r

Corollary

Any face of MCF at distance > 1 from O is from the list above.

This corollary is used in for the algorithm to construct MCF.

Oleg Karpenkov, University of Liverpool Lattice structure of MCF



Bases empty marked pyramids

(0,−1)

(0, 1)

(b, 0)

Ub

(−1, 0)

(0,−2)

(2, 1)

V

(−1,−1)

(1, 0)

(0, 1)

W

(0,−1)

(0, 1)

(−a, 0) (b, 0)

Ma,b

(0, 0) (a, 0)

(0, 1)

T ξa,r

Corollary

Any face of MCF at distance > 1 from O is from the list above.

This corollary is used in for the algorithm to construct MCF.

Oleg Karpenkov, University of Liverpool Lattice structure of MCF



Empty 4D simplices

Problem
(unsolved, 1964) What happens in 4D with empty simplices?

Useful filtrations: volume and widths of pyramids or of their faces,
distances to the base.

Problem
What faces on distance 1 three dimensional MCF can have?

Problem
What about 3D faces?
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Part III

III. Minkovskii-Voronoi continued fractions.
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Coaxial sets in general position.

Definition
A subset S ⊂ Rn

≥0 is axial if S contains points on each of the
coordinate axes.

Definition
An axial subset is in general position if:

I Each coordinate plane contains exactly n− 1 points of S none
of which are at the origin; these points are on different
coordinate axes.

I No two points on other plane parallel to a coordinate plane.
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Minkovskii-Voronoi minima and minimal sets

Set
max(A, i) = max{xi | (x1, . . . , xn) ∈ A}

and define the parallelepiped

Π(A) = {(x1, . . . , xn) | 0 ≤ xi ≤ max(A, i), i = 1, . . . , n}.

Π(Red dots).

Definition
Let S be an arbitrary subset of Rn

≥0 (csgp). An element γ ∈ S is
called a Voronoi relative minimum if the parallelepiped Π({γ})
contains no points of S \ {γ}.

Definition
A finite subset F ⊂ Vrm(S) is called minimal if the parallelepiped
Π(F ) contains no Voronoi relative minima of Vrm(S) \ F .
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Minkovskii-Voronoi complex

Definition
MV-complex is an (n − 1)-dimensional complex such that

I the k-dimensional faces are enumerated by the minimal
(n−k)-element subsets

I a face with minimal subset F1 is adjacent to a face with a
minimal subset F2 6= F1 if and only if F1 ⊂ F2.

Oleg Karpenkov, University of Liverpool Lattice structure of MCF
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Example of the MV-complex

Consider
S0 =

{
γ1, γ2, γ3, γ4, γ5, γ6

}
,

where

γ1 = (3, 0, 0), γ2 = (0, 3, 0), γ3 = (0, 0, 3),
γ4 = (2, 1, 2), γ5 = (1, 2, 1), γ6 = (2, 3, 4).
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Example of the MV-complex

Consider
S0 =

{
γ1, γ2, γ3, γ4, γ5, γ6

}
,

where

γ1 = (3, 0, 0), γ2 = (0, 3, 0), γ3 = (0, 0, 3),
γ4 = (2, 1, 2), γ5 = (1, 2, 1), γ6 = (2, 3, 4).

Relative minima: γ1, . . . , γ5.
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Example of the MV-complex

MV-complex contains 5 vertices, 6 edges, and 5 faces.

Vertices:

v1 = {γ1, γ3, γ4}, v2 = {γ3, γ4, γ5}, v3 = {γ1, γ4, γ5},
v4 = {γ2, γ3, γ5}, v5 = {γ1, γ2, γ5}.

Edges:

e1 = {γ1, γ3}, e2 = {γ3, γ2}, e3 = {γ1, γ2},
e4 = {γ3, γ4}, e5 = {γ1, γ4}, e6 = {γ4, γ5},
e7 = {γ3, γ5}, e8 = {γ1, γ5}, e9 = {γ2, γ5}.

Faces:

f1 = {γ1}, f2 = {γ2}, f3 = {γ3}, f4 = {γ4}, f5 = {γ5}.
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Example of the MV-complex

v1 v2

v3

v4

v5

e1 e2

e3

e4

e5 e6

e7

e8
e9

f1 f2

f3

f4
f5

MV (S) as a tessellation of an open two-dimensional disk.
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Tessellations of the plane

Question: How to describe MV-complexes in 3D?
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Tessellations of the plane

Question: How to describe MV-complexes in 3D?

Useful tools:

Minkowski polyhedron for an arbitrary S ;

Tessellations of the plane.
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Tessellations of the plane

xy

z

v1 v2

v3

v4

v5

f1 f2

f3

f4

f5

Minkowski polyhedron for a set S (some sort of convex hull):

S ⊕ R3
≥0 = {s + r | s ∈ S , r ∈ R3

≥0}.
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Tessellations of the plane

xy

z

v1 v2

v3

v4

v5

f1 f2

f3

f4

f5

x+ y + z = 0

v1 v2

v3

v4

v5
f1 f2

f3

f4
f5

I The Minkowski polyhedron (left)

I Minkowski–Voronoi tessellation (right).
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Tessellations of the plane

xy

z

v1 v2

v3

v4

v5

f1 f2

f3

f4

f5

x+ y + z = 0

v1 v2

v3

v4

v5
f1 f2

f3

f4
f5

Definition
Step 1. Project the Minkowski polyhedron to x + y + z = 0.
Step 2. Remove relative minima (i.e., minima of x + y + z).
Remove also all edges adjacent to them.
Step 3. Rays to vertices of valence 1.
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Linearisation of faces

γ0

γa
γb

γc

γ0

γa
γb

γc

Linearisation laws for edges

Linearisation laws

Theorem
Every linearized finite face is as follows (up to size rescaling):

where n1, n2, n3 ≥ 0.

In our example: n1 = 0, n2 = 4, and n3 = 2.
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Linearisation of faces

γ0

γa
γb

γc

γ0

γa
γb

γc

Linearisation laws

Theorem
Every linearized finite face is as follows (up to size rescaling):

n1

n2n3

where n1, n2, n3 ≥ 0.

In our example: n1 = 0, n2 = 4, and n3 = 2.
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Linearisation of faces

γ0

γa
γb

γc

γ0

γa
γb

γc

Linearisation laws

Theorem
Every linearized finite face is as follows (up to size rescaling):

n1

n2n3

where n1, n2, n3 ≥ 0.

In our example: n1 = 0, n2 = 4, and n3 = 2.
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Diagrams of the tessellation

Definition
A diagram of a tessellation is canonical if all its faces are
linearized.

Proposition

Every vertex of the MV-complex that is one of one of

.

Proposition

Every finite tessellation of the plane admits a canonical diagram.
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Diagrams of the tessellation

Definition
A diagram of a tessellation is canonical if all its faces are
linearized.

Proposition

Every vertex of the MV-complex that is one of one of

.

Proposition

Every finite tessellation of the plane admits a canonical diagram.
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Diagrams of the tessellation

Definition
A diagram of a tessellation is canonical if all its faces are
linearized.

Proposition

Every vertex of the MV-complex that is one of one of

.

Proposition

Every finite tessellation of the plane admits a canonical diagram.
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Diagrams of the tessellation

Definition
A diagram of a tessellation is canonical if all its faces are
linearized.

Proposition

Every vertex of the MV-complex that is one of one of

.

Proposition

Every finite tessellation of the plane admits a canonical diagram.
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MV for lattices

Theorem on combinatorics of continued fractions.
The number of relative minima for a general lattice generated by
(N, 0) and (a, 1) coincides with the number of elements for the
longest continued fractions of a

N .
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MV for lattices

Theorem on combinatorics of continued fractions.
The number of relative minima for a general lattice generated by
(N, 0) and (a, 1) coincides with the number of elements for the
longest continued fractions of a

N .
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MV for lattices

The lattice is generated by (8, 0) and (5, 1). Here

8

5
= [1 : 1; 1; 1; 1].

Theorem on combinatorics of continued fractions.
The number of relative minima for a general lattice generated by
(N, 0) and (a, 1) coincides with the number of elements for the
longest continued fractions of a

N .
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MV for lattices

The lattice is generated by (8, 0) and (5, 1). Here

8

5
= [1 : 1; 1; 1; 1].

Remark. Here the continued fraction has 5 elements.

Theorem on combinatorics of continued fractions.
The number of relative minima for a general lattice generated by
(N, 0) and (a, 1) coincides with the number of elements for the
longest continued fractions of a

N .
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MV for lattices

Theorem on combinatorics of continued fractions.
The number of relative minima for a general lattice generated by
(N, 0) and (a, 1) coincides with the number of elements for the
longest continued fractions of a

N .
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Lattice examples in 3D
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Notation: L(a, b,N)

Definition
Let a, b,N ∈ Z+. The lattice

Γ(a, b,N) :=
〈

(1, a, b), (0,N, 0), (0, 0,N)
〉

is said to be the 1-rank lattice.

Proposition

All local minima are in
[−N/2,N/2]× [−N/2,N/2]× [−N/2,N/2] (or on axes).

Proposition

Let gcd(a,N) = gcd(b,N) = 1.
Then the set of all local minima for |Γ(a, b,N)| is a finite axial set
in general position.
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Notation: L(a, b,N)

Definition
Let a, b,N ∈ Z+. The lattice

Γ(a, b,N) :=
〈
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〉

is said to be the 1-rank lattice.

Proposition

All local minima are in
[−N/2,N/2]× [−N/2,N/2]× [−N/2,N/2] (or on axes).
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Let gcd(a,N) = gcd(b,N) = 1.
Then the set of all local minima for |Γ(a, b,N)| is a finite axial set
in general position.
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Notation: L(a, b,N)

Definition
Let a, b,N ∈ Z+. The lattice

Γ(a, b,N) :=
〈

(1, a, b), (0,N, 0), (0, 0,N)
〉

is said to be the 1-rank lattice.

Proposition

All local minima are in
[−N/2,N/2]× [−N/2,N/2]× [−N/2,N/2] (or on axes).

Proposition

Let gcd(a,N) = gcd(b,N) = 1.
Then the set of all local minima for |Γ(a, b,N)| is a finite axial set
in general position.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 2t + 1, N = b(2u + 0) + 1.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 4t + 1, N = b(2u + 1) + 2.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 4t + 3, N = b(2u + 1) + 2.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 6t + 1, N = b(2u + 0) + 3.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 6t + 2, N = b(2u + 0) + 3.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 6t + 2, N = b(2u + 1) + 3.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 6t + 4, N = b(2u + 0) + 3.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 6t + 4, N = b(2u + 1) + 3.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 6t + 5, N = b(2u + 0) + 3.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(2, b,N) : b = 2 · 30t + 17, N = b(2u + 1) + 30.
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Series of examples

Observation of regularities (A.Ustinov, O.K. ’13):

[t = 1, u = 1] [t = 1, u ≥ 2]

[t ≥ 2, u = 1] [t ≥ 2, u ≥ 2]

L(3, b,N) : b = 3 · 5t + 7, N = b(3u + 0) + 5.
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Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.’14). Let

I a ∈ Z+.

I α and β satisfy: 0 < β < αa, and gcd(α, β) = 1.

I an integer γ satisfy 0 ≤ γ < a.

I Put

b(t) = αat + β;
N(t, u) = b(t)(au + γ) + α = (αat + β)(au + γ) + α,

where t and u are positive integer parameters.

I Suppose gcd(a,N) = 1.

Then the following holds (for L(a, b,N)):

I t-stabilization.

I u-stabilization.

I (t, u)-stabilization.
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I an integer γ satisfy 0 ≤ γ < a.

I Put

b(t) = αat + β;
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Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.’14). Let

I a ∈ Z+.

I α and β satisfy: 0 < β < αa, and gcd(α, β) = 1.

I an integer γ satisfy 0 ≤ γ < a.

I Put

b(t) = αat + β;
N(t, u) = b(t)(au + γ) + α = (αat + β)(au + γ) + α,

where t and u are positive integer parameters.

I Suppose gcd(a,N) = 1.

NOTICE:
gcd(a,N) = 1 and gcd(α, β) = 1

⇐⇒
Vrm(|Γ(a, b,N)|) is a finite axial set in general position.

Then the following holds (for L(a, b,N)):

I t-stabilization.

I u-stabilization.

I (t, u)-stabilization.
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Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.’14). Let

I a ∈ Z+.

I α and β satisfy: 0 < β < αa, and gcd(α, β) = 1.

I an integer γ satisfy 0 ≤ γ < a.

I Put

b(t) = αat + β;
N(t, u) = b(t)(au + γ) + α = (αat + β)(au + γ) + α,

where t and u are positive integer parameters.

I Suppose gcd(a,N) = 1.

Then the following holds (for L(a, b,N)):

I t-stabilization.

I u-stabilization.

I (t, u)-stabilization.
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Alphabets for diagrams (O.K., & A. Ustinov)

1). Consider a canonical diagram for some S .
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Alphabets for diagrams (O.K., & A. Ustinov)

2). Rotate it by π
3 clockwise.
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Alphabets for diagrams (O.K., & A. Ustinov)

3). Cut it in several parts by parallel cuts.
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Alphabets for diagrams (O.K., & A. Ustinov)

4). Redraw it in the symbolic form.
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Alphabets for diagrams (O.K., & A. Ustinov)

This is the word
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Special case I: White’s lattices

Theorem
(Equivalent to G. K. White, 1964) If ABCD is empty then the
lattice points of the corresponding parallelepiped (except for the
vertices) are on one of the planes:

A B

C

D

A B

C

D

A B

C

D

The vectors AB, AC , and AD in this case generate the lattice
L(1, b,N).

So L(1, b,N) are White’s lattices.
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Special case I: White’s lattices

Theorem
(Equivalent to G. K. White, 1964) If ABCD is empty then the
lattice points of the corresponding parallelepiped (except for the
vertices) are on one of the planes:

A B
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D

A B

C

D

A B
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The vectors AB, AC , and AD in this case generate the lattice
L(1, b,N).

So L(1, b,N) are White’s lattices.
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Special case I: White’s lattices

Theorem
Let gcd(b,N) = 1 and b ≤ N

2 .
Then the canonical diagram of |L(1, b,N)| is

. . . ,

where
#
(

“ ”
)

= #
(

elements in the shortest regular c.f. of N
b

)
.
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Special case II: L(2,b,N)

Conjecture

Let gcd(b,N) = 1 and b ≤ N
2 .

Then the canonical diagram of L(2, b,N) is written in the alphabet

0 A a b c p q x y z 1 2 3 4
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Special case II: L(2,b,N)

Conjecture

Let gcd(b,N) = 1 and b ≤ N
2 .

Then the canonical diagram of L(2, b,N) is written in the alphabet

0 A a b c p q x y z 1 2 3 4

Remark. Letters 0 and A always take the first position. The rest
is separated into blocks.
A simple block: 0, 1, 2, 3, or 4.
A nonsimple block

I starts with A, a, b, or c

I have none or several letters p and q in the middle

I ends with x , y , or z .

We separate such blocks with spaces.
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Special case II: L(2,b,N)

Example: Γ(2, 26, 121):

Symbolically: 0 apz bx .
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Special case II: L(2,b,N)

Example: Γ(2, 26, 121):
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Oleg Karpenkov, University of Liverpool Lattice structure of MCF



Special case II: L(2,b,N)

Example: Γ(2, 26, 121):

Symbolically: 0 apz bx .
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Special case II: L(2,b,N)

α = 1 β = 1, γ = 0 u ≥ 2, v ≥ 2 0 3 2

α = 2 β = 1, 3; γ = 1 u ≥ 1, v ≥ 1 Az 2

α = 3 β = 1; γ = 0 u ≥ 2, v ≥ 2 0 2 3 2
β = 2; γ = 0, 1 u ≥ 1, v ≥ 1 Ax bx
β = 4; γ = 0, 1 u ≥ 1, v ≥ 1 0 2 bx
β = 5; γ = 0 u ≥ 2, v ≥ 1 Ax 3 2

α = 4 β = 1, 5; γ = 1 u ≥ 1, v ≥ 1 0 bz 2
β = 3, 7; γ = 1 u ≥ 1, v ≥ 1 0 apz 2

α = 5 β = 1; γ = 0 u ≥ 2, v ≥ 2 0 3 3 2
β = 2; γ = 0, 1 u ≥ 1, v ≥ 1 Az bx
β = 3; γ = 0 u ≥ 2, v ≥ 2 Apy 3 2
β = 4; γ = 0, 1 u ≥ 1, v ≥ 1 0 4 bx
β = 6; γ = 0, 1 u ≥ 1, v ≥ 1 0 3 bx
β = 7; γ = 0 u ≥ 2, v ≥ 1 Az 3 2
β = 8; γ = 0, 1 u ≥ 1, v ≥ 1 Apy bx
β = 9; γ = 0 u ≥ 2, v ≥ 1 0 4 3 2
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Some open questions remained

Problem
(General) Which tessellations are realizable for 1-rank L(a, b,N)
lattices?

Problem
Which words are realizable for Γ(2, b,N) lattices?

Problem
Let a ≥ 2. Does there exist a finite alphabet describing all the
diagrams for Γ(a, b,N)?

Problem
What are the explicit bounds for the asymptotic theorem (is it
always 2)?
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