Lattice structures of multidimensional continued fractions

Oleg Karpenkov, University of Liverpool

8 October 2014

Contents

I. Introduction.
II. Klein continued fractions.
III. Minkovskii-Voronoi continued fractions.

I. Introduction.

Multidimensional continued fractions

Multidimensional continued fractions

- Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)

Multidimensional continued fractions

- Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)
- Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)

Multidimensional continued fractions

- Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)
- Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)
- Dynamical generalizations (Farey tessellation and triangle sequences, etc.)

Multidimensional continued fractions

- Algorithmic generalizations (Jacobi-Perron Algorithm, etc.)
- Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)
- Dynamical generalizations (Farey tessellation and triangle sequences, etc.)
- Combinatorial description (tangles and rational knots)

Multidimensional continued fractions

- Geometric generalizations (Klein polyhedra, Minkowski-Voronoi complexes)

Why to study?

Why to study geometric CF?

Why to study?

Why to study geometric CF?

- Algebraic irrationalities (multidimensional Lagrange's theorem)

Why to study?

Why to study geometric CF?

- Algebraic irrationalities (multidimensional Lagrange's theorem)
- Invariants of integer lattices (finite CF)

Why to study?

Why to study geometric CF?

- Algebraic irrationalities (multidimensional Lagrange's theorem)
- Invariants of integer lattices (finite CF)
- Applications to dynamics (Anosov maps)

Why to study?

Why to study geometric CF?

- Algebraic irrationalities (multidimensional Lagrange's theorem)
- Invariants of integer lattices (finite CF)
- Applications to dynamics (Anosov maps)
- Applications to algebraic geometry (toric singularities)

How to study lattices?

$\mathrm{MCF}=$ invariants for lattices w.r.t. $\operatorname{Aff}(n, \mathbb{Z})$.

How to study lattices?

MCF $=$ invariants for lattices w.r.t. $\operatorname{Aff}(n, \mathbb{Z})$.
There are two approaches to lattices

How to study lattices?

MCF $=$ invariants for lattices w.r.t. $\operatorname{Aff}(n, \mathbb{Z})$.
There are two approaches to lattices

How to study lattices?

MCF $=$ invariants for lattices w.r.t. $\operatorname{Aff}(n, \mathbb{Z})$.
There are two approaches to lattices

Klein polyhedron.

How to study lattices?

MCF $=$ invariants for lattices w.r.t. $\operatorname{Aff}(n, \mathbb{Z})$.
There are two approaches to lattices

Minkowski-Voronoi complex.

Part II

II. Klein polyhedron.

Continued fractions for $7 / 5$

$\frac{7}{5}=$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{2}{5}
$$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{1}{5 / 2}
$$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}
$$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{1}}}
$$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{1}}}
$$

Proposition
Any rational number has a unique odd and even ordinary continued fractions.

Geometry of continued fractions

$$
\begin{aligned}
& a_{0}=1 \ell\left(A_{0} A_{1}\right)=1 ; \\
& a_{1}=1 \ell\left(B_{0} B_{1}\right)=2 ; \\
& a_{2}=l\left(A_{1} A_{2}\right)=2 .
\end{aligned}
$$

$$
7 / 5=[1 ; 2: 2] .
$$

$\ell(A B)$ - the number of primitive vectors in $A B$.

Geometry of continued fractions

Geometry of continued fractions

$$
\begin{aligned}
& a_{0}=l \ell\left(A_{0} A_{1}\right)=1 ; \\
& a_{1}=\operatorname{lsin}\left(A_{0} A_{1} A_{2}\right)=2 ; \\
& a_{2}=l\left(A_{1} A_{2}\right)=2 .
\end{aligned}
$$

$$
7 / 5=[1 ; 2: 2] .
$$

$\left(a_{0}, \ldots, a_{2 n}\right)$ - lattice length-sine sequence (LLS-sequence).

Multidimensional continued fractions

Consider n hyperplanes passing through O.

Multidimensional continued fractions

The sail for one of the cones, i.e. the boundary of the convex hull of all integer inner points.

Multidimensional continued fractions

The set of all sails is called geometric continued fraction (Klein, 1895).

Multidimensional continued fractions

A sail in 3D.

Multidimensional continued fractions

First question: Which two-dimensional faces can a sail have?

Faces of MCF

Question: Which two-dimensional faces can a sail have?

Faces of MCF

Question: Which two-dimensional faces can a sail have?
Intermediate answer: Such faces are represented by convex empty marked pyramids

Faces of MCF

Question: Which two-dimensional faces can a sail have?
Intermediate answer: Such faces are represented by convex empty marked pyramids

A marked pyramid is empty if all lattice points distinct to the vertex are in the base.

Faces of MCF

Question: Which two-dimensional faces can a sail have?
Intermediate answer: Such faces are represented by convex empty marked pyramids

Two different cases

- The face is at distance 1.
- The face is at distance greater than 1.

Empty simplices

Definition
A simplex is empty if it does not contain lattice points distinct to vertices.

Empty simplices

Definition

A simplex is empty if it does not contain lattice points distinct to vertices.

Proposition
All lattice empty triangles are congruent.

Empty tetrahedra

Empty tetrahedra

Theorem

(Equivalent to G. K. White, 1964) If $A B C D$ is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

Empty tetrahedra

Theorem

(Equivalent to G. K. White, 1964) If $A B C D$ is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

Corollary

Complete list of empty simplices:

- $(0,0,0),(0,1,0),(1,0,0),(1,0,0)$;
- $(0,0,0),(0,1,0),(1,0,0),(\xi, r-\xi, r)$ for $r \geq 2,0<\xi<r$, $\operatorname{gcd}(r, \xi)=1$.

Next step: empty marked pyramids

A marked pyramid is empty if all lattice points distinct to the vertex are in the base.

Next step: empty marked pyramids

A marked pyramid is empty if all lattice points distinct to the vertex are in the base.

Lattice distance equals 1 - any base.

Next step: empty marked pyramids

A marked pyramid is empty if all lattice points distinct to the vertex are in the base.

Lattice distance equals 1 - any base.
Lattice distance is greater than 1 - ???

Awful slide

Theorem
(Karpenkov, 2008) A complete list of 3D empty marked multistory pyramids.

- the quadrangular marked pyramids $M_{a, b}$, with $b \geq a \geq 1$;
- triangular $T_{a, r}^{\xi}$, where $a \geq 1$, and $\operatorname{gcd}(\xi, r)=1, r \geq 2$, and
$0<\xi \leq r / 2$;
- the triangular marked pyramids U_{b}, where $b \geq 1$;
- two triangular marked pyramids V and W.

Awful slide

Theorem

(Karpenkov, 2008) A complete list of 3D empty marked multistory pyramids.

- the quadrangular marked pyramids $M_{a, b}$, with $b \geq a \geq 1$;
- triangular $T_{a, r}^{\xi}$, where $a \geq 1$, and $\operatorname{gcd}(\xi, r)=1, r \geq 2$, and
$0<\xi \leq r / 2$;
- the triangular marked pyramids U_{b}, where $b \geq 1$;
- two triangular marked pyramids V and W.

Vertex at the origin. Bases
$M_{a, b}:(2,-1,0),(2,-a-1,1),(2,-1,2),(2, b-1,1)$
$T_{a, r}^{\xi}:(\xi, r-1,-r),(a+\xi, r-1,-r),(\xi, r,-r)$
$U_{b}:(2,1, b-1),(2,2,-1),(2,0,-1)$
$V:(2,-2,1),(2,-1,-1),(2,1,2)$
$W:(3,0,2),(3,1,1),(3,2,3)$

Bases empty marked pyramids

Bases empty marked pyramids

Corollary
Any face of MCF at distance >1 from O is from the list above. This corollary is used in for the algorithm to construct MCF.

Empty 4D simplices

Problem

(unsolved, 1964) What happens in $4 D$ with empty simplices?

Empty 4D simplices

Problem

(unsolved, 1964) What happens in $4 D$ with empty simplices?
Useful filtrations: volume and widths of pyramids or of their faces, distances to the base.

Empty 4D simplices

Problem

(unsolved, 1964) What happens in $4 D$ with empty simplices?
Useful filtrations: volume and widths of pyramids or of their faces, distances to the base.

Problem

What faces on distance 1 three dimensional MCF can have?

Empty 4D simplices

Problem

(unsolved, 1964) What happens in $4 D$ with empty simplices?
Useful filtrations: volume and widths of pyramids or of their faces, distances to the base.

Problem

What faces on distance 1 three dimensional MCF can have?

Problem

What about 3D faces?

Part III

III. Minkovskii-Voronoi continued fractions.

Coaxial sets in general position.

Definition

A subset $S \subset \mathbb{R}_{\geq 0}^{n}$ is axial if S contains points on each of the coordinate axes.

Coaxial sets in general position.

Definition

A subset $S \subset \mathbb{R}_{\geq 0}^{n}$ is axial if S contains points on each of the coordinate axes.

Definition

An axial subset is in general position if:

- Each coordinate plane contains exactly $n-1$ points of S none of which are at the origin; these points are on different coordinate axes.
- No two points on other plane parallel to a coordinate plane.

Coaxial sets in general position.

Definition

A subset $S \subset \mathbb{R}_{\geq 0}^{n}$ is axial if S contains points on each of the coordinate axes.

Definition

An axial subset is in general position if:

- Each coordinate plane contains exactly $n-1$ points of S none of which are at the origin; these points are on different coordinate axes.
- No two points on other plane parallel to a coordinate plane.

Minkovskii-Voronoi minima and minimal sets

Set

$$
\max (A, i)=\max \left\{x_{i} \mid\left(x_{1}, \ldots, x_{n}\right) \in A\right\}
$$

and define the parallelepiped

$$
\Pi(A)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq \max (A, i), i=1, \ldots, n\right\} .
$$

$$
\Pi(\text { Red dots). }
$$

Minkovskii-Voronoi minima and minimal sets

Set

$$
\max (A, i)=\max \left\{x_{i} \mid\left(x_{1}, \ldots, x_{n}\right) \in A\right\}
$$

and define the parallelepiped

$$
\Pi(A)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq \max (A, i), i=1, \ldots, n\right\} .
$$

$$
\Pi(\text { Red dots }) .
$$

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Definition

A finite subset $F \subset \mathrm{Vrm}(S)$ is called minimal if the parallelepiped $\Pi(F)$ contains no Voronoi relative minima of $\operatorname{Vrm}(S) \backslash F$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Definition

A finite subset $F \subset \mathrm{Vrm}(S)$ is called minimal if the parallelepiped $\Pi(F)$ contains no Voronoi relative minima of $\operatorname{Vrm}(S) \backslash F$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Definition

A finite subset $F \subset \mathrm{Vrm}(S)$ is called minimal if the parallelepiped $\Pi(F)$ contains no Voronoi relative minima of $\operatorname{Vrm}(S) \backslash F$.

Minkovskii-Voronoi minima and minimal sets

Definition

Let S be an arbitrary subset of $\mathbb{R}_{\geq 0}^{n}$ (csgp). An element $\gamma \in S$ is called a Voronoi relative minimum if the parallelepiped $\Pi(\{\gamma\})$ contains no points of $S \backslash\{\gamma\}$.

Definition

A finite subset $F \subset \mathrm{Vrm}(S)$ is called minimal if the parallelepiped $\Pi(F)$ contains no Voronoi relative minima of $\operatorname{Vrm}(S) \backslash F$.

Minkovskii-Voronoi complex

Definition

MV-complex is an ($n-1$)-dimensional complex such that

- the k-dimensional faces are enumerated by the minimal ($n-k$)-element subsets
- a face with minimal subset F_{1} is adjacent to a face with a minimal subset $F_{2} \neq F_{1}$ if and only if $F_{1} \subset F_{2}$.

Minkovskii-Voronoi complex

Definition

MV-complex is an ($n-1$)-dimensional complex such that

- the k-dimensional faces are enumerated by the minimal ($n-k$)-element subsets
- a face with minimal subset F_{1} is adjacent to a face with a minimal subset $F_{2} \neq F_{1}$ if and only if $F_{1} \subset F_{2}$.

Minkovskii-Voronoi complex

Definition

MV-complex is an ($n-1$)-dimensional complex such that

- the k-dimensional faces are enumerated by the minimal ($n-k$)-element subsets
- a face with minimal subset F_{1} is adjacent to a face with a minimal subset $F_{2} \neq F_{1}$ if and only if $F_{1} \subset F_{2}$.

Example of the MV-complex

Consider

$$
S_{0}=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{6}\right\}
$$

where

$$
\begin{array}{lll}
\gamma_{1}=(3,0,0), & \gamma_{2}=(0,3,0), & \gamma_{3}=(0,0,3) \\
\gamma_{4}=(2,1,2), & \gamma_{5}=(1,2,1), & \gamma_{6}=(2,3,4)
\end{array}
$$

Example of the MV-complex

Consider

$$
S_{0}=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{6}\right\}
$$

where

$$
\begin{array}{lll}
\gamma_{1}=(3,0,0), & \gamma_{2}=(0,3,0), & \gamma_{3}=(0,0,3), \\
\gamma_{4}=(2,1,2), & \gamma_{5}=(1,2,1), & \gamma_{6}=(2,3,4)
\end{array}
$$

Relative minima: $\gamma_{1}, \ldots, \gamma_{5}$.

Example of the MV-complex

MV-complex contains 5 vertices, 6 edges, and 5 faces.
Vertices:

$$
\begin{gathered}
v_{1}=\left\{\gamma_{1}, \gamma_{3}, \gamma_{4}\right\}, \quad v_{2}=\left\{\gamma_{3}, \gamma_{4}, \gamma_{5}\right\}, \quad v_{3}=\left\{\gamma_{1}, \gamma_{4}, \gamma_{5}\right\}, \\
v_{4}=\left\{\gamma_{2}, \gamma_{3}, \gamma_{5}\right\}, \quad v_{5}=\left\{\gamma_{1}, \gamma_{2}, \gamma_{5}\right\} .
\end{gathered}
$$

Edges:

$$
\begin{array}{lll}
e_{1}=\left\{\gamma_{1}, \gamma_{3}\right\}, & e_{2}=\left\{\gamma_{3}, \gamma_{2}\right\}, & e_{3}=\left\{\gamma_{1}, \gamma_{2}\right\}, \\
e_{4}=\left\{\gamma_{3}, \gamma_{4}\right\}, & e_{5}=\left\{\gamma_{1}, \gamma_{4}\right\}, & e_{6}=\left\{\gamma_{4}, \gamma_{5}\right\}, \\
e_{7}=\left\{\gamma_{3}, \gamma_{5}\right\}, & e_{8}=\left\{\gamma_{1}, \gamma_{5}\right\}, & e_{9}=\left\{\gamma_{2}, \gamma_{5}\right\}
\end{array}
$$

Faces:

$$
f_{1}=\left\{\gamma_{1}\right\}, \quad f_{2}=\left\{\gamma_{2}\right\}, \quad f_{3}=\left\{\gamma_{3}\right\}, \quad f_{4}=\left\{\gamma_{4}\right\}, \quad f_{5}=\left\{\gamma_{5}\right\} .
$$

Example of the MV-complex

$M V(S)$ as a tessellation of an open two-dimensional disk.

Tessellations of the plane

Question: How to describe MV-complexes in 3D?

Tessellations of the plane

Question: How to describe MV-complexes in 3D?

Useful tools:
Minkowski polyhedron for an arbitrary S;
Tessellations of the plane.

Tessellations of the plane

Minkowski polyhedron for a set S (some sort of convex hull):

$$
S \oplus \mathbb{R}_{\geq 0}^{3}=\left\{s+r \mid s \in S, r \in \mathbb{R}_{\geq 0}^{3}\right\}
$$

Tessellations of the plane

- The Minkowski polyhedron (left)
- Minkowski-Voronoi tessellation (right).

Tessellations of the plane

Definition
Step 1. Project the Minkowski polyhedron to $x+y+z=0$.
Step 2. Remove relative minima (i.e., minima of $x+y+z$).
Remove also all edges adjacent to them.
Step 3. Rays to vertices of valence 1.

Linearisation of faces

Linearisation of faces

Theorem
Every linearized finite face is as follows (up to size rescaling):

where $n_{1}, n_{2}, n_{3} \geq 0$.

Linearisation of faces

Theorem
Every linearized finite face is as follows (up to size rescaling):

where $n_{1}, n_{2}, n_{3} \geq 0$.
In our example: $n_{1}=0, n_{2}=4$, and $n_{3}=2$.

Diagrams of the tessellation

Definition

A diagram of a tessellation is canonical if all its faces are linearized.

Diagrams of the tessellation

Definition

A diagram of a tessellation is canonical if all its faces are linearized.

Diagrams of the tessellation

Definition

A diagram of a tessellation is canonical if all its faces are linearized.

Proposition

Every vertex of the MV-complex that is one of one of

Diagrams of the tessellation

Definition

A diagram of a tessellation is canonical if all its faces are linearized.

Proposition

Every vertex of the MV-complex that is one of one of

Proposition
Every finite tessellation of the plane admits a canonical diagram.

MV for lattices

The lattice is generated by $(8,0)$ and $(5,1)$. Here

$$
\frac{8}{5}=[1: 1 ; 1 ; 1 ; 1] .
$$

MV for lattices

The lattice is generated by $(8,0)$ and $(5,1)$. Here

$$
\frac{8}{5}=[1: 1 ; 1 ; 1 ; 1] .
$$

Remark. Here the continued fraction has 5 elements.

MV for lattices

Theorem on combinatorics of continued fractions.
The number of relative minima for a general lattice generated by $(N, 0)$ and $(a, 1)$ coincides with the number of elements for the longest continued fractions of $\frac{a}{N}$.

Lattice examples in 3D

Notation: $L(a, b, N)$

Definition

Let $a, b, N \in \mathbb{Z}_{+}$. The lattice

$$
\Gamma(a, b, N):=\langle(1, a, b),(0, N, 0),(0,0, N)\rangle
$$

is said to be the 1-rank lattice.

Notation: $L(a, b, N)$

Definition

Let $a, b, N \in \mathbb{Z}_{+}$. The lattice

$$
\Gamma(a, b, N):=\langle(1, a, b),(0, N, 0),(0,0, N)\rangle
$$

is said to be the 1-rank lattice.

Proposition

All local minima are in
$[-N / 2, N / 2] \times[-N / 2, N / 2] \times[-N / 2, N / 2]$ (or on axes).

Notation: $L(a, b, N)$

Definition

Let $a, b, N \in \mathbb{Z}_{+}$. The lattice

$$
\Gamma(a, b, N):=\langle(1, a, b),(0, N, 0),(0,0, N)\rangle
$$

is said to be the 1-rank lattice.

Proposition

All local minima are in
$[-N / 2, N / 2] \times[-N / 2, N / 2] \times[-N / 2, N / 2]$ (or on axes).

Proposition

Let $\operatorname{gcd}(a, N)=\operatorname{gcd}(b, N)=1$.
Then the set of all local minima for $|\Gamma(a, b, N)|$ is a finite axial set in general position.

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t=1, u=1]
$$

$$
[t=1, u \geq 2]
$$

$$
[t \geq 2, u=1]
$$

$$
L(2, b, N): \quad b=2 t+1, \quad N=b(2 u+0)+1
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t=1, u=1]
$$

$$
[t=1, u \geq 2]
$$

$$
[t \geq 2, u=1]
$$

$$
L(2, b, N): \quad b=4 t+1, \quad N=b(2 u+1)+2 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t=1, u=1]
$$

$$
[t=1, u \geq 2]
$$

$$
[t \geq 2, u=1]
$$

$$
L(2, b, N): \quad b=4 t+3, \quad N=b(2 u+1)+2 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t=1, u=1]
$$

$$
[t=1, u \geq 2]
$$

$$
[t \geq 2, u=1]
$$

$$
L(2, b, N): \quad b=6 t+1, \quad N=b(2 u+0)+3 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t \geq 2, u=1]
$$

$$
L(2, b, N): \quad b=6 t+2, \quad N=b(2 u+0)+3 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
L(2, b, N): \quad b=6 t+2, \quad N=b(2 u+1)+3 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t=1, u=1]
$$

$$
[t=1, u \geq 2]
$$

$$
L(2, b, N): \quad b=6 t+4, \quad N=b(2 u+0)+3 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
L(2, b, N): \quad b=6 t+4, \quad N=b(2 u+1)+3 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t \geq 2, u=1]
$$

$$
L(2, b, N): \quad b=6 t+5, \quad N=b(2 u+0)+3 .
$$

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$[t=1, u=1]$

$$
[t=1, u \geq 2]
$$

$$
[t \geq 2, u=1]
$$

$L(2, b, N): \quad b=2 \cdot 30 t+17, \quad N=b(2 u+1)+30$.

Series of examples

Observation of regularities (A.Ustinov, O.K. '13):

$$
[t \geq 2, u=1]
$$

$$
L(3, b, N): \quad b=3 \cdot 5 t+7, \quad N=b(3 u+0)+5 .
$$

Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- $a \in \mathbb{Z}_{+}$.

Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- $a \in \mathbb{Z}_{+}$.
- α and β satisfy: $0<\beta<\alpha a$, and $\operatorname{gcd}(\alpha, \beta)=1$.
- an integer γ satisfy $0 \leq \gamma<a$.

Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- $a \in \mathbb{Z}_{+}$.
- α and β satisfy: $0<\beta<\alpha a$, and $\operatorname{gcd}(\alpha, \beta)=1$.
- an integer γ satisfy $0 \leq \gamma<a$.
- Put

$$
\begin{aligned}
& b(t)=\alpha a t+\beta \\
& N(t, u)=b(t)(a u+\gamma)+\alpha=(\alpha a t+\beta)(a u+\gamma)+\alpha,
\end{aligned}
$$

where t and u are positive integer parameters.

Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- $a \in \mathbb{Z}_{+}$.
- α and β satisfy: $0<\beta<\alpha a$, and $\operatorname{gcd}(\alpha, \beta)=1$.
- an integer γ satisfy $0 \leq \gamma<a$.
- Put

$$
\begin{aligned}
& b(t)=\alpha a t+\beta \\
& N(t, u)=b(t)(a u+\gamma)+\alpha=(\alpha a t+\beta)(a u+\gamma)+\alpha,
\end{aligned}
$$

where t and u are positive integer parameters.

- Suppose $\operatorname{gcd}(a, N)=1$.

Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- $a \in \mathbb{Z}_{+}$.
- α and β satisfy: $0<\beta<\alpha a$, and $\operatorname{gcd}(\alpha, \beta)=1$.
- an integer γ satisfy $0 \leq \gamma<a$.
- Put

$$
\begin{aligned}
& b(t)=\alpha a t+\beta \\
& N(t, u)=b(t)(a u+\gamma)+\alpha=(\alpha a t+\beta)(a u+\gamma)+\alpha,
\end{aligned}
$$

where t and u are positive integer parameters.

- Suppose $\operatorname{gcd}(a, N)=1$.

NOTICE:
$\operatorname{gcd}(a, N)=1$ and $\operatorname{gcd}(\alpha, \beta)=1$
$\operatorname{Vrm}(|\Gamma(a, b, N)|)$ is a finite axial set in general position.

Theorem on periodicity

MV-complex stabilization theorem (A.Ustinov, O.K.'14). Let

- $a \in \mathbb{Z}_{+}$.
- α and β satisfy: $0<\beta<\alpha a$, and $\operatorname{gcd}(\alpha, \beta)=1$.
- an integer γ satisfy $0 \leq \gamma<a$.
- Put

$$
\begin{aligned}
& b(t)=\alpha a t+\beta \\
& N(t, u)=b(t)(a u+\gamma)+\alpha=(\alpha a t+\beta)(a u+\gamma)+\alpha,
\end{aligned}
$$

where t and u are positive integer parameters.

- Suppose $\operatorname{gcd}(a, N)=1$.

Then the following holds (for $L(a, b, N)$):

- t-stabilization.
- u-stabilization.
- (t, u)-stabilization.

Alphabets for diagrams (O.K., \& A. Ustinov)

1). Consider a canonical diagram for some S.

Alphabets for diagrams (O.K., \& A. Ustinov)

2). Rotate it by $\frac{\pi}{3}$ clockwise.

Alphabets for diagrams (O.K., \& A. Ustinov)

3). Cut it in several parts by parallel cuts.

Alphabets for diagrams (O.K., \& A. Ustinov)

4). Redraw it in the symbolic form.

Alphabets for diagrams (O.K., \& A. Ustinov)

This is the word

Special case I: White's lattices

Theorem

(Equivalent to G. K. White, 1964) If $A B C D$ is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

Special case I: White's lattices

Theorem

(Equivalent to G. K. White, 1964) If $A B C D$ is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

The vectors $A B, A C$, and $A D$ in this case generate the lattice $L(1, b, N)$.

Special case I: White's lattices

Theorem

(Equivalent to G. K. White, 1964) If $A B C D$ is empty then the lattice points of the corresponding parallelepiped (except for the vertices) are on one of the planes:

The vectors $A B, A C$, and $A D$ in this case generate the lattice $L(1, b, N)$.

So $L(1, b, N)$ are White's lattices.

Special case I: White's lattices

Theorem
Let $\operatorname{gcd}(b, N)=1$ and $b \leq \frac{N}{2}$.
Then the canonical diagram of $|L(1, b, N)|$ is

$$
\ulcorner\neg \neg \ldots \neg
$$

where
$\#(" \neg ")=\#\left(\right.$ elements in the shortest regular c.f. of $\left.\frac{N}{b}\right)$.

Special case II: L(2,b,N)

Conjecture

Let $\operatorname{gcd}(b, N)=1$ and $b \leq \frac{N}{2}$.
Then the canonical diagram of $L(2, b, N)$ is written in the alphabet

Special case II: L(2,b,N)

Conjecture

Let $\operatorname{gcd}(b, N)=1$ and $b \leq \frac{N}{2}$.
Then the canonical diagram of $L(2, b, N)$ is written in the alphabet

Remark. Letters 0 and A always take the first position. The rest is separated into blocks.
A simple block: 0, 1, 2, 3, or 4.
A nonsimple block

- starts with A, a, b, or c
- have none or several letters p and q in the middle
- ends with x, y, or z.

We separate such blocks with spaces.

Special case II: L(2,b,N)

Example: $\Gamma(2,26,121)$:

Special case II：L（2，b，N）

Example：$\Gamma(2,26,121)$ ：

「劝习壮

Special case II：L（2，b，N）

Example：$\Gamma(2,26,121)$ ：

「伩习聇

Symbolically： $0 a p z b x$ ．

Special case II: L(2,b,N)

$\alpha=1$	$\beta=1, \gamma=0$	$u \geq 2, v \geq 2$	032
$\alpha=2$	$\beta=1,3 ; \gamma=1$	$u \geq 1, v \geq 1$	$A z 2$
$\alpha=3$	$\beta=1 ; \gamma=0$	$u \geq 2, v \geq 2$	0232
	$\beta=2 ; \gamma=0,1$	$u \geq 1, v \geq 1$	$A x b x$
	$\beta=4 ; \gamma=0,1$	$u \geq 1, v \geq 1$	$02 b x$
	$\beta=5 ; \gamma=0$	$u \geq 2, v \geq 1$	$A x 32$
$\alpha=4$	$\beta=1,5 ; \gamma=1$	$u \geq 1, v \geq 1$	0 bz 2
	$\beta=3,7 ; \gamma=1$	$u \geq 1, v \geq 1$	0 apz 2
$\alpha=5$	$\beta=1 ; \gamma=0$	$u \geq 2, v \geq 2$	0332
	$\beta=2 ; \gamma=0,1$	$u \geq 1, v \geq 1$	Az bx
	$\beta=3 ; \gamma=0$	$u \geq 2, v \geq 2$	Apy 3 2
	$\beta=4 ; \gamma=0,1$	$u \geq 1, v \geq 1$	$04 b x$
	$\beta=6 ; \gamma=0,1$	$u \geq 1, v \geq 1$	$03 b x$
	$\beta=7 ; \gamma=0$	$u \geq 2, v \geq 1$	$A z 32$
	$\beta=8 ; \gamma=0,1$	$u \geq 1, v \geq 1$	$A p y b x$
	$\beta=9 ; \gamma=0$	$u \geq 2, v \geq 1$	0432

Some open questions remained

Problem

(General) Which tessellations are realizable for 1-rank $L(a, b, N)$ lattices?

Some open questions remained

Problem
(General) Which tessellations are realizable for 1-rank $L(a, b, N)$ lattices?

Problem

Which words are realizable for $\Gamma(2, b, N)$ lattices?

Some open questions remained

Problem
(General) Which tessellations are realizable for 1-rank $L(a, b, N)$ lattices?

Problem

Which words are realizable for $\Gamma(2, b, N)$ lattices?
Problem
Let $a \geq 2$. Does there exist a finite alphabet describing all the diagrams for $\Gamma(a, b, N)$?

Some open questions remained

Problem
(General) Which tessellations are realizable for 1-rank $L(a, b, N)$ lattices?

Problem

Which words are realizable for $\Gamma(2, b, N)$ lattices?

Problem

Let $a \geq 2$. Does there exist a finite alphabet describing all the diagrams for $\Gamma(a, b, N)$?

Problem

What are the explicit bounds for the asymptotic theorem (is it always 2)?

