Polyhedra with Prescribed Number of Lattice Points and the k-Frobenius Problem

I. Aliev, J. De Loera, Q. Louveaux

Cardiff University UC Davis University of Liege

October 8th, 2014

Semigroups and Frobenius numbers

Let $A=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{>0}^{1 \times n}$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$. We study

$$
\operatorname{Sg}(A)=\left\{b: b=a_{1} x_{1}+\cdots+a_{n} x_{n}, x_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

For instance, let $A=(3,5)$. The elements of $\operatorname{Sg}(A)$ (green dots) and $\mathbb{Z}_{\geq 0} \backslash \operatorname{Sg}(A)$ (red dots):

Deciding whether $b \in \operatorname{Sg}(A)$ is NP-complete problem.
Geometrically, the problem asks whether there is at least one lattice point in the parametric polyhedron $P_{A}(b)=\{x: A x=b, x \geq 0\}$.

The geometry of the problem

$$
3 x+5 y=3
$$

The geometry of the problem

$$
3 x+5 y=5
$$

The geometry of the problem

$$
3 x+5 y=7
$$

Semigroups and Frobenius numbers

Frobenius problem:

Find the Frobenius number $\mathrm{F}(A)$, that is the largest integer $b \notin \operatorname{Sg}(A)$.

In example above $\mathrm{F}(A)=7$.
Ramirez Alfonsin (1996): When n is not fixed this is NP-hard problem. Kannan (1992), Barvinok-Woods (2003): For fixed n Frobenius number can be computed in polynomial time.

A generalization of Frobenius numbers

Beck and Robins (2004): For a positive integer k the k-Frobenius number $\mathrm{F}_{k}(A)$ is the largest number which cannot be represented in at least k different ways as a non-negative integral combination of the a_{i} 's.

They gave a formula for $n=2$ for k-Frobenius numbers. For general n and k only bounds (by A., Fukshansky, Henk, etc) are available.

For $\operatorname{Sg}(A)=\left\{b: b=a_{1} x_{1}+\cdots+a_{n} x_{n}, x_{i} \in \mathbb{Z}_{\geq 0}\right\}$ we can ask:

- For which b are there at least k representations?
- For which b are there exactly k representations? (for example there is a unique representation)
- For which b are there at most k representations?

Fundamental problems of k-feasibility

Given an integer matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $b \in \mathbb{Z}^{d}$, we study the semigroup $\operatorname{Sg}(A)=\left\{b: b=A x, x \in \mathbb{Z}^{n}, x \geq 0\right\}$.

The membership of b in the semigroup $\operatorname{Sg}(A)$ reduces to the challenge, given a vector b, to find whether the linear Diophantine system $I P_{A}(b)$

$$
A x=b, \quad x \geq 0, \quad x \in \mathbb{Z}^{n}
$$

has a solution or not.
Geometrically, we ask whether there is at least one lattice point in the parametric polyhedron $P_{A}(b)=\{x: A x=b, x \geq 0\}$.

Fundamental problems of k-feasibility

For a given integer k there are three natural interesting variations of the classical feasibility problem above that in a natural way measure the number of solutions of $I P_{A}(b)$:

- Are there at least k distinct solutions for $I P_{A}(b)$? If yes, we say that the problem is $\geq k$-feasible.
- Are there exactly k distinct solutions for $I P_{A}(b)$? If yes, we say that the problem is $=k$-feasible.
- Are there less than k distinct solutions for $I P_{A}(b)$? If yes, we say that the problem is $<k$-feasible.

We call these three problems, the fundamental problems of k-feasibility.

Results

Given the integer $k \geq 1$ one can decompose $\operatorname{Sg}(A)$ taking into account the number of solutions for $I P_{A}(b)$:

Let $\mathrm{Sg}_{\geq k}(A)$ (respectively $\mathrm{Sg}_{=k}(A)$ and $\mathrm{Sg}_{<k}(A)$) be the set of right-hand side vectors $b \in \operatorname{Sg}(A)$ that make $I P_{A}(b) \geq k$-feasible (respectively $=k$-feasible, $<k$-feasible).

Theorem

(i) There exists a monomial ideal $I^{k}(A) \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\begin{equation*}
\operatorname{Sg}_{\geq k}(A)=\left\{A \lambda: \lambda \in E^{k}(A)\right\} \tag{1}
\end{equation*}
$$

where $E^{k}(A)$ is the set of exponents of monomials in $I^{k}(A)$.
(ii) The set $\mathrm{Sg}_{<k}(A)$ can be written as a finite union of translates of the sets $\{A \lambda: \lambda \in S\}$, where S is a coordinate subspace of $\mathbb{Z}_{\geq 0}^{n}$.

Results

Corollary

$\mathrm{Sg}_{\geq k}(A)$ is a finite union of translated copies of the semigroup $\operatorname{Sg}(A)$.

Results

Theorem

Let $A \in \mathbb{Z}^{d \times n}$ and let M be a positive integer. Assuming that n and k are fixed, there is a polynomial time algorithm to compute a short sum of rational functions $G(t)$ which represents a formal sum

$$
\sum_{b: \geq k-\text { feasible, }, b_{i} \leq M} t^{b}
$$

Moreover, from the algebraic formula, one can perform the following tasks in polynomial time:
(1) Count how many such b's are there (finite because M provides a box).
(2) Extract the lexicographic-smallest such $b, \geq k$-feasible vector.
(3) Find the $\geq k$-feasible vector b that maximizes $c^{\top} b$.

Idea of the proof

In 1993 A. Barvinok gave an algorithm for counting the lattice points inside a polyhedron P in polynomial time when the dimension of P is a constant.

The input of the algorithm is the inequality description of P, the output is a polynomial-size formula for the multivariate generating function of all lattice points in P, namely $f(P, x)=\sum_{a \in P \cap \mathbb{Z}^{n}} x^{a}$, where x^{a} is an abbreviation of $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$.

A long polynomial with many monomials is encoded as a much shorter sum of rational functions of the form

$$
\begin{equation*}
f(P, x)=\sum_{i \in I} \pm \frac{x^{u_{i}}}{\left(1-x^{c_{1, i}}\right)\left(1-x^{c_{2, i}}\right) \ldots\left(1-x^{c_{s, i}}\right)} . \tag{2}
\end{equation*}
$$

Later on Barvinok and Woods developed a way to encode the projections of lattice points of a convex polytope.

Idea of the proof

We construct a polyhedron $Q(A, k, M) \subset \mathbb{R}^{n k}$ such that all its lattice points represent distinct k-tuples of lattice points that are in some parametric polyhedron $P_{A}(b)=\{x: A x=b, x \geq 0\}$.

Theorem (Barvinok and Woods 2003)

Assume the dimension n is a fixed constant. Consider a rational polytope $P \subset \mathbb{R}^{n}$ and a linear map $T: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$ such that $T\left(\mathbb{Z}^{n}\right) \subset \mathbb{Z}^{d}$. There is a polynomial time algorithm which computes a short representation of the generating function $f\left(T\left(P \cap \mathbb{Z}^{n}\right), x\right)$.

We apply a very simple linear map $T\left(X_{1}, X_{2}, \ldots, X_{k}\right)=A X_{1}$. This yields for each k-tuple the corresponding right-hand side vector $b=A X_{1}$ that has at least k-distinct solutions. The final generating expression will be

$$
f=\sum_{b \in \text { projection of } Q(A, k, M): \text { with at least } k \text {-representations }} t^{b} .
$$

Main corollary

With some technical work we complete the proof and also obtain the following

Corollary
The k-Frobenius number can be computed in polynomial time for fixed k and n.

Thank you!

