Extremal problems for convex lattice polytopes

Imre Bárány

Rényi Institute, Hungarian Academy of Sciences \& Department of Mathematics, University College London

A sample problem Jarník proved in 1926 that
if $\gamma \subset \mathbf{R}^{2}$ is a (closed) strictly convex curve of length ℓ, then

$$
\left|\gamma \cap \mathbf{Z}^{2}\right| \leq \frac{3}{\sqrt[3]{2 \pi}} \ell^{2 / 3}+O\left(\ell^{1 / 3}\right)
$$

Here both the exponent $\frac{2}{3}$ and the constant $\frac{3}{\sqrt[3]{2 \pi}}$ are best possible. Equivalently,

Theorem (Jarník 1926)

convex lattice polygons appear instantly:

A sample problem Jarník proved in 1926 that if $\gamma \subset \mathbf{R}^{2}$ is a (closed) strictly convex curve of length ℓ, then

$$
\left|\gamma \cap \mathbf{Z}^{2}\right| \leq \frac{3}{\sqrt[3]{2 \pi}} \ell^{2 / 3}+O\left(\ell^{1 / 3}\right)
$$

Here both the exponent $\frac{2}{3}$ and the constant $\frac{3}{\sqrt[3]{2 \pi}}$ are best possible. Equivalently,

Theorem (Jarník 1926)
$\lim _{\ell \rightarrow \infty} \max \left\{\ell^{-2 / 3}\left|\gamma \cap \mathbf{Z}^{2}\right|: \gamma\right.$ is a convex.. $\}=\frac{3}{\sqrt[3]{2 \pi}}$

A sample problem Jarník proved in 1926 that if $\gamma \subset \mathbf{R}^{2}$ is a (closed) strictly convex curve of length ℓ, then

$$
\left|\gamma \cap \mathbf{Z}^{2}\right| \leq \frac{3}{\sqrt[3]{2 \pi}} \ell^{2 / 3}+O\left(\ell^{1 / 3}\right)
$$

Here both the exponent $\frac{2}{3}$ and the constant $\frac{3}{\sqrt[3]{2 \pi}}$ are best possible. Equivalently,

Theorem (Jarník 1926)

$$
\lim _{\ell \rightarrow \infty} \max \left\{\ell^{-2 / 3}\left|\gamma \cap \mathbf{Z}^{2}\right|: \gamma \text { is a convex.. }\right\}=\frac{3}{\sqrt[3]{2 \pi}}
$$

convex lattice polygons appear instantly:
\circ
\circ。
。
o
o
-
○
0
\circ
0
\circ
-
\circ

The lattice \mathbf{Z}^{2} (or \mathbf{Z}^{d})

The strictly convex curve γ

The convex lattice polygon P whose vertex set is $\gamma \cap \mathbf{Z}^{2}$

In fact, $P=\operatorname{conv}\left(\gamma \cap \mathbf{Z}^{2}\right)$. Jarník's result says that if P has $n=\left|\gamma \cap \mathbf{Z}^{2}\right|$ vertices, then

$$
\ell>\operatorname{per} P \geq \frac{\sqrt{6 \pi}}{9} n^{3 / 2}+O\left(n^{3 / 4}\right)
$$

with best exponent $3 / 2$ and best constant $\frac{\sqrt{6 \pi}}{9}$.
Theorem
With the min taken over all convex lattice polygons with n vertices

This is equivalent to Jarník's theorem. Next comes a quick proof.

In fact, $P=\operatorname{conv}\left(\gamma \cap \mathbf{Z}^{2}\right)$. Jarník's result says that if P has $n=\left|\gamma \cap \mathbf{Z}^{2}\right|$ vertices, then

$$
\ell>\operatorname{per} P \geq \frac{\sqrt{6 \pi}}{9} n^{3 / 2}+O\left(n^{3 / 4}\right)
$$

with best exponent $3 / 2$ and best constant $\frac{\sqrt{6 \pi}}{9}$.
Theorem
With the min taken over all convex lattice polygons with n vertices

$$
\lim _{n \rightarrow \infty} n^{-3 / 2} \min \operatorname{per} P=\frac{\sqrt{6 \pi}}{9}
$$

In fact, $P=\operatorname{conv}\left(\gamma \cap \mathbf{Z}^{2}\right)$. Jarník's result says that if P has $n=\left|\gamma \cap \mathbf{Z}^{2}\right|$ vertices, then

$$
\ell>\operatorname{per} P \geq \frac{\sqrt{6 \pi}}{9} n^{3 / 2}+O\left(n^{3 / 4}\right)
$$

with best exponent $3 / 2$ and best constant $\frac{\sqrt{6 \pi}}{9}$.
Theorem
With the min taken over all convex lattice polygons with n vertices

$$
\lim _{n \rightarrow \infty} n^{-3 / 2} \min \operatorname{per} P=\frac{\sqrt{6 \pi}}{9}
$$

This is equivalent to Jarník's theorem. Next comes a quick proof.
P convex lattice n-gon with minimal perimeter, edges $z_{1}, z_{2}, \ldots, z_{n} \in \mathbf{Z}^{2}$.

- each $z_{i} \in \mathbf{Z}^{2}$ is a primitive vector (primitive: the gcd of the coordinates is 1)
- No z_{i}, z_{j} are parallel and same direction
- $\sum_{1}^{n} z_{i}=0$
P convex lattice n-gon with minimal perimeter, edges $z_{1}, z_{2}, \ldots, z_{n} \in \mathbf{Z}^{2}$.

- each $z_{i} \in \mathbf{Z}^{2}$ is a primitive vector (primitive: the gcd of the coordinates is 1)
- $N o z_{i}, z_{j}$ are parallel and same direction - $\sum_{1}^{n} z_{i}=0$
P convex lattice n-gon with minimal perimeter, edges $z_{1}, z_{2}, \ldots, z_{n} \in \mathbf{Z}^{2}$.

- each $z_{i} \in \mathbf{Z}^{2}$ is a primitive vector (primitive: the gcd of the coordinates is 1)
- No z_{i}, z_{j} are parallel and same direction
- $\sum_{1}^{n} z_{i}=0$

FACT: $z_{1}, \ldots, z_{n} \in \mathbf{P}$ are distinct primitive vectors
Notation: $\mathbf{P}=\mathbf{P}^{d} \subset \mathbf{Z}^{d}$ set of primitive vectors
their density in \mathbf{Z}^{2} is $6 / \pi^{2}$
Iet $U=\left\{u_{4}, \ldots, u_{n}\right\}$ be the set of the n shortest primitive vectors.

$\sum_{1}^{n}\left\|u_{i}\right\|$ can be determined. With $r=\max \left\|u_{i}\right\|$

FACT: $z_{1}, \ldots, z_{n} \in \mathbf{P}$ are distinct primitive vectors
Notation: $\mathbf{P}=\mathbf{P}^{d} \subset \mathbf{Z}^{d}$ set of primitive vectors
their density in \mathbf{Z}^{2} is $6 / \pi^{2}$
Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ be the set of the n shortest primitive vectors.

$\sum_{1}^{n}\left\|u_{i}\right\|$ can be determined. With $r=\max \left\|u_{i}\right\|$

FACT: $z_{1}, \ldots, z_{n} \in \mathbf{P}$ are distinct primitive vectors
Notation: $\mathbf{P}=\mathbf{P}^{d} \subset \mathbf{Z}^{d}$ set of primitive vectors their density in \mathbf{Z}^{2} is $6 / \pi^{2}$

Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ be the set of the n shortest primitive vectors.

$\sum_{1}^{n}\left\|u_{i}\right\|$ can be determined. With $r=\max \left\|u_{i}\right\|$

FACT: $z_{1}, \ldots, z_{n} \in \mathbf{P}$ are distinct primitive vectors
Notation: $\mathbf{P}=\mathbf{P}^{d} \subset \mathbf{Z}^{d}$ set of primitive vectors their density in \mathbf{Z}^{2} is $6 / \pi^{2}$

Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ be the set of the n shortest primitive vectors.

$$
\operatorname{per} P=\sum_{1}^{n}\left\|z_{i}\right\| \geq \sum_{1}^{n}\left\|u_{i}\right\|
$$

$\sum_{1}^{n}\left\|u_{i}\right\|$ can be determined. With $r=\max \| u_{i} \mid$

FACT: $z_{1}, \ldots, z_{n} \in \mathbf{P}$ are distinct primitive vectors
Notation: $\mathbf{P}=\mathbf{P}^{d} \subset \mathbf{Z}^{d}$ set of primitive vectors their density in \mathbf{Z}^{2} is $6 / \pi^{2}$
Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ be the set of the n shortest primitive vectors.

$$
\text { per } P=\sum_{1}^{n}\left\|z_{i}\right\| \geq \sum_{1}^{n}\left\|u_{i}\right\|
$$

$\sum_{1}^{n}\left\|u_{i}\right\|$ can be determined. With $r=\max \left\|u_{i}\right\|$

$$
U \approx r B^{2} \cap \mathbf{P} \text { and } \frac{6}{\pi^{2}} r^{2} \pi \approx n \text { so } r \approx \sqrt{\frac{\pi n}{6}} .
$$

Similarly,

$$
\begin{aligned}
\operatorname{per} P & \geq \sum_{1}^{n}\left\|u_{i}\right\| \approx \sum_{u \in r B^{2} \cap \mathbf{P}}\|u\| \\
& \approx \frac{6}{\pi^{2}} \int_{r B^{2}}\|x\| d x \\
& \approx \frac{\sqrt{6 \pi}}{9} n^{3 / 2}
\end{aligned}
$$

Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero.
Order the vectors by increasing slope.
This gives the order of edges of a convex lattice polygon P and per $P \approx \frac{\sqrt{6 \pi}}{9} n^{3 / 2}$.

For odd n...

Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero.
Order the vectors by increasing slope.
This gives the order of edges of a convex lattice polygon P and per $P \approx \frac{\sqrt{6 \pi}}{9} n^{3 / 2}$.

For odd n...

Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero.
Order the vectors by increasing slope.
This gives the order of edges of a convex lattice polygon P and per $P \approx \frac{\sqrt{6 \pi}}{9} n^{3 / 2}$.
For odd n...

Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero.
Order the vectors by increasing slope.
This gives the order of edges of a convex lattice polygon P and per $P \approx \frac{\sqrt{6 \pi}}{9} n^{3 / 2}$.
For odd n...

REMARK. Same method works for every symmetric norm in \mathbf{R}^{2}.

REMARK. There is a limit shape of the minimizers (after scaling)

MORAL: edge set of P is more important than P (and contains the same information)

And for non-symmetric norms?

REMARK. Same method works for every symmetric norm in \mathbf{R}^{2}.

REMARK. There is a limit shape of the minimizers (after scaling)

MORAL: edge set of P is more important than P
(and contains the same information)
And for non-symmetric norms?

REMARK. Same method works for every symmetric norm in \mathbf{R}^{2}.

REMARK. There is a limit shape of the minimizers (after scaling)

MORAL: edge set of P is more important than P (and contains the same information)

And for non-symmetric norms?

REMARK. Same method works for every symmetric norm in \mathbf{R}^{2}.

REMARK. There is a limit shape of the minimizers (after scaling)

MORAL: edge set of P is more important than P (and contains the same information)

And for non-symmetric norms?
$D \in \mathcal{K}^{2}$ with $0 \in D$ is the unit ball of a (non-symmetric) norm. Let \mathcal{P} denote the family of all convex lattice polygons.
Each $P \in \mathcal{P}$ has a D-perimeter per ${ }_{D} P$. Define

$$
L_{n}(D)=\min \left\{\operatorname{per}_{D} P: P \in \mathcal{P}, P \text { has } n \text { vertices }\right\}
$$

Theorem (B.-Enriquez '10)
There is a convex set $P \subset \mathbf{R}^{2}$ such that the following holds. Let $P_{n} \in \mathcal{P}$ with n vertices be an arbitrary sequence of minimizers, of $L_{n}(D)$, translated so that their center of gravity is at the origin. Then the sequence $n^{-3 / 2} P_{n}$ tends to P.
P is unique
Proof: convex geometry, number theory, plus calculus of
variation
$D \in \mathcal{K}^{2}$ with $0 \in D$ is the unit ball of a (non-symmetric) norm. Let \mathcal{P} denote the family of all convex lattice polygons.
Each $P \in \mathcal{P}$ has a D-perimeter $\operatorname{per}_{D} P$. Define

$$
L_{n}(D)=\min \left\{\operatorname{per}_{D} P: P \in \mathcal{P}, P \text { has } n \text { vertices }\right\}
$$

Theorem (B.-Enriquez '10)

There is a convex set $P \subset \mathbf{R}^{2}$ such that the following holds. Let $P_{n} \in \mathcal{P}$ with n vertices be an arbitrary sequence of minimizers, of $L_{n}(D)$, translated so that their center of gravity is at the origin. Then the sequence $n^{-3 / 2} P_{n}$ tends to P.
P is unique
variation
$D \in \mathcal{K}^{2}$ with $0 \in D$ is the unit ball of a (non-symmetric) norm. Let \mathcal{P} denote the family of all convex lattice polygons.
Each $P \in \mathcal{P}$ has a D-perimeter $\operatorname{per}_{D} P$. Define

$$
L_{n}(D)=\min \left\{\operatorname{per}_{D} P: P \in \mathcal{P}, P \text { has } n \text { vertices }\right\}
$$

Theorem (B.-Enriquez '10)

There is a convex set $P \subset \mathbf{R}^{2}$ such that the following holds. Let $P_{n} \in \mathcal{P}$ with n vertices be an arbitrary sequence of minimizers, of $L_{n}(D)$, translated so that their center of gravity is at the origin. Then the sequence $n^{-3 / 2} P_{n}$ tends to P.
P is unique
Proof: convex geometry, number theory, plus calculus of variation

Notations:
$\mathbf{P}=\mathbf{P}^{d}$ the set of primitive vectors in \mathbf{Z}^{d}
$\mathcal{K}=\mathcal{K}^{d}$ the set of convex bodies in \mathbf{R}^{d} (convex compact sets with non-empty interior)
$\mathcal{P}=\mathcal{P}^{d}$ set of convex lattice polytopes,
for $P \in \mathcal{P}, f_{0}(P)=$ number of vertices of $P, f_{s}(P)=$ number of s-dim faces of P

Notations:
$\mathbf{P}=\mathbf{P}^{d}$ the set of primitive vectors in \mathbf{Z}^{d}
$\mathcal{K}=\mathcal{K}^{d}$ the set of convex bodies in \mathbf{R}^{d} (convex compact sets with non-empty interior)
$\mathcal{P}=\mathcal{P}^{d}$ set of convex lattice polytopes,
for $P \in \mathcal{P}, f_{0}(P)=$ number of vertices of $P, f_{s}(P)=$ number of s-dim faces of P

Notations:
$\mathbf{P}=\mathbf{P}^{d}$ the set of primitive vectors in \mathbf{Z}^{d}
$\mathcal{K}=\mathcal{K}^{d}$ the set of convex bodies in \mathbf{R}^{d} (convex compact sets with non-empty interior)
$\mathcal{P}=\mathcal{P}^{d}$ set of convex lattice polytopes,
for $P \in \mathcal{P}, f_{0}(P)=$ number of vertices of $P, f_{s}(P)=$ number of s-dim faces of P

Notations:
$\mathbf{P}=\mathbf{P}^{d}$ the set of primitive vectors in \mathbf{Z}^{d}
$\mathcal{K}=\mathcal{K}^{d}$ the set of convex bodies in \mathbf{R}^{d} (convex compact sets with non-empty interior)
$\mathcal{P}=\mathcal{P}^{d}$ set of convex lattice polytopes,
for $P \in \mathcal{P}, f_{0}(P)=$ number of vertices of $P, f_{s}(P)=$ number of s-dim faces of P

Notations:
$\mathbf{P}=\mathbf{P}^{d}$ the set of primitive vectors in \mathbf{Z}^{d}
$\mathcal{K}=\mathcal{K}^{d}$ the set of convex bodies in \mathbf{R}^{d} (convex compact sets with non-empty interior)
$\mathcal{P}=\mathcal{P}^{d}$ set of convex lattice polytopes,
for $P \in \mathcal{P}, f_{0}(P)=$ number of vertices of $P, f_{s}(P)=$ number of s-dim faces of P

THE PROBLEMS

1. Minimal volume. Determine or estimate

$$
V_{d}(n)=\min \left\{\operatorname{Vol} P: P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

2. Minimal surface area. Determine or estimate

$$
S_{d}(n)=\min \left\{S(P): P \in P^{d} \text { and } f(P)=n\right\}
$$

just solved it for $d=2$.
3. Minimal lattico width. Determine or estimate

$$
w_{d}(n)=\min \left\{w(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

where $w(P)$ is the lattice width of $P \in \mathcal{P}^{d}$

THE PROBLEMS

1. Minimal volume. Determine or estimate

$$
V_{d}(n)=\min \left\{\operatorname{Vol} P: P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

2. Minimal surface area. Determine or estimate

$$
S_{d}(n)=\min \left\{S(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

just solved it for $d=2$.
3. Minimal lattice width. Determine or estimate

$$
w_{d}(n)=\min \left\{w^{\prime}(P): P \in P^{d} \text { and } f_{0}(P)=n\right\}
$$

where $w(P)$ is the lattice width of $P \in \mathcal{P}^{d}$

THE PROBLEMS

1. Minimal volume. Determine or estimate

$$
V_{d}(n)=\min \left\{\operatorname{Vol} P: P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

2. Minimal surface area. Determine or estimate

$$
S_{d}(n)=\min \left\{S(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

just solved it for $d=2$.
3. Minimal lattice width. Determine or estimate

$$
w_{d}(n)=\min \left\{w(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

where $w(P)$ is the lattice width of $P \in \mathcal{P}^{d}$

THE PROBLEMS

1. Minimal volume. Determine or estimate

$$
V_{d}(n)=\min \left\{\operatorname{Vol} P: P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

2. Minimal surface area. Determine or estimate

$$
S_{d}(n)=\min \left\{S(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

just solved it for $d=2$.
3. Minimal lattice width. Determine or estimate

$$
w_{d}(n)=\min \left\{w(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

where $w(P)$ is the lattice width of $P \in P^{d}$

THE PROBLEMS

1. Minimal volume. Determine or estimate

$$
V_{d}(n)=\min \left\{\operatorname{Vol} P: P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

2. Minimal surface area. Determine or estimate

$$
S_{d}(n)=\min \left\{S(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

just solved it for $d=2$.
3. Minimal lattice width. Determine or estimate

$$
w_{d}(n)=\min \left\{w(P): P \in \mathcal{P}^{d} \text { and } f_{0}(P)=n\right\}
$$

where $w(P)$ is the lattice width of $P \in \mathcal{P}^{d}$

Definition
$K \in \mathcal{K}^{d}, z \in \mathbf{Z}^{d}$ and $z \neq 0$, then

$$
w(K, z)=\max \{z \cdot(x-y): x, y \in K\} .
$$

The lattice width of K is

$$
w(K)=\min \left\{w(K, z): z \in \mathbf{Z}^{d}, z \neq 0\right\} .
$$

How many parallel lattice hyperplanes meet K ?
FACT. For $P \in \mathcal{P}^{d}, W(P)+1=$ minimal number of parallel
lattice lines meeting P

Definition
$K \in \mathcal{K}^{d}, z \in \mathbf{Z}^{d}$ and $z \neq 0$, then

$$
w(K, z)=\max \{z \cdot(x-y): x, y \in K\} .
$$

The lattice width of K is

$$
w(K)=\min \left\{w(K, z): z \in \mathbf{Z}^{d}, z \neq 0\right\} .
$$

How many parallel lattice hyperplanes meet K ?
FACT. For $P \in \mathcal{P}^{d}, w(P)+1=$ minimal number of parallel lattice lines meeting P.

Definition
$K \in \mathcal{K}^{d}, z \in \mathbf{Z}^{d}$ and $z \neq 0$, then

$$
w(K, z)=\max \{z \cdot(x-y): x, y \in K\} .
$$

The lattice width of K is

$$
w(K)=\min \left\{w(K, z): z \in \mathbf{Z}^{d}, z \neq 0\right\} .
$$

How many parallel lattice hyperplanes meet K ?
FACT. For $P \in \mathcal{P}^{d}, w(P)+1=$ minimal number of parallel lattice lines meeting P.

$w(K)$ is invariant under lattice preserving affine transformations

$w(K)$ is invariant under lattice preserving affine transformations
4. Arnold's question. How many convex lattice polytopes are there?
$P, Q \in \mathcal{P}^{d}$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytones have the same volume.
Arnold's question. (1980) How many equivalence classes are there in \mathbf{R}^{d}, of volume $\leq V$?
not an extremal question yet.
4. Arnold's question. How many convex lattice polytopes are there?
$P, Q \in \mathcal{P}^{d}$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.
Arnold's question. (1980) How many equivalence classes are there in \mathbf{R}^{d}, of volume $\leq V$?
not an extremal question yet
4. Arnold's question. How many convex lattice polytopes are there?
$P, Q \in \mathcal{P}^{d}$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.
Arnold's question. (1980) How many equivalence classes are there in \mathbf{R}^{d}, of volume $\leq V$?
not an extremal question yet
4. Arnold's question. How many convex lattice polytopes are there?
$P, Q \in \mathcal{P}^{d}$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.
Arnold's question. (1980) How many equivalence classes are there in \mathbf{R}^{d}, of volume $\leq V$?
not an extremal question yet
4. Arnold's question. How many convex lattice polytopes are there?
$P, Q \in \mathcal{P}^{d}$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.
Arnold's question. (1980) How many equivalence classes are there in \mathbf{R}^{d}, of volume $\leq V$?
not an extremal question yet ..
5. Maximal polytopes. Assume $K \in \mathcal{K}^{d}$ is "large". Determine

$$
\max \left\{f_{0}(P): P \in \mathcal{P}^{d}, P \subset K\right\}
$$

equivalently, determine or estimate the maximal number of points in $K \cap Z^{d}$ that are in convex position,
i.e., none of them is in the convex hull of the others
answers: order of magnitude, asymptotic, precise..
5. Maximal polytopes. Assume $K \in \mathcal{K}^{d}$ is "large". Determine

$$
\max \left\{f_{0}(P): P \in \mathcal{P}^{d}, P \subset K\right\}
$$

equivalently, determine or estimate the maximal number of points in $K \cap \mathbf{Z}^{d}$ that are in convex position,
i.e., none of them is in the convex hull of the others
answers: order of magnitude, asymptotic, precise..
5. Maximal polytopes. Assume $K \in \mathcal{K}^{d}$ is "large". Determine

$$
\max \left\{f_{0}(P): P \in \mathcal{P}^{d}, P \subset K\right\}
$$

equivalently, determine or estimate the maximal number of points in $K \cap \mathbf{Z}^{d}$ that are in convex position,
i.e., none of them is in the convex hull of the others
answers: order of magnitude, asymptotic, precise..

1. Minimal volume $V_{d}(n)$

Theorem (Andrews '63)
If $P \in \mathcal{P}^{d}$ and $\operatorname{Vol} P>0$, then

$$
f_{0}(P)^{\frac{d+1}{d-1}} \leq c_{d} \operatorname{Vol} P
$$

or with better notation:

Corollary

> Several proofs, none easy: Andrews '63, Arnold '80 ($d=2$), Konyagin, Sevastyanov '84 , ($d \geq 2$), W. Schmidt '86, B.-Vershik '92, B.-Larman '98, Reisner-Schütt-Werner '01, and more

1. Minimal volume $V_{d}(n)$

Theorem (Andrews '63)
If $P \in \mathcal{P}^{d}$ and $\operatorname{Vol} P>0$, then

$$
f_{0}(P)^{\frac{d+1}{d-1}} \leq c_{d} \operatorname{Vol} P
$$

or with better notation:

$$
f_{0}(P)^{\frac{d+1}{d-1}} \ll \operatorname{Vol} P
$$

Corollary

$$
n^{\frac{d+1}{d-1}} \ll V_{d}(n) .
$$

Several proofs, none easy: Andrews '63, Arnold '80 $(d=2)$,
Konyagin, Sevastyanov '84 , ($d \geq 2$), W. Schmidt '86, B.-Vershik
'92, B.-Larman '98, Reisner-Schütt-Werner '01, and more

1. Minimal volume $V_{d}(n)$

Theorem (Andrews '63)
If $P \in \mathcal{P}^{d}$ and $\operatorname{Vol} P>0$, then

$$
f_{0}(P)^{\frac{d+1}{d-1}} \leq c_{d} \operatorname{Vol} P
$$

or with better notation:

$$
f_{0}(P)^{\frac{d+1}{d-1}} \ll \operatorname{Vol} P
$$

Corollary

$$
n^{\frac{d+1}{d-1}} \ll V_{d}(n)
$$

Several proofs, none easy: Andrews '63, Arnold '80 $(d=2)$, Konyagin, Sevastyanov '84, ($d \geq 2$), W. Schmidt '86, B.-Vershik '92, B.-Larman '98, Reisner-Schütt-Werner '01, and more

Definition

A tower of $P \in \mathcal{P}^{d}$ is $F_{0} \subset F_{1} \subset . . \subset F_{d-1}$ where F_{i} is an i-dim face of $P . T(P)=$ number of towers of P.

Theorem
If $P \in \mathcal{P}^{d}$ and Vol $P>0$, then
implies the same bound for $f_{i}(P)$.
OPFN PROBI FM. For all nolytones $P \in K^{d}$

$$
T(P) \ll f_{0}(P)+f_{1}(P)+\ldots f_{d-1}(P) ? ? ? ?
$$

Definition

A tower of $P \in \mathcal{P}^{d}$ is $F_{0} \subset F_{1} \subset . . \subset F_{d-1}$ where F_{i} is an i-dim face of $P . T(P)=$ number of towers of P.

Theorem

If $P \in \mathcal{P}^{d}$ and $\operatorname{Vol} P>0$, then

$$
T(P)^{\frac{d+1}{d-1}} \ll \operatorname{Vol} P
$$

implies the same bound for $f_{i}(P)$.
OPEN PROBLEM. For all polytopes $P \in \mathcal{K}^{d}$

$$
T(P) \ll f_{0}(P)+f_{1}(P)+\ldots f_{d-1}(P) ? ? ? ?
$$

Definition

A tower of $P \in \mathcal{P}^{d}$ is $F_{0} \subset F_{1} \subset . . \subset F_{d-1}$ where F_{i} is an i-dim face of $P . T(P)=$ number of towers of P.

Theorem

If $P \in \mathcal{P}^{d}$ and $\operatorname{Vol} P>0$, then

$$
T(P)^{\frac{d+1}{d-1}} \ll \operatorname{Vol} P
$$

implies the same bound for $f_{i}(P)$.
OPEN PROBLEM. For all polytopes $P \in \mathcal{K}^{d}$

$$
T(P) \ll f_{0}(P)+f_{1}(P)+\ldots f_{d-1}(P) ? ? ? ?
$$

Definition

A tower of $P \in \mathcal{P}^{d}$ is $F_{0} \subset F_{1} \subset . . \subset F_{d-1}$ where F_{i} is an i-dim face of $P . T(P)=$ number of towers of P.

Theorem

If $P \in \mathcal{P}^{d}$ and $\operatorname{Vol} P>0$, then

$$
T(P)^{\frac{d+1}{d-1}} \ll \operatorname{Vol} P
$$

implies the same bound for $f_{i}(P)$.
OPEN PROBLEM. For all polytopes $P \in \mathcal{K}^{d}$

$$
T(P) \ll f_{0}(P)+f_{1}(P)+\ldots f_{d-1}(P) ? ? ? ?
$$

FACT. $n^{(d+1) /(d-1)}$ is best possible estimate
Example 1. (Arnold 80^{\prime}) G is the graph of the parabola
$y=x^{2},|x| \leq t$, and
$P=P_{t}=\mathrm{conv}\left(G \cap \mathbf{Z}^{2}\right)$.
Then $f_{0}(P)=2 t+1$ and Area $P \approx \frac{2}{3} t^{3}$.
in d-dim, $G=G_{t}$ is given by $x_{d}=x_{1}^{2}+\cdots+x_{d-1}^{2} \leq t$,
$P_{+}=\operatorname{conv}\left(G_{+} \cap Z^{d}\right)$.
$f_{0}(P) \approx t^{d-1}$ and $\operatorname{Vol} P \approx t^{d+1}$.

FACT. $n^{(d+1) /(d-1)}$ is best possible estimate
Example 1. (Arnold 80^{\prime}) G is the graph of the parabola $y=x^{2},|x| \leq t$, and
$P=P_{t}=\operatorname{conv}\left(G \cap Z^{2}\right)$.
Then $f_{0}(P)=2 t+1$ and Area $P \approx \frac{2}{3} t^{3}$.
in d-dim, $G=G_{t}$ is given by $x_{d}=x_{1}^{2}+\cdots+x_{d-1}^{2} \leq t$,
$P_{t}=\operatorname{conv}\left(G_{t} \cap \mathbf{Z}^{d}\right)$.
$f_{0}(P) \approx t^{d-1}$ and $\operatorname{Vol} P \approx t^{d+1}$

FACT. $n^{(d+1) /(d-1)}$ is best possible estimate
Example 1. (Arnold 80^{\prime}) G is the graph of the parabola $y=x^{2},|x| \leq t$, and
$P=P_{t}=\operatorname{conv}\left(G \cap Z^{2}\right)$.
Then $f_{0}(P)=2 t+1$ and Area $P \approx \frac{2}{3} t^{3}$.
in d-dim, $G=G_{t}$ is given by $x_{d}=x_{1}^{2}+\cdots+x_{d-1}^{2} \leq t$,
$P_{t}=\operatorname{conv}\left(G_{t} \cap \mathbf{Z}^{d}\right)$.
$f_{0}(P) \approx t^{d-1}$ and $\operatorname{Vol} P \approx t^{d+1}$

FACT. $n^{(d+1) /(d-1)}$ is best possible estimate
Example 1. (Arnold 80^{\prime}) G is the graph of the parabola $y=x^{2},|x| \leq t$, and
$P=P_{t}=\operatorname{conv}\left(G \cap Z^{2}\right)$.
Then $f_{0}(P)=2 t+1$ and Area $P \approx \frac{2}{3} t^{3}$.
in d-dim, $G=G_{t}$ is given by $x_{d}=x_{1}^{2}+\cdots+x_{d-1}^{2} \leq t$,
$P_{t}=\operatorname{conv}\left(G_{t} \cap Z^{d}\right)$.
$f_{0}(P) \approx t^{d-1}$ and $\operatorname{Vol} P \approx t^{d+1}$.

FACT. $n^{(d+1) /(d-1)}$ is best possible estimate
Example 1. (Arnold 80^{\prime}) G is the graph of the parabola $y=x^{2},|x| \leq t$, and
$P=P_{t}=\operatorname{conv}\left(G \cap Z^{2}\right)$.
Then $f_{0}(P)=2 t+1$ and Area $P \approx \frac{2}{3} t^{3}$.
in d-dim, $G=G_{t}$ is given by $x_{d}=x_{1}^{2}+\cdots+x_{d-1}^{2} \leq t$,
$P_{t}=\operatorname{conv}\left(G_{t} \cap \mathbf{Z}^{d}\right)$.

FACT. $n^{(d+1) /(d-1)}$ is best possible estimate
Example 1. (Arnold 80^{\prime}) G is the graph of the parabola $y=x^{2},|x| \leq t$, and
$P=P_{t}=\operatorname{conv}\left(G \cap Z^{2}\right)$.
Then $f_{0}(P)=2 t+1$ and Area $P \approx \frac{2}{3} t^{3}$.
in d-dim, $G=G_{t}$ is given by $x_{d}=x_{1}^{2}+\cdots+x_{d-1}^{2} \leq t$,
$P_{t}=\operatorname{conv}\left(G_{t} \cap \mathbf{Z}^{d}\right)$.
$f_{0}(P) \approx t^{d-1}$ and $\operatorname{Vol} P \approx t^{d+1}$.

Example 2. (B.-Balog '92 (d=2), B.-Larman '98, all d) $P_{r}=\operatorname{conv}\left(r B^{d} \cap \mathbf{Z}^{d}\right)$
the integer convex hull of $r B^{d}$
Vol $P_{r} \approx r^{d}$ implies via Andrews's theorem

$$
f_{0}\left(P_{r}\right) \ll\left(\operatorname{Vol} P_{r}\right)^{\left(d^{\prime}-1\right) /(d+1)} \approx r^{d(d-1) /(d+1)}
$$

needed: $f_{0}\left(P_{r}\right) \gg r^{d(d-1) /(d+1)}$.

Example 2. (B.-Balog '92 (d=2), B.-Larman '98, all d) $P_{r}=\operatorname{conv}\left(r B^{d} \cap \mathbf{Z}^{d}\right)$
the integer convex hull of $r B^{d}$
Vol $P_{r} \approx r^{d}$ implies via Andrews's theorem

$$
f_{0}\left(P_{r}\right) \ll\left(\operatorname{Vol} P_{r}\right)^{(d-1) /(d+1)} \approx r^{d(d-1) /(d+1)} .
$$

needed: $f_{0}\left(P_{r}\right) \gg r^{d(d-1) /(d+1)}$.

Example 2. (B.-Balog '92 (d=2), B.-Larman '98, all d) $P_{r}=\operatorname{conv}\left(r B^{d} \cap \mathbf{Z}^{d}\right)$
the integer convex hull of $r B^{d}$
Vol $P_{r} \approx r^{d}$ implies via Andrews's theorem

$$
f_{0}\left(P_{r}\right) \ll\left(\operatorname{Vol} P_{r}\right)^{(d-1) /(d+1)} \approx r^{d(d-1) /(d+1)} .
$$

needed: $f_{0}\left(P_{r}\right) \gg r^{d(d-1) /(d+1)}$.

Example 2. (B.-Balog '92 (d=2), B.-Larman '98, all d) $P_{r}=\operatorname{conv}\left(r B^{d} \cap \mathbf{Z}^{d}\right)$
the integer convex hull of $r B^{d}$
Vol $P_{r} \approx r^{d}$ implies via Andrews's theorem

$$
f_{0}\left(P_{r}\right) \ll\left(\operatorname{Vol} P_{r}\right)^{(d-1) /(d+1)} \approx r^{d(d-1) /(d+1)} .
$$

needed: $f_{0}\left(P_{r}\right) \gg r^{d(d-1) /(d+1)}$.

Lemma
$\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right) \ll r^{d(d-1) /(d+1)}$.

The proof uses the Flatness Theorem,
combined with a statement from approximation theory:
Lemma
If $P \subset B^{d}$ is a polytope with $f_{0}(P) \leq n$, then

$$
n^{-2 /(d-1)} \ll \operatorname{Vol}\left(B^{d} \backslash P\right) .
$$

$f_{0}\left(P_{r}\right)^{-2 /(d-1)} \ll \frac{\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right)}{\operatorname{Vol} r B^{d}} \ll \frac{r^{d(d-1) /(d+1)}}{r^{d}} \ll r^{-2 d /(d+1)}$.
implies $f_{0}\left(P_{r}\right) \gg r^{d(d-1) /(d+1)}$.

Lemma

$\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right) \ll r^{d(d-1) /(d+1)}$.

The proof uses the Flatness Theorem,

combined with a statement from approximation theory:

Lemma
If $P \subset B^{d}$ is a polytope with $f_{0}(P) \leq n$, then

$$
n^{-2 /(d-1)} \ll \operatorname{Vol}\left(B^{d} \backslash P\right) .
$$

$f_{0}\left(P_{r}\right)^{-2 /(d-1)} \ll \frac{\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right)}{\operatorname{Vol} r B^{d}} \ll \frac{r^{d(d-1) /(d+1)}}{r^{d}} \ll r^{-2 d /(d+1)}$
implies $f_{0}\left(P_{r}\right) \gg r^{d(d-1) /(d+1)}$.

Lemma

$\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right) \ll r^{d(d-1) /(d+1)}$.

The proof uses the Flatness Theorem,
combined with a statement from approximation theory:
Lemma
If $P \subset B^{d}$ is a polytope with $f_{0}(P) \leq n$, then

$$
n^{-2 /(d-1)} \ll \operatorname{Vol}\left(B^{d} \backslash P\right) .
$$

Lemma

$\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right) \ll r^{d(d-1) /(d+1)}$.

The proof uses the Flatness Theorem,
combined with a statement from approximation theory:

Lemma

If $P \subset B^{d}$ is a polytope with $f_{0}(P) \leq n$, then

$$
n^{-2 /(d-1)} \ll \operatorname{Vol}\left(B^{d} \backslash P\right) .
$$

$$
f_{0}\left(P_{r}\right)^{-2 /(d-1)} \ll \frac{\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right)}{\operatorname{Vol} r B^{d}} \ll \frac{r^{d(d-1) /(d+1)}}{r^{d}} \ll r^{-2 d /(d+1)} .
$$

Lemma

$\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right) \ll r^{d(d-1) /(d+1)}$.

The proof uses the Flatness Theorem,
combined with a statement from approximation theory:

Lemma

If $P \subset B^{d}$ is a polytope with $f_{0}(P) \leq n$, then

$$
n^{-2 /(d-1)} \ll \operatorname{Vol}\left(B^{d} \backslash P\right) .
$$

$$
f_{0}\left(P_{r}\right)^{-2 /(d-1)} \ll \frac{\operatorname{Vol}\left(r B^{d} \backslash P_{r}\right)}{\operatorname{Vol} r B^{d}} \ll \frac{r^{d(d-1) /(d+1)}}{r^{d}} \ll r^{-2 d /(d+1)}
$$

implies $f_{0}\left(P_{r}\right) \gg r^{d(d-1) /(d+1)}$.

REMARK. Works for all $K \in \mathcal{K}^{d}$ (instead of B^{d}) with smooth enough boundary.

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d-1}} V_{d}(n)$ exist????
will come back when $d=2$.

REMARK. Works for all $K \in \mathcal{K}^{d}$ (instead of B^{d}) with smooth enough boundary.
OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d-1}} V_{d}(n)$ exist????
will come back when $d=2$.

REMARK. Works for all $K \in \mathcal{K}^{d}$ (instead of B^{d}) with smooth enough boundary.
OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d-1}} V_{d}(n)$ exist????
will come back when $d=2$.
2. Minimal surface area $S_{d}(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^{d}$

$$
\frac{S(K)^{d}}{(\operatorname{Vol} K)^{d-1}} \geq \frac{S\left(B^{d}\right)^{d}}{\left(\operatorname{Vol} B^{d}\right)^{d-1}}
$$

implies $S(P) \gg(\operatorname{Vol} P)^{(d-1) / d} \gg f_{0}(P)^{(d+1) / d}$
Corollary
$n^{(d+1) / d} \ll S_{d}(n)$

Example 2 shows that this is best possible
OPEN PROBIEM Does $\lim n^{-\frac{d+1}{d}} S_{d}(n)$ exist????
$d=2$ Jarník
2. Minimal surface area $S_{d}(n)$ Isoperimetric inequality: For all $K \in \mathcal{K}^{d}$

$$
\frac{S(K)^{d}}{(\operatorname{Vol} K)^{d-1}} \geq \frac{S\left(B^{d}\right)^{d}}{\left(\operatorname{Vol} B^{d}\right)^{d-1}}
$$

implies $S(P) \gg(\operatorname{Vol} P)^{(d-1) / d} \gg f_{0}(P)^{(d+1) / d}$
Corollary $n^{(d+1) / d} \ll S_{d}(n)$

Example 2 shows that this is best possible

OREN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_{d}(n)$ exist????
$d=2$ Jarník
2. Minimal surface area $S_{d}(n)$ Isoperimetric inequality: For all $K \in \mathcal{K}^{d}$

$$
\frac{S(K)^{d}}{(\operatorname{Vol} K)^{d-1}} \geq \frac{S\left(B^{d}\right)^{d}}{\left(\operatorname{Vol} B^{d}\right)^{d-1}}
$$

implies $S(P) \gg(\operatorname{Vol} P)^{(d-1) / d} \gg f_{0}(P)^{(d+1) / d}$

Example 2 shows that this is best possible

OREN RROBLEM. Does lim $n^{-\frac{d+1}{d}} S_{d}(n)$ exist????
$d=2$ Jarník
2. Minimal surface area $S_{d}(n)$ Isoperimetric inequality: For all $K \in \mathcal{K}^{d}$

$$
\frac{S(K)^{d}}{(\operatorname{Vol} K)^{d-1}} \geq \frac{S\left(B^{d}\right)^{d}}{\left(\operatorname{Vol} B^{d}\right)^{d-1}}
$$

implies $S(P) \gg(\operatorname{Vol} P)^{(d-1) / d} \gg f_{0}(P)^{(d+1) / d}$
Corollary
$n^{(d+1) / d} \ll S_{d}(n)$
Example 2 shows that this is best possible
OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_{d}(n)$ exist????
$d=2$ Jarník
2. Minimal surface area $S_{d}(n)$ Isoperimetric inequality: For all $K \in \mathcal{K}^{d}$

$$
\frac{S(K)^{d}}{(\operatorname{Vol} K)^{d-1}} \geq \frac{S\left(B^{d}\right)^{d}}{\left(\operatorname{Vol} B^{d}\right)^{d-1}}
$$

implies $S(P) \gg(\operatorname{Vol} P)^{(d-1) / d} \gg f_{0}(P)^{(d+1) / d}$
Corollary
$n^{(d+1) / d} \ll S_{d}(n)$
Example 2 shows that this is best possible
OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_{d}(n)$ exist????
$d=2$ Jarník
2. Minimal surface area $S_{d}(n)$ Isoperimetric inequality: For all $K \in \mathcal{K}^{d}$

$$
\frac{S(K)^{d}}{(\operatorname{Vol} K)^{d-1}} \geq \frac{S\left(B^{d}\right)^{d}}{\left(\operatorname{Vol} B^{d}\right)^{d-1}}
$$

implies $S(P) \gg(\operatorname{Vol} P)^{(d-1) / d} \gg f_{0}(P)^{(d+1) / d}$
Corollary
$n^{(d+1) / d} \ll S_{d}(n)$

Example 2 shows that this is best possible
OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_{d}(n)$ exist????
$d=2$ Jarník
2. Minimal surface area $S_{d}(n)$ Isoperimetric inequality: For all $K \in \mathcal{K}^{d}$

$$
\frac{S(K)^{d}}{(\operatorname{Vol} K)^{d-1}} \geq \frac{S\left(B^{d}\right)^{d}}{\left(\operatorname{Vol} B^{d}\right)^{d-1}}
$$

implies $S(P) \gg(\operatorname{Vol} P)^{(d-1) / d} \gg f_{0}(P)^{(d+1) / d}$
Corollary
$n^{(d+1) / d} \ll S_{d}(n)$

Example 2 shows that this is best possible
OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_{d}(n)$ exist????
$d=2$ Jarník
3. Minimal lattice width $w_{d}(n)$
first $d=2$. $w(P)+1$ is the minimal number of consecutive lattice lines intersecting P.
each such line contains at most two vertices of $P \Longrightarrow$ $f_{0}(P) \leq 2(w(P)+1)$

FACT. $w_{2}(n)=\left\lceil\frac{n}{2}\right\rceil-1$
FACT. $w_{d}(n)=1$
OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_{d}(n)$
first $d=2 . w(P)+1$ is the minimal number of consecutive lattice lines intersecting P.
each such line contains at most two vertices of $P \Longrightarrow$ $f_{0}(P) \leq 2(w(P)+1)$

FACT. $w_{2}(n)=\left\lceil\frac{n}{2}\right\rceil-1$ FACT. $w_{d}(n)=1$

OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_{d}(n)$
first $d=2$. $w(P)+1$ is the minimal number of consecutive lattice lines intersecting P.
each such line contains at most two vertices of $P \Longrightarrow$ $f_{0}(P) \leq 2(w(P)+1)$

FACT. $W_{2}(n)=\left\lceil\frac{n}{2}\right\rceil-1$
FACT. $w_{d}(n)=1$
OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_{d}(n)$
first $d=2$. $w(P)+1$ is the minimal number of consecutive lattice lines intersecting P.
each such line contains at most two vertices of $P \Longrightarrow$ $f_{0}(P) \leq 2(w(P)+1)$

FACT. $w_{2}(n)=\left\lceil\frac{n}{2}\right\rceil-1$
FACT. $w_{d}(n)=1$
OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_{d}(n)$
first $d=2 . w(P)+1$ is the minimal number of consecutive lattice lines intersecting P.
each such line contains at most two vertices of $P \Longrightarrow$ $f_{0}(P) \leq 2(w(P)+1)$

FACT. $w_{2}(n)=\left\lceil\frac{n}{2}\right\rceil-1$
FACT. $w_{d}(n)=1$
OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_{d}(n)$
first $d=2 . w(P)+1$ is the minimal number of consecutive lattice lines intersecting P.
each such line contains at most two vertices of $P \Longrightarrow$ $f_{0}(P) \leq 2(w(P)+1)$
FACT. $w_{2}(n)=\left\lceil\frac{n}{2}\right\rceil-1$
FACT. $w_{d}(n)=1$
OPEN PROBLEM. Modify the question!!!
4. Arnold's question
$P, Q \in \mathcal{P}^{d}$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT $P \sim Q \Longrightarrow f_{0}(P)=f_{0}(Q), w(P)=w(Q), \operatorname{Vol} P=\operatorname{Vol} Q$.
$N_{d}(V)=$ number of equivalent classes of $P \in \mathcal{P}^{d}$ with
Vol $P \leq V$
$N_{2}(A)$ for $d=2$
motivation
4. Arnold's question
$P, Q \in \mathcal{P}^{d}$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \Longrightarrow f_{0}(P)=f_{0}(Q), w(P)=w(Q), \operatorname{Vol} P=\operatorname{Vol} Q$.
$N_{d}(V)=$ number of equivalent classes of $P \in \mathcal{P}^{d}$ with
Vol $P \leq V$
$N_{2}(A)$ for $d=2$
motivation
4. Arnold's question
$P, Q \in \mathcal{P}^{d}$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \Longrightarrow f_{0}(P)=f_{0}(Q), w(P)=w(Q), \operatorname{Vol} P=\operatorname{Vol} Q$.
$N_{d}(V)=$ number of equivalent classes of $P \in \mathcal{P}^{d}$ with
$N_{2}(A)$ for $d=2$
motivation
4. Arnold's question
$P, Q \in \mathcal{P}^{d}$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \Longrightarrow f_{0}(P)=f_{0}(Q), w(P)=w(Q), \operatorname{Vol} P=\operatorname{Vol} Q$.
$N_{d}(V)=$ number of equivalent classes of $P \in \mathcal{P}^{d}$ with Vol $P \leq V$
$N_{2}(A)$ for $d=2$
motivation
4. Arnold's question
$P, Q \in \mathcal{P}^{d}$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \Longrightarrow f_{0}(P)=f_{0}(Q), w(P)=w(Q), \operatorname{Vol} P=\operatorname{Vol} Q$.
$N_{d}(V)=$ number of equivalent classes of $P \in \mathcal{P}^{d}$ with
Vol $P \leq V$
$N_{2}(A)$ for $d=2$
motivation
4. Arnold's question
$P, Q \in \mathcal{P}^{d}$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \Longrightarrow f_{0}(P)=f_{0}(Q), w(P)=w(Q), \operatorname{Vol} P=\operatorname{Vol} Q$.
$N_{d}(V)=$ number of equivalent classes of $P \in \mathcal{P}^{d}$ with
Vol $P \leq V$
$N_{2}(A)$ for $d=2$
motivation

Theorem (Arnold 1980)
$A^{1 / 3} \ll \log N_{2}(A) \ll A^{1 / 3} \log A$.
lower bound: let P be the polytope from Example 1 or 2.
Its vertex set W
For each subset $U \subset W$, conv $U \in \mathcal{P}^{2}$.
there are $2^{|W|} \approx 2^{A^{1 / 3}}$ such subpolyaons. Most of them distinct.
for the upper bound we need:

Lemma (Square lemma)
For every $P \in \mathbf{P}^{2}$ there is $Q \sim P$ which is contained in the square $[0,36 A]^{2}$.

So each equivalence class is represented in this square.
Proof follows from Andrews theorem + Square lemma

Theorem (Arnold 1980)
$A^{1 / 3} \ll \log N_{2}(A) \ll A^{1 / 3} \log A$.
lower bound: let P be the polytope from Example 1 or 2. Its vertex set $W \Longrightarrow|W| \approx A^{1 / 3}$.
For each subset $U \subset W$, conv $U \in \mathcal{P}^{2}$.
there are $2^{|W|} \approx 2^{A^{1 / 3}}$ such subpolygons. Most of them distinct.
for the upper bound we need:

Lemma (Square lemma)
For every $\mathbf{P} \in \mathbf{P}^{2}$ there is $Q \sim P$ which is contained in the square $[0,36 A]^{2}$.

So each equivalence class is represented in this square.
Proof follows from Andrews theorem + Square lemma

Theorem (Arnold 1980)
$A^{1 / 3} \ll \log N_{2}(A) \ll A^{1 / 3} \log A$.
lower bound: let P be the polytope from Example 1 or 2. Its vertex set $W \Longrightarrow|W| \approx A^{1 / 3}$.
For each subset $U \subset W$, conv $U \in \mathcal{P}^{2}$. there are $2^{|W|} \approx 2^{A^{1 / 3}}$ such subpolygons. Most of them distinct.
for the upper bound we need:
Lemma (Square lemma)
For every $P \in \mathbf{P}^{2}$ there is $Q \sim P$ which is contained in the square $[0,36 A]^{2}$.

So each equivalence class is represented in this square.

 Proof follows from Andrews theorem + Square lemmaTheorem (Arnold 1980)
$A^{1 / 3} \ll \log N_{2}(A) \ll A^{1 / 3} \log A$.
lower bound: let P be the polytope from Example 1 or 2. Its vertex set $W \Longrightarrow|W| \approx A^{1 / 3}$.
For each subset $U \subset W$, conv $U \in \mathcal{P}^{2}$.
there are $2^{|W|} \approx 2^{A^{1 / 3}}$ such subpolygons. Most of them distinct.
for the upper bound we need:
Lemma (Square lemma)
For every $P \in \mathbf{P}^{2}$ there is $Q \sim P$ which is contained in the square $[0,36 A]^{2}$

So each equivalence class is represented in this square. Proof follows from Andrews theorem + Square lemma

Theorem (Arnold 1980)
$A^{1 / 3} \ll \log N_{2}(A) \ll A^{1 / 3} \log A$.
lower bound: let P be the polytope from Example 1 or 2. Its vertex set $W \Longrightarrow|W| \approx A^{1 / 3}$.
For each subset $U \subset W$, conv $U \in \mathcal{P}^{2}$.
there are $2^{|W|} \approx 2^{A^{1 / 3}}$ such subpolygons. Most of them distinct.
for the upper bound we need:
Lemma (Square lemma)
For every $P \in \mathbf{P}^{2}$ there is $Q \sim P$ which is contained in the square $[0,36 A]^{2}$.

So each equivalence class is represented in this square. Proof follows from Andrews theorem + Square lemma
lower bound: let P be the polytope from Example 1 or 2. Its vertex set $W \Longrightarrow|W| \approx A^{1 / 3}$.
For each subset $U \subset W$, conv $U \in \mathcal{P}^{2}$.
there are $2^{|W|} \approx 2^{A^{1 / 3}}$ such subpolygons. Most of them distinct.
for the upper bound we need:
Lemma (Square lemma)
For every $P \in \mathbf{P}^{2}$ there is $Q \sim P$ which is contained in the square $[0,36 A]^{2}$.

So each equivalence class is represented in this square.
Proof follows from Andrews theorem + Square lemma

Theorem (Arnold 1980)
 $A^{1 / 3} \ll \log N_{2}(A) \ll A^{1 / 3} \log A$.

lower bound: let P be the polytope from Example 1 or 2. Its vertex set $W \Longrightarrow|W| \approx A^{1 / 3}$.
For each subset $U \subset W$, conv $U \in \mathcal{P}^{2}$.
there are $2^{|W|} \approx 2^{A^{1 / 3}}$ such subpolygons. Most of them distinct.
for the upper bound we need:
Lemma (Square lemma)
For every $P \in \mathbf{P}^{2}$ there is $Q \sim P$ which is contained in the square $[0,36 A]^{2}$.

So each equivalence class is represented in this square.
Proof follows from Andrews theorem + Square lemma

Theorem (Konyagin-Sevastyanov '84)
$V^{\frac{d-1}{d+1}} \ll \log N_{d}(V) \ll V^{\frac{d-1}{d+1}} \log V$.
follows from an extension of the Square Iemma and Andrews theorem

Theorem (Konyagin-Sevastyanov '84)
$V^{\frac{d-1}{d+1}} \ll \log N_{d}(V) \ll V^{\frac{d-1}{d+1}} \log V$.
follows from an extension of the Square lemma and Andrews theorem

Theorem (B.-Pach '91 ($d=2$), B.-Vershik '92 (all d))
$V^{\frac{d-1}{d+1}} \ll \log N_{d}(V) \ll V^{\frac{d-1}{d+1}}$.

Define the Box with parameter $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbf{Z}_{+}^{d}$ by

$$
\operatorname{Box}(\gamma)=\left\{x \in \mathbf{R}^{d}: 0 \leq x_{i} \leq \gamma_{i}, i=1, \ldots, d\right\} .
$$

Lemma (Box lemma)

For every $P \in \mathbf{P}^{d}$ there is $Q \sim P$ and $\gamma \in Z^{d}$ such that
$Q \subset \operatorname{Box}(\gamma)$ and $\operatorname{Vol} \operatorname{Box}(\gamma)=\prod \gamma_{i} \ll \operatorname{Vol} P$.
the number of such boxes is small, smaller than V^{d}

Theorem (B.-Pach '91 ($d=2$), B.-Vershik '92 (all d))
$V^{\frac{d-1}{d+1}} \ll \log N_{d}(V) \ll V^{\frac{d-1}{d+1}}$.
Define the Box with parameter $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbf{Z}_{+}^{d}$ by

$$
\operatorname{Box}(\gamma)=\left\{x \in \mathbf{R}^{d}: 0 \leq x_{i} \leq \gamma_{i}, i=1, \ldots, d\right\} .
$$

Lemma (Box lemma)
For every $P \in \mathbf{P}^{d}$ there is $Q \sim P$ and $\gamma \in Z^{d}$ such that $Q \subset \operatorname{Box}(\gamma)$ and $\operatorname{Vol} \operatorname{Box}(\gamma)=\Pi \gamma_{i} \ll \operatorname{Vol} P$.
the number of such boxes is small, smaller than V^{d}

Theorem (B.-Pach '91 ($d=2$), B.-Vershik '92 (all d))
$V^{\frac{d-1}{d+1}} \ll \log N_{d}(V) \ll V^{\frac{d-1}{d+1}}$.
Define the Box with parameter $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbf{Z}_{+}^{d}$ by

$$
\operatorname{Box}(\gamma)=\left\{x \in \mathbf{R}^{d}: 0 \leq x_{i} \leq \gamma_{i}, i=1, \ldots, d\right\} .
$$

Lemma (Box lemma)
For every $P \in \mathbf{P}^{d}$ there is $Q \sim P$ and $\gamma \in \mathbf{Z}_{+}^{d}$ such that $Q \subset \operatorname{Box}(\gamma)$ and $\operatorname{Vol} \operatorname{Box}(\gamma)=\prod \gamma_{i} \ll \operatorname{Vol} P$.
the number of such boxes is small, smaller than V^{d}

Theorem (B.-Pach '91 ($d=2$), B.-Vershik '92 (all d))
$V^{\frac{d-1}{d+1}} \ll \log N_{d}(V) \ll V^{\frac{d-1}{d+1}}$.
Define the Box with parameter $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbf{Z}_{+}^{d}$ by

$$
\operatorname{Box}(\gamma)=\left\{x \in \mathbf{R}^{d}: 0 \leq x_{i} \leq \gamma_{i}, i=1, \ldots, d\right\} .
$$

Lemma (Box lemma)
For every $\mathbf{P} \in \mathbf{P}^{d}$ there is $Q \sim P$ and $\gamma \in \mathbf{Z}_{+}^{d}$ such that $Q \subset \operatorname{Box}(\gamma)$ and $\operatorname{Vol} \operatorname{Box}(\gamma)=\prod \gamma_{i} \ll \operatorname{Vol} P$.
the number of such boxes is small, smaller than V^{d}

Lemma (Key lemma)
The number of lattice polytopes contained in $\operatorname{Box}(\gamma)$ is

$$
\leq \exp \left(c_{d}(\operatorname{Vol} \operatorname{Box}(\gamma))^{\frac{d-1}{d+1}}\right)
$$

ingredients:

- Minkowski's theorem: outer normals to the facets, of lengths equal to the surface area, determine P uniquely (up to translation),
- for a lattice polytope this outer normal vector is in $\frac{1}{(d-1)!} Z^{d}$,
- Pogorelov's theorem,
- partitions of positive integer vectors

Lemma (Key lemma)

The number of lattice polytopes contained in $\operatorname{Box}(\gamma)$ is

$$
\leq \exp \left(c_{d}(\operatorname{Vol} \operatorname{Box}(\gamma))^{\frac{d-1}{d+1}}\right)
$$

ingredients:

- Minkowski's theorem: outer normals to the facets, of lengths equal to the surface area, determine P uniquely (up to translation),
- for a lattice polytope this outer normal vector is in $\frac{1}{(d-1)!} \mathbf{Z}^{d}$,
- Pogorelov's theorem,
- partitions of positive integer vectors

FACT. The key lemma implies Andrews's theorem

```
Proof. P\in P}\mp@subsup{\mathcal{P}}{}{d},V=\operatorname{Vol}P\mathrm{ , we assume }P\subset\operatorname{Box}(\gamma)\mathrm{ with
Vol Box (\gamma)<<V. Let for (P)=n.
there are at least 2n - 1 distinct convex lattice polytopes in
Box(\gamma), the subpolytopes of P
\Downarrow
2n}-1\leq\operatorname{exp}(\mp@subsup{C}{d}{}(\operatorname{Vol Box}(\gamma)\mp@subsup{)}{}{\frac{d-1}{d+1}}
n=\mp@subsup{f}{0}{}(P)<<<\mp@subsup{V}{}{\frac{d-1}{d+1}}
```

OPEN PROBLEM. Does $\lim V^{-\frac{d-1}{d+1}} \log N_{d}(V)$ exist?????

FACT. The key lemma implies Andrews's theorem
Proof. $P \in \mathcal{P}^{d}, V=\operatorname{Vol} P$, we assume $P \subset \operatorname{Box}(\gamma)$ with
Vol $\operatorname{Box}(\gamma) \ll V$. Let $f_{0}(P)=n$.
there are at least $2^{n}-1$ distinct convex lattice polytopes in $\operatorname{Box}(\gamma)$, the subpolytopes of P
$n=f_{0}(P) \ll V^{\frac{d-1}{d+1}}$
OPEN PROBLEM. Does $\lim V^{\frac{-d-1}{d+1}} \log N_{d}(V)$ exist?????

FACT. The key lemma implies Andrews's theorem
Proof. $P \in \mathcal{P}^{d}, V=\operatorname{Vol} P$, we assume $P \subset \operatorname{Box}(\gamma)$ with
Vol $\operatorname{Box}(\gamma) \ll V$. Let $f_{0}(P)=n$.
\Downarrow
there are at least $2^{n}-1$ distinct convex lattice polytopes in $\operatorname{Box}(\gamma)$, the subpolytopes of P

$n=f_{0}(P) \ll V^{\frac{d-1}{d+1}}$
OPEN PROBLEM. Does $\lim V^{\frac{-\alpha-1}{d+1}} \log N_{d}(V)$ exist?????

FACT. The key lemma implies Andrews's theorem
Proof. $P \in \mathcal{P}^{d}, V=\operatorname{Vol} P$, we assume $P \subset \operatorname{Box}(\gamma)$ with
Vol $\operatorname{Box}(\gamma) \ll V$. Let $f_{0}(P)=n$.
\Downarrow
there are at least $2^{n}-1$ distinct convex lattice polytopes in $\operatorname{Box}(\gamma)$, the subpolytopes of P
\Downarrow
$2^{n}-1 \leq \exp \left(c_{d}(\operatorname{Vol} \operatorname{Box}(\gamma))^{\frac{d-1}{d+1}}\right)$
$n=f_{0}(P) \ll V^{\frac{d-1}{d+1}}$
OPEN PROBLEM. Does $\lim V^{-\frac{d-1}{d+1}} \log N_{d}(V)$ exist?????

FACT. The key lemma implies Andrews's theorem
Proof. $P \in \mathcal{P}^{d}, V=\operatorname{Vol} P$, we assume $P \subset \operatorname{Box}(\gamma)$ with
Vol $\operatorname{Box}(\gamma) \ll V$. Let $f_{0}(P)=n$.
\Downarrow
there are at least $2^{n}-1$ distinct convex lattice polytopes in $\operatorname{Box}(\gamma)$, the subpolytopes of P
\Downarrow
$2^{n}-1 \leq \exp \left(c_{d}(\operatorname{Vol} \operatorname{Box}(\gamma))^{\frac{d-1}{d+1}}\right)$
\Downarrow
$n=f_{0}(P) \ll V^{\frac{d-1}{d+1}}$
OPEN PROBLEM. Does $\lim V^{-\frac{d-1}{d+1}} \log N_{d}(V)$ exist?????

FACT. The key lemma implies Andrews's theorem
Proof. $P \in \mathcal{P}^{d}, V=\operatorname{Vol} P$, we assume $P \subset \operatorname{Box}(\gamma)$ with
Vol $\operatorname{Box}(\gamma) \ll V$. Let $f_{0}(P)=n$.
\Downarrow
there are at least $2^{n}-1$ distinct convex lattice polytopes in $\operatorname{Box}(\gamma)$, the subpolytopes of P
\Downarrow
$2^{n}-1 \leq \exp \left(c_{d}(\operatorname{Vol} \operatorname{Box}(\gamma))^{\frac{d-1}{d+1}}\right)$
\Downarrow
$n=f_{0}(P) \ll V^{\frac{d-1}{d+1}}$
OPEN PROBLEM. Does $\lim V^{-\frac{d-1}{d+1}} \log N_{d}(V)$ exist?????
5. Maximal polytopes
better setting: $\mathbf{Z}_{t}=\frac{1}{t} \mathbf{Z}^{d}$ where t is large
$K \in \mathcal{K}^{d}$ is fixed with $\operatorname{Vol} K=1$, say
$\mathcal{P}(K, t)$ family of all convex \mathbf{Z}_{t}-lattice polytopes contained in K
$M(K, t)=\max \left\{f_{0}(P): P \in \mathcal{P}(K, t)\right\}$,
same as maximal number of points in $\mathbf{Z}_{t} \cap K$ in convex position
Theorem
Suppose $K \in \mathcal{K}^{d}$ and $\operatorname{Vol} K=1$. Then
5. Maximal polytopes
better setting: $\mathbf{Z}_{t}=\frac{1}{t} \mathbf{Z}^{d}$ where t is large
$K \in \mathcal{K}^{d}$ is fixed with $\operatorname{Vol} K=1$, say
$\mathcal{P}(K, t)$ family of all convex \mathbf{Z}_{t}-lattice polytopes contained in K
$M(K, t)=\max \left\{f_{0}(P): P \in \mathcal{P}(K, t)\right\}$,
same as maximal number of points in $\mathbf{Z}_{t} \cap K$ in convex position
Theorem
Suppose $K \in \mathcal{K}^{d}$ and $\operatorname{Vol} K=1$. Then
5. Maximal polytopes
better setting: $\mathbf{Z}_{t}=\frac{1}{t} \mathbf{Z}^{d}$ where t is large
$K \in \mathcal{K}^{d}$ is fixed with $\operatorname{Vol} K=1$, say
$\mathcal{P}(K, t)$ family of all convex \mathbf{Z}_{t}-lattice polytopes contained in K
$M(K, t)=\max \left\{f_{0}(P): P \in \mathcal{P}(K, t)\right\}$,
same as maximal number of points in $\mathbf{Z}_{t} \cap K$ in convex position
Theorem
Suppose $K \in \mathcal{K}^{d}$ and $\operatorname{Vol} K=1$. Then

$$
t^{d \frac{d-1}{d+1}} \ll M(K, t) \ll t^{d \frac{d-1}{d+1}} .
$$

OPEN PROBLEM. Does the limit lim $t^{-\alpha \frac{d-1}{d+1}} M(K, t)$ exist???
Yes, when $d=2$:
Theorem (B.-Prodromou '06)
When $K \subset \mathcal{K}^{2}$,

$$
\lim t^{-2 / 3} M(K, t)=\frac{3}{(2 \pi)^{2 / 3}} A^{*}(K)
$$

where $A^{*}(K)$ is well defined quantity

Limit shape

OPEN PROBLEM. Does the limit $\lim t^{-d \frac{d-1}{d+1}} M(K, t)$ exist???
Yes, when $d=2$:
Theorem (B.-Prodromou '06)
When $K \subset \mathcal{K}^{2}$,

$$
\lim t^{-2 / 3} M(K, t)=\frac{3}{(2 \pi)^{2 / 3}} A^{*}(K)
$$

where $A^{*}(K)$ is well defined quantity

Limit shape

OPEN PROBLEM. Does the limit $\lim t^{-d \frac{d-1}{d+1}} M(K, t)$ exist???
Yes, when $d=2$:
Theorem (B.-Prodromou '06)
When $K \subset \mathcal{K}^{2}$,

$$
\lim t^{-2 / 3} M(K, t)=\frac{3}{(2 \pi)^{2 / 3}} A^{*}(K)
$$

where $A^{*}(K)$ is well defined quantity

Limit shape

Minimal area $A(n)$

$$
A(n)=\min \left\{\text { Area } P: P \in \mathcal{P}^{d}, f_{0}(P)=n\right\}=V_{2}(n) \text { previous notation }
$$

Theorem (B.-Tokushige, '04)
$\lim n^{-3} A(n)$ exists and equals $0.0185067 \ldots$ most likely.

FACT. $C \subset \mathbf{R}^{2}$ is an 0 -symmetric convex body, and $|C \cap \mathbf{P}|=n$

there is a unique (up to transiation) convex lattice n-gon, $P(C)$, with edge set $C \cap P$.
Proof: order the vectors in $\mathbf{C} \cap \mathbf{P}$ by increasing slope...

Minimal area $A(n)$
$A(n)=\min \left\{\right.$ Area $\left.P: P \in \mathcal{P}^{d}, f_{0}(P)=n\right\}=V_{2}(n)$ previous notation

Theorem (B.-Tokushige, '04)
$\lim n^{-3} A(n)$ exists and equals $0.0185067 \ldots$ most likely.

Minimal area $A(n)$
$A(n)=\min \left\{\right.$ Area $\left.P: P \in \mathcal{P}^{d}, f_{0}(P)=n\right\}=V_{2}(n)$ previous notation

Theorem (B.-Tokushige, '04)
$\lim n^{-3} A(n)$ exists and equals $0.0185067 \ldots$ most likely.

Minimal area $A(n)$
$A(n)=\min \left\{\right.$ Area $\left.P: P \in \mathcal{P}^{d}, f_{0}(P)=n\right\}=V_{2}(n)$ previous notation

Theorem (B.-Tokushige, '04)
$\lim n^{-3} A(n)$ exists and equals $0.0185067 \ldots$ most likely.

FACT. $C \subset \mathbf{R}^{2}$ is an 0 -symmetric convex body, and $|C \cap \mathbf{P}|=n$ \Downarrow
there is a unique (up to translation) convex lattice n-gon, $P(C)$,
with edge set $C \cap P$.
Proof: order the vectors in $C \cap \mathbf{P}$ by increasing slope...

Minimal area $A(n)$
$A(n)=\min \left\{\right.$ Area $\left.P: P \in \mathcal{P}^{d}, f_{0}(P)=n\right\}=V_{2}(n)$ previous notation

Theorem (B.-Tokushige, '04)
$\lim n^{-3} A(n)$ exists and equals $0.0185067 \ldots$ most likely.

FACT. $C \subset \mathbf{R}^{2}$ is an 0 -symmetric convex body, and $|C \cap \mathbf{P}|=n$ \Downarrow
there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap \mathbf{P}$.
Proof: order the vectors in $\mathbf{C} \cap \mathbf{P}$ by increasing slope...

Minimal area $A(n)$
$A(n)=\min \left\{\right.$ Area $\left.P: P \in \mathcal{P}^{d}, f_{0}(P)=n\right\}=V_{2}(n)$ previous notation

Theorem (B.-Tokushige, '04)
$\lim n^{-3} A(n)$ exists and equals $0.0185067 \ldots$ most likely.

FACT. $C \subset \mathbf{R}^{2}$ is an 0 -symmetric convex body, and $|C \cap \mathbf{P}|=n$ \Downarrow
there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap \mathbf{P}$.
Proof: order the vectors in $C \cap \mathbf{P}$ by increasing slope...

$$
C=[-t, t] \times[-1,1] \text { with } t \text { chosen so that }|C \cap \mathbf{P}|=n \Longrightarrow
$$

$$
\text { Area } \begin{aligned}
P(C) & =\left(\frac{1}{48}+o(1)\right) n^{3} \\
& =(0.0204085 \cdots+o(1)) n^{3}
\end{aligned}
$$

$C=r B^{2}$ with r chosen so that $|C \cap \mathbf{P}|=n \Longrightarrow$

$$
\text { Area } \begin{aligned}
P\left(r B^{2}\right) & =\left(\frac{1}{54}+o(1)\right) n^{3} \\
& =(0.0185185185 \cdots+o(1)) n^{3}
\end{aligned}
$$

$M(n)=\min \{$ Area $P(C)\}$ min is taken over all 0-symmetric $C \in \mathcal{K}^{2}$ with $|C \cap \mathbf{P}|=n$.

Lemma (Reduction Lemma)
For even $n, A(n)=M(n)$.

Let C_{n} be a minimizer for $M(n)$, and w_{n} be its lattice width.

Theorem
There is a positive constant D such that

$D \approx 5000$
$M(n)=\min \{$ Area $P(C)\}$ min is taken over all 0-symmetric $C \in \mathcal{K}^{2}$ with $|C \cap \mathbf{P}|=n$.

Lemma (Reduction Lemma)
For even $n, A(n)=M(n)$.

Let C_{n} be a minimizer for $M(n)$, and w_{n} be its lattice width.

Theorem
There is a positive constant D such that

$D \approx 5000$
$M(n)=\min \{$ Area $P(C)\}$ min is taken over all 0-symmetric $C \in \mathcal{K}^{2}$ with $|C \cap \mathbf{P}|=n$.

Lemma (Reduction Lemma)
For even $n, A(n)=M(n)$.

Let C_{n} be a minimizer for $M(n)$, and w_{n} be its lattice width.

Theorem
There is a positive constant D such that

$M(n)=\min \{$ Area $P(C)\}$ min is taken over all 0-symmetric $C \in \mathcal{K}^{2}$ with $|C \cap \mathbf{P}|=n$.

Lemma (Reduction Lemma)
For even $n, A(n)=M(n)$.

Let C_{n} be a minimizer for $M(n)$, and w_{n} be its lattice width.

Theorem

There is a positive constant D such that

$$
M(n) \geq\left(\frac{1}{54}-D \frac{\log w_{n}}{w_{n}}\right) n^{3}
$$

$D \approx 5000$
either $w_{n} \rightarrow \infty$ and then $\lim M(n) / n^{3}=1 / 54$, or $w_{n}=$ const along a subsequence.

Determining $M(n)$ with side condition $w(C)=b$ leads to an extremal problem $E(b)$ with b variables
which can be solved by a computer for fixed (not too large) b $b=8,9,14,15, \ldots$ gives $M(n) / n^{3}<1 / 54$ Enough to solve $E(b)$ for $b \leq 10^{10}$
either $w_{n} \rightarrow \infty$ and then $\lim M(n) / n^{3}=1 / 54$,
or $w_{n}=$ const along a subsequence.
Determining $M(n)$ with side condition $w(C)=b$ leads to an extremal problem $E(b)$ with b variables
which can be solved by a computer for fixed (not too large) b
$b=8,9,14,15, \ldots$ gives $M(n) / n^{3}<1 / 54$
Enough to solve $E(b)$ for $b \leq 10^{10}$
either $w_{n} \rightarrow \infty$ and then $\lim M(n) / n^{3}=1 / 54$,
or $w_{n}=$ const along a subsequence.
Determining $M(n)$ with side condition $w(C)=b$ leads to an extremal problem $E(b)$ with b variables
which can be solved by a computer for fixed (not too large) b
$b=8,9,14,15, \ldots$ gives $M(n) / n^{3}<1 / 54$
Enough to solve $E(b)$ for $b \leq 10^{10}$
either $w_{n} \rightarrow \infty$ and then $\lim M(n) / n^{3}=1 / 54$,
or $w_{n}=$ const along a subsequence.
Determining $M(n)$ with side condition $w(C)=b$ leads to an extremal problem $E(b)$ with b variables
which can be solved by a computer for fixed (not too large) b
$b=8,9,14,15, \ldots$ gives $M(n) / n^{3}<1 / 54$
Enough to solve $E(b)$ for $b \leq 10^{10}$

The smallest $M(n)$ comes from $b=15$
and the best choice for C is a (almost) ellipsoid:
a long and skinny one with short axis of length 15.55
and long axis dictated by $\left|C_{n} \cap \mathbf{P}\right|=n$

The smallest $M(n)$ comes from $b=15$ and the best choice for C is a (almost) ellipsoid: a long and skinny one with short axis of length 15.55 and long axis dictated by $\left|C_{n} \cap \mathbf{P}\right|=n$

Arnold's problem in the plane:
$N(A)=$ number of equivalence classes in \mathcal{P}^{2} of area $\leq A$.
OPEN PROBLEM. Does $\lim A^{-1 / 3} \log N(A)$ exist????

