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A sample problem

Jarník proved in 1926 that

if γ ⊂ R2 is a (closed) strictly convex curve of length `, then

|γ ∩ Z2| ≤ 3
3
√

2π
`2/3 + O(`1/3).

Here both the exponent 2
3 and the constant 3

3√2π
are best

possible. Equivalently,

Theorem (Jarník 1926)

lim
`→∞

max{`−2/3|γ ∩ Z2| : γ is a convex..} =
3

3
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convex lattice polygons appear instantly:
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The lattice Z2 (or Zd )



γ

The strictly convex curve γ



γ

P

The convex lattice polygon P whose vertex set is γ ∩ Z2



In fact, P = conv(γ ∩ Z2). Jarník’s result says that if P has
n = |γ ∩ Z2| vertices, then

` > perP ≥
√

6π

9
n3/2 + O(n3/4)

with best exponent 3/2 and best constant
√

6π
9 .

Theorem
With the min taken over all convex lattice polygons with n
vertices

lim
n→∞

n−3/2 min perP =

√
6π

9
.

This is equivalent to Jarník’s theorem. Next comes a quick
proof.
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P convex lattice n-gon with minimal perimeter, edges
z1, z2, . . . , zn ∈ Z2.

z1

z2

z3

zn

each zi ∈ Z2 is a primitive vector (primitive: the gcd of the
coordinates is 1)

No zi , zj are parallel and same direction∑n
1 zi = 0
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FACT: z1, . . . , zn ∈ P are distinct primitive vectors

Notation: P = Pd ⊂ Zd set of primitive vectors

their density in Z2 is 6/π2

Let U = {u1, . . . , un} be the set of the n shortest primitive
vectors.

perP =
n∑
1

||zi || ≥
n∑
1

||ui ||

∑n
1 ||ui || can be determined. With r = max ||ui ||

U ≈ rB2 ∩ P and
6
π2 r2π ≈ n so r ≈

√
πn
6
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Similarly,

perP ≥
n∑
1

||ui || ≈
∑

u∈rB2∩P

||u||

≈ 6
π2

∫
rB2
||x ||dx

≈
√

6π

9
n3/2.



Lower bound (for even n): choose the n shortest primitive
vectors in pairs −u, u, so their sum is zero.

Order the vectors by increasing slope.

This gives the order of edges of a convex lattice polygon P and
perP ≈

√
6π
9 n3/2.

For odd n...
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REMARK. Same method works for every symmetric norm in
R2.

REMARK. There is a limit shape of the minimizers (after
scaling)

MORAL: edge set of P is more important than P
(and contains the same information)

And for non-symmetric norms?
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D ∈ K2 with 0 ∈ D is the unit ball of a (non-symmetric) norm.
Let P denote the family of all convex lattice polygons.
Each P ∈ P has a D-perimeter perDP. Define

Ln(D) = min{perDP : P ∈ P, P has n vertices}

Theorem (B.-Enriquez ’10)

There is a convex set P ⊂ R2 such that the following holds. Let
Pn ∈ P with n vertices be an arbitrary sequence of minimizers,
of Ln(D), translated so that their center of gravity is at the
origin. Then the sequence n−3/2Pn tends to P.

P is unique

Proof: convex geometry, number theory, plus calculus of
variation
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Notations:

P = Pd the set of primitive vectors in Zd

K = Kd the set of convex bodies in Rd (convex compact sets
with non-empty interior)

P = Pd set of convex lattice polytopes,

for P ∈ P, f0(P) = number of vertices of P, fs(P) = number of
s-dim faces of P
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THE PROBLEMS
1. Minimal volume. Determine or estimate

Vd(n) = min{Vol P : P ∈ Pd and f0(P) = n}

2. Minimal surface area. Determine or estimate

Sd(n) = min{S(P) : P ∈ Pd and f0(P) = n}

just solved it for d = 2.

3. Minimal lattice width. Determine or estimate

wd(n) = min{w(P) : P ∈ Pd and f0(P) = n}

where w(P) is the lattice width of P ∈ Pd
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Definition

K ∈ Kd , z ∈ Zd and z 6= 0, then

w(K , z) = max{z · (x − y) : x , y ∈ K}.

The lattice width of K is

w(K ) = min{w(K , z) : z ∈ Zd , z 6= 0}.

How many parallel lattice hyperplanes meet K ?

FACT. For P ∈ Pd , w(P) + 1 = minimal number of parallel
lattice lines meeting P.
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4. Arnold’s question. How many convex lattice polytopes are
there?

P, Q ∈ Pd are equivalent if P can be carried to Q by a lattice
preserving affine transformation.

Equivalent polytopes have the same volume.

Arnold’s question. (1980) How many equivalence classes are
there in Rd , of volume ≤ V?

not an extremal question yet ..
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5. Maximal polytopes. Assume K ∈ Kd is “large”. Determine

max{f0(P) : P ∈ Pd , P ⊂ K}.

equivalently, determine or estimate the maximal number of
points in K ∩ Zd that are in convex position,

i.e., none of them is in the convex hull of the others

answers: order of magnitude, asymptotic, precise..
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1. Minimal volume Vd(n)

Theorem (Andrews ’63)

If P ∈ Pd and Vol P > 0, then

f0(P)
d+1
d−1 ≤ cdVol P.

or with better notation:

f0(P)
d+1
d−1 � Vol P.

Corollary

n
d+1
d−1 � Vd(n).

Several proofs, none easy: Andrews ’63, Arnold ’80 (d = 2),
Konyagin, Sevastyanov ’84 , (d ≥ 2), W. Schmidt ’86, B.-Vershik
’92, B.-Larman ’98, Reisner-Schütt-Werner ’01, and more
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Definition

A tower of P ∈ Pd is F0 ⊂ F1 ⊂ .. ⊂ Fd−1 where Fi is an i-dim
face of P. T (P) = number of towers of P.

Theorem

If P ∈ Pd and Vol P > 0, then

T (P)
d+1
d−1 � Vol P.

implies the same bound for fi(P).

OPEN PROBLEM. For all polytopes P ∈ Kd

T (P) � f0(P) + f1(P) + . . . fd−1(P)????
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FACT. n(d+1)/(d−1) is best possible estimate

Example 1. (Arnold 80’) G is the graph of the parabola
y = x2, |x | ≤ t , and

P = Pt = conv(G ∩ Z2).
Then f0(P) = 2t + 1 and AreaP ≈ 2

3 t3.

in d-dim, G = Gt is given by xd = x2
1 + · · ·+ x2

d−1 ≤ t ,

Pt = conv(Gt ∩ Zd).

f0(P) ≈ td−1 and Vol P ≈ td+1.
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Example 2. (B.-Balog ’92 (d=2), B.-Larman ’98, all d)
Pr = conv(rBd ∩ Zd)

the integer convex hull of rBd

Vol Pr ≈ rd implies via Andrews’s theorem

f0(Pr ) � (Vol Pr )
(d−1)/(d+1) ≈ rd(d−1)/(d+1).

needed: f0(Pr ) � rd(d−1)/(d+1).
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3. Minimal lattice width wd(n)

first d = 2. w(P) + 1 is the minimal number of consecutive
lattice lines intersecting P.

each such line contains at most two vertices of P =⇒
f0(P) ≤ 2(w(P) + 1)

FACT. w2(n) = dn
2e − 1

FACT. wd(n) = 1

OPEN PROBLEM. Modify the question!!!
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4. Arnold’s question

P, Q ∈ Pd are equivalent if a lattice preserving affine
transformation maps P to Q.

FACT. P ∼ Q =⇒ f0(P) = f0(Q), w(P) = w(Q), Vol P = Vol Q.

Nd(V ) = number of equivalent classes of P ∈ Pd with
Vol P ≤ V

N2(A) for d = 2

motivation
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Theorem (Arnold 1980)

A1/3 � log N2(A) � A1/3 log A.

lower bound: let P be the polytope from Example 1 or 2.

Its vertex set W =⇒|W | ≈ A1/3.

For each subset U ⊂ W , convU ∈ P2.

there are 2|W | ≈ 2A1/3
such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every P ∈ P2 there is Q ∼ P which is contained in the
square [0, 36A]2.

So each equivalence class is represented in this square.

Proof follows from Andrews theorem + Square lemma
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V
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d+1 � log Nd(V ) � V

d−1
d+1 log V.

follows from an extension of the Square lemma and Andrews
theorem
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Theorem (B.-Pach ’91 (d = 2), B.-Vershik ’92 (all d))

V
d−1
d+1 � log Nd(V ) � V

d−1
d+1 .

Define the Box with parameter γ = (γ1, . . . , γd) ∈ Zd
+ by

Box(γ) = {x ∈ Rd : 0 ≤ xi ≤ γi , i = 1, . . . , d}.

Lemma (Box lemma)

For every P ∈ Pd there is Q ∼ P and γ ∈ Zd
+ such that

Q ⊂ Box(γ) and Vol Box(γ) =
∏

γi � Vol P.

the number of such boxes is small, smaller than V d
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Lemma (Key lemma)
The number of lattice polytopes contained in Box(γ) is

≤ exp
(

cd(Vol Box(γ))
d−1
d+1

)
ingredients:

Minkowski’s theorem: outer normals to the facets, of
lengths equal to the surface area, determine P uniquely
(up to translation),

for a lattice polytope this outer normal vector is in 1
(d−1)!Z

d ,

Pogorelov’s theorem,

partitions of positive integer vectors
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FACT. The key lemma implies Andrews’s theorem

Proof. P ∈ Pd , V = Vol P, we assume P ⊂ Box(γ) with
Vol Box(γ) � V . Let f0(P) = n.
⇓
there are at least 2n − 1 distinct convex lattice polytopes in
Box(γ), the subpolytopes of P
⇓
2n − 1 ≤ exp

(
cd(Vol Box(γ))

d−1
d+1

)
⇓
n = f0(P) � V

d−1
d+1

OPEN PROBLEM. Does lim V− d−1
d+1 log Nd(V ) exist?????



FACT. The key lemma implies Andrews’s theorem

Proof. P ∈ Pd , V = Vol P, we assume P ⊂ Box(γ) with
Vol Box(γ) � V . Let f0(P) = n.
⇓
there are at least 2n − 1 distinct convex lattice polytopes in
Box(γ), the subpolytopes of P
⇓
2n − 1 ≤ exp

(
cd(Vol Box(γ))

d−1
d+1

)
⇓
n = f0(P) � V

d−1
d+1

OPEN PROBLEM. Does lim V− d−1
d+1 log Nd(V ) exist?????



FACT. The key lemma implies Andrews’s theorem

Proof. P ∈ Pd , V = Vol P, we assume P ⊂ Box(γ) with
Vol Box(γ) � V . Let f0(P) = n.
⇓
there are at least 2n − 1 distinct convex lattice polytopes in
Box(γ), the subpolytopes of P
⇓
2n − 1 ≤ exp

(
cd(Vol Box(γ))

d−1
d+1

)
⇓
n = f0(P) � V

d−1
d+1

OPEN PROBLEM. Does lim V− d−1
d+1 log Nd(V ) exist?????



FACT. The key lemma implies Andrews’s theorem

Proof. P ∈ Pd , V = Vol P, we assume P ⊂ Box(γ) with
Vol Box(γ) � V . Let f0(P) = n.
⇓
there are at least 2n − 1 distinct convex lattice polytopes in
Box(γ), the subpolytopes of P
⇓
2n − 1 ≤ exp

(
cd(Vol Box(γ))

d−1
d+1

)
⇓
n = f0(P) � V

d−1
d+1

OPEN PROBLEM. Does lim V− d−1
d+1 log Nd(V ) exist?????



FACT. The key lemma implies Andrews’s theorem

Proof. P ∈ Pd , V = Vol P, we assume P ⊂ Box(γ) with
Vol Box(γ) � V . Let f0(P) = n.
⇓
there are at least 2n − 1 distinct convex lattice polytopes in
Box(γ), the subpolytopes of P
⇓
2n − 1 ≤ exp

(
cd(Vol Box(γ))

d−1
d+1

)
⇓
n = f0(P) � V

d−1
d+1

OPEN PROBLEM. Does lim V− d−1
d+1 log Nd(V ) exist?????



FACT. The key lemma implies Andrews’s theorem

Proof. P ∈ Pd , V = Vol P, we assume P ⊂ Box(γ) with
Vol Box(γ) � V . Let f0(P) = n.
⇓
there are at least 2n − 1 distinct convex lattice polytopes in
Box(γ), the subpolytopes of P
⇓
2n − 1 ≤ exp

(
cd(Vol Box(γ))

d−1
d+1

)
⇓
n = f0(P) � V

d−1
d+1

OPEN PROBLEM. Does lim V− d−1
d+1 log Nd(V ) exist?????



5. Maximal polytopes

better setting: Zt = 1
t Zd where t is large

K ∈ Kd is fixed with Vol K = 1, say

P(K , t) family of all convex Zt -lattice polytopes contained in K

M(K , t) = max{f0(P) : P ∈ P(K , t)},
same as maximal number of points in Zt ∩ K in convex position

Theorem

Suppose K ∈ Kd and Vol K = 1. Then

td d−1
d+1 � M(K , t) � td d−1

d+1 .
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OPEN PROBLEM. Does the limit lim t−d d−1
d+1 M(K , t) exist???

Yes, when d = 2:

Theorem (B.-Prodromou ’06)

When K ⊂ K2,

lim t−2/3M(K , t) =
3

(2π)2/3
A∗(K )

where A∗(K ) is well defined quantity

Limit shape
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Minimal area A(n)

A(n) = min{AreaP : P ∈ Pd , f0(P) = n} = V2(n) previous notation

Theorem (B.-Tokushige, ’04)

lim n−3A(n) exists and equals 0.0185067 . . . most likely.

FACT. C ⊂ R2 is an 0-symmetric convex body, and |C ∩ P| = n
⇓
there is a unique (up to translation) convex lattice n-gon, P(C),
with edge set C ∩ P.

Proof: order the vectors in C ∩ P by increasing slope...
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C = [−t , t ]× [−1, 1] with t chosen so that |C ∩ P| = n =⇒

AreaP(C) =

(
1

48
+ o(1)

)
n3

= (0.0204085 · · ·+ o(1))n3



t−t
C



C = rB2 with r chosen so that |C ∩ P| = n =⇒

AreaP(rB2) =

(
1

54
+ o(1)

)
n3

= (0.0185185185 · · ·+ o(1))n3



P (rB)

rB



M(n) = min{AreaP(C)}
min is taken over all 0-symmetric C ∈ K2 with |C ∩ P| = n.

Lemma (Reduction Lemma)
For even n, A(n) = M(n).

Let Cn be a minimizer for M(n), and wn be its lattice width.

Theorem
There is a positive constant D such that

M(n) ≥
(

1
54

− D
log wn

wn

)
n3.

D ≈ 5000
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either wn →∞ and then lim M(n)/n3 = 1/54,

or wn = const along a subsequence.

Determining M(n) with side condition w(C) = b leads to an
extremal problem E(b) with b variables

which can be solved by a computer for fixed (not too large) b

b = 8, 9, 14, 15, . . . gives M(n)/n3 < 1/54

Enough to solve E(b) for b ≤ 1010
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The smallest M(n) comes from b = 15

and the best choice for C is a (almost) ellipsoid:

a long and skinny one with short axis of length 15.55
and long axis dictated by |Cn ∩ P| = n
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Arnold’s problem in the plane:
N(A) = number of equivalence classes in P2 of area ≤ A.

OPEN PROBLEM. Does lim A−1/3 log N(A) exist????


	A sample problem 
	Proof.
	The problems
	Minimal volume
	Minimal surface area
	Minimal lattice width
	Arnold's question
	Maximal polytopes
	Minimal Area

