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convex lattice polygons appear instantly:
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The convex lattice polygon P whose vertex set is y N Z2



In fact, P = conv (y N Z?). Jarnik’s result says that if P has
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This is equivalent to Jarnik’s theorem. Next comes a quick
proof.
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P convex lattice n-gon with minimal perimeter, edges

Z1,22,...,2Zn € Z2.

z3

E2)
z1

@ each z; € Z? is a primitive vector (primitive: the gcd of the
coordinates is 1)

@ No z;,z; are parallel and same direction
o ZE Zi = 0
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FACT: z4,...,z, € P are distinct primitive vectors
Notation: P = P9 ¢ Z9 set of primitive vectors
their density in Z2 is 6/72

Let U = {uy,...,un} be the set of the n shortest primitive
vectors.
n n
perP = [lzill > > ||uill
1 1

>~ ||ui|| can be determined. With r = max ||uj]|
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Similarly,
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Lower bound (for even n): choose the n shortest primitive
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Lower bound (for even n): choose the n shortest primitive
vectors in pairs —u, u, so their sum is zero.

Order the vectors by increasing slope.
This gives the order of edges of a convex lattice polygon P and
perP ~ Y673/2

5 :

For odd n...



REMARK. Same method works for every symmetric norm in
R2.



REMARK. Same method works for every symmetric norm in
R2.

REMARK. There is a of the minimizers (after
scaling)



REMARK. Same method works for every symmetric norm in
R2.

REMARK. There is a of the minimizers (after
scaling)

MORAL: edge set of P is more important than P
(and contains the same information)



REMARK. Same method works for every symmetric norm in
R2.

REMARK. There is a of the minimizers (after
scaling)

MORAL: edge set of P is more important than P
(and contains the same information)

And for non-symmetric norms?
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D € K? with 0 € D is the unit ball of a (non-symmetric) norm.
Let P denote the family of all convex lattice polygons.
Each P € P has a D-perimeter perpP. Define

Ln(D) = min{perpP : P € P, P has n vertices}

Theorem (B.-Enriquez '10)

There is a convex set P € R? such that the following holds. Let
Pn € P with n vertices be an arbitrary sequence of minimizers,
of Ln(D), translated so that their center of gravity is at the
origin. Then the sequence n—3/2P,, tends to P.

P is unique

Proof: convex geometry, number theory, plus calculus of
variation



Notations:
P = P9 the set of primitive vectors in Z9

K = K9 the set of convex bodies in R? (convex compact sets
with non-empty interior)

P = P9 set of convex lattice polytopes,

for P € P, fo(P) = number of vertices of P, fs(P) = number of
s-dim faces of P
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THE PROBLEMS
1. Minimal volume. Determine or estimate

Vg(n) = min{Vol P : P € P% and fy(P) = n}

2. Minimal surface area. Determine or estimate
S¢(n) = min{S(P) : P € P% and fo(P) = n}
just solved it ford = 2.
3. Minimal lattice width. Determine or estimate
wg(n) = min{fw(P) : P € P and fo(P) = n}

where w(P) is the lattice width of P € P¢
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Definition
K eKd zez%andz #0, then

w(K,z)=max{z-(x —y): X,y € K}.
The lattice width of K is

w(K) =min{w(K,z):z € 2%,z +# 0}.

How many parallel lattice hyperplanes meet K?

FACT. For P € P4, w(P) 4 1 = minimal number of parallel
lattice lines meeting P.






w(K) is invariant under lattice preserving affine transformations
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4. Arnold’s question. How many convex lattice polytopes are
there?

P,Q < PY are equivalent if P can be carried to Q by a lattice
preserving affine transformation.

Equivalent polytopes have the same volume.

Arnold’s question. (1980) How many equivalence classes are
there in RY, of volume < V?

not an extremal question yet ..
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5. Maximal polytopes. Assume K € K9 is “large”. Determine

max{fo(P) : P € P4, P c K}.

equivalently, determine or estimate the maximal number of
points in K N Z9 that are in convex position,

i.e., none of them is in the convex hull of the others

answers: order of magnitude, asymptotic, precise..
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1. Minimal volume V4 (n)

Theorem (Andrews '63)
If P € P4 and Vol P > 0, then

i
d—

fo(P)a-1 < cqVol P.

or with better notation:

Corollary

Several proofs, none easy: Andrews '63, Arnold '80 (d = 2),
Konyagin, Sevastyanov '84 , (d > 2), W. Schmidt '86, B.-Vershik
'92, B.-Larman '98, Reisner-Schiitt-Werner '01, and more
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Definition
Atower of P € PYis Fg C F; C .. € Fq_; Where Fj is an i-dim
face of P. T (P) = number of towers of P.

Theorem
If P € P9 and Vol P > 0, then

T(P)&1 < Vol P.

implies the same bound for f;(P).
OPEN PROBLEM. For all polytopes P e k4

T(P) < fo(P) +f1(P) +...fq_1(P)??7?
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FACT. n(d+1)/(d-1) js pest possible estimate

(Arnold 80") G is the graph of the parabola
2
y =x4, |x] <t, and

P = Py = conv(G N Z?).
Then fo(P) = 2t + 1 and AreaP ~ 2t3.
ind-dim, G = Gy is given by Xg = X2 +--- +x2 | <t,

Py = conv(G; N Z9).
fo(P) ~t9=1 and Vol P ~ td+1,
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(B.-Balog '92 (d=2), B.-Larman '98, all d)
P, = conv(rB9 nz9)

the integer convex hull of rB¢

Vol P; ~ r9 implies via Andrews’s theorem

fO(Pr) < (VOl Pr)(d_l)/(d+l) ~ rd(d—l)/(d-‘rl).

needed: fo(P;) > rd(d-1)/(d+1),
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Lemma
Vol (rBY \ P;) < rd(@-1)/(d+1),

The proof uses the Flatness Theorem,

combined with a statement from approximation theory:

Lemma
If P c BY is a polytope with fo(P) < n, then

n~=2/0-1) « vol (B \ P).

—2/(d— Vol (rBY \ P rdd-1/d+1)
(P )21 « \Eol rB\d r) < - < r-24/(d+1).

implies fo(P;) > rd(@-1)/(d+1),
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REMARK. Works for all K € K9 (instead of BY) with smooth
enough boundary.

OPEN PROBLEM. Does lim n~ 41V (n) exist????

will come back when d = 2.



2. Minimal surface area Sq(n)



2. Minimal surface area Sq(n)
Isoperimetric inequality: For all K € K¢

S(K)“ S(8?)°

>
(Vol K)d-1 = (ol Bd)d-1



2. Minimal surface area Sq(n)
Isoperimetric inequality: For all K € K¢

S(K)* s
(Vol K)d-1 = (Vol Bd)d-1

implies S(P) > (Vol P)(d-1)/d > f,(p)(@+1)/d



2. Minimal surface area Sq(n)
Isoperimetric inequality: For all K € K¢

S(K)* s
(Vol K)d-1 = (Vol Bd)d-1

implies S(P) > (Vol P)(d-1)/d > f,(p)(@+1)/d

Corollary
n@+1/d « s4(n)




2. Minimal surface area Sq(n)
Isoperimetric inequality: For all K € K¢

SK) _ s(eY)
(Vol K)d-1 = (ol Bd)d-1

implies S(P) > (Vol P)(d-1)/d > f,(p)(@+1)/d

Corollary
n(@+1)/d « S4(n)

Example 2 shows that this is best possible



2. Minimal surface area Sq(n)
Isoperimetric inequality: For all K € K¢

SK) _ s(eY)
(Vol K)d-1 = (ol Bd)d-1

implies S(P) > (Vol P)(d-1)/d > f,(p)(@+1)/d

Corollary
n(@+1)/d « S4(n)

Example 2 shows that this is best possible

OPEN PROBLEM. Does lim n‘%sd(n) exist????



2. Minimal surface area Sq(n)
Isoperimetric inequality: For all K € K¢

SK) _ s(eY)
(Vol K)d-1 = (ol Bd)d-1

implies S(P) > (Vol P)(d-1)/d > f,(p)(@+1)/d

Corollary
n(@+1)/d « S4(n)

Example 2 shows that this is best possible

OPEN PROBLEM. Does lim n‘%sd(n) exist????
d = 2 Jarnik
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3. Minimal lattice width wg(n)

firstd = 2. w(P) + 1 is the minimal number of consecutive
lattice lines intersecting P.

each such line contains at most two vertices of P —-
fo(P) <2(w(P) +1)

FACT. wa(n) = [2] — 1
FACT. wq(n) = 1

OPEN PROBLEM. Modify the question!!!
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4. Arnold’s question

P,Q e PY are equivalent if a lattice preserving affine
transformation maps P to Q.

FACT.P ~Q = fo(P) =(Q), w(P) = w(Q), Vol P = \ol Q.

Ng(V) = number of equivalent classes of P € P9 with
Vol P <V

No(A) ford =2

motivation
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Theorem (Arnold 1980)
A3 < logNy(A) < A3 logA.

lower bound: let P be the polytope from Example 1 or 2.

Its vertex set W =—|W | ~ AY/3,

For each subset U ¢ W, convU € P?.

there are 2! ~ 2A"° such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every P € P? there is Q ~ P which is contained in the
square [0, 36A]2.

So each equivalence class is represented in this square.

Proof follows from Andrews theorem + Square lemma
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Theorem (Konyagin-Sevastyanov '84)

V% < logNg(V) <« VH log V.

follows from an extension of the Square lemma and Andrews
theorem
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Theorem (B.-Pach '91 (d = 2), B.-Vershik '92 (all d))

V& < logNg (V) < V &,

Define the Box with parameter v = (y1,...,74) € Zi by
Box(7) = {x eR*:0<x <, i =1,...,d}.

Lemma (Box lemma)

For every P € P9 there is Q ~ P and vy € 4 such that
Q C Box(v) and Vol Box(y) = [[v < Vol P.

the number of such boxes is small, smaller than V¢
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Lemma (Key lemma)
The number of lattice polytopes contained in Box(v) is

< exp (ca(Vol Box(4)) 1 )

ingredients:

@ Minkowski's theorem: outer normals to the facets, of
lengths equal to the surface area, determine P uniquely
(up to translation),

1

o for a lattice polytope this outer normal vector is in mZd,
@ Pogorelov’s theorem,
@ partitions of positive integer vectors
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FACT. The key lemma implies Andrews’s theorem

Proof. P € P9,V = Vol P, we assume P C Box(v) with
Vol Box(y) < V. Letfo(P) =n.
I

there are at least 2" — 1 distinct convex lattice polytopes in
Box(~), the subpolytopes of P

I
2"~ 1 < exp (ca(Vol Box(7)) 471 )

n= fo(P) < V(fjjiIi

OPEN PROBLEM. Does limV ~ &1 log Ng (V) exist?????
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5. Maximal polytopes

better setting: Z; = $Z¢ where t is large

K e K9 is fixed with Vol K = 1, say

P (K, t) family of all convex Z;-lattice polytopes contained in K

M(K,t) = max{fo(P) : P € P(K,t)},
same as maximal number of points in Z; N K in convex position

Theorem
Suppose K € K% and Vol K = 1. Then

o
[

d—1

T < M(K,t) < tdort,

td

Q




OPEN PRO imit limt 9 551
BLEM. Does the limit limt & M(K , t) exist???



OPEN PROBLEM. Does the limit limt 95 M (K , t) exist???
Yes, when d = 2;

Theorem (B.-Prodromou '06)
When K c K2,

limt=23M(K,t) = A*(K)

(2m)2/3

where A*(K) is well defined quantity




OPEN PROBLEM. Does the limit limt 95 M (K , t) exist???
Yes, when d = 2;

Theorem (B.-Prodromou '06)
When K c K2,

limt=23M(K,t) = A*(K)

(2m)2/3

where A*(K) is well defined quantity

Limit shape
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Minimal area A(n)

A(n) = min{AreaP : P € P9, fo(P) = n} = V,(n) previous notation

Theorem (B.-Tokushige, '04)
limn—3A(n) exists and equals 0.0185067 ... most likely. J

FACT. C C R? is an 0-symmetric convex body, and |C NP| =n
Y

there is a unique (up to translation) convex lattice n-gon, P(C),
with edge set C N P.

Proof: order the vectors in C N P by increasing slope...



C = [-t,t] x [-1,1] with t chosen so that |[CNP|=n =

AreaP(C) = <418+o(1)> n3

= (0.0204085--- +0(1))n®






C = rB? with r chosen so that |CNP| =n —

54
= (0.0185185185 - - - + 0(1))n3

AreaP(rB2) = (1 + o(l)) n®
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M(n) = min{AreaP(C)}
min is taken over all 0-symmetric C € K2 with |[C N P| = n.

Lemma (Reduction Lemma)
For even n, A(n) = M(n).

Let C,, be a minimizer for M(n), and wjy, be its lattice width.

Theorem
There is a positive constant D such that

1 logwn\ 3
> = — .
M(n) > (54 D e )n

D ~ 5000
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either w, — oo and then limM(n)/n® = 1/54,
or wy = const along a subsequence.

Determining M(n) with side condition w(C) = b leads to an
extremal problem E (b) with b variables

which can be solved by a computer for fixed (not too large) b
b=8,9,14,15,... gives M(n)/n® < 1/54
Enough to solve E (b) for b < 10%°



The smallest M(n) comes from b = 15



The smallest M(n) comes from b = 15

and the best choice for C is a (almost) ellipsoid:

a long and skinny one with short axis of length 15.55
and long axis dictated by |[C, NP| =n



Arnold’s problem in the plane:
N(A) = number of equivalence classes in P? of area < A.

OPEN PROBLEM. Does limA~1/3log N(A) exist????
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