Extremal problems for convex lattice polytopes

Imre Bárány

Rényi Institute, Hungarian Academy of Sciences & Department of Mathematics, University College London
A sample problem

Jarník proved in 1926 that

if $\gamma \subset \mathbb{R}^2$ is a (closed) strictly convex curve of length ℓ, then

$$|\gamma \cap \mathbb{Z}^2| \leq \frac{3}{\sqrt[3]{2\pi}} \ell^{2/3} + O(\ell^{1/3}).$$

Here both the exponent $\frac{2}{3}$ and the constant $\frac{3}{\sqrt[3]{2\pi}}$ are best possible. Equivalently,

Theorem (Jarník 1926)

$$\lim_{\ell \to \infty} \max_{\ell \to \infty} \{\ell^{-2/3} |\gamma \cap \mathbb{Z}^2| : \gamma \text{ is a convex polygon} \} = \frac{3}{\sqrt[3]{2\pi}}$$

convex lattice polygons appear instantly:
A sample problem
Jarník proved in 1926 that
if $\gamma \subset \mathbb{R}^2$ is a (closed) strictly convex curve of length ℓ, then

$$|\gamma \cap \mathbb{Z}^2| \leq \frac{3}{\sqrt[3]{2\pi}} \ell^{2/3} + O(\ell^{1/3}).$$

Here both the exponent $\frac{2}{3}$ and the constant $\frac{3}{\sqrt[3]{2\pi}}$ are best possible. Equivalently,

Theorem (Jarník 1926)

$$\lim_{\ell \to \infty} \max\left\{\ell^{-2/3} |\gamma \cap \mathbb{Z}^2| : \gamma \text{ is a convex}..\right\} = \frac{3}{\sqrt[3]{2\pi}}$$

convex lattice polygons appear instantly:
A sample problem

Jarník proved in 1926 that

if $\gamma \subset \mathbb{R}^2$ is a (closed) strictly convex curve of length ℓ, then

$$|\gamma \cap \mathbb{Z}^2| \leq \frac{3}{\sqrt[3]{2\pi}}\ell^{2/3} + O(\ell^{1/3}).$$

Here both the exponent $\frac{2}{3}$ and the constant $\frac{3}{\sqrt[3]{2\pi}}$ are best possible. Equivalently,

Theorem (Jarník 1926)

$$\lim_{\ell \to \infty} \max_{\ell^{-2/3} |\gamma \cap \mathbb{Z}^2| : \gamma \text{ is a convex..}} = \frac{3}{\sqrt[3]{2\pi}}$$

convex lattice polygons appear instantly:
The lattice \mathbb{Z}^2 (or \mathbb{Z}^d)
The strictly convex curve γ
The convex lattice polygon P whose vertex set is $\gamma \cap \mathbb{Z}^2$
In fact, $P = \text{conv} \left(\gamma \cap \mathbb{Z}^2 \right)$. Jarník’s result says that if P has $n = |\gamma \cap \mathbb{Z}^2|$ vertices, then

$$\ell > \text{per } P \geq \frac{\sqrt{6\pi}}{9} n^{3/2} + O(n^{3/4})$$

with best exponent $3/2$ and best constant $\frac{\sqrt{6\pi}}{9}$.

Theorem

*With the min taken over all convex lattice polygons with n vertices

$$\lim_{n \to \infty} n^{-3/2} \min \text{ per } P = \frac{\sqrt{6\pi}}{9}.$$

This is equivalent to Jarník’s theorem. Next comes a quick proof.*
In fact, $P = \text{conv} \ (\gamma \cap \mathbb{Z}^2)$. Jarník’s result says that if P has $n = |\gamma \cap \mathbb{Z}^2|$ vertices, then

$$
\ell > \text{per } P \geq \frac{\sqrt{6\pi}}{9} n^{3/2} + O(n^{3/4})
$$

with best exponent $3/2$ and best constant $\frac{\sqrt{6\pi}}{9}$.

Theorem

With the min taken over all convex lattice polygons with n *vertices*

$$
\lim_{n \to \infty} n^{-3/2} \min \text{ per } P = \frac{\sqrt{6\pi}}{9}.
$$

This is equivalent to Jarník’s theorem. Next comes a quick proof.
In fact, $P = \text{conv } (\gamma \cap \mathbb{Z}^2)$. Jarník’s result says that if P has $n = |\gamma \cap \mathbb{Z}^2|$ vertices, then

$$\ell > \text{per } P \geq \frac{\sqrt{6\pi}}{9} n^{3/2} + O(n^{3/4})$$

with best exponent $3/2$ and best constant $\frac{\sqrt{6\pi}}{9}$.

Theorem

With the \min taken over all convex lattice polygons with n vertices

$$\lim_{n \to \infty} n^{-3/2} \min_{P} \text{per } P = \frac{\sqrt{6\pi}}{9}.$$

This is equivalent to Jarník’s theorem. Next comes a quick proof.
P convex lattice n-gon with minimal perimeter, edges $z_1, z_2, \ldots, z_n \in \mathbb{Z}^2$.

- Each $z_i \in \mathbb{Z}^2$ is a primitive vector (primitive: the gcd of the coordinates is 1)
- No z_i, z_j are parallel and same direction
- $\sum_{1}^{n} z_i = 0$
P convex lattice n-gon with minimal perimeter, edges $z_1, z_2, \ldots, z_n \in \mathbb{Z}^2$.

- each $z_i \in \mathbb{Z}^2$ is a primitive vector (primitive: the gcd of the coordinates is 1)
- No z_i, z_j are parallel and same direction
- $\sum_{1}^{n} z_i = 0$
A convex lattice n-gon with minimal perimeter, edges $z_1, z_2, \ldots, z_n \in \mathbb{Z}^2$.

- Each $z_i \in \mathbb{Z}^2$ is a primitive vector (primitive: the gcd of the coordinates is 1)
- No z_i, z_j are parallel and same direction
- $\sum_{1}^{n} z_i = 0$
FACT: $z_1, \ldots, z_n \in \mathbf{P}$ are distinct primitive vectors

Notation: $\mathbf{P} = \mathbf{P}^d \subset \mathbb{Z}^d$ set of primitive vectors

their density in \mathbb{Z}^2 is $6/\pi^2$

Let $U = \{u_1, \ldots, u_n\}$ be the set of the n shortest primitive vectors.

$$\text{per } \mathbf{P} = \sum_{1}^{n} \|z_i\| \geq \sum_{1}^{n} \|u_i\|$$

$\sum_{1}^{n} \|u_i\|$ can be determined. With $r = \max \|u_i\|$

$U \approx rB^2 \cap \mathbf{P}$ and $\frac{6}{\pi^2} r^2 \pi \approx n$ so $r \approx \sqrt{\frac{\pi n}{6}}.$
FACT: $z_1, \ldots, z_n \in \mathbf{P}$ are distinct primitive vectors

Notation: $\mathbf{P} = \mathbf{P}^d \subset \mathbb{Z}^d$ set of primitive vectors
their density in \mathbb{Z}^2 is $6/\pi^2$

Let $U = \{u_1, \ldots, u_n\}$ be the set of the n shortest primitive vectors.

$$\text{per } P = \sum_{1}^{n} \|z_i\| \geq \sum_{1}^{n} \|u_i\|$$

$\sum_{1}^{n} \|u_i\|$ can be determined. With $r = \max \|u_i\|$

$U \approx rB^2 \cap \mathbf{P}$ and $\frac{6}{\pi^2} r^2 \pi \approx n$ so $r \approx \sqrt{\frac{\pi n}{6}}$.
FACT: $z_1, \ldots, z_n \in P$ are distinct primitive vectors

Notation: $P = P^d \subset \mathbb{Z}^d$ set of primitive vectors

their density in \mathbb{Z}^2 is $6/\pi^2$

Let $U = \{u_1, \ldots, u_n\}$ be the set of the n shortest primitive vectors.

$$\text{per } P = \sum_{1}^{n} \|z_i\| \geq \sum_{1}^{n} \|u_i\|$$

$\sum_{1}^{n} \|u_i\|$ can be determined. With $r = \max \|u_i\|$ $U \approx rB^2 \cap P$ and $\frac{6}{\pi^2} r^2 \pi \approx n$ so $r \approx \sqrt{\frac{\pi n}{6}}$.
FACT: $z_1, \ldots, z_n \in P$ are distinct primitive vectors

Notation: $P = P^d \subset \mathbb{Z}^d$ set of primitive vectors

their density in \mathbb{Z}^2 is $6/\pi^2$

Let $U = \{u_1, \ldots, u_n\}$ be the set of the n shortest primitive vectors.

$$\text{per } P = \sum_{1}^{n} \|z_i\| \geq \sum_{1}^{n} \|u_i\|$$

$\sum_{1}^{n} \|u_i\|$ can be determined. With $r = \max \|u_i\|$

$$U \approx rB^2 \cap P \quad \text{and} \quad \frac{6}{\pi^2} r^2 \pi \approx n \quad \text{so} \quad r \approx \sqrt{\frac{\pi n}{6}}.$$
FACT: $z_1, \ldots, z_n \in \mathbf{P}$ are distinct primitive vectors

Notation: $\mathbf{P} = \mathbf{P}^d \subset \mathbf{Z}^d$ set of primitive vectors

their density in \mathbf{Z}^2 is $6/\pi^2$

Let $U = \{u_1, \ldots, u_n\}$ be the set of the n shortest primitive vectors.

$$\text{per } P = \sum_{1}^{n} \|z_i\| \geq \sum_{1}^{n} \|u_i\|$$

$\sum_{1}^{n} \|u_i\|$ can be determined. With $r = \max \|u_i\|$

$$U \approx rB^2 \cap \mathbf{P} \text{ and } \frac{6}{\pi^2} r^2 \pi \approx n \text{ so } r \approx \sqrt{\frac{\pi n}{6}}.$$
Similarly,

$$\text{per } P \geq \sum_{1}^{n} \|u_i\| \approx \sum_{u \in rB^2 \cap P} \|u\|$$

$$\approx \frac{6}{\pi^2} \int_{rB^2} \|x\| \, dx$$

$$\approx \frac{\sqrt{6\pi}}{9} n^{3/2}.$$
Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero.

Order the vectors by increasing slope.

This gives the order of edges of a convex lattice polygon P and $\text{per } P \approx \frac{\sqrt{6\pi}}{9} n^{3/2}$.

For odd n...
Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero.

Order the vectors by increasing slope.

This gives the order of edges of a convex lattice polygon P and $\text{per } P \approx \frac{\sqrt{6\pi}}{9} n^{3/2}$.

For odd n...
Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero. Order the vectors by increasing slope. This gives the order of edges of a convex lattice polygon P and $\text{per } P \approx \frac{\sqrt{6\pi}}{9} n^{3/2}$.

For odd n...
Lower bound (for even n): choose the n shortest primitive vectors in pairs $-u, u$, so their sum is zero. Order the vectors by increasing slope. This gives the order of edges of a convex lattice polygon P and per $P \approx \frac{\sqrt{6\pi}}{9} n^{3/2}$.

For odd n...
REMARK. Same method works for every symmetric norm in \mathbb{R}^2.

REMARK. There is a limit shape of the minimizers (after scaling)

MORAL: edge set of P is more important than P (and contains the same information)

And for non-symmetric norms?
REMARK. Same method works for every symmetric norm in \(\mathbb{R}^2 \).

REMARK. There is a *limit shape* of the minimizers (after scaling)

MORAL: edge set of \(P \) is more important than \(P \) (and contains the same information)

And for non-symmetric norms?
REMARK. Same method works for every symmetric norm in \mathbb{R}^2.

REMARK. There is a limit shape of the minimizers (after scaling)

MORAL: edge set of P is more important than P (and contains the same information)

And for non-symmetric norms?
REMARK. Same method works for every symmetric norm in \mathbb{R}^2.

REMARK. There is a limit shape of the minimizers (after scaling).

MORAL: edge set of P is more important than P (and contains the same information)

And for non-symmetric norms?
$D \in \mathcal{K}^2$ with $0 \in D$ is the unit ball of a (non-symmetric) norm. Let \mathcal{P} denote the family of all convex lattice polygons. Each $P \in \mathcal{P}$ has a D-perimeter $\text{per}_D P$. Define

$$L_n(D) = \min\{\text{per}_D P : P \in \mathcal{P}, \ P \text{ has } n \text{ vertices}\}$$

Theorem (B.-Enriquez ’10)

There is a convex set $P \subset \mathbb{R}^2$ such that the following holds. Let $P_n \in \mathcal{P}$ with n vertices be an arbitrary sequence of minimizers, of $L_n(D)$, translated so that their center of gravity is at the origin. Then the sequence $n^{-3/2}P_n$ tends to P.

P is unique

Proof: convex geometry, number theory, plus calculus of variation
$D \in K^2$ with $0 \in D$ is the unit ball of a (non-symmetric) norm. Let \mathcal{P} denote the family of all convex lattice polygons. Each $P \in \mathcal{P}$ has a D-perimeter $\text{per}_D P$. Define

$$L_n(D) = \min\{\text{per}_D P : P \in \mathcal{P}, \ P \text{ has } n \text{ vertices}\}$$

Theorem (B.-Enriquez ’10)

There is a convex set $P \subset \mathbb{R}^2$ such that the following holds. Let $P_n \in \mathcal{P}$ with n vertices be an arbitrary sequence of minimizers, of $L_n(D)$, translated so that their center of gravity is at the origin. Then the sequence $n^{-3/2} P_n$ tends to P.

P is unique

Proof: convex geometry, number theory, plus calculus of variation
$D \in \mathcal{K}^2$ with $0 \in D$ is the unit ball of a (non-symmetric) norm. Let \mathcal{P} denote the family of all convex lattice polygons. Each $P \in \mathcal{P}$ has a D-perimeter $\text{per}_D P$. Define

$$L_n(D) = \min\{\text{per}_D P : P \in \mathcal{P}, \ P \text{ has } n \text{ vertices}\}$$

Theorem (B.-Enriquez ’10)

There is a convex set $P \subset \mathbb{R}^2$ such that the following holds. Let $P_n \in \mathcal{P}$ with n vertices be an arbitrary sequence of minimizers, of $L_n(D)$, translated so that their center of gravity is at the origin. Then the sequence $n^{-3/2} P_n$ tends to P.

P is unique

Proof: convex geometry, number theory, plus calculus of variation
Notations:

\(P = P^d \) the set of primitive vectors in \(\mathbb{Z}^d \)

\(K = K^d \) the set of convex bodies in \(\mathbb{R}^d \) (convex compact sets with non-empty interior)

\(P = P^d \) set of convex lattice polytopes,

for \(P \in P \), \(f_0(P) = \) number of vertices of \(P \), \(f_s(P) = \) number of \(s \)-dim faces of \(P \)
Notations:

\(\mathbf{P} = \mathbf{P}^d \) the set of \textit{primitive} vectors in \(\mathbf{Z}^d \)

\(\mathcal{K} = \mathcal{K}^d \) the set of convex bodies in \(\mathbf{R}^d \) (convex compact sets with non-empty interior)

\(\mathcal{P} = \mathcal{P}^d \) set of convex lattice polytopes,

for \(P \in \mathcal{P} \), \(f_0(P) = \) number of vertices of \(P \), \(f_s(P) = \) number of \(s \)-dim faces of \(P \)
Notations:

\(P = P^d \) the set of \textit{primitive} vectors in \(\mathbb{Z}^d \)

\(\mathcal{K} = \mathcal{K}^d \) the set of convex bodies in \(\mathbb{R}^d \) (convex compact sets with non-empty interior)

\(\mathcal{P} = \mathcal{P}^d \) set of convex lattice polytopes,

for \(P \in \mathcal{P} \), \(f_0(P) = \) number of vertices of \(P \), \(f_s(P) = \) number of \(s \)-dim faces of \(P \)
Notations:

\(\mathbf{P} = \mathbf{P}^d \) the set of \textbf{primitive} vectors in \(\mathbb{Z}^d \)

\(\mathcal{K} = \mathcal{K}^d \) the set of convex bodies in \(\mathbb{R}^d \) (convex compact sets with non-empty interior)

\(\mathcal{P} = \mathcal{P}^d \) set of convex lattice polytopes,

for \(P \in \mathcal{P} \), \(f_0(P) = \) number of vertices of \(P \), \(f_s(P) = \) number of \(s \)-dim faces of \(P \)
Notations:

\(\mathbf{P} = \mathbf{P}^d \) the set of primitive vectors in \(\mathbb{Z}^d \)

\(\mathcal{K} = \mathcal{K}^d \) the set of convex bodies in \(\mathbb{R}^d \) (convex compact sets with non-empty interior)

\(\mathcal{P} = \mathcal{P}^d \) set of convex lattice polytopes,

for \(P \in \mathcal{P} \), \(f_0(P) = \) number of vertices of \(P \), \(f_s(P) = \) number of \(s \)-dim faces of \(P \)
THE PROBLEMS

1. Minimal volume. Determine or estimate

\[V_d(n) = \min \{ \text{Vol } P : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

2. Minimal surface area. Determine or estimate

\[S_d(n) = \min \{ S(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

just solved it for \(d = 2 \).

3. Minimal lattice width. Determine or estimate

\[w_d(n) = \min \{ w(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

where \(w(P) \) is the lattice width of \(P \in \mathcal{P}^d \)
THE PROBLEMS
1. Minimal volume. Determine or estimate

\[V_d(n) = \min \{ \text{Vol } P : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

2. Minimal surface area. Determine or estimate

\[S_d(n) = \min \{ S(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

just solved it for \(d = 2 \).

3. Minimal lattice width. Determine or estimate

\[w_d(n) = \min \{ w(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

where \(w(P) \) is the lattice width of \(P \in \mathcal{P}^d \).
THE PROBLEMS

1. Minimal volume. Determine or estimate

\[V_d(n) = \min \{ \text{Vol } P : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

2. Minimal surface area. Determine or estimate

\[S_d(n) = \min \{ S(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

just solved it for \(d = 2 \).

3. Minimal lattice width. Determine or estimate

\[w_d(n) = \min \{ w(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

where \(w(P) \) is the lattice width of \(P \in \mathcal{P}^d \)
THE PROBLEMS

1. Minimal volume. Determine or estimate

\[V_d(n) = \min \{ \text{Vol } P : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

2. Minimal surface area. Determine or estimate

\[S_d(n) = \min \{ S(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

just solved it for \(d = 2 \).

3. Minimal lattice width. Determine or estimate

\[w_d(n) = \min \{ w(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

where \(w(P) \) is the lattice width of \(P \in \mathcal{P}^d \).
THE PROBLEMS
1. Minimal volume. Determine or estimate

\[V_d(n) = \min \{ \text{Vol } P : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

2. Minimal surface area. Determine or estimate

\[S_d(n) = \min \{ S(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

just solved it for \(d = 2 \).

3. Minimal lattice width. Determine or estimate

\[w_d(n) = \min \{ w(P) : P \in \mathcal{P}^d \text{ and } f_0(P) = n \} \]

where \(w(P) \) is the \textbf{lattice width of } P \in \mathcal{P}^d
Definition

If \(K \in \mathcal{K}^d \), \(z \in \mathbb{Z}^d \) and \(z \neq 0 \), then

\[
w(K, z) = \max\{z \cdot (x - y) : x, y \in K\}.
\]

The lattice width of \(K \) is

\[
w(K) = \min\{w(K, z) : z \in \mathbb{Z}^d, z \neq 0\}.
\]

How many parallel lattice hyperplanes meet \(K \)?

FACT. For \(P \in \mathcal{P}^d \), \(w(P) + 1 = \text{minimal number of parallel lattice lines meeting } P \).
Definition

$K \in \mathcal{K}^d$, $z \in \mathbb{Z}^d$ and $z \neq 0$, then

$$w(K, z) = \max\{z \cdot (x - y) : x, y \in K\}.$$

The lattice width of K is

$$w(K) = \min\{w(K, z) : z \in \mathbb{Z}^d, z \neq 0\}.$$

How many parallel lattice hyperplanes meet K?

FACT. For $P \in \mathcal{P}^d$, $w(P) + 1 = \text{minimal number of parallel lattice lines meeting } P.$
Definition

Let $K \in \mathcal{K}^d$, $z \in \mathbb{Z}^d$ and $z \neq 0$, then

$$w(K, z) = \max\{z \cdot (x - y) : x, y \in K\}.$$

The **lattice width** of K is

$$w(K) = \min\{w(K, z) : z \in \mathbb{Z}^d, z \neq 0\}.$$

How many parallel lattice hyperplanes meet K?

FACT. For $P \in \mathcal{P}^d$, $w(P) + 1 = \text{minimal number of parallel lattice lines meeting } P$.

$w(K)$ is invariant under lattice preserving affine transformations.
$w(K)$ is invariant under lattice preserving affine transformations
4. Arnold’s question. How many convex lattice polytopes are there?

$P, Q \in \mathcal{P}^d$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.

Arnold’s question. (1980) How many equivalence classes are there in \mathbb{R}^d, of volume $\leq V$?

not an extremal question yet ..
4. Arnold’s question. How many convex lattice polytopes are there?

$P, Q \in \mathcal{P}^d$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.

Arnold’s question. (1980) How many equivalence classes are there in \mathbb{R}^d, of volume $\leq V$?

not an extremal question yet ..
4. Arnold’s question. How many convex lattice polytopes are there?

$P, Q \in \mathcal{P}^d$ are equivalent if P can be carried to Q by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.

Arnold’s question. (1980) How many equivalence classes are there in \mathbb{R}^d, of volume $\leq V$?

not an extremal question yet ..
4. Arnold’s question. How many convex lattice polytopes are there?

\(P, Q \in \mathcal{P}^d \) are equivalent if \(P \) can be carried to \(Q \) by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.

Arnold’s question. (1980) How many equivalence classes are there in \(\mathbb{R}^d \), of volume \(\leq V \)?

not an extremal question yet ..
4. Arnold’s question. How many convex lattice polytopes are there?

\(P, Q \in \mathcal{P}^d \) are equivalent if \(P \) can be carried to \(Q \) by a lattice preserving affine transformation.

Equivalent polytopes have the same volume.

Arnold’s question. (1980) How many equivalence classes are there in \(\mathbb{R}^d \), of volume \(\leq V \)?

not an extremal question yet ..
5. Maximal polytopes. Assume $K \in \mathcal{K}^d$ is “large”. Determine

$$\max \{ f_0(P) : P \in \mathcal{P}^d, P \subset K \}.$$

equivalently, determine or estimate the maximal number of points in $K \cap \mathbb{Z}^d$ that are in convex position,
i.e., none of them is in the convex hull of the others

answers: order of magnitude, asymptotic, precise..
5. Maximal polytopes. Assume \(K \in \mathcal{K}^d \) is “large”. Determine

\[
\max\{f_0(P) : P \in \mathcal{P}^d, P \subset K\}.
\]

equivalently, determine or estimate the maximal number of points in \(K \cap \mathbb{Z}^d \) that are in convex position,
i.e., none of them is in the convex hull of the others

answers: order of magnitude, asymptotic, precise..
5. Maximal polytopes. Assume $K \in \mathcal{K}^d$ is “large”. Determine

$$\max\{f_0(P) : P \in \mathcal{P}^d, P \subset K\}.$$

equivalently, determine or estimate the maximal number of points in $K \cap \mathbb{Z}^d$ that are in convex position, i.e., none of them is in the convex hull of the others

answers: order of magnitude, asymptotic, precise..
1. Minimal volume $V_d(n)$

Theorem (Andrews ’63)

If $P \in \mathcal{P}^d$ and $\text{Vol } P > 0$, then

$$f_0(P) \frac{d+1}{d-1} \leq c_d \text{Vol } P.$$

or with better notation:

$$f_0(P) \frac{d+1}{d-1} \ll \text{Vol } P.$$

Corollary

$$n \frac{d+1}{d-1} \ll V_d(n).$$

Several proofs, none easy: Andrews ’63, Arnold ’80 ($d = 2$), Konyagin, Sevastyanov ’84 , ($d \geq 2$), W. Schmidt ’86, B.-Vershik ’92, B.-Larman ’98, Reisner-Schütt-Werner ’01, and more
1. Minimal volume $V_d(n)$

Theorem (Andrews ’63)

If $P \in \mathcal{P}^d$ and $\text{Vol} \ P > 0$, then

$$f_0(P)\frac{d+1}{d-1} \leq c_d \text{Vol} \ P.$$

or with better notation:

$$f_0(P)\frac{d+1}{d-1} \ll \text{Vol} \ P.$$

Corollary

$$n^{\frac{d+1}{d-1}} \ll V_d(n).$$

Several proofs, none easy: Andrews ’63, Arnold ’80 ($d = 2$), Konyagin, Sevastyanov ’84, ($d \geq 2$), W. Schmidt ’86, B.-Vershik ’92, B.-Larman ’98, Reisner-Schütt-Werner ’01, and more
1. Minimal volume $V_d(n)$

Theorem (Andrews ’63)

If $P \in \mathcal{P}^d$ and $\text{Vol } P > 0$, then

$$f_0(P) \frac{d+1}{d-1} \leq c_d \text{Vol } P.$$

or with better notation:

$$f_0(P) \frac{d+1}{d-1} \ll \text{Vol } P.$$

Corollary

$$n^{\frac{d+1}{d-1}} \ll V_d(n).$$

Several proofs, none easy: Andrews ’63, Arnold ’80 ($d = 2$), Konyagin, Sevastyanov ’84 , ($d \geq 2$), W. Schmidt ’86, B.-Vershik ’92, B.-Larman ’98, Reisner-Schütt-Werner ’01, and more
Definition

A tower of $P \in \mathcal{P}^d$ is $F_0 \subset F_1 \subset \ldots \subset F_{d-1}$ where F_i is an i-dim face of P. $T(P)$ = number of towers of P.

Theorem

If $P \in \mathcal{P}^d$ and $\operatorname{Vol} P > 0$, then

$$T(P)^{\frac{d+1}{d-1}} \ll \operatorname{Vol} P.$$

implies the same bound for $f_i(P)$.

OPEN PROBLEM. For all polytopes $P \in \mathcal{K}^d$

$$T(P) \ll f_0(P) + f_1(P) + \ldots + f_{d-1}(P)$$
Definition

A tower of \(P \in \mathcal{P}^d \) is \(F_0 \subset F_1 \subset \ldots \subset F_{d-1} \) where \(F_i \) is an \(i \)-dim face of \(P \). \(T(P) = \text{number of towers of } P \).

Theorem

If \(P \in \mathcal{P}^d \) and \(\text{Vol } P > 0 \), then

\[
T(P)^{\frac{d+1}{d-1}} \ll \text{Vol } P.
\]

implies the same bound for \(f_i(P) \).

OPEN PROBLEM. For all polytopes \(P \in \mathcal{K}^d \)

\[
T(P) \ll f_0(P) + f_1(P) + \ldots + f_{d-1}(P)?
\]
Definition

A tower of $P \in \mathcal{P}^d$ is $F_0 \subset F_1 \subset \ldots \subset F_{d-1}$ where F_i is an i-dim face of P. $T(P) =$ number of towers of P.

Theorem

If $P \in \mathcal{P}^d$ and $\text{Vol } P > 0$, then

$$T(P)^{\frac{d+1}{d-1}} \ll \text{Vol } P.$$

implies the same bound for $f_i(P)$.

OPEN PROBLEM. For all polytopes $P \in \mathcal{K}^d$

$$T(P) \ll f_0(P) + f_1(P) + \ldots f_{d-1}(P)$$
Definition

A tower of $P \in \mathcal{P}^d$ is $F_0 \subset F_1 \subset \ldots \subset F_{d-1}$ where F_i is an i-dim face of P. $T(P) =$ number of towers of P.

Theorem

If $P \in \mathcal{P}^d$ and $\text{Vol } P > 0$, then

\[
T(P) \frac{d+1}{d-1} \ll \text{Vol } P.
\]

implies the same bound for $f_i(P)$.

OPEN PROBLEM. For all polytopes $P \in \mathcal{K}^d$

\[
T(P) \ll f_0(P) + f_1(P) + \ldots f_{d-1}(P).
\]
FACT. \(n^{(d+1)/(d-1)} \) is best possible estimate

Example 1. (Arnold 80’) \(G \) is the graph of the parabola \(y = x^2, \ |x| \leq t \), and

\[P = P_t = \text{conv} \ (G \cap \mathbb{Z}^2). \]

Then \(f_0(P) = 2t + 1 \) and \(\text{Area} \ P \approx \frac{2}{3} t^3 \).

In \(d\)-dim, \(G = G_t \) is given by \(x_d = x_1^2 + \cdots + x_{d-1}^2 \leq t \),

\[P_t = \text{conv} \ (G_t \cap \mathbb{Z}^d). \]

\(f_0(P) \approx t^{d-1} \) and \(\text{Vol} \ P \approx t^{d+1} \).
FACT. \(n^{(d+1)/(d-1)} \) is best possible estimate

Example 1. (Arnold 80’) \(G \) is the graph of the parabola \(y = x^2, \ |x| \leq t, \) and

\[P = P_t = \text{conv} (G \cap \mathbb{Z}^2). \]

Then \(f_0(P) = 2t + 1 \) and \(\text{Area } P \approx \frac{2}{3} t^3. \)

in \(d \)-dim, \(G = G_t \) is given by \(x_d = x_1^2 + \cdots + x_{d-1}^2 \leq t, \)

\(P_t = \text{conv} (G_t \cap \mathbb{Z}^d). \)

\(f_0(P) \approx t^{d-1} \) and \(\text{Vol } P \approx t^{d+1}. \)
FACT. $n^{(d+1)/(d-1)}$ is best possible estimate

Example 1. (Arnold 80’) G is the graph of the parabola $y = x^2$, $|x| \leq t$, and

\[P = P_t = \text{conv} \ (G \cap \mathbb{Z}^2). \]

Then $f_0(P) = 2t + 1$ and $\text{Area} \ P \approx \frac{2}{3} t^3$.

in d-dim, $G = G_t$ is given by $x_d = x_1^2 + \cdots + x_{d-1}^2 \leq t$,

\[P_t = \text{conv} \ (G_t \cap \mathbb{Z}^d). \]

$f_0(P) \approx t^{d-1}$ and $\text{Vol} \ P \approx t^{d+1}$.
FACT. \(n^{(d+1)/(d-1)} \) is best possible estimate

Example 1. (Arnold 80’) \(G \) is the graph of the parabola \(y = x^2, |x| \leq t \), and

\[
P = P_t = \text{conv} \ (G \cap \mathbb{Z}^2).
\]
Then \(f_0(P) = 2t + 1 \) and \(\text{Area} \ P \approx \frac{2}{3} t^3 \).

in \(d \)-dim, \(G = G_t \) is given by \(x_d = x_1^2 + \cdots + x_{d-1}^2 \leq t \),

\[
P_t = \text{conv} \ (G_t \cap \mathbb{Z}^d).
\]
\(f_0(P) \approx t^{d-1} \) and \(\text{Vol} \ P \approx t^{d+1} \).
FACT. $n^{(d+1)/(d-1)}$ is best possible estimate

Example 1. (Arnold 80’) G is the graph of the parabola $y = x^2$, $|x| \leq t$, and $P = P_t = \text{conv}(G \cap \mathbb{Z}^2)$. Then $f_0(P) = 2t + 1$ and $\text{Area } P \approx \frac{2}{3} t^3$.

In d-dim, $G = G_t$ is given by $x_d = x_1^2 + \cdots + x_{d-1}^2 \leq t$, $P_t = \text{conv}(G_t \cap \mathbb{Z}^d)$. $f_0(P) \approx t^{d-1}$ and $\text{Vol } P \approx t^{d+1}$.
FACT. $n^{(d+1)/(d-1)}$ is best possible estimate

Example 1. (Arnold 80’) G is the graph of the parabola $y = x^2, |x| \leq t$, and

$P = P_t = \text{conv} (G \cap \mathbb{Z}^2)$.

Then $f_0(P) = 2t + 1$ and $\text{Area } P \approx \frac{2}{3} t^3$.

in d-dim, $G = G_t$ is given by $x_d = x_1^2 + \cdots + x_{d-1}^2 \leq t$,

$P_t = \text{conv} (G_t \cap \mathbb{Z}^d)$.

$f_0(P) \approx t^{d-1}$ and $\text{Vol } P \approx t^{d+1}$.
Example 2. (B.-Balog ’92 (d=2), B.-Larman ’98, all d)
$P_r = \text{conv} \left(rB^d \cap \mathbb{Z}^d \right)$
the integer convex hull of rB^d
Vol $P_r \approx r^d$ implies via Andrews’s theorem
\[f_0(P_r) \ll (\text{Vol } P_r)^{(d-1)/(d+1)} \approx r^{d(d-1)/(d+1)}. \]
needed: $f_0(P_r) \gg r^{d(d-1)/(d+1)}$.
Example 2. (B.-Balog ’92 (d=2), B.-Larman ’98, all d)
$P_r = \text{conv} \ (rB^d \cap \mathbb{Z}^d)$

the integer convex hull of rB^d

$\text{Vol} \ P_r \approx r^d$ implies via Andrews’s theorem

$$f_0(P_r) \ll (\text{Vol} \ P_r)^{(d-1)/(d+1)} \approx r^{d(d-1)/(d+1)}.$$

needed: $f_0(P_r) \gg r^{d(d-1)/(d+1)}$.
Example 2. (B.-Balog ’92 (d=2), B.-Larman ’98, all d)

$P_r = \text{conv} \left(rB^d \cap \mathbb{Z}^d \right)$

the integer convex hull of rB^d

$\text{Vol } P_r \approx r^d$ implies via Andrews’s theorem

$$f_0(P_r) \ll \left(\text{Vol } P_r \right)^{(d-1)/(d+1)} \approx r^{d(d-1)/(d+1)}.$$

needed: $f_0(P_r) \gg r^{d(d-1)/(d+1)}$.
Example 2. (B.-Balog ’92 (d=2), B.-Larman ’98, all d)

\(P_r = \text{conv}(rB^d \cap \mathbb{Z}^d) \)

the integer convex hull of \(rB^d \)

\(\text{Vol } P_r \approx r^d \) implies via Andrews’s theorem

\[f_0(P_r) \ll (\text{Vol } P_r)^{(d-1)/(d+1)} \approx r^{d(d-1)/(d+1)}. \]

needed: \(f_0(P_r) \gg r^{d(d-1)/(d+1)}. \)
Lemma

\[\text{Vol} \left(rB^d \setminus P_r \right) \ll r^{d(d-1)/(d+1)}. \]

The proof uses the Flatness Theorem, combined with a statement from approximation theory:

Lemma

If \(P \subset B^d \) is a polytope with \(f_0(P) \leq n \), then

\[n^{-2/(d-1)} \ll \text{Vol} \left(B^d \setminus P \right). \]

implies \(f_0(P_r) \gg r^{d(d-1)/(d+1)}. \)
Lemma

$\text{Vol} \ (rB^d \setminus P_r) \ll r^{d(d-1)/(d+1)}.$

The proof uses the Flatness Theorem, combined with a statement from approximation theory:

Lemma

If $P \subseteq B^d$ is a polytope with $f_0(P) \leq n$, then

$$n^{-2/(d-1)} \ll \text{Vol} \ (B^d \setminus P).$$

implies

$$f_0(P_r)^{-2/(d-1)} \ll \frac{\text{Vol} \ (rB^d \setminus P_r)}{\text{Vol} \ rB^d} \ll \frac{r^{d(d-1)/(d+1)}}{r^d} \ll r^{-2d/(d+1)}.$$
Lemma

\[\text{Vol} \left(rB^d \setminus P_r \right) \ll r^{d(d-1)/(d+1)}. \]

The proof uses the Flatness Theorem, combined with a statement from approximation theory:

Lemma

If \(P \subset B^d \) is a polytope with \(f_0(P) \leq n \), then

\[n^{-2/(d-1)} \ll \text{Vol} \left(B^d \setminus P \right). \]

\[
f_0(P_r)^{-2/(d-1)} \ll \frac{\text{Vol} \left(rB^d \setminus P_r \right)}{\text{Vol} \left(rB^d \right)} \ll \frac{r^{d(d-1)/(d+1)}}{r^d} \ll r^{-2d/(d+1)}.
\]

implies \(f_0(P_r) \gg r^{d(d-1)/(d+1)}. \)
Lemma
\[\text{Vol} \left(rB^d \setminus P_r \right) \ll r^{d(d-1)/(d+1)}. \]

The proof uses the Flatness Theorem, combined with a statement from approximation theory:

Lemma

If \(P \subset B^d \) is a polytope with \(f_0(P) \leq n \), then
\[n^{-2/(d-1)} \ll \text{Vol} \left(B^d \setminus P \right). \]

\[f_0(P_r)^{-2/(d-1)} \ll \frac{\text{Vol} \left(rB^d \setminus P_r \right)}{\text{Vol} \ rB^d} \ll \frac{r^{d(d-1)/(d+1)}}{r^d} \ll r^{-2d/(d+1)}. \]

implies \(f_0(P_r) \gg r^{d(d-1)/(d+1)}. \)
Lemma
\[\text{Vol} \left(rB^d \setminus P_r \right) \ll r^{d(d-1)/(d+1)}. \]

The proof uses the Flatness Theorem, combined with a statement from approximation theory:

Lemma

If \(P \subset B^d \) is a polytope with \(f_0(P) \leq n \), then
\[n^{-2/(d-1)} \ll \text{Vol} \left(B^d \setminus P \right). \]

\[f_0(P_r)^{-2/(d-1)} \ll \frac{\text{Vol} \left(rB^d \setminus P_r \right)}{\text{Vol} rB^d} \ll \frac{r^{d(d-1)/(d+1)}}{r^d} \ll r^{-2d/(d+1)}. \]

implies \(f_0(P_r) \gg r^{d(d-1)/(d+1)}. \)
REMARK. Works for all $K \in \mathcal{K}^d$ (instead of B^d) with smooth enough boundary.

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d-1}} V_d(n)$ exist????

will come back when $d = 2$.
REMARK. Works for all $K \in \mathcal{K}^d$ (instead of B^d) with smooth enough boundary.

OPEN PROBLEM. Does $\lim_{n \to \infty} n^{-\frac{d+1}{d-1}} V_d(n)$ exist????

will come back when $d = 2$.
REMARK. Works for all $K \in \mathcal{K}^d$ (instead of B^d) with smooth enough boundary.

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d-1}} V_d(n)$ exist????

will come back when $d = 2$.
2. Minimal surface area $S_d(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^d$

$$\frac{S(K)^d}{(\text{Vol } K)^{d-1}} \geq \frac{S(B^d)^d}{(\text{Vol } B^d)^{d-1}}$$

implies $S(P) \gg (\text{Vol } P)^{(d-1)/d} \gg f_0(P)^{(d+1)/d}$

Corollary

$$n^{(d+1)/d} \ll S_d(n)$$

Example 2 shows that this is best possible.

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_d(n)$ exist??
2. Minimal surface area $S_d(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^d$

\[
\frac{S(K)^d}{(\text{Vol } K)^{d-1}} \geq \frac{S(B^d)^d}{(\text{Vol } B^d)^{d-1}}
\]

implies $S(P) \gg (\text{Vol } P)^{(d-1)/d} \gg f_0(P)^{(d+1)/d}$

Corollary

\[n^{(d+1)/d} \ll S_d(n)\]

Example 2 shows that this is best possible

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_d(n)$ exist??
2. Minimal surface area $S_d(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^d$

$$\frac{S(K)^d}{(\text{Vol } K)^{d-1}} \geq \frac{S(B^d)^d}{(\text{Vol } B^d)^{d-1}}$$

implies $S(P) \gg (\text{Vol } P)^{(d-1)/d} \gg f_0(P)^{(d+1)/d}$

Corollary

$$n^{(d+1)/d} \ll S_d(n)$$

Example 2 shows that this is best possible

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_d(n)$ exist??
2. Minimal surface area $S_{d}(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^d$

$$\frac{S(K)^d}{(\text{Vol } K)^{d-1}} \geq \frac{S(B^d)^d}{(\text{Vol } B^d)^{d-1}}$$

implies $S(P) \gg \text{(Vol } P)^{(d-1)/d} \gg f_0(P)^{(d+1)/d}$

Corollary

$$n^{(d+1)/d} \ll S_d(n)$$

Example 2 shows that this is best possible

OPEN PROBLEM. Does $\lim_{n \to \infty} n^{-\frac{d+1}{d}} S_d(n)$ exist?

$d = 2$ Jarník
2. Minimal surface area $S_d(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^d$

\[
\frac{S(K)^d}{(\text{Vol } K)^{d-1}} \geq \frac{S(B^d)^d}{(\text{Vol } B^d)^{d-1}}
\]

implies $S(P) \gg (\text{Vol } P)^{(d-1)/d} \gg f_0(P)^{(d+1)/d}$

Corollary

\[n^{(d+1)/d} \ll S_d(n)\]

Example 2 shows that this is best possible

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_d(n)$ exist???

$d = 2$ Jarník
2. Minimal surface area $S_d(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^d$

$$\frac{S(K)^d}{(\text{Vol } K)^{d-1}} \geq \frac{S(B^d)^d}{(\text{Vol } B^d)^{d-1}}$$

implies $S(P) \gg (\text{Vol } P)^{(d-1)/d} \gg f_0(P)^{(d+1)/d}$

Corollary

$$n^{(d+1)/d} \ll S_d(n)$$

Example 2 shows that this is best possible

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_d(n)$ exist???

$d = 2$ Jarník
2. Minimal surface area $S_d(n)$

Isoperimetric inequality: For all $K \in \mathcal{K}^d$

\[
\frac{S(K)^d}{(\text{Vol } K)^{d-1}} \geq \frac{S(B^d)^d}{(\text{Vol } B^d)^{d-1}}
\]

implies $S(P) \gg (\text{Vol } P)^{(d-1)/d} \gg f_0(P)^{(d+1)/d}$

Corollary

\[n^{(d+1)/d} \ll S_d(n)\]

Example 2 shows that this is best possible

OPEN PROBLEM. Does $\lim n^{-\frac{d+1}{d}} S_d(n)$ exist??

$d = 2$ Jarník
3. Minimal lattice width $w_d(n)$

First $d = 2$. $w(P) + 1$ is the minimal number of consecutive lattice lines intersecting P.

Each such line contains at most two vertices of $P \implies f_0(P) \leq 2(w(P) + 1)$

FACT. $w_2(n) = \lceil \frac{n}{2} \rceil - 1$

FACT. $w_d(n) = 1$

OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width \(w_d(n) \)

first \(d = 2 \). \(w(P) + 1 \) is the minimal number of consecutive lattice lines intersecting \(P \).

each such line contains at most two vertices of \(P \) \(\Rightarrow \)

\[f_0(P) \leq 2(w(P) + 1) \]

FACT. \(w_2(n) = \lceil \frac{n}{2} \rceil - 1 \)

FACT. \(w_d(n) = 1 \)

OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_d(n)$

First $d = 2$. $w(P) + 1$ is the minimal number of consecutive lattice lines intersecting P.

each such line contains at most two vertices of $P \implies f_0(P) \leq 2(w(P) + 1)$

FACT. $w_2(n) = \lceil \frac{n}{2} \rceil - 1$

FACT. $w_d(n) = 1$

OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_d(n)$

First $d = 2$. $w(P) + 1$ is the minimal number of consecutive lattice lines intersecting P.

Each such line contains at most two vertices of $P \implies f_0(P) \leq 2(w(P) + 1)$

FACT. $w_2(n) = \lceil \frac{n}{2} \rceil - 1$

FACT. $w_d(n) = 1$

OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_d(n)$

first $d = 2$. $w(P) + 1$ is the minimal number of consecutive lattice lines intersecting P.
each such line contains at most two vertices of P \impliesf$_0(P) \leq 2(w(P) + 1)$

FACT. $w_2(n) = \lceil \frac{n}{2} \rceil - 1$

FACT. $w_d(n) = 1$

OPEN PROBLEM. Modify the question!!!
3. Minimal lattice width $w_d(n)$

First $d = 2$. $w(P) + 1$ is the minimal number of consecutive lattice lines intersecting P.

Each such line contains at most two vertices of $P \implies f_0(P) \leq 2(w(P) + 1)$

FACT. $w_2(n) = \left\lfloor \frac{n}{2} \right\rfloor - 1$

FACT. $w_d(n) = 1$

OPEN PROBLEM. Modify the question!!!
4. Arnold’s question

$P, Q \in \mathcal{P}^d$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \implies f_0(P) = f_0(Q), w(P) = w(Q), \text{Vol } P = \text{Vol } Q$.

$N_d(V) =$ number of equivalent classes of $P \in \mathcal{P}^d$ with $\text{Vol } P \leq V$

$N_2(A)$ for $d = 2$

motivation
4. Arnold’s question

\(P, Q \in \mathcal{P}^d \) are \textit{equivalent} if a lattice preserving affine transformation maps \(P \) to \(Q \).

FACT. \(P \sim Q \implies f_0(P) = f_0(Q), w(P) = w(Q), \operatorname{Vol} P = \operatorname{Vol} Q \).

\(N_d(V) = \) number of equivalent classes of \(P \in \mathcal{P}^d \) with \(\operatorname{Vol} P \leq V \)

\(N_2(A) \) for \(d = 2 \)

motivation
4. Arnold’s question

$P, Q \in \mathcal{P}^d$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \implies f_0(P) = f_0(Q), w(P) = w(Q), \text{Vol } P = \text{Vol } Q$.

$N_d(V) = \text{number of equivalent classes of } P \in \mathcal{P}^d \text{ with } \text{Vol } P \leq V$

$N_2(A)$ for $d = 2$

motivation
4. Arnold’s question

$P, Q \in \mathcal{P}^d$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \implies f_0(P) = f_0(Q), w(P) = w(Q), \text{Vol } P = \text{Vol } Q$.

$N_d(V) =$ number of equivalent classes of $P \in \mathcal{P}^d$ with $\text{Vol } P \leq V$

$N_2(A)$ for $d = 2$

motivation
4. Arnold’s question

\(P, Q \in \mathcal{P}^d \) are equivalent if a lattice preserving affine transformation maps \(P \) to \(Q \).

FACT. \(P \sim Q \implies f_0(P) = f_0(Q), w(P) = w(Q), Vol P = Vol Q \).

\(N_d(V) \) = number of equivalent classes of \(P \in \mathcal{P}^d \) with \(Vol P \leq V \)

\(N_2(A) \) for \(d = 2 \)

motivation
4. Arnold’s question

$P, Q \in \mathcal{P}^d$ are equivalent if a lattice preserving affine transformation maps P to Q.

FACT. $P \sim Q \implies f_0(P) = f_0(Q), \ w(P) = w(Q), \ \text{Vol} \ P = \text{Vol} \ Q.$

$N_d(V) =$ number of equivalent classes of $P \in \mathcal{P}^d$ with $\text{Vol} \ P \leq V$

$N_2(A)$ for $d = 2$

motivation
Theorem (Arnold 1980)

\[A^{1/3} \ll \log N_2(A) \ll A^{1/3} \log A. \]

lower bound: let \(P \) be the polytope from Example 1 or 2.

Its vertex set \(W \) \(\implies \) \(|W| \approx A^{1/3} \).

For each subset \(U \subset W \), \(\text{conv } U \in \mathcal{P}^2 \).

there are \(2^{|W|} \approx 2^{A^{1/3}} \) such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every \(P \in \mathcal{P}^2 \) there is \(Q \sim P \) which is contained in the square \([0, 36A]^2\).

So each equivalence class is represented in this square.

Proof follows from Andrews theorem + Square lemma.
Theorem (Arnold 1980)

\[A^{1/3} \ll \log N_2(A) \ll A^{1/3} \log A. \]

lower bound: let \(P \) be the polytope from Example 1 or 2.
Its vertex set \(W \mapsto |W| \approx A^{1/3} \).
For each subset \(U \subset W \), \(\text{conv } U \in P^2 \).
there are \(2^{|W|} \approx 2^{A^{1/3}} \) such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every \(P \in P^2 \) there is \(Q \sim P \) which is contained in the square \([0, 36A]^2\).

So each equivalence class is represented in this square.
Proof follows from Andrews theorem + Square lemma
Theorem (Arnold 1980)

\[A^{1/3} \ll \log N_2(A) \ll A^{1/3} \log A. \]

lower bound: let \(P \) be the polytope from Example 1 or 2. Its vertex set \(W \) \(\implies |W| \approx A^{1/3} \).

For each subset \(U \subset W \), \(\text{conv } U \in \mathcal{P}^2 \).

there are \(2^{|W|} \approx 2A^{1/3} \) such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every \(P \in \mathcal{P}^2 \) there is \(Q \sim P \) which is contained in the square \([0, 36A]^2\).

So each equivalence class is represented in this square.

Proof follows from Andrews theorem + Square lemma.
Theorem (Arnold 1980)

\[A^{1/3} \ll \log N_2(A) \ll A^{1/3} \log A. \]

lower bound: let \(P \) be the polytope from Example 1 or 2.
Its vertex set \(W \mapsto |W| \approx A^{1/3} \).
For each subset \(U \subset W \), \(\text{conv} \ U \in \mathcal{P}^2 \).
there are \(2^{|W|} \approx 2^{A^{1/3}} \) such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every \(P \in \mathcal{P}^2 \) there is \(Q \sim P \) which is contained in the square \([0, 36A]^2\).

So each equivalence class is represented in this square.
Proof follows from Andrews theorem + Square lemma.
Theorem (Arnold 1980)

\[A^{1/3} \ll \log N_2(A) \ll A^{1/3} \log A. \]

lower bound: let \(P \) be the polytope from Example 1 or 2.

Its vertex set \(W \) \(\implies \) \(|W| \approx A^{1/3} \).

For each subset \(U \subset W \), \(\text{conv} \ U \in P^2 \).

there are \(2^{|W|} \approx 2^{A^{1/3}} \) such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every \(P \in P^2 \) there is \(Q \sim P \) which is contained in the square \([0, 36A]^2\).

So each equivalence class is represented in this square.

Proof follows from Andrews theorem + Square lemma
Theorem (Arnold 1980)

\[A^{1/3} \ll \log N_2(A) \ll A^{1/3} \log A. \]

lower bound: let \(P \) be the polytope from Example 1 or 2. Its vertex set \(W \rightarrow |W| \approx A^{1/3} \).

For each subset \(U \subset W \), \(\text{conv } U \in P^2 \).

there are \(2^{|W|} \approx 2^{A^{1/3}} \) such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every \(P \in P^2 \) there is \(Q \sim P \) which is contained in the square \([0, 36A]^2\).

So each equivalence class is represented in this square.

Proof follows from Andrews theorem + Square lemma
Theorem (Arnold 1980)

\[A^{1/3} \ll \log N_2(A) \ll A^{1/3} \log A. \]

lower bound: let \(P \) be the polytope from Example 1 or 2. Its vertex set \(W \rightarrow |W| \approx A^{1/3} \). For each subset \(U \subset W, \text{conv} U \in \mathcal{P}^2 \). there are \(2^{|W|} \approx 2A^{1/3} \) such subpolygons. Most of them distinct.

for the upper bound we need:

Lemma (Square lemma)

For every \(P \in \mathcal{P}^2 \) there is \(Q \sim P \) which is contained in the square \([0, 36A]^2\).

So each equivalence class is represented in this square.

Proof follows from Andrews theorem + Square lemma
Theorem (Konyagin-Sevastyanov '84)

\[V^{\frac{d-1}{d+1}} \ll \log N_d(V) \ll V^{\frac{d-1}{d+1}} \log V. \]

follows from an extension of the Square lemma and Andrews theorem
Theorem (Konyagin-Sevastyanov ’84)

\[V^{\frac{d-1}{d+1}} \ll \log N_d(V) \ll V^{\frac{d-1}{d+1}} \log V. \]

follows from an extension of the Square lemma and Andrews theorem
Theorem (B.-Pach ’91 (d = 2), B.-Vershik ’92 (all d))

\[V \frac{d-1}{d+1} \ll \log N_d(V) \ll V \frac{d-1}{d+1}. \]

Define the Box with parameter \(\gamma = (\gamma_1, \ldots, \gamma_d) \in \mathbb{Z}^d_+ \) by

\[\text{Box}(\gamma) = \{ x \in \mathbb{R}^d : 0 \leq x_i \leq \gamma_i, \ i = 1, \ldots, d \}. \]

Lemma (Box lemma)

For every \(P \in \mathcal{P}^d \) there is \(Q \sim P \) and \(\gamma \in \mathbb{Z}_+^d \) such that \(Q \subset \text{Box}(\gamma) \) and \(\text{Vol} \text{Box}(\gamma) = \prod \gamma_i \ll \text{Vol} P. \)

the number of such boxes is small, smaller than \(V^d \)
Theorem (B.-Pach ’91 ($d = 2$), B.-Vershik ’92 (all d))

\[V^{\frac{d-1}{d+1}} \ll \log N_d(V) \ll V^{\frac{d-1}{d+1}}. \]

Define the Box with parameter $\gamma = (\gamma_1, \ldots, \gamma_d) \in \mathbb{Z}_+^d$ by

\[
\text{Box}(\gamma) = \{ x \in \mathbb{R}^d : 0 \leq x_i \leq \gamma_i, \ i = 1, \ldots, d \}.
\]

Lemma (Box lemma)

For every $P \in \mathbb{P}^d$ there is $Q \sim P$ and $\gamma \in \mathbb{Z}_+^d$ such that $Q \subset \text{Box}(\gamma)$ and $\text{Vol } \text{Box}(\gamma) = \prod_{i} \gamma_i \ll \text{Vol } P$.

the number of such boxes is small, smaller than V^d
Theorem (B.-Pach '91 ($d = 2$), B.-Vershik '92 (all d))

\[V^{\frac{d-1}{d+1}} \ll \log N_d(V) \ll V^{\frac{d-1}{d+1}}. \]

Define the Box with parameter $\gamma = (\gamma_1, \ldots, \gamma_d) \in \mathbb{Z}_d^+$ by

\[\text{Box}(\gamma) = \{ x \in \mathbb{R}^d : 0 \leq x_i \leq \gamma_i, \ i = 1, \ldots, d \}. \]

Lemma (Box lemma)

For every $P \in \mathcal{P}^d$ there is $Q \sim P$ and $\gamma \in \mathbb{Z}_d^+$ such that $Q \subset \text{Box}(\gamma)$ and $\text{Vol} \text{ Box}(\gamma) = \prod \gamma_i \ll \text{Vol} P$.

The number of such boxes is small, smaller than V^d.
Theorem (B.-Pach ’91 ($d = 2$), B.-Vershik ’92 (all d))

$$V^{d-1 \over d+1} \ll \log N_d(\mathcal{V}) \ll V^{d-1 \over d+1}. $$

Define the Box with parameter $\gamma = (\gamma_1, \ldots, \gamma_d) \in \mathbb{Z}_+^d$ by

$$\text{Box}(\gamma) = \{ x \in \mathbb{R}^d : 0 \leq x_i \leq \gamma_i, \ i = 1, \ldots, d \}. $$

Lemma (Box lemma)

For every $P \in \mathcal{P}^d$ there is $Q \sim P$ and $\gamma \in \mathbb{Z}_+^d$ such that $Q \subset \text{Box}(\gamma)$ and $\text{Vol} \text{ Box}(\gamma) = \prod \gamma_i \ll \text{Vol} P.$

the number of such boxes is small, smaller than V^d
Lemma (Key lemma)

The number of lattice polytopes contained in $\text{Box}(\gamma)$ is

$$\leq \exp \left(c_d \left(\text{Vol Box}(\gamma) \right)^{\frac{d-1}{d+1}} \right)$$

ingredients:

- Minkowski’s theorem: outer normals to the facets, of lengths equal to the surface area, determine P uniquely (up to translation),
- for a lattice polytope this outer normal vector is in $\frac{1}{(d-1)!} \mathbb{Z}^d$,
- Pogorelov’s theorem,
- partitions of positive integer vectors
Lemma (Key lemma)

The number of lattice polytopes contained in Box(γ) is

\[\leq \exp \left(c_d \left(\text{Vol Box}(\gamma) \right)^{\frac{d-1}{d+1}} \right) \]

ingredients:

- Minkowski’s theorem: outer normals to the facets, of lengths equal to the surface area, determine \(P \) uniquely (up to translation),
- for a lattice polytope this outer normal vector is in \(\frac{1}{(d-1)!} \mathbb{Z}^d \),
- Pogorelov’s theorem,
- partitions of positive integer vectors
FACT. The key lemma implies Andrews’s theorem

Proof. \(P \in \mathcal{P}^d \), \(V = \text{Vol} \ P \), we assume \(P \subset \text{Box}(\gamma) \) with \(\text{Vol} \ \text{Box}(\gamma) \ll V \). Let \(f_0(P) = n \).

\(\Downarrow \)

there are at least \(2^n - 1 \) distinct convex lattice polytopes in \(\text{Box}(\gamma) \), the subpolytopes of \(P \)

\(\Downarrow \)

\(2^n - 1 \leq \exp \left(c_d (\text{Vol} \ \text{Box}(\gamma))^\frac{d-1}{d+1} \right) \)

\(\Downarrow \)

\(n = f_0(P) \ll V^{\frac{d-1}{d+1}} \)

OPEN PROBLEM. Does \(\lim V^{-\frac{d-1}{d+1}} \log N_d(V) \) exist???
FACT. The key lemma implies Andrews’s theorem

Proof. $P \in \mathcal{P}^d$, $V = \text{Vol } P$, we assume $P \subset \text{Box}(\gamma)$ with $\text{Vol } \text{Box}(\gamma) \ll V$. Let $f_0(P) = n$.

\downarrow

there are at least $2^n - 1$ distinct convex lattice polytopes in $\text{Box}(\gamma)$, the subpolytopes of P

\downarrow

$2^n - 1 \leq \exp \left(c_d (\text{Vol } \text{Box}(\gamma))^{\frac{d-1}{d+1}} \right)$

\downarrow

$n = f_0(P) \ll V^{\frac{d-1}{d+1}}$

OPEN PROBLEM. Does $\lim V^{-\frac{d-1}{d+1}} \log N_d(V)$ exist??????
FACT. The key lemma implies Andrews’s theorem

Proof. $P \in \mathcal{P}^d$, $V = \text{Vol } P$, we assume $P \subset \text{Box}(\gamma)$ with $\text{Vol } \text{Box}(\gamma) \ll V$. Let $f_0(P) = n$.

\[\Downarrow\]

there are at least $2^n - 1$ distinct convex lattice polytopes in $\text{Box}(\gamma)$, the subpolytopes of P

\[\Downarrow\]

$2^n - 1 \leq \exp \left(c_d \frac{\text{Vol } \text{Box}(\gamma)^{\frac{d-1}{d+1}}}{d+1} \right)$

\[\Downarrow\]

$n = f_0(P) \ll V^{\frac{d-1}{d+1}}$

OPEN PROBLEM. Does $\lim V^{-\frac{d-1}{d+1}} \log N_d(V)$ exist?
FACT. The key lemma implies Andrews’s theorem

Proof. \(P \in \mathcal{P}^d, \ V = \text{Vol} \ P, \) we assume \(P \subset \text{Box}(\gamma) \) with \(\text{Vol} \ \text{Box}(\gamma) \ll V. \) Let \(f_0(P) = n. \)

\[\downarrow \]

there are at least \(2^n - 1 \) distinct convex lattice polytopes in \(\text{Box}(\gamma), \) the subpolytopes of \(P \)

\[\downarrow \]

\(2^n - 1 \leq \exp \left(c_d(\text{Vol} \ \text{Box}(\gamma))^{\frac{d-1}{d+1}}\right) \)

\[\downarrow \]

\(n = f_0(P) \ll V^{\frac{d-1}{d+1}} \)

OPEN PROBLEM. Does \(\lim V^{-\frac{d-1}{d+1}} \log N_d(V) \) exist???????
FACT. The key lemma implies Andrews’s theorem

Proof. $P \in \mathcal{P}^d$, $V = \text{Vol} P$, we assume $P \subset \text{Box}(\gamma)$ with $\text{Vol} \text{Box}(\gamma) \ll V$. Let $f_0(P) = n$.

\[\text{there are at least } 2^n - 1 \text{ distinct convex lattice polytopes in } \text{Box}(\gamma), \text{ the subpolytopes of } P \]

\[2^n - 1 \leq \exp \left(c_d(\text{Vol Box}(\gamma))^{\frac{d-1}{d+1}} \right) \]

\[n = f_0(P) \ll V^{\frac{d-1}{d+1}} \]

OPEN PROBLEM. Does $\lim V^{-\frac{d-1}{d+1}} \log N_d(V)$ exist?
FACT. The key lemma implies Andrews’s theorem

Proof. \(P \in \mathcal{P}_d, V = \text{Vol} \ P, \) we assume \(P \subset \text{Box}(\gamma) \) with \(\text{Vol} \ \text{Box}(\gamma) \ll V. \) Let \(f_0(P) = n. \)

\[\Rightarrow \]
there are at least \(2^n - 1 \) distinct convex lattice polytopes in \(\text{Box}(\gamma), \) the subpolytopes of \(P \)

\[\Rightarrow \]
\[2^n - 1 \leq \exp \left(c_d \left(\text{Vol} \ \text{Box}(\gamma) \right)^{\frac{d-1}{d+1}} \right) \]

\[\Rightarrow \]
\[n = f_0(P) \ll V^{\frac{d-1}{d+1}} \]

OPEN PROBLEM. Does \(\lim V^{-\frac{d-1}{d+1}} \log N_d(V) \) exist???????
5. Maximal polytopes

better setting: $\mathbb{Z}_t = \frac{1}{t} \mathbb{Z}^d$ where t is large

$K \in \mathcal{K}^d$ is fixed with $\text{Vol } K = 1$, say

$\mathcal{P}(K, t)$ family of all convex \mathbb{Z}_t-lattice polytopes contained in K

$M(K, t) = \max\{f_0(P) : P \in \mathcal{P}(K, t)\}$,

same as maximal number of points in $\mathbb{Z}_t \cap K$ in convex position

Theorem

Suppose $K \in \mathcal{K}^d$ and $\text{Vol } K = 1$. Then

$$t^{d \frac{d-1}{d+1}} \ll M(K, t) \ll t^{d \frac{d-1}{d+1}}.$$
5. Maximal polytopes

better setting: $\mathbb{Z}_t = \frac{1}{t} \mathbb{Z}^d$ where t is large

$K \in \mathcal{K}^d$ is fixed with $\text{Vol} K = 1$, say

$\mathcal{P}(K, t)$ family of all convex \mathbb{Z}_t-lattice polytopes contained in K

$M(K, t) = \max \{ f_0(P) : P \in \mathcal{P}(K, t) \}$,
same as maximal number of points in $\mathbb{Z}_t \cap K$ in convex position

Theorem

Suppose $K \in \mathcal{K}^d$ and $\text{Vol} K = 1$. Then

$$t^{d \frac{d-1}{d+1}} \ll M(K, t) \ll t^{d \frac{d-1}{d+1}}.$$
5. Maximal polytopes
better setting: $\mathbb{Z}_t = \frac{1}{t} \mathbb{Z}^d$ where t is large
$K \in \mathcal{K}^d$ is fixed with $\text{Vol } K = 1$, say
$\mathcal{P}(K, t)$ family of all convex \mathbb{Z}_t-lattice polytopes contained in K

$M(K, t) = \max \{ f_0(P) : P \in \mathcal{P}(K, t) \}$,
same as maximal number of points in $\mathbb{Z}_t \cap K$ in convex position

Theorem

Suppose $K \in \mathcal{K}^d$ and $\text{Vol } K = 1$. Then

$$t^{d \frac{d-1}{d+1}} \ll M(K, t) \ll t^{d \frac{d-1}{d+1}}.$$
OPEN PROBLEM. Does the limit \(\lim_{t \to \infty} t^{-d \frac{d-1}{d+1}} M(K, t) \) exist???

Yes, when \(d = 2 \):

Theorem (B.-Prodromou '06)
When \(K \subset \mathcal{K}^2 \),
\[
\lim_{t \to \infty} t^{-2/3} M(K, t) = \frac{3}{(2\pi)^{2/3}} A^*(K)
\]

where \(A^*(K) \) is well defined quantity

Limit shape
OPEN PROBLEM. Does the limit \(\lim_{t \to \infty} t^{-d \frac{d-1}{d+1}} M(K, t) \) exist???

Yes, when \(d = 2 \):

Theorem (B.-Prodromou ’06)

When \(K \subset K^2 \),

\[
\lim t^{-2/3} M(K, t) = \frac{3}{(2\pi)^{2/3}} A^*(K)
\]

where \(A^*(K) \) is well defined quantity

Limit shape
OPEN PROBLEM. Does the limit \(\lim_{t \to d} t^{-d \frac{d-1}{d+1}} M(K, t) \) exist???

Yes, when \(d = 2 \):

Theorem (B.-Prodromou ’06)

When \(K \subset \mathcal{K}^2 \),

\[
\lim t^{-2/3} M(K, t) = \frac{3}{(2\pi)^{2/3}} A^*(K)
\]

where \(A^*(K) \) is well defined quantity

Limit shape
Minimal area $A(n)$

$$A(n) = \min\{\text{Area } P : P \in \mathcal{P}^d, \ f_0(P) = n\} = V_2(n) \text{ previous notation}$$

Theorem (B.-Tokushige, '04)

$$\lim n^{-3} A(n) \text{ exists and equals 0.0185067... most likely.}$$

FACT. $C \subset \mathbb{R}^2$ is an 0-symmetric convex body, and $|C \cap P| = n$

there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap P$.

Proof: order the vectors in $C \cap P$ by increasing slope...
Minimal area $A(n)$

$$A(n) = \min \{ \text{Area } P : P \in \mathcal{P}^d, \ f_0(P) = n \} = V_2(n) \text{ previous notation}$$

Theorem (B.-Tokushige, ’04)

$$\lim n^{-3} A(n) \text{ exists and equals } 0.0185067 \ldots \text{ most likely.}$$

FACT. $C \subset \mathbb{R}^2$ is an 0-symmetric convex body, and $|C \cap P| = n$

there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap P$.

Proof: order the vectors in $C \cap P$ by increasing slope...
Minimal area $A(n)$

$$A(n) = \min\{\text{Area } P : P \in \mathcal{P}^d, f_0(P) = n\} = V_2(n) \text{ previous notation}$$

Theorem (B.-Tokushige, '04)

$$\lim n^{-3} A(n) \text{ exists and equals } 0.0185067 \ldots \text{ most likely.}$$

FACT. $C \subset \mathbb{R}^2$ is an 0-symmetric convex body, and $|C \cap P| = n$

there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap P$.

Proof: order the vectors in $C \cap P$ by increasing slope...
Minimal area $A(n)$

$$A(n) = \min\{\text{Area } P : P \in \mathcal{P}^d, \ f_0(P) = n\} = V_2(n) \text{ previous notation}$$

Theorem (B.-Tokushige, ’04)

$$\lim n^{-3} A(n) \text{ exists and equals } 0.0185067 \ldots \text{ most likely.}$$

FACT. $C \subset \mathbb{R}^2$ is an 0-symmetric convex body, and $|C \cap \mathcal{P}| = n$

there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap \mathcal{P}$.

Proof: order the vectors in $C \cap \mathcal{P}$ by increasing slope...
Minimal area $A(n)$

$$A(n) = \min\{\text{Area } P : P \in \mathcal{P}^d, f_0(P) = n\} = V_2(n) \text{ previous notation}$$

Theorem (B.-Tokushige, ’04)

$$\lim n^{-3} A(n) \text{ exists and equals } 0.0185067 \ldots \text{ most likely.}$$

FACT. $C \subset \mathbb{R}^2$ is an 0-symmetric convex body, and $|C \cap P| = n$.

\Downarrow

there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap P$.

Proof: order the vectors in $C \cap P$ by increasing slope...
Minimal area $A(n)$

$$A(n) = \min \{ \text{Area } P : P \in \mathcal{P}^d, \ f_0(P) = n \} = V_2(n) \text{ previous notation}$$

Theorem (B.-Tokushige, ’04)

$$\lim n^{-3} A(n) \text{ exists and equals } 0.0185067 \ldots \text{ most likely.}$$

FACT. $C \subset \mathbb{R}^2$ is an 0-symmetric convex body, and $|C \cap P| = n$

$$\Downarrow$$

there is a unique (up to translation) convex lattice n-gon, $P(C)$, with edge set $C \cap P$.

Proof: order the vectors in $C \cap P$ by increasing slope...
\[C = [-t, t] \times [-1, 1] \text{ with } t \text{ chosen so that } |C \cap P| = n \Rightarrow \]

\[
\text{Area } P(C) = \left(\frac{1}{48} + o(1) \right) n^3 \\
= (0.0204085 \cdots + o(1))n^3
\]
$C = rB^2$ with r chosen so that $|C \cap P| = n$ \implies \\

$$\text{Area } P(rB^2) = \left(\frac{1}{54} + o(1) \right) n^3 = (0.0185185185 \cdots + o(1)) n^3$$
$r B$

$P(rB)$
\[M(n) = \min \{ \text{Area } P(C) \} \]

\(\min \) is taken over all 0-symmetric \(C \in \mathcal{K}^2 \) with \(|C \cap P| = n \).

Lemma (Reduction Lemma)

For even \(n \), \(A(n) = M(n) \).

Let \(C_n \) be a minimizer for \(M(n) \), and \(w_n \) be its lattice width.

Theorem

There is a positive constant \(D \) such that

\[M(n) \geq \left(\frac{1}{54} - D \frac{\log w_n}{w_n} \right) n^3. \]

\(D \approx 5000 \)
\[M(n) = \min \{ \text{Area } P(C) \} \]

\text{min is taken over all 0-symmetric } C \in K^2 \text{ with } |C \cap \text{P}| = n.

Lemma (Reduction Lemma)

For even \(n \), \(A(n) = M(n) \).

Let \(C_n \) be a minimizer for \(M(n) \), and \(w_n \) be its lattice width.

Theorem

There is a positive constant \(D \) such that

\[M(n) \geq \left(\frac{1}{54} - D \frac{\log w_n}{w_n} \right) n^3. \]

\(D \approx 5000 \)
\[M(n) = \min \{ \text{Area } P(C) \} \]

min is taken over all 0-symmetric \(C \in \mathcal{K}^2 \) with \(|C \cap P| = n \).

Lemma (Reduction Lemma)

For even \(n \), \(A(n) = M(n) \).

Let \(C_n \) be a minimizer for \(M(n) \), and \(w_n \) be its lattice width.

Theorem

There is a positive constant \(D \) such that

\[M(n) \geq \left(\frac{1}{54} - D \frac{\log w_n}{w_n} \right) n^3. \]

\(D \approx 5000 \)
\[M(n) = \min \{ \text{Area } P(C) \} \]
\[\text{min is taken over all 0-symmetric } C \in \mathcal{K}^2 \text{ with } |C \cap P| = n. \]

Lemma (Reduction Lemma)

For even \(n \), \(A(n) = M(n) \).

Let \(C_n \) be a minimizer for \(M(n) \), and \(w_n \) be its lattice width.

Theorem

There is a positive constant \(D \) such that

\[
M(n) \geq \left(\frac{1}{54} - D \frac{\log w_n}{w_n} \right) n^3.
\]

\(D \approx 5000 \)
either \(w_n \to \infty \) and then \(\lim M(n)/n^3 = 1/54 \),
or \(w_n = \text{const} \) along a subsequence.

Determining \(M(n) \) with side condition \(w(C) = b \) leads to an extremal problem \(E(b) \) with \(b \) variables
which can be solved by a computer for fixed (not too large) \(b \)
\(b = 8, 9, 14, 15, \ldots \) gives \(M(n)/n^3 < 1/54 \)
Enough to solve \(E(b) \) for \(b \leq 10^{10} \)
either $w_n \to \infty$ and then $\lim M(n)/n^3 = 1/54$,
or $w_n = \text{const}$ along a subsequence.

Determining $M(n)$ with side condition $w(C) = b$ leads to an extremal problem $E(b)$ with b variables
which can be solved by a computer for fixed (not too large) b

$b = 8, 9, 14, 15, \ldots$ gives $M(n)/n^3 < 1/54$

Enough to solve $E(b)$ for $b \leq 10^{10}$
either \(w_n \to \infty \) and then \(\lim M(n)/n^3 = 1/54 \),
or \(w_n = \text{const} \) along a subsequence.

Determining \(M(n) \) with side condition \(w(C) = b \) leads to an extremal problem \(E(b) \) with \(b \) variables which can be solved by a computer for fixed (not too large) \(b \) \(b = 8, 9, 14, 15, \ldots \) gives \(M(n)/n^3 < 1/54 \)

Enough to solve \(E(b) \) for \(b \leq 10^{10} \)
either \(w_n \to \infty \) and then \(\lim M(n)/n^3 = 1/54 \),
or \(w_n = \text{const} \) along a subsequence.

Determining \(M(n) \) with side condition \(w(C) = b \) leads to an extremal problem \(E(b) \) with \(b \) variables which can be solved by a computer for fixed (not too large) \(b \) \(b = 8, 9, 14, 15, \ldots \) gives \(M(n)/n^3 < 1/54 \)
Enough to solve \(E(b) \) for \(b \leq 10^{10} \)
The smallest $M(n)$ comes from $b = 15$

and the best choice for C is a (almost) ellipsoid: a long and skinny one with short axis of length 15.55 and long axis dictated by $|C_n \cap P| = n$
The smallest $M(n)$ comes from $b = 15$
and the best choice for C is a (almost) ellipsoid:

a long and skinny one with short axis of length 15.55
and long axis dictated by $|C_n \cap P| = n$
Arnold’s problem in the plane:
\(N(A) = \text{number of equivalence classes in } \mathcal{P}^2 \text{ of area } \leq A. \)

OPEN PROBLEM. Does \(\lim A^{-1/3} \log N(A) \) exist??