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A problem about continued fractions

Problem � version I. Determine those �nite sets of real

numbers X with the property that each continued fraction
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A problem about sequences of Möbius transformations

De�nition. Given a set of (real) Möbius transformations F ,
a composition sequence from F is a sequence

Fn = f1 � f2 � � � � � fn ; where fi 2 F :

Problem � version II. Determine those �nite sets of Möbius

transformations F with the property that every composition

sequence from F converges at 0.
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Example � pairs of parabolics
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Escaping sequences and general convergence

De�nition. A sequence Fn of Möbius transformations is an escaping

sequence if the sequence Fn(�) accumulates only on the unit circle in
the Euclidean metric.
An escaping sequence Fn converges generally to a point p on the
unit circle if Fn(�)! p as n !1 (in the Euclidean metric).
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Return to the problem

Problem � version III. Determine those �nite sets of Möbius
transformations F with the property that every composition sequence
from F converges generally.

Conjecture. If every composition sequence from F is an escaping
sequence, then every composition sequence converges generally.

Theorem. The conjecture is true if F has order two.
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From Möbius transformations to semigroups

Lemma. Let F be a �nite set of Möbius transformations, and

let S be the semigroup generated by F .

The following are

equivalent:

(i) each composition sequence from F is an escaping sequence

(ii) the identity element does not belong to the closure of S .

De�nition. A semigroup S is inverse free if no element of S

has an inverse in S . Equivalently, S is inverse free if it does not

contain the identity element.
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Discrete semigroups

Lemma. Let F be a �nite set of Möbius transformations, and let S be
the semigroup generated by F . The following are equivalent:

(i) each composition sequence from F is an escaping sequence

(ii) the identity element does not belong to the closure of S .

Theorem. Let F be a set of two Möbius transformations, and let S be
the semigroup generated by F . Then, with one exception, the
following are equivalent:

(i) each composition sequence from F is an escaping sequence

(ii) each composition sequence from F converges generally

(iii) S is discrete and inverse free.

Problem � version IV. Classify the inverse-free discrete semigroups.
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Recap

Problem � version I. Determine those �nite sets of real numbers X
with the property that each continued fraction with coe�cients in X

converges.

Problem � version II. Determine those �nite sets of Möbius
transformations F with the property that every composition sequence
from F converges at 0.

Problem � version III. Determine those �nite sets of Möbius
transformations F with the property that every composition sequence
from F converges generally.

Problem � version IV. Classify the inverse-free discrete semigroups.



Selected literature on Möbius semigroups

Some Moebius semigroups on the 2-sphere
C.S. Ballantine
J. Math. Mech., 1962

On certain semigroups of hyperbolic isometries
T. Jørgensen and K. Smith
Duke Math. J., 1990

Complex dynamics of Möbius semigroups
D. Fried, S.M. Marotta and R. Stankewitz
Ergodic Theory Dynam. Systems, 2012

Entropie des semi-groupes d'isométrie d'un espace hyperbolique
P. Mercat
To be published



Exceptional semigroup

f (z ) = 2z g(z ) = 1
2
z + 1



Two-generator Fuchsian groups literature

The classi�cation of discrete 2-generator subgroups of PSL(2; R)
J.P. Matelski
Israel J. Math., 1982

An algorithm for 2-generator Fuchsian groups
J. Gilman and B. Maskit
Michigan Math. J., 1991

Two-generator discrete subgroups of PSL(2;R)
J. Gilman
Mem. Amer. Math. Soc., 1995



Two-generator Fuchsian groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky groups



Schottky semigroups



Schottky semigroups



Schottky semigroups



Schottky semigroups



Schottky semigroups



Schottky semigroups



Schottky semigroups



Reverse triangle inequality



Two-generator inverse-free discrete semigroups

elliptic elliptic

8

elliptic parabolic

8

elliptic loxodromic

8

parabolic parabolic

4

parabolic loxodromic

4

loxodromic loxodromic

4



Two-generator inverse-free discrete semigroups

elliptic elliptic 8

elliptic parabolic 8

elliptic loxodromic 8

parabolic parabolic

4

parabolic loxodromic

4

loxodromic loxodromic

4



Two-generator inverse-free discrete semigroups

elliptic elliptic 8

elliptic parabolic 8

elliptic loxodromic 8

parabolic parabolic 4

parabolic loxodromic 4

loxodromic loxodromic 4



Pairs of parabolics



Pairs of parabolics

�

�




�

�






Pairs of loxodromics



Pairs of loxodromics

�

�



�

�



�

�






Solution to Problem III

Theorem. A set F = ff ; gg of two Möbius transformations has

the property that every composition sequence from F converges

generally if and only if one of the following conditions is

satis�ed:

(i) f and g are parabolic and fg is not elliptic

(ii) one of f or g is loxodromic and the other is either

parabolic or loxodromic, and fgn and f ng are not elliptic

for any positive integer n .
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The unknown

Conjecture. If every composition sequence from F is an escaping
sequence, then every composition sequence converges generally.

More generators. Classify those sets of transformations F of size
greater than two with the property that every composition sequence
from F converges generally.

Higher dimensions. Classify those sets of complex transformations F
of size two with the property that every composition sequence from F

converges generally.



The unknown

Conjecture. If every composition sequence from F is an escaping
sequence, then every composition sequence converges generally.

More generators. Classify those sets of transformations F of size
greater than two with the property that every composition sequence
from F converges generally.

Higher dimensions. Classify those sets of complex transformations F
of size two with the property that every composition sequence from F

converges generally.



The unknown

Conjecture. If every composition sequence from F is an escaping
sequence, then every composition sequence converges generally.

More generators. Classify those sets of transformations F of size
greater than two with the property that every composition sequence
from F converges generally.

Higher dimensions. Classify those sets of complex transformations F
of size two with the property that every composition sequence from F

converges generally.



The unknown

Conjecture. If every composition sequence from F is an escaping
sequence, then every composition sequence converges generally.

More generators. Classify those sets of transformations F of size
greater than two with the property that every composition sequence
from F converges generally.

Higher dimensions. Classify those sets of complex transformations F
of size two with the property that every composition sequence from F

converges generally.



Gallery1

1Created using lim by Curt McMullen



Gallery1

1Created using lim by Curt McMullen



Gallery1

1Created using lim by Curt McMullen



Gallery1

1Created using lim by Curt McMullen



Thank you for your attention.


