Editorial
Board |
·
Nair, Radhakrishnan (Liverpool)
nair@liverpool.ac.uk
Ergodic
theoretic aspects of uniform distribution, issues related to pointwise
convergence, metrical theory of uniform distribution, exceptional sets,
exponential sums, distribution of primes, densities and combinatorial number
theory.
·
Pillichshammer, Friedrich (Linz)
friedrich.pillichshammer@jku.at
Discrepancy,
digital nets, quasi-Monte Carlo integration, lattice
rules, tractability of high-dimensional problems.
·
Akiyama, Shigeki (Tsukuba)
akiyama@math.tsukuba.ac.jp
Dynamics
emerging from sequences, continued fractions, interplay between symbolic
dynamics and number theory, spectral properties of sequences.
·
Allouche, Jean-Paul
(Paris)
jean-paul.allouche@imj-prg.fr
Combinatorial
number theory, continued fractions, automatic sequences.
·
Baláž, Vladimír (
vladimir.balaz@stuba.sk
Theory
of densities, summation methods.
·
Berkes, István (Graz)
berkes@tugraz.at
Discrepancies,
distribution of one dimensional and multidimensional sequences.
·
Bugeaud, Yann
(Strasbourg)
bugeaud@math.unistra.fr
Diophantine
approximation, diophantine equations, continued fraction, distribution modulo one.
·
Dick, Josef (Sydney)
josef.dick@unsw.edu.au
Quasi-Monte
Carlo methods, digital nets and sequences, lattice rules, geometric
discrepancy, uniform distribution on the sphere.
·
Drmota, Michael (Vienna)
michael.drmota@tuwien.ac.at
Continuous
uniform distribution, discrepancies, distribution of one dimensional and
multidimensional sequences.
·
Dubickas, Artūras
(Vilnius)
arturas.dubickas@mif.vu.lt
Distribution modulo one, diophantine
approximation.
·
Faure, Henri (Marseille)
henri.faure@univ-amu.fr
Distribution of one dimensional and multidimensional
sequences, discrepancies, quasi-Monte Carlo integration.
·
Giuliano Antonini, Rita (
giuliano@dm.unipi.it
Theory
of densities, distribution functions of sequences, summation methods, continued
fractions.
·
Grabner, Peter (Graz)
peter.grabner@tugraz.at
Point
distributions on manifolds, extremal energy point sets, dynamical and fractal
aspects of uniformly distributed sequences.
·
Grekos, Georges (Saint-Etienne)
grekos@univ-st-etienne.fr
Theory
of densities, combinatorial number theory.
·
Grozdanov, Vasil (Blagoevgrad)
vassgrozdanov@yahoo.com
Well
distributed sequences and nets, discrepancy and diaphony, applications of
uniformly distributed sequences.
·
Gyarmati, Katalin (Budapest)
gykati@cs.elte.hu
Pseudorandomness, combinatorial number theory.
·
Karpenkov, Oleg (Liverpool)
karpenk@liv.ac.uk
Lattice
geometry, multidimensional continued fractions, geometry of numbers., combinatorial number theory.
·
Konyagin, Sergei (Moscow)
konyagin23@gmail.com
Pseudorandom
numbers generators, combinatorial number theory.
·
Kraaikamp, Cor (Delft)
c.kraaikamp@ewi.tudelft.nl
Metric
properties of number theoretic expansions: beta-expansions, one and
multi-dimensional continued fraction algorithms, Lüroth- and Engel series.
·
Kritzer, Peter (Linz)
peter.kritzer@oeaw.ac.at
Discrepancy,
digital nets, lattice rules, quasi-Monte Carlo methods, tractability of
multivariate problems.
·
Larcher, Gerhard (Linz)
Gerhard.Larcher@jku.at
Irregularities
of distribution, discrepancy, diophantine
approximation, low-discrepancy sequences, quasi-Monte Carlo methods,
applications in finance.
·
Lev, Vsevolod (Haifa)
seva@math.haifa.ac.il
Combinatorial
number theory, additive combinatorics.
·
Luca, Florian (Johannesburg)
Florian.Luca@wits.ac.za
Distributions
of binary sequences, combinatorial number theory, diophantine approximations
and diophantine equations, continued fractions.
·
Mišík, Ladislav (Ostrava)
ladislav.misik@osu.cz
The
theory of generalized densities, measures on sets of integers.
·
Niederreiter, Harald (Linz, Salzburg)
ghnied@gmail.com
harald.niederreiter@oeaw.ac.at
All
parts of uniform distribution theory.
·
Ohkubo, Yukio (
ohkubo@eco.iuk.ac.jp
Distribution
of one dimensional and multidimensional sequences, continuous uniform
distribution, discrepancies.
·
Paštéka,
pasteka@mat.savba.sk
Theory
of densities, uniform distribution in groups and rings.
·
Pethő, Attila (Debrecen)
petho.attila@inf.unideb.hu
Diophantine
equations, distribution of polynomials and algebraic numbers, radix
representations, cryptography.
Pintz, János (Budapest)
pintz.janos@renyi.mta.hu
Analytic
number theory, distribution of prime numbers.
·
Sárközy, András (Budapest)
sarkozy@cs.elte.hu
Distribution
of binary sequences, pseudorandom number generators, combinatorial number
theory, character sums, number theoretic ciphers.
·
Shkredov, Ilya (Moscow)
ilya.shkredov@gmail.com
Combinatorial
number theory, continued fractions.
·
Strauch, Oto (Bratislava)
oto.strauch@mat.savba.sk
The
theory of distribution functions of sequences, discrepancies, metric theory of diophantine approximations.
·
Tezuka, Shu (Kyushu)
shu_tezuka@yahoo.co.jp
Quasi-Monte Carlo integration, quasi-Monte Carlo methods
in financial mathematics, pseudorandom number generators.
·
Tichy, Robert F. (
tichy@tugraz.at
Discrepancies,
quasi - Monte Carlo integration, quasi - Monte Carlo methods in financial
mathematics, diophantine approximations and diophantine equations.
·
Tóth, János T. (Ostrava)
tothj@ujs.sk
Distribution
of block sequences, various kinds of dense sequences.
·
Ustinov, Alexey. (Moscow)
ustinov.alexey@gmail.com
Trigonometric
(exponential) sums, continued fractions, geometry of numbers.
·
Verger-Gaugry, Jean-Louis. (Le Bourget-du-Lac)
Jean-Louis.Verger-Gaugry@univ-smb.fr
Number
theory, dynamics.
·
Weber, Michel (Strasbourg)
michel.weber@math.unistra.fr
Ergodic theory, pointwise convergence, probability theory, number theory, Riemann zeta function,
distribution and limit theorems of sequences and random sequences, summatory functions, spectral theory,
stochastic processes theory.
·
Winterhof, Arne (Linz)
arne.winterhof@oeaw.ac.at
Pseudorandom
numbers, measures of pseudorandomness, exponential sums, finite fields.
·
Woźniakowski, Henryk (New York, Warsaw)
henryk@cs.columbia.edu
Discrepancies,
Quasi-Monte Carlo algorithms, Monte-Carlo algorithms, tractability of
multivariate problems, computational complexity of continous problems.