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ON THE DERIVATIVE OF THE MINKOWSKI

QUESTION-MARK FUNCTION

Dmitry Gayfulin

National Research University Higher School of Economics, Moscow, RUSSIA

ABSTRACT. The Minkowski question-mark function ?(x) is a continuous mo-
notonous function defined on [0, 1] interval. It is well known fact that the deriv-

ative of this function, if exists, can take only two values: 0 and +∞. It is also
known that the value of the derivative ?′(x) at the point x = [0; a1, a2, . . . , at, . . .]
is connected with the limit behaviour of the arithmetic mean (a1+a2+ · · ·+at)/t.
Particularly, N. Moshchevitin and A. Dushistova showed that if

a1 + a2 + · · ·+ at < κ1,

where κ1 = 2 log
(
1+

√
5

2

)
/ log 2 = 1.3884 . . . , then ?′(x) = +∞. They also proved

that the constant κ1 is non-improvable. We consider a dual problem: how small
can be the quantity a1 +a2+ · · ·+at−κ1t if we know that ?′(x) = 0? We obtain
the non-improvable estimates of this quantity.

Communicated by Alexey Ustinov

1. Introduction

1.1. The Minkowski function ?(x)

For an arbitrary x ∈ [0, 1] we consider its continued fraction expansion

x = [0; a1, a2, . . . , an, . . .] =
1

a1 +
1

a2 + · · ·
, aj ∈ Z+
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with natural partial quotients at. This representation is infinite when x �∈ Q and
finite for rational x. For irrational numbers the continued fraction representation
is unique, however each rational x has two different representations

x = [0; a1, a2, . . . , an−1, an] and x = [0; a1, a2, . . . , an−1, an − 1, 1],

where an ≥ 2. By Bn we denote the n-th level of the Stern-Brocot tree, that is

Bn := {x = [0; a1, . . . , ak] : a1 + · · ·+ ak = n+ 1}.
In [13] Minkowski introduced the function ?(x) which may be defined as the
limit distribution function of sets Bn. This function was rediscovered several
times and studied by many authors (see [1], [4], [11], [12], [14]). For irrational
x = [0; a1, a2, . . . , an, . . .] the formula

?(x) =

∞∑
k=1

(−1)k+1

2a1+···+ak−1
(1)

introduced by Denjoy [2,3] and Salem [16] may be considered as one of the equiv-
alent definitions of the function ?(x). If x is rational, then the infinite series in (1)
is replaced by a finite sum. Note that ?([0; a1, . . . , at + 1]) =?([0; a1, . . . , at, 1])
and hence ?(x) is well-defined for rational numbers too. It is known that ?(x)
is a continuous strictly increasing function, also its derivative ?′(x), if exists,
can take only two values – 0 and +∞. Almost everywhere in [0; 1] in the sense
of Lebesgue measure the derivative exists and equals 0. Also, if x ∈ Q, then
?′(x) = 0.

1.2. Notation and parameters

We will denote the sequences by capital letters A,B,C and their elements
by the corresponding small letters ai, bj , ck. All sequences of the present paper
contain positive integers unless otherwise stated. For an arbitrary finite sequence
B = (b1, b2, . . . , bn) we denote

←−
B = (bn, bn−1, . . . , b1), S(B) =

n∑
i=1

bi, Π(B) =

n∏
i=1

bi.

By 〈A〉 we denote the continuant of (possibly empty) finite sequence A =
(a1, . . . , at). It is defined as follows: the continuant of the empty sequence 〈·〉
equals 1, 〈a1〉 = a1, if t ≥ 2 one has

〈a1, a2, . . . , at〉 = at〈a1, a2, . . . , at−1〉+ 〈a1, a2, . . . , at−2〉. (2)

Note that the finite continued fraction [0; a1, . . . , at] can be expressed using con-
tinuants

[0; a1, . . . , at] =
〈a2, . . . , at〉
〈a1, a2, . . . , at〉 . (3)
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Rule (2) can be generalized as follows

〈a1, a2, . . . , at, at+1, . . . , as〉= 〈a1, a2, . . . , at〉〈at+1, . . . , as〉
+〈a1, a2, . . . , at−1〉〈at+2, . . . , as〉

= 〈a1, a2, . . . , at〉〈at+1, at+2, . . . , as〉
×(1 + [0; at, at−1, . . . , a1][0; at+1, at+2, . . . , as]).

(4)

One can find more about the properties of continuants in [9].

For an irrational x = [0; a1, a2, . . . , an, . . .] we consider the sum Sx(t) of its
partial quotients up to tth

Sx(t) = a1 + a2 + · · ·+ at.

Throughout the paper we always denote the sequence of partial quotients of x
by a1, a2, . . . , at, . . . unless otherwise stated. We will also denote the sequence
of t first elements of this infinite sequence by At. Thus, Sx(t) = S(At). We use
subscripts to indicate the repetition of a certain integer number: in particular,

1n = 1, 1, . . . , 1︸ ︷︷ ︸
n numbers

.

We also need the following constants

Φ =
1 +
√
5

2
= 1.618034 . . . , κ1 =

2 logΦ

log 2
= 1.3884838 . . . , (5)

λn =
n+
√
n2 + 4

2
, (6)

κ2 =
4 logλ5 − 5 logλ4

log λ5 − log λ4 − log
√
2
= 4.4010487 . . . , (7)

κ4 =

√
κ1 − 1

log 2
= 0.7486412 . . . (8)

For an arbitrary sequence A of length t we denote S(A) − κ1t by ϕ(1)(A).

For x = [0; a1, . . . , at, . . .] we denote ϕ(1)(At) by ϕ
(1)
x (t).

1.3. Critical values

In the paper [15] it was shown by J. Paradis, P. Viader, L. Bibiloni that the
value of the derivative of the function ?(x) is connected with the limit behaviour
of Sx(t)/t – the arithmetic mean of t first partial quotients of x. They showed
that if for some irrational number x the inequality Sx(t)/t < κ1 holds and
the derivative ?′(x) exists, then ?′(x) = +∞. To formulate their second result,
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let us introduce the constant z0 ≈ 5.319 – the positive root of the equation
2 log(1 + z) = z log 2. It was shown in [15] that if Sx(t)/t ≥ z0 and ?′(x) exists,
then ?′(x) = 0.

In the paper [4] A. Dushistova and N. Moshchevitin improved the results
of [15] and formulated the following two theorems.

���������

(i) Let for real irrational x ∈ (0, 1) the inequality Sx(t) < κ1t holds for all t
large enough. Then the derivative ?′(x) exists and equals +∞.

(ii) For any positive ε there exists an irrational number x ∈ (0, 1), such that
?′(x) = 0 and the inequality Sx(t) < (κ1 + ε)t holds for all t large enough.

�������	�

(i) Let for real irrational x ∈ (0, 1) the inequality Sx(t) > κ2t holds for all t
large enough. Then the derivative ?′(x) exists and equals 0.

(ii) For any positive ε there exists an irrational number x ∈ (0, 1), such that
?′(x) = +∞ and the inequality Sx(t) > (κ2 − ε)t holds for all t large
enough.

One can see that the constants κ1 and κ2 in theorems A and B are non-
improvable.

1.4. The dual problem

In the paper [5] the dual problem was considered. Suppose that ?′(x) = 0.

How small can be the difference ϕ
(1)
x (t) = Sx(t)−κ1t? Statement (ii) of Theorem

A implies that ϕ
(1)
x (t) can be less than εt for any positive ε. The first non-

trivial estimate of ϕ1
x(t) was obtained in [5] by A. Dushistova, I. Kan and N.

Moshchevitin.

�������
�

(i) Let for irrational x ∈ (0, 1) the derivative ?′(x) exists and ?′(x) = 0. Then
for any ε > 0 for all t large enough one has

max
u≤t

ϕ(1)
x (u) = max

u≤t
(Sx(u)− κ1u) ≥ (κ4 − ε)

√
t log t. (9)

(ii) There exists an irrational x ∈ (0, 1), such that ?′(x) = 0 and or any ε > 0
for all t large enough one has

ϕ(1)
x (t) = Sx(t)− κ1t ≤ (2

√
2 + ε)κ4

√
t log t. (10)

In the paper [8] a strengthened version of the inequality (9) was obtained.
It was shown that within the same condition for all t large enough one has

max
u≤t

ϕ(1)
x (u) ≥ 2√

3
κ4

√
t log t. (11)
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Of course, one can ask the same question when ?′(x) = +∞. How small can be
the difference κ2t− Sx(t)? The first result in this area was also obtained in [5].
It was improved several times and for now the best known estimates are the
following.

���������

(i) Let for real irrational x ∈ (0, 1) the derivative ?′(x) exists and ?′(x) = +∞.
Then for all t large enough one has

max
u≤t

(
κ2u− Sx(u)

) ≥ 0.06222
√
t. (12)

(ii) There exists an irrational x ∈ (0, 1), such that ?′(x) = +∞ and for all t
large enough one has

κ2t− Sx(t) ≤ 0.26489
√
t. (13)

2. Main results

Note that there are different quantities on the left-hand sides of the inequal-
ities (9) and (10). One can say that the inequality (9) considers the uniform

behaviour of ϕ
(1)
x (t), whereas the inequality (10) deals with the local behaviour of

this quantity. In the present paper we consider upper and lower estimates in both
cases. Our first theorem states that the constant in (10) is non-improvable.

������� 1� Let for irrational x ∈ (0, 1) the derivative ?′(x) exists and ?′(x)=0.
Then for any ε > 0 for infinitely many t one has

ϕ(1)
x (t) ≥ (2

√
2− ε)κ4

√
t log t. (14)

Our second theorem provides optimal estimates of the uniform behaviour

of ϕ
(1)
x (t).

������� 2�

(i) Let for irrational x ∈ (0, 1) the derivative ?′(x) exists and ?′(x) = 0. Then
for any ε > 0 for all t large enough one has

max
u≤t

ϕ(1)
x (u) ≥ (

√
2− ε)κ4

√
t log t. (15)

(ii) For any ε > 0 there exists an irrational x ∈ (0, 1) such that ?′(x) = 0 and
for infinitely many t one has

max
u≤t

ϕ(1)
x (u) ≤ (

√
2 + ε)κ4

√
t log t. (16)
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3. Auxiliary lemmas

3.1. Increment lemmas and their corollaries

The following two lemmas shed light on the connection between the behaviour
of the sum of partial quotients of x and the value of the derivative ?′(x).

����
 3.1 ([5], Lemma 1)� For an irrational x = [0; a1, a2, . . . , at, . . .] and for
δ small in absolute value, there exists a natural t = t(x, δ)1 such that

?(x+ δ)−?(x)
δ

≥ 〈At〉〈At−1〉
2Sx(t)+4

. (17)

����
 3.2 ([5], Lemma 2)� For an irrational x = [0; a1, a2, . . . , at, . . .] and for
δ small in absolute value, there exists a natural t = t(x, δ)2 such that

?(x+ δ)−?(x)
δ

≤ 〈At〉2
2Sx(t)−2

. (18)

It is not convenient for us that the numerators of the right-hand sides of
(17) and (18) do not coincide. That is why we prove a “symmetric” corollary of
Lemmas 3.1 and 3.2.

����
 3.3� For an irrational x = [0; a1, a2, . . . , at, . . .] the derivative ?′(x)
equals zero if and only if

lim
t→∞

〈At〉√
2
Sx(t)

= 0. (19)

In the proof of this lemma we will use the following statement from [10].

����
 3.4 ([10], Lemma 2.1)� Let for irrational x ∈ (0, 1) the derivative ?′(x)
exists and ?′(x) = 0. Then

lim
t→∞

〈At−1〉√
2
Sx(t)

= 0. (20)

One can consider this lemma as the reversed version of Lemma 3.1. Now we
are ready to prove Lemma 3.3.

1It was also shown in [5], however not included in the statement of the lemma, that t(x, δ) → ∞
as δ → 0. We will use the fact in our future argument.
2Again, t(x, δ) → ∞ as δ → 0.
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P r o o f.

(⇐) Follows immediately from Lemma 3.2.

(⇒) It follows from Lemma 3.4 that (20) holds. Suppose that 〈At〉√
2
Sx(t) does not

tend to zero as t→∞. That is, there exists a positive constant c such that

〈At〉√
2
Sx(t)

> c (21)

for infinitely many t. Consider N ∈ N such that for any n ≥ N one has

〈An−1〉√
2
Sx(n)

<
c

100
.

Consider an arbitrary integer t > N + aN such that the inequality (21) holds.
Then

(at + 1)c

100
>

(at + 1)〈At−1〉√
2
Sx(t)

>
〈At〉√
2
Sx(t)

> c.

Thus, at ≥ 100. On the other hand,
√
2
at
c

(at−1 + 1)(at + 1)
<

√
2
at

at−1 + 1

〈At−1〉√
2
Sx(t)

<
〈At−2〉√
2
Sx(t−1)

<
c

100
.

Therefore, we have 100
√
2
at

< (at−1 + 1)(at + 1). As at ≥ 100, one can easily
see that at−1 > at + 1. From (21) one can also derive that

〈At−1〉√
2
Sx(t−1)

>
at + 1√

2
at

〈At−1〉√
2
Sx(t−1)

>
〈At〉√
2
Sx(t)

> c.

Repeating the same argument t − N times we obtain that aN > at + t − N >
at + aN and therefore we come to a contradiction. �

3.2. Continuant lower estimate

The following lemma is a useful tool to estimate the values of continuants,
most of whose elements are equal to 1. We introduce some notation first. Having
a sequence At, denote by w(At) the number of its elements greater than 1.
The set of such elements forms the sequence that we denote by

dAt
(1), dAt

(2), . . . , dAt

(
w(At)

)
.

����
 3.5� For an arbitrary continuant 〈At〉 = 〈a1, a2, . . . , at〉 one has

〈At〉 ≥ 1

2
Φt

w(At)∏
i=1

(
dAt

(i)

4

)
. (22)
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P r o o f. We prove by induction on w(At). If w(At) equals zero, then 〈At〉 =
Ft+1 – (t + 1)th Fibonacci number and one can easily verify (22) using Binet’s
formula.

Now suppose that the inequality (22) holds for all At such that w(At) = n.
Consider an arbitrary continuant 〈At〉 having w(At) = n+1. Let us also consider
the continuant 〈A′

t〉, which is obtained from 〈At〉 by replacing one of its elements
greater than one by 1. Of course, w(A′

t) = n and one has

〈At〉 = 〈At〉
〈A′

t〉
〈A′

t〉 ≥
〈At〉
〈A′

t〉
1

2
Φt

n∏
i=1

(
dA′

t
(i)

4

)
. (23)

Applying (4), one can easily see that for arbitrary finite sequences A and B
one has

〈A, x,B〉 = 〈A, x〉〈B〉(1 + [0;x,
←−
A ][0;B])

= x〈A〉〈B〉(1 + [0;
←−
A ][0;x])(1 + [0;x,

←−
A ][0;B]). (24)

Hence,

〈A, x,B〉
〈A, 1, B〉 = x

1 + [0;x,
←−
A ][0;B]

1 + [0; 1,
←−
A ][0;B]

1 + [0;
←−
A ][0;x]

1 + [0;
←−
A ]

≥ x
1

2
· 1
2
=

x

4
. (25)

Applying the lower estimate of 〈At〉
〈A′

t〉 from (25) to (23), we prove the induction

step. The lemma is proved. �

����
 3.6� Suppose that ?′(x) = 0. Then ϕ
(1)
x (t) > 0 for all t large enough.

P r o o f. From Lemma 3.3 one has
〈At〉√
2
Sx(t)

<
1

2

for all t large enough. Using an obvious estimate 〈At〉 > Φt

2 from (22), one has

1

2
>
〈At〉√
2
Sx(t)

>
1

2

Φt

√
2
κ1t+ϕ

(1)
x (t)

.

As
√
2
κ1

= Φ, we obtain the statement of the lemma. �

����
 3.7� Consider three arbitrary real numbers s ≥ β > α ≥ 3. Let R(s, α, β)
be the set of all finite sequences R = (r1, . . . , rk) of real numbers such that
α ≤ ri ≤ β for all i ≤ k and S(R) = s. Then

min
R∈R(s,α,β)

Π(R) ≥ β

[
s
β

]
. (26)

108



ON THE DERIVATIVE OF THE MINKOWSKI QUESTION-MARK FUNCTION

P r o o f. Note that the number k is not fixed in the definition of R(s, α, β).
Denote

f(s, α, β) = min
R∈R(s,α,β)

Π(R).

It is clear that the function f(s, α, β) is monotonic in the first argument. Hence,
without loss of generality one can say that s

β ∈ Z. Consider the sequence

Rβ = (β, β, . . . , β︸ ︷︷ ︸
s/β times

).

Using the compactness argument, one can easily see that there exists a sequence
R0 = (r01, . . . , r

0
m) ∈ R(s, α, β) such that Π(R0) = f(s, α, β). Suppose that

R0 �= Rβ . One can easily show that R0 cannot contain more than two elements
not equal to α or β. Indeed, if α < r0i ≤ r0j < β, then there exists δ > 0 such

that r0i − δ > α and r0j + δ < β. As (r0i − δ)(r0j + δ) < r0i r
0
j , one can see that

Π(r01 , . . . , r
0
i−1, r

0
i − δ, r0i+1, . . . , r

0
j−1, r

0
j + δ, r0j+1, . . . , r

0
m) <

Π(r01 , . . . , r
0
i−1, r

0
i , r

0
i+1, . . . , r

0
j−1, r

0
j , r

0
j+1, . . . , r

0
m) (27)

and we obtain a contradiction with the definition of R0.

On the other hand, it follows from the definition of R0 that

Π(R0) ≤ Π(Rβ). (28)

Without loss of generality one can assume that R0 does not contain elements
equal to β. Indeed, if we remove all such elements from R0 and the same number
of elements from Rβ , the inequality (28) will be still satisfied. Thus,

R0 = (x, α, α, . . . , α︸ ︷︷ ︸
(s−x)/α times

)

up to transposition of elements. Here α ≤ x < β.

Denote n = s−x
α . Inequality (28) can be written as

αnx ≤ β
αn+x

β . (29)

But in fact, the opposite inequality is true for all α ≤ x ≤ β. Taking into account
the fact that αβ > βα for β > α ≥ 3, one can easily verify that

αnx > β
αn+x

β (30)

for x = α and x = β. As β
αn+x

β is a convex downward function of x, one can
deduce that it lies below the linear function αnx for all α ≤ x ≤ β. Thus,
we obtain a contradiction with (28) and the lemma is proved. �
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3.3. Elimination of small elements greater than 1

����
 3.8� Let A,C be arbitrary (possibly empty) sequences of positive inte-
gers. Let B be a symmetric sequence. Consider two arbitrary integers p ≥ m ≥ 1.
Then 〈A, 1, B, p+m− 1, C〉 ≤ 〈A,m,B, p, C〉. (31)

P r o o f. Denote q = p+m
2 . Consider the function

f(x) = 〈A, q + x,B, q − x,C〉,
where x run through the set of integers if p+m is even and runs through the set
of half-integers otherwise. One can see that f(x) is a quadratic polynomial with
negative leading coefficient. The maximum of f(x) is attained at the point3

xm =
[0;
←−
B ]− [0;B] + [0;C]− [0;

←−
A ]

2
.

As B is a symmetric sequence, [0;
←−
B ] = [0;B] and therefore |xm| ≤ 1

2 . Hence,
as p ≥ m ≥ 1, one can easily see that

〈A, 1, B, p+m−1, C〉= f

(
−p+m− 2

2

)
≤ f

(
−p−m

2

)
= 〈A,m,B, p, C〉. �

����
 3.9� Suppose that ?′(x) = 0. Then there exists an irrational number
y = [0; b1, b2, . . . , bt, . . .] such that:

(1) ?′(y) = 0.

(2) For all i ∈ N either bi = 1 or bi ≥ 12.

(3) For all i ∈ N one has ϕ
(1)
y (i) ≤ ϕ

(1)
x (i).

P r o o f. First, let us eliminate all elements equal to 2 from the infinite sequence
(a1, a2, . . .). Denote by s1 the smallest index such that as1 = 2. Denote by t1 the
smallest index greater than s1 such that at1 > 1. Now the procedure is repeated,
recursively,

si = min{n : n > ti−1, an = 2}, ti = min{n : n > si, an > 1}
Thus, we obtain the two (possibly infinite) growing sequences s1 < t1 < s2 <
t2 < . . . Note that if sj < n < tj for some j, then an = 1. Define the irrational
number x′ = [0; a′1, a

′
2, . . . , a

′
t, . . .] as follows

a′n =

⎧⎨
⎩

an − 1 = 1 if n = si, for some i ∈ N,
an + 1 if n = ti, for some i ∈ N,
an, otherwise.

3see [6], Lemma 5.4 for computational details
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One can easily see from the definition of x′ that ϕ
(1)
x′ (t) ≤ ϕ

(1)
x (t) for all t ≥ 1.

Let us now show that ?′(x′) = 0.

It follows from Lemma 3.8 that 〈a′1, a′2, . . . , a′t〉 := 〈A′
t〉 ≤ 〈At〉 for all t ≥ 1.

On the other hand |Sx′(t)− Sx(t)| ≤ 1. Hence, as

lim
t→∞

〈At〉√
2
Sx(t)

= 0

by Lemma 3.3, we obtain that

lim
t→∞

〈A′
t〉√

2
Sx′(t)

= 0

and therefore ?′(x′) = 0. Using the same argument, one can eliminate the ele-
ments equal to 3, 4, . . . , 11 from the sequence a′1, a

′
2, . . . The lemma is proved. �

����
 3.10� Suppose that ?′(x) = 0 and all partial quotients of x are either
equal to 1 or greater than 11. There exists T ∈ N such that for all t > T the

inequality ϕ
(1)
x (t) > 3w(At) holds.

P r o o f. Lemma 3.3 implies that there exists an integer T such that ∀t > T
one has 〈At〉√

2
Sx(t)

<
1

2
.

Hence, as x
4 ≥ 3 for x ≥ 12 and

√
2
κ1

= Φ, one has by Lemma 3.5

1

2
>
〈At〉√
2
Sx(t)

≥ 1

2

Φt3w(At)

√
2
κ1t+ϕ

(1)
x (t)

=
1

2

3w(At)

√
2
ϕ

(1)
x (t)

. (32)

Statement of the lemma immediately follows from (32) as
√
2
3
< 3. �

4. Blocks structure and lower estimates

4.1. Parameters introduction

Let x = [0; a1, a2, . . . , at, . . .] be an irrational number such that ?′(x) = 0.
By Lemma 3.9, without loss of generality one can say that either ai = 1 or
ai ≥ 12 for all i ∈ N. Throughout the remaining part of the paper we consider
ε as a fixed positive real number from the statements of Theorems 1 and 2.
Let λ = λ(ε) be an arbitrary rational number such that 1 > λ > 1 − ε6.
Define the following integer constants

M =
10 log ε

log λ
, P =

[
log 6

log (1 + ε2)

]
+ 1, N = 2M (P + 2). (33)
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Now we select an integer parameter t0 large enough such that (1−λ)λN t0 > t0
log t0

and
λN t0 ∈ Z. (34)

Denote ti = λit0, where 1 ≤ i ≤ N . We define

Bi = (ati+1, ati+2, . . . , ati−1
)− the ith block,

where 1 ≤ i ≤ N . Denote tN+1 = 0 and BN+1 = (atN+1+1, . . . , atN ). Thus, we
have

[0;At0 ] = [0; a1, . . . , at0 ] = [0;BN+1, BN , . . . , B1].

One can easily see that Sx(t0) =
∑N+1

i=1 S(Bi) and ϕ
(1)
x (t0) =

∑N+1
i=1 ϕ(1)(Bi).

For each block Bi denote its greatest element by Mi and the index of such
element by mi (if the greatest element is not unique, we take the rightmost
one). Thus, ami

= Mi. Denote ck = Mk√
tk−1 log t0

. Let us also consider for each

1 ≤ i ≤ N + 1 the short block B′
i = (ati+1, . . . , ami−1). Note that

ϕ(1)
x (mi) = ϕ(1)(BN+1) + ϕ(1)(BN ) + · · ·

· · ·+ ϕ(1)(Bi+1) + ϕ(1)(B′
i) + (Mi − κ1). (35)

For each 1 ≤ i ≤ N + 1 define the real numbers fi and f ′
i from the following

identities

〈Bi〉 =
√
2
S(Bi)+fi

√
ti−1 log t0

, 〈B′
i〉 =

√
2
S(B′

i)+f ′
i

√
ti−1 log t0

. (36)

4.2. Lower estimate of ϕ(1)(Bk)

����
 4.1� Suppose that ?′(x) = 0. Then for all 1 ≤ i ≤ N one has

f ′
i

√
ti−1 log t0 +

N+1∑
k=i+1

fk
√
tk−1 log t0 < 0. (37)

P r o o f. As ?′(x) = 0, by Lemma 3.3, without loss of generality one can say that
for all 1 ≤ i ≤ N the inequality

〈BN+1, BN , . . . , Bi+1, B
′
i〉√

2
S(BN+1)+S(BN )+···+S(Bi+1)+S(B′

i)
< 1

is satisfied. Using (4) we obtain

〈BN+1〉〈BN 〉 . . . 〈Bi+1〉〈B′
i〉√

2
S(BN+1)+S(BN )+···+S(Bi+1)+S(B′

i)
< 1. (38)

Substituting (36) to (38) and taking logarithm of both parts, we get the state-
ment of the lemma. �
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����
 4.2� Suppose that ?′(x) = 0. If the inequality

|ϕ(1)(Bk)| ≥ κ1(tk−1 − tk)ε
5, (39)

holds for some 1 ≤ k ≤ N + 1, then one has:

max
tN≤u≤t0

ϕ(1)
x (u) ≥ t0.90 . (40)

P r o o f. Suppose that

ϕ(1)(Bk) ≥ κ1(tk−1 − tk)ε
5.

As,

ϕ(1)
x (tk−1) = ϕ(1)

x (tk) + ϕ(1)(Bk),

using the fact that ϕ
(1)
x (tk) > 0 by Lemma 3.6, we have

max
tN≤u≤t0

ϕ(1)
x (u) ≥ ϕ(1)

x (tk−1) > ϕ(1)(Bk) ≥ κ1(tk−1 − tk)ε
5

= κ1ε
5λk−1(1− λ)t0 > t0.90 . (41)

On the other hand, if

ϕ(1)(Bk) ≤ −κ1(tk−1 − tk)ε
5,

we again use the fact that ϕ
(1)
x (tk−1) > 0 and obtain

max
tN≤u≤t0

ϕ(1)
x (u) ≥ ϕ(1)

x (tk)

= ϕ(1)
x (tk−1)− ϕ(1)(Bk) ≥ κ1(tk−1 − tk)ε

5 > t0.90 . �

One can easily deduce from Lemma 4.2 that if the inequality (39) holds, then
the inequalities (14) and (15)) are satisfied. Therefore, throughout the remaining
part of the paper we will assume that

S(Bk) = κ1(tk−1 − tk)
(
1 + o(ε4)

)
(42)

for all 1 ≤ k ≤ N + 1.

����
 4.3� Suppose that ?′(x) = 0. Then for all 1 ≤ k ≤ N + 1 one has

ϕ(1)(Bk) ≥ (κ1 − 1)(tk−1 − tk)
√
log t0(1 + o(ε4))

ck
√
tk−1 log 2

− fk
√
tk−1 log t0. (43)

P r o o f. We recall that w(Bk) is the number of elements of the block Bk which
are greater than 1 and dBk

(1), . . . , dBk
(w(Bk)) is the sequence of such elements.

It follows from eqrefsbkass and Lemma 3.10 that

w(Bk)∑
i=1

dBk
(i) = (κ1 − 1)(tk−1 − tk)

(
1 + o(ε4)

)
.
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Therefore, as dBk
(i) ≥ 12 for all i, one has

dBk
(i)

4 ≥ 3. Now we can obtain a
lower estimate of

w(Bk)∏
i=1

(
dBk

(i)

4

)
applying Lemma 3.7 for s = 1

4 (κ1 − 1)(tk−1 − tk)
(
1 + o(ε4)

)
, α = 3, and

β = ck
√
tk−1 log t0. We have

w(Bk)∏
i=1

(
dBk

(i)

4

)
≥
(
ck
√
tk−1 log t0

4

)(κ1−1)(tk−1−tk)(1+o(ε4))

ck
√

tk−1 log t0

. (44)

Substituting the estimate (44) to (22) we obtain

〈Bk〉 ≥ Φtk−1−tk

(
ck
√
tk−1 log t0

4

)(κ1−1)(tk−1−tk)(1+o(ε4))

ck
√

tk−1 log t0

. (45)

Taking into account that
√
2
κ1

= Φ, from (36), (45) and Lemma 3.3 we get

(
ck
√
tk−1 log t0

4

)(κ1−1)(tk−1−tk)(1+o(ε4))

ck
√

tk−1 log t0 ≤
√
2
ϕ(1)(Bk)+fk

√
tk−1 log t0

. (46)

Taking logarithms of both parts of (46), after some transformations we obtain
the inequality

(κ1 − 1)(tk−1 − tk)(1 + o(ε4))

ci
√
tk−1 log t0

log t0
2
≤ (ϕ(1)(Bk)+ fk

√
tk−1 log t0) log

√
2 (47)

which is equivalent to (43). Lemma is proved. �

4.3. Main lower estimate

For k ≤ N one can write (43) as

ϕ(1)(Bk) ≥
(
(κ1 − 1)(1− λ)(1 + o(ε4))

ck log 2
− fk

)√
tk−1 log t0. (48)

For k = N + 1 we have

ϕ(1)(BN+1)≥
(
(κ1 − 1)(1 + o(ε4))

cN+1 log 2
−fN+1

)√
tN log t0 > −fN+1

√
tN log t0. (49)

One can also deduce the following trivial lower estimate of ϕ(1)(B′
k) using (36)

ϕ(1)(B′
k) ≥ −f ′

k

√
tk−1 log t0. (50)
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����
 4.4� Suppose that ?′(x) = 0. Then for all 1 ≤ i ≤ N one has

ϕ(1)
x (mi)>

(
(κ1 − 1)(1− λ)

log 2

N∑
k=i+1

(
(
√
λ)k−i

ck

)
+ci

)√
ti−1 log t0

(
1+o(ε4)

)
. (51)

P r o o f. Substituting the estimates (43) for k = N,N − 1, . . . , i + 1, (49), and
eqrefgenest2 to (35) and taking into account the inequality (37) we obtain

ϕ(1)
x (mi) >

(
1 + o(ε4)

)( (κ1 − 1)
√
log t0

log 2

N∑
k=i+1

tk−1 − tk
ck
√
tk−1

)

+
(
ci
√

ti−1 log t0 − κ1

)
. (52)

Taking into account the fact that tk = λkt0, we immediately obtain (51). Lemma
is proved. �

Inequality (51) is the key tool that we will use in proofs of Theorem 1 and the
first statement of Theorem 2. Let us simplify it using a new notation. Denote

α =
(κ1 − 1)

log 2
, η =

1

α
. (53)

Then, one can rewrite (51) as follows

ϕ(1)
x (mi) ≥

(
(1− λ)

N∑
k=i+1

(
√
λ)k−i

ck
+ ηci

)
α
√
ti−1 log t0.

(
1 + o(ε4)

)
. (54)

5. Key lemmas

The inequality (54) reduces the estimation of max1≤i≤N ϕ
(1)
x (mi) to the prob-

lem of finding maximum of the following quantity

(1− λ)

N∑
k=i+1

(
√
λ)k−i

ck
+ ηci, i = 1, 2, . . . , N.

Note that this problem does not deal with the Minkowski function, continued
fractions etc. It is purely combinatorial. The following lemma allows us to esti-
mate the desired maximum.
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����
 5.1� Let η, c1, c2, . . . , cN be arbitrary positive real numbers. Define the
real numbers ϕi as follows

ϕi := (1− λ)

N∑
k=i+1

√
λ
k−i

ck
+ ηci. (55)

Then the following inequality holds

max
1≤i≤N

ϕi ≥
√
8η
(
1 + o(ε)

)
. (56)

P r o o f. The proof of the lemma will be splitted into several steps. We also recall
that the constants M , N , and P used in our argument are defined in (33).

����
 5.2� Suppose that the inequality (56) is not satisfied. Then there exists
a natural number i1 ≤M such that ci1 ≥ 1

2
√
η . Moreover, for all i ≤ N one has

ci <
3√
η
. (57)

P r o o f. Suppose the contrary. Let us estimate ϕ1 from below

ϕ1 ≥ (1− λ)

N∑
k=1

√
λ
k

ck+1
+ ηc1 ≥ (1− λ)

M∑
k=1

√
λ
k

ck+1
≥ 2
√
η(1− λ)

M∑
k=1

√
λ
k

= 2
√
η(1− λ)

√
λ
1−√λM

1−√λ = 2
√
η(1 +

√
λ)
(
1 + o(ε4)

)
>
√

8η
(
1 + o(ε4)

)
. (58)

We obtain a contradiction with (56). The estimate (57) comes from the trivial
inequality ϕi > ηci. Lemma is proved. �

����
 5.3� Suppose that the inequality (56) is not satisfied. Then for all
im < N −M, m ≥ 1 there exists a number im < im+1 < im + M such that
cim+1

> (1 + ε2)cim .

P r o o f. Suppose the contrary. Let the inequality cim+j < cim(1+ε2) be satisfied
for all 1 ≤ j ≤M . Then, using the argument from Lemma 5.2 we obtain

ϕim ≥ (1− λ)

M∑
j=1

√
λ
j

cim+j
+ ηcim ≥

1− λ

1 + ε2

M∑
j=1

√
λ
j

cim
+ ηcim

≥
(

2

(1 + ε2)cim
+ ηcim

)(
1 + o(ε4)

) ≥√ 8η

1 + ε2
(
1 + o(ε4)

)
. (59)

In the last “≥” of (59) we use the Cauchy-Schwarz inequality. We come to a
contradiction with (56). Lemma is proved. �
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Now we are ready to prove Lemma 5.1. Suppose that the inequality (56)
is not satisfied. By Lemma 5.2 there exists 1 ≤ i1 < M such that ci ≥ 1

2
√
η .

Applying Lemma 5.3 P =
[

log 6
log (1+ε2)

]
+ 1 times, we obtain the number ciP+1

such that
ciP+1

>
1

2
√
η
(1 + ε2)P η >

3√
η
.

We come to a contradiction with (57). Lemma is proved. �

One can rewrite (54) as

ϕ(1)
x (mi) ≥

√
λ
i
(
(1− λ)

N∑
k=i+1

(
√
λ)k−i

ck
+ ηci

)
α
√
t0 log t0

(
1 + o(ε4)

)
. (60)

Note that
√
λ = 1 + o(ε5). As the first statement of Theorem 2 requires us

to show that max1≤i≤N ϕ
(1)
x (mi) is greater than

√
t0 log t0 multiplied by some

constant factor, we need to estimate the maximum of the following quantity

√
λ
i
(
(1− λ)

N∑
k=i+1

(
√
λ)k−i

ck
+ ηci

)
, i = 1, 2, . . . , N.

This estimate is provided by the following lemma.

����
 5.4� Let C = (c1, c2, . . . , cN ) be an arbitrary sequence of non-negative
real numbers. Let η be an arbitrary positive real number. Define the numbers ϕi

using (55). Define the numbers ϕ′
i as follows

ϕ′
i(C) :=

√
λ
i
ϕi = (1− λ)

N∑
k=i+1

√
λ
k

ck
+
√
λ
i
ηci. (61)

Then one has
max

1≤i≤N
ϕ′
i(C) ≥

√
2η
(
1 + o(ε)

)
. (62)

P r o o f. The proof of the lemma will be also splitted into several steps. First,

using the substitution dj =
√
λ
j
cj, we write (61) as

ϕ̃′
i(D) := ϕ′

i(C) = (1− λ)

N∑
k=i+1

λk

dk
+ ηdi. (63)

Here D = (d1, d2, . . . , dN ). Denote ϕ̃′
max(D) = max

1≤k≤N
ϕ̃′
k(D). In order to prove

the lemma it is enough for us to show that

min
D∈R

N
+

ϕ̃′
max(D) =

√
2η
(
1 + o(ε)

)
. (64)

Denote the left-hand side of (64) by ymin.
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����
 5.5� Suppose that ϕ̃′
max(D) = ymin for some D ∈ RN

≥0. Then for all

1 ≤ k ≤ N one has ϕ̃′
k(D) = ymin.

P r o o f. Suppose that ϕ̃′
max(D) = ymin, but for some i one has ϕ̃′

i(D) < ymin.
We call the index n minimizing if ϕ̃′

n(D) = ymin. Let k be the largest non-
minimizing index. Without loss of generality one can say that all indices less
than k are not minimizing too. Indeed, consider the sequence

D′ = (d1, . . . , dk−1, dk + δ, dk+1, . . . , dN ),

where δ > 0 is some small parameter. One can easily see that ϕ̃′
i(D

′) < ϕ̃′
i(D)

for i < k, ϕ̃′
i(D

′) > ϕ̃′
i(D) for i= k and ϕ̃′

i(D
′) = ϕ̃′

i(D) for i > k. As k is a
non-minimizing index, there exists δ > 0 such that ϕ̃′

i(D
′) < ymin for all i ≤ k.

Thus, k + 1 is the smallest minimizing index. As all indices less than k + 1
are not minimizing, there exists δ > 0 such that for the sequence

D′′ = (d1, . . . , dk, dk+1 − δ, dk+2, . . . , dN )
one has

ymin>ϕ̃′
i(D

′′) > ϕ̃′
i(D) for i≤k and ϕ̃′

i(D
′′)<ϕ̃′

i(D)=ymin for i=k + 1.

Thus, we obtained the sequence whose smallest minimizing index is at least k+2.

Repeating this argument we obtain the sequence D(N) =
(
d
(N)
1 , d

(N)
2 , . . . , d

(N)
N

)
with the smallest minimizing index equal to N . One can easily see that for the
sequence

D′(N) =
(
d
(N)
1 , d

(N)
2 , . . . , d

(N)
N − δ

)
for δ > 0 small enough one has ϕ̃′

max(D
′(N)) < ϕ̃′

max(D
(N)) = ymin and we

obtain a contradiction with the definition of ymin. Lemma is proved. �

����
 5.6� There exists a unique sequence D = (d1, d2, . . . , dN ) such that
ϕ̃′
max(D) = ymin. The elements of this sequence satisfy the recurrent equation

dk+1 =
dk +

√
d2k + 4(1−λ)λk+1

η

2
(65)

with the initial condition d1 = 0.

P r o o f. Lemma 5.5 implies that ϕ̃′
N (D) = ymin. This fact yields a linear equa-

tion ηdN = ymin from which dN is uniquely defined. Then we substitute dN
to the equation ϕ̃′

N−1(D) = ymin and find dN−1 etc. Therefore the sequence D
is uniquely defined.

Suppose that d1 > 0. But if we decrease d1, we would also decrease ϕ̃′
1(D)

and not change ϕ̃′
i(D) for i ≥ 2, but ϕ̃′

max(D) would be still equal to ymin.
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We obtain a contradiction with the uniqueness of D. Finally, from the equation

ϕ̃′
k+1(D) = ϕ̃′

k(D)

one can derive

η(dk+1 − dk) = (1− λ)
λk+1

dk+1
. (66)

Considering (66) as the quadratic equation on dk+1 and choosing the positive
root, we obtain (65). Lemma is proved. �

Thus, ymin = ηdN where dN can be evaluated from the recurrent equa-
tions (65). Multiplying both sides of (65) by

√
η, we obtain

√
ηdk+1 =

√
ηdk +

√
(
√
ηdk)2 + 4(1− λ)λk+1

2
. (67)

Put ek =
√
ηdk. Using the introduced notation, one can write (67) as follows

ek+1 =
ek +

√
e2k + 4(1− λ)λk+1

2
. (68)

Denote4 δk = (1− λ)λk and Xn =
n∑

k=1

δn.

����
 5.7� For n ≥ 1 one has

en <
√
2Xn and en+1 − en >

√
2Xn+2 −

√
2Xn+1.

P r o o f. The first statement is proved by induction. For n = 1 one can easily
verify the inequality. As

√
x is a convex function, one can easily see that

en+1 =
en +

√
e2n + 4δn+1

2
<

√
2Xn +

√
2Xn + 4δn+1

2

<
√
2Xn + 2δn+1 =

√
2Xn+1. (69)

Now we prove the second statement. Note that

en+1 − en =

√
e2n + 4δn+1 − en

2
=

2δn+1

en +
√
e2n + 4δn+1

=
δn+1

en+1
. (70)

4Equation (68) is equivalent to
ek+1−ek

δk+1
= 1

ek+1
(see (70)). Thus, (68) might be considered

as numerical integration of the differential equation y′ = 1
y

on the non-uniform grid Xi.

I am thankful to I. Mitrofanov who drew my attention to this fact.
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On the other hand, as we already showed,
√
2Xn+2 >

√
2Xn+1 > en+1 and

therefore√
2Xn+2 −

√
2Xn+1 =

2δn+2√
2Xn+2 +

√
2Xn+1

<
δn+1

en+1
= en+1 − en. (71)

Lemma is proved. �

Now we are ready to prove Lemma 5.4. By Lemma 5.7,
√
2Xn+1 − en forms

a decreasing sequence of positive real numbers. Hence

0 <
√

2XN − eN−1 <
√
2X2 − e1 < 2

√
X2

=
√

2(1− λ)(λ+ λ2) < 2
√
1− λ = o(ε2). (72)

On the other hand,

2XN = 2
N∑

k=1

(1− λ)λk = 2
(
1− λN+1

)
= 2 + o(ε5).

Thus, eN−1 =
√
2 + o(ε2). It also follows from (68) that eN =

√
2 + o(ε2).

Hence,
ymin = ηdN =

√
ηeN =

√
2η + o(ε2).

Lemma is proved. �

6. Proof of Theorem 1 and the first statement
of Theorem 2

Now we are ready to prove Theorem 1.

P r o o f. From (54) and Lemma 5.1 one can deduce that for all t0 large enough
there exist integer numbers i and mi satisfying 1 ≤ i ≤ N and t0

log t0
< mi ≤ t0

such that

ϕ(1)
x (mi) ≥

√
8ηα

√
ti−1 log t0

(
1 + o(ε)

)
= 2
√
2κ4

√
ti−1 log t0

(
1 + o(ε)

)
. (73)

As ti < mi ≤ ti−1 and ti
ti−1

= λ = 1 + o(ε5), from (73) one has

ϕ(1)
x (mi) ≥ 2

√
2κ4

√
mi logmi

(
1 + o(ε)

)
.

Theorem is proved. �

Let us now prove the first statement of Theorem 2.
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P r o o f. It follows from (60) and Lemma 5.4 that for all t0 large enough there
exist integer numbers i and mi satisfying 1 ≤ i ≤ N and t0

log t0
< mi ≤ t0 such

that √
λ
i
ϕ(1)
x (mi) ≥

√
2ηα

√
ti log t0

(
1 + o(ε)

)
=
√
2κ4

√
ti log t0

(
1 + o(ε)

)
.

In other words,
max
u≤t0

ϕ(1)
x (u) ≥ ϕ(1)

x (mi) ≥
√
2κ4

√
t0 log t0

(
1 + o(ε)

)
.

The first statement of Theorem 2 is proved. �

7. Proof of the second statement of Theorem 2

7.1. Superblocks definition

P r o o f. In this chapter we will construct an irrational number

x = [0; a1, . . . , an, . . .]

that will satisfy the conditions of the second statement of Theorem 2. The con-
tinued fraction of x will have the form

x =
[
0;B(0), B(1), B(2), . . . ,B(n), . . .

]
, (74)

where the segments B(i) will be defined later. We will call these segments super-
blocks. Recall that the sequence dk is defined from the equations (65) with the
initial condition d1 = 0. It will be convenient for us to modify the first element

of this sequence. We set d1 = d2 =
√

(1−λ)λ
η = o(ε5).

Let us now define the sequence Ti that plays the key role in our construction.
We choose an arbitrary integer T1, satisfying (1−λ)NλNT1 > T1

logT1
. Then, if the

number Ti−1 is defined, we put Ti =
[Ti−1

λN

]
. For each i ≥ 1 put t

(i)
0 = Ti.

Now we describe the construction of the superblock B(i) for an arbitrary
positive integer i. For each k such that 1 ≤ k ≤ N we select three natural

numbers m
(i)
k , n

(i)
k , and t

(i)
k from the following conditions:

dk
√
Ti log Ti ≤ m

(i)
k ≤ dk

√
Ti log Ti(1 + ε4),

dk
κ1 − 1

√
Ti log Ti ≤ n

(i)
k ≤

dk
κ1 − 1

√
Ti log Ti(1 + ε4),

log Ti

log 2

(
1 +

ε

8
− ε3

)
≤ m

(i)
k + n

(i)
k − κ1(n

(i)
k + 1) ≤ log Ti

log 2

(
1 +

ε

8
+ ε3

)
,

t
(i)
k = λkt

(i)
0 + θ

(
n
(i)
k + 1

)
, where |θ| ≤ 1

2
,

(
n
(i)
k + 1

) | (t(i)k−1 − t
(i)
k

)
.

(75)
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One can easily see that the numbers m
(i)
k , n

(i)
k , t

(i)
k , satisfying conditions (7.1)

always exist. Consider the block B
(i)
k = (a

t
(i)
k

+1
, . . . , a

t
(i)
k−1

) having the following

structure
B

(i)
k =

(
m

(i)
k , 1

n
(i)
k

,m
(i)
k , 1

n
(i)
k

, . . . ,m
(i)
k , 1

n
(i)
k

)
. (76)

We recall that
1n = 1, 1, . . . , 1︸ ︷︷ ︸

n numbers

.

Denote the sequence of N blocks(
B

(i)
N , B

(i)
N−1, . . . , B

(i)
1

)
byB(i). For the initial superblock B(0) =

(
a1, a2, . . . , at(1)N

)
we set all its elements

to be equal to 1. Thus, the construction of the continued fraction (74) is fully
described. Note that the initial superblock B(0) has fixed length and therefore

does not affect neither the value of ?′(x) nor the behaviour of ϕ(1)
x (t) as t grows.

7.2. ?′(x) = 0

As we already mentioned, it is enough to show that for
x′ = [0;B(1), B(2), . . . ,B(n), . . .]) one has ?′(x′) = 0. Denote the elements of con-
tinued fraction expansion of x′ by a′1, a

′
2, . . . By Lemma 3.3 it is enough to show

that the function
fx′(t) =

〈a′1, a′2, . . . , a′t〉√
2
a′
1+a′

2+···+a′
t

(77)

tends to 0 as t → ∞. One can easily see that fx′(t) > fx′(t − 1) if a′t = 1 and
fx′(t) < fx′(t− 1) if a′t ≥ 12. Of course, all partial quotients of x′, that are not
equal to one, are greater than 12. Thus it is enough to consider fx′(t) only in the
case when a′t = 1, but a′t+1 > 1. In this case, the continuant 〈a′1, a′2, . . . , a′t〉
consists of the sequences of the form (m

(i)
l , 1

n
(i)
l

). From the fact that 〈A,B〉 ≤
2〈A〉〈B〉 and Lemma 3.3 one can easily see that if we show that

2〈m(i)
l , 1

n
(i)
l

〉
√
2
m

(i)
l +n

(i)
l

<
1

2
, (78)

we will prove the fact that ?′(x) = 0. Note that

4
〈
m

(i)
l , 1

n
(i)
l

〉
< 8m

(i)
l Φn

(i)
l .

From the definition (7.1) one can easily see that

m
(i)
l + n

(i)
l = κ1n

(i)
l +

log Ti

log 2

(
1 +

ε

8
+ o(ε2)

)
.
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Thus,
4〈m(i)

l , 1
n
(i)
l

〉
√
2
m

(i)
l

+n
(i)
l

<
8m

(i)
l Φn

(i)
l

√
2
κ1n

(i)
l

+
logTi
log 2 (1+ ε

8+o(ε2))

=
8m

(i)
l√

2
logTi
log 2 (1+ ε

8+o(ε2))
(79)

And it is enough to show that

8m
(i)
l√

2
logTi
log 2 (1+ ε

8+o(ε2))
< 1. (80)

Taking logarithm of both sides of (80) and substituting m
(i)
l from (7.1), we obtain

that

log Ti

2

(
1 + o(ε2)

)
<

log Ti

log 2

(
1 +

ε

8
+ o(ε2)

)
log
√
2

=
log Ti

2

(
1 +

ε

8
+ o(ε2)

)
. (81)

Therefore, ?′(x) = 0.

7.3. The inequality (16) is satisfied

We will show that for x, that we built in Section 7.1, for all t = Ti, i ≥ 1
the inequality (16) is satisfied. This inequality is equivalent to the following

ϕ(1)
x (ν) = Sx(ν)− κ1ν ≤ (

√
2 + ε)κ4

√
t log t ∀ν ≤ t. (82)

We will prove (82) by induction on i. Suppose that t = T1 = t
(1)
0 . As the

segment B(0) = (a1, a2, . . . , at(1)N

) has length
(
o(ε6)

)
t, we will not take it into

account in our further argument.

One can easily see that ϕ
(1)
x (ν) > ϕ

(1)
x (ν− 1) if and only if aν > 1. Thus, it is

enough to verify the inequality (82) only in the case when aν > 1. Suppose that

t
(1)
i < ν ≤ t

(1)
i−1 It follows from the definition (7.1) that

m
(1)
i + n

(1)
i − κ1

(
n
(1)
i + 1

)
> 0.

Hence for any finite sequence B and for any 1 ≤ i ≤ N one has

ϕ(1)
(
B, 1

n
(1)
i

,m
(1)
i

)
> ϕ(1)(B).
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Thus, it is enough to verify (82) only for the largest t
(1)
k <ν≤ t

(1)
k−1 such that

aν>1. In this case we have

ϕ(1)
x (ν) ≤

N∑
i=k

ϕ(1)(B
(1)
i ) +m

(1)
k

=

N∑
i=k

(
T1(λ

i−1 − λi)

n
(1)
i + 1

log T1

log 2

(
1 +

ε

8

))(
1 + o(ε2)

)
+m

(1)
k . (83)

Substituting n
(1)
i and m

(1)
k from (7.1), we obtain that

ϕ(1)
x (ν)≤

(
(1− λ)(κ1 − 1)

log 2

(
1 +

ε

8

) N∑
i=k+1

λi−k

di
+ dk

)√
T1 log T1

(
1 + o(ε2)

)
. (84)

Denote
α =

κ1 − 1

log 2

(
1 +

ε

8

)
= (κ4)

2
(
1 +

ε

8

)
, η =

1

α
.

Using the introduced notation we have

ϕ(1)
x (ν) ≤

(
(1− λ)

N∑
i=k+1

λi−k

di
+ ηdk

)
α
√
T1 log T1

(
1 + o(ε2)

)
. (85)

We recall that d1, d2, . . . , dN is the minimizing sequence for (63). Thus from
Lemma 5.5 we obtain that

ϕ(1)
x (ν) ≤ α

√
2η
√
T1 log T1

(
1 + o(ε)

)
=
√
2α
√
T1 log T1

(
1 + o(ε)

)
≤
(√

2 +
ε

2

)
κ4

√
T1 log T1. (86)

Thus the inequality (82) is satisfied for t = T1. Using the same argument one
can derive that for all n ∈ N one has

ϕ(1)(B(n)) ≤
(√

2 +
ε

2

)
κ4

√
Tn log Tn. (87)

And for all 1 ≤ k ≤ N , n ∈ N one also has

N∑
i=k

ϕ(1)(B
(n)
i ) +m

(n)
k ≤

(√
2 +

ε

2

)
κ4

√
Tn log Tn. (88)
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Now we show that (82) is satisfied for t = Tn when n ≥ 2. Using the same
argument, one can deduce

ϕ(1)
x (ν) ≤

n−1∑
i=1

ϕ(1)(B(i)) +

N∑
i=k

ϕ(1)(B
(n)
i ) +m

(n)
k (89)

for some 1 ≤ k ≤ N .

From (87) it follows that

n−1∑
i=1

ϕ(1)(B(i)) ≤
(√

2 +
ε

2

)
κ4

n−1∑
i=1

√
Ti log Ti ≤

(√
2 +

ε

2

)
κ4

√
log Tn

n−1∑
i=1

√
Ti

=

(√
2 +

ε

2

)
κ4

√
Tn log Tn

n−1∑
i=1

√
λ
Ni

≤
(√

2 +
ε

2

)
κ4

√
Tn log Tn

√
λ
N

1−√λN
=

(√
Tn log Tn

)
o(ε4).

(90)

Substituting the estimates (88) and (90) to (89) we obtain that

ϕ(1)
x (ν) ≤

(√
2 +

2ε

3

)
κ4

√
Tn log Tn (91)

and the second statement of Theorem 2 is proved. �

���������������� I would like to thank Igor Kan for fruitful discussions.
Most results of this paper are based on his ideas.
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