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ABSTRACT. Let (an)∞n=0 be a second-order linear recurrence sequence with

constant coefficient. We study the limit points and asymptotic distribution of the
sequence of consecutive ratios an+1/an.
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1. Introduction

The Fibonacci sequence (Fn)
∞
n=0 is defined by F0 = 1, F1 = 1, and

Fn = Fn−1 + Fn−2, n > 1. (1)

The limit of the ratios of consecutive terms of (Fn)
∞
n=0 is well known to be

lim
n→∞

Fn+1

Fn
= φ,

where φ = 1+
√
5

2 = 1.618 . . . is the golden mean [22, p.240].

In general, a sequence of complex numbers (an)
∞
n=0 is a linear recurrence

sequence of order k with constant coefficients if it satisfies:

an = ck−1an−1 + · · ·+ c0an−k, n ≥ k, (c0, . . . , ck−1 ∈ C). (2)
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The polynomial

p(λ) = λk − ck−1λ
k−1 − · · · − c0

is the characteristic polynomial of (an)
∞
n=0. Let λ1, . . . , λh be the roots of p,

with respective multiplicities k1, . . . , kh. The general term an may be written
explicitly in the form

an =

h∑
i=1

ki∑
j=1

ci,jn
j−1λni , n ∈ N, (3)

where the coefficients ci,j are complex numbers, uniquely determined by a0, a1,
, . . . , ak−1 (see [14, Theorem 3.6]). Usually, there is one term on the right-hand
side of (3) that dominates all others. In fact, order the roots λi so that |λ1| ≥
|λ2| ≥ · · · ≥ |λh|; between roots λi and λj of the same modulus, λi precedes λj
if ki > kj . To avoid trivialities, we assume that ci,ki �= 0 for each i. If |λ1| > |λ2|,
or |λ1| = |λ2| and k1 > k2, then the term c1,k1n

k1−1λn1 is much larger in absolute
value than all other terms for large n. In this case, for large n we have

an+1

an
≈ c1,k1(n+ 1)k1−1λn+1

1

c1,k1n
k1−1λn1

,

and therefore an+1/an −−−−→
n→∞ λ1. (Here and later, if finitely many an-s van-

ish, we consider the ratios an+1/an only for sufficiently large n.) In particular,
if |λ1| > |λ2| > · · · > |λh|, then, by omitting 0 terms from the right-hand side
of (3), we see that the consecutive ratios an+1/an converge to one of the λi as
n→ ∞. (This is a special case of a result of Poincaré [27].) On the other hand,
if there exist two distinct roots of p with the same modulus, then it is always
possible to find initial conditions so that limn→∞ an+1/an does not exist [7].

The special case where (an)
∞
n=0 is a sequence of integers was studied in [15–

18, 20, 21]. Suppose the roots of its characteristic polynomial are distinct and
satisfy |λ1| > |λ2| ≥ · · · ≥ |λh|. We may write an in the form

an = c1λ
n
1 + c2λ

n
2 + · · ·+ chλ

n
h, n ≥ 0,

where c1, c2, . . . , ch are algebraic numbers and assume that c1 �= 0. The sequence
of ratios (an+1/an)

∞
n=0 converges to λ1. In [15, 17, 18], the rate of convergence

of the ratios an+1/an to this limit was studied. If (an)
∞
n=0 is of order 2 and

|λ1| = |λ2|, it was shown that |λ1| is a partial limit of the sequence of ratios,
and the distances between the terms of the sequence and this partial limit were
discussed [16,18,21].
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Following [7], we call limn→∞ an+1/an, if it exists, the Kepler limit of (an)
∞
n=0.

The Kepler set of (an)
∞
n=0 is the set of limit points of the sequence (an+1/an)

∞
n=0.

In this paper, by a linear recurrence sequence we mean a linear recurrence se-
quence with constant coefficients. To avoid trivialities, we will always assume
that the sequence is not identically 0.

Bagdasar, Hedderwick, and Popa [2] discussed the Kepler set of second-order
linear recurrence sequences. According to the discussion above, unless the roots
λ1 and λ2 of the characteristic polynomial p are of equal moduli, the Kepler set
reduces to a single point. For |λ1| = |λ2|, they noted that the Kepler set may be
a finite set or a circle in the complex plane. We will notice that the Kepler set
may be also a line. Our first goal will be to understand the exact dependence
of the Kepler set on the parameters in the representation an = c1λ

n
1 + c2λ

n
2 .

We will also characterize the lines and circles that arise as Kepler sets.

For general linear recurrence sequences, in addition to the topological in-
formation given by the Kepler set, one may ask about the distribution of the
sequence (an+1/an)

∞
n=0 in the complex plane. For example, suppose that the Ke-

pler set is a circle. Does the sequence spend roughly the same time in equal arcs
of this circle? Taking any example, one is readily convinced that this is not the
case (see, for example Figure 1 (B) in the sequel). Our main goal in this paper
is to understand how the sequence of consecutive ratios is distributed for any
linear recurrence sequence of order 2. Moreover, we will characterize the family
of distributions on the complex plane arising this way.

The distribution modulo 1 of the sequence of consecutive ratios was stud-
ied in several papers [8, 19] when (an)

∞
n=0 is a real-valued recurrence sequence.

Kiss and Tichy [19] studied the distribution for order-2 real-valued sequences
(an)

∞
n=0. Under suitable conditions, they determined the asymptotic distribu-

tion function of the sequence (an+1/an) and gave an estimate of the error term.
The asymptotic distribution function of the sequence (an+1/an)

∞
n=0, for linear

recurrence sequence of any order k ≥ 2, was discussed by Goldstern, Tichy, and
Turnwald [8].

The sequence of consecutive ratios is easily seen to be the orbit if some point
in the complex plane under a certain Möbius transformation. We will discuss the
ergodic-theoretical properties of this transformation and derive some properties
of the sequence of ratios.

In Section 2, we state our main results. Section 3 introduces an extended
family of Cauchy distributions in the complex plane and studies their behaviour
under Möbius transformations. In Section 4, we discuss the intuition behind the
main results. Section 5 presents the proofs.
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2. Main results

Let (an)
∞
n=0 be a second-order linear recurrence sequence

an = can−1 + dan−2, n ≥ 2, (4)

with some initial values a0, a1, where c, d are fixed complex numbers (with some
restrictions listed below, designed to avoid trivialities). We have

an+2

an+1
= c+

d

an+1/an
. (5)

Denote rn = an+1/an for n ≥ 0. By (5), the sequence (rn)
∞
n=1 satisfies the

recurrence
rn+1 = c+ d/rn.

Consider the Möbius transformation on the extended complex plane C∞.,
defined by

S(z) = c+ d/z, z ∈ C∞.

In terms of S, the Kepler set of (an)
∞
n=0 is the set of limit points of the sequence(

Sn(a1/a0)
)∞
n=0

. (If an = 0 for some n, we take an+1/an = ∞. The assump-
tions below will guarantee that we cannot have an = an+1 = 0.) In particular,
the Kepler set is S-invariant.

Rewrite an explicitly
an = c1λ

n
1 + c2λ

n
2 , n = 0, 1, 2, . . . , (6)

where λ1 and λ2 are the roots of the characteristic polynomial p and c1, c2 are
complex numbers. As explained above, unless |λ1| = |λ2|, the sequence has a
Kepler limit. Thus, we will assume throughout that |λ1| = |λ2| (but λ1 �= λ2)
and that c1, c2 �= 0. Moreover, if λ2/λ1 is a root of unity, then the sequence
of consecutive ratios is periodic; we will exclude this trivial case.

����� 2.1� Let λ1 and λ2 be the roots of the characteristic polynomial
of (an)

∞
n=0 given in (4). If |λ1| = |λ1| and λ2/λ1 is not a root of unity, then

d < −c2/4. Moreover, an = 0 for at most one value of n.

Denote by O(C,R) the circle of radius R, centered at C. The following theo-
rem identifies the infinite Kepler sets of order 2 linear recurrence sequences.

����	�� 2.2�

1. Let (an)
∞
n=0 be a second-order linear recurrence sequence, given by an =

c1λ
n
1 + c2λ

n
2 for some non-zero complex numbers c1, c2, λ1, λ2 with |λ1| =

|λ2| > 0, where λ2/λ1 is not a root of unity. Then:

(i) If |c1| = |c2|, then the Kepler set of (an)
∞
n=0 is the line passing through

the origin and the point (λ1 + λ2)/2.
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(ii) If |c1| �= |c2|, then the Kepler set of (an)
∞
n=0 is the circle O(C,R) with

C =
|c1|2λ1 − |c2|2λ2

|c1|2 − |c2|2 ,

and

R =
|c1||c2||λ1 − λ2|
||c1|2 − |c2|2| .

The circle does not include the origin either on its circumference or inside
it.

2. Conversely, if K is a line passing through the origin, or a circle not containing
the origin either on its circumference or inside, then there exists a second-
-order linear recurrence sequence whose Kepler set is K.

Example. Let λ1=(3+4i)/5 and λ2=(5−12i)/13. For c1=c2=1 the Kepler set
is the line passing through origin and the point (λ1+λ2)/2=32/65−4/65i, and

for c1=2, c2=1, it is the circle O
(
131/195+268/195i, 28/(3

√
65)
)
(see Figure 1).

(a) (b)

Figure 1. (A) The Kepler set of an = λn1 + λn2 , where λ1 = (3 + 4i)/5,
λ2 = (5− 12i)/13. (B) The Kepler set of an = 2λn1 + λn2 .


���	� 1� The role of the coefficients c1 and c2 in determining the Kepler
set of (an)

∞
n=0 is only via |c2/c1|. Thus, in part 1. (i) of the theorem, the line

depends only on λ1 and λ2 (as long as |c1| = |c2|). In part 1. (ii) of the theorem,
denoting r = |c2/c1|, we may rewrite C and R in a much simpler form:

C =
λ1 − r2λ2
1− r2

, R =
r|λ1 − λ2|
|1 − r2| . (7)
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���	� 2� If λ2/λ1 is a primitive root of unity of order m, then the sequence
(an+1/an)

∞
n=0 is of period m, and in particular the Kepler set is of size m. It is

contained in the line (if |c1| = |c2|) or circle (if |c1| �= |c2|) specified in Theo-
rem 2.2. (See Figure 2 for two examples of Kepler sets of size 45.)

(a) (b)

Figure 2. (A.) The Kepler set of an = λn1 + λn2 , where λ1 = exp(4πi/5),
λ2 = exp(14πi/9). (B) The Kepler set of an = 2λn1 + λn2 . Both Kepler sets
comprise 9 · 5 = 45 points.

Theorem 2.2 specifies the “topology” of the sequence (an+1/an)
∞
n=0. How is

the sequence distributed in the Kepler set? To this end, recall the notion of the
distribution of a (deterministic) sequence in a topological space. Let X be a
locally compact Hausdorff space, B its Borel σ-field, and (xn)

∞
n=0 a sequence

in X. The sequence is distributed according to some probability measure ν
on (X,B) if

lim
N→∞

N−1∑
n=0

f(xn) =

∫
X

fdν

for all continuous function f : X → C (see [23, p. 178]). Intuitively, it means that,
for a “well-behaved” set A ∈ B, the asymptotic density of the set {n : xn ∈ A}
is ν(A).

��
������� 2.3�
Let (an)

∞
n=0 be a sequence inC. The Kepler measure of (an)

∞
n=0 is the probability

measure according to which the sequence (an+1/an)
∞
n=0 is distributed, if any.
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We define two families of distributions that will be relevant in the sequel.
A complex-valued random variable Y is Cauchy distributed with median μ ∈ C,
scale σ ∈ R+, and direction α ∈ [0, 2π], and we denote Y ∼ C(μ, σ, α) if:

(i) Y is supported on the line L passing through μ and making an angle α with
the positive real axis. (Here, if α = 0 then L is parallel to the real axis or
coincides with it.)

(ii) The density of Y (with respect to arc-length) is

fY (z) =
1

σπ
· 1

1 +
∣∣ z−μ
σ

∣∣2 , z ∈ L. (8)

A complex-valued random variable Z, supported on a circle O(C,R), is
circular Cauchy distributed with location C, scale R, and eccentricity ψ if its
density function (with respect to arc-length) is given by

fZ(z) =
R

2π
· |1− |ψ|2|
|z − (C +Rψ)|2 , z ∈ O(C,R), (ψ ∈ C, |ψ| �= 1). (9)

We write Z ∼ C�(C,R, ψ) in this case.

����	�� 2.4� Let (an) be a second-order linear recurrence sequence, defined
by an = c1λ

n
1 + c2λ

n
2 for some non-zero complex numbers c1, c2, λ1, λ2 with

|λ1| = |λ2| > 0, where λ2/λ1 is not a root of unity.

1. If |c1| = |c2|, then the Kepler measure of (an)
∞
n=0 is C

(
μ, σ, arg(μ)

)
, where

μ =
λ1 + λ2

2
, σ =

∣∣∣∣λ2 − λ1
2

∣∣∣∣ .
2. If |c1| �= |c2|, then the Kepler measure of (an)

∞
n=0 is C�(C,R, ψ), where R

and C are as in Theorem 2.2 and

ψ =
|c2|
|c1| ·

||c1|2 − |c2|2|
|c1|2 − |c2|2 · λ2 − λ1

|λ2 − λ1| .

In the following theorem we identify the collection of all Kepler measures
of second-order linear recurrence sequences with any fixed (infinite) Kepler set.
It is analogous to Theorem 2.2. 2.

����	�� 2.5�

1. The Cauchy measure C(μ, σ, α) is the Kepler measure of some second-order
linear recurrence sequence if and only if α = arg(μ) and

1

π
arctan (σ/|μ|) �∈ Q. (10)
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2. The circular Cauchy distribution C�(C,R, ψ) is the Kepler measure of some
second-order linear recurrence sequence if and only if:
(a) R¡—C—,

(b) ψ lies on the circle O(C′, R′), where we set

C′ = −C/R and R′ =
√

(|C|/R)2 − 1,

(c)
1

π
arg

(
C + R/ψ̄

C +Rψ

)
�∈ Q. (11)

The Kepler measure ν is invariant under the transformation S, namely
for every measurable subset A of the Kepler set we have ν(S−1A) = ν(A).
Thus, we may study the ergodic-theoretical properties of the system. We re-
call several basic definitions and results from ergodic theory. (See [31] for more
details.)

Let (X,B, ν) be a probability space and T : X → X be measure-preserving.
The pointwise ergodic theorem states that

1

n

n−1∑
k=0

f(T kx) −−−−→
n→∞

f(x), f ∈ L1(ν), (12)

for almost all x ∈ X with respect to ν, for some T -invariant function f ∈ L1(ν),
namely a function satisfying f ◦ T = f . T is ergodic if, for every T -invariant set
E ⊆ B, either ν(E) = 0 or ν(E) = 1. If T is ergodic, the ergodic theorem takes
the simpler form

1

n

n−1∑
k=0

f(T kx)
a.e.−−−−→
n→∞

∫
fdν, f ∈ L1(ν). (13)

Now let X be a compact metric space and B its Borel σ-field. Let T be a
continuous transformation from X to itself. It is well known that there exist
T -invariant probability measures on (X,B) (see [13, Theorem 4.1.1]). Let ν be
such a measure and suppose T is ergodic. A point x0 ∈ X is generic if

1

n

n−1∑
k=0

f(T kx0) −−−−→
n→∞

∫
fdν (14)

for every continuous function f : X → C. A system (X,T ) is uniquely ergodic
if T admits a unique invariant probability measure. If (X,T ) is uniquely ergodic,
then every point x ∈ X is generic.

�	��������� 2.6� In the setup of Theorems 2.2. 1. (ii) and 2.4. 2., the trans-
formation S is uniquely ergodic, and the unique S-invariant probability measure
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is the Kepler measure ν = C�(C,R, ψ). In particular, for every continuous func-
tion f from O(C,R) to C, we have

1

n

n−1∑
k=0

f
(
Sk(z)

) −−−−→
n→∞

∫
O(C,R)

fdν (15)

uniformly on O(C,R).

In some cases, (15) takes an especially attractive form. Recall that a function
h from an open region Ω ⊆ R2 into R is harmonic if it is C2 and

∂2h(x, y)

∂x2
+
∂2h(x, y)

∂y2
= 0, (x, y) ∈ Ω.

A function h : Ω → C is harmonic if both its real part and its imaginary part are
harmonic in Ω. (See [30, §11] for more details on harmonic functions.) Denote

D(C,R) = {z ∈ C : |z − C| ≤ R},
and

Do(C,R) = {z ∈ C : |z − C| < R}.
����	�� 2.7� In the setup of Proposition 2.6, if h : D(C,R) → C is continuous
and is harmonic in Do(C,R), then

1

N

N−1∑
n=0

h

(
an+1

an

)
−−−−→
N→∞

{
h(λ1), |c2| < |c1|,
h(λ2), |c2| > |c2|.

(16)

Consider the claim of the theorem for the case where f is the identity function.
Suppose, say, that |c2| < |c1|. The theorem implies

1

N

N−1∑
n=0

c1λ
n+1
1 + c2λ

n+1
2

c1λn1 + c2λn2
=

1

N

N−1∑
n=0

an+1

an
−−−−→
N→∞

λ1. (17)

When |c2/c1| is close to 0, all terms in the sum on the left-hand side of (17)
are very close to λ1, so that one should expect the sequence to be close to λ1.
The surprising thing is that the limit is exactly λ1. Moreover, even when |c2/c1|
becomes near (but less than) 1, so that the weight of the term c2λ

n
2 is almost

as large as that of c1λ
n
1 , the limit stays λ1. One may say that, on average,

the term c2λ
n
2 has no effect.

3. Extended Cauchy and circular Cauchy distributions

In this section, we will first recall: (i) the basics of Möbius transformations
and their dynamics, and (ii) the Cauchy distribution and its analogue on the
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unit circle S1. Next, we will discuss at length the distributions defined by the
density functions in (8) and (9).

3.1. Möbius Transformations

A Möbius transformation M is a mapping of the form

M (z) =
az + b

cz + d
, (a, b, c, d ∈ C, ad− bc �= 0), (18)

of the extended complex plane C∞ = C ∪ {∞} into itself. The image of a line
or a circle under a Möbius transformation is again a line or circle:

• When |c| = |d|, the image of S1 under M is the line passing through
(a/c+ b/d) /2, and making an angle of arg

(
i(a/c− b/d)

)
with the positive

real axis (see the proof of Theorem 3.1. (i)).

• When |c| �= |d|, the image of S1 under M is O(C,R), where C and R are
given by

C =
ac̄− bd̄

|c|2 − |d|2 , R =

∣∣∣∣ ad− bc

|c|2 − |d|2
∣∣∣∣ , (19)

(see [4, § 41–44]). The set of all Möbius transformations is a group under com-
position. (For more delails on Möbius transformations, we refer to [4].)

3.2. The Dynamics of Möbius transformations

LetM1 andM2 be two Möbius transformations. The transformations are con-
jugate if M2 = M ◦ M1 ◦ M−1 for some Möbius transformation M .
Any Möbius transformation M �= I has precisely two fixed points in the ex-
tended complex plane C∞, counting multiplicities [3, Theorem 2.6. 2]. If M has
a single fixed point, say ζ, then Mn(z) −−−−→

n→∞ ζ for all z ∈ C∞. If M has two

distinct fixed points ζ1 and ζ2, then M is conjugate to a Möbius transformation
Ma of the form

Ma(z) = az, z ∈ C∞, (20)

for some a �= 1. Therefore, the sequence
(
Mn(z)

)∞
n=0

either

1. converges to one of the fixed points ofM , say ζ1, for all z �= ζ2 (corresponding
to |a| �= 1 in (20)), or

2. moves cyclically through a finite set of points for all z (if a is a root of unity),
or

3. forms a dense subset of some line or circle (if |a| = 1, but a is not a root
of unity).

(We refer to [3] for more details.)
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3.3. Extensions and analogues of the Cauchy distribution

The standard Cauchy distribution is the probability distribution on the real
line, defined by the density function

f(x) =
1

π(1 + x2)
, x ∈ R. (21)

Allowing translations of Cauchy random variables, we get the generalized Cauchy
distribution, with a density function of the form (see [29])

f(x) =
1

π(1 + (x− μ)2)
, x ∈ R, (μ ∈ R).

A further generalization is obtained by allowing a scale change as well. For real
μ, σ, with σ > 0, a random variable Y is Cauchy distributed, with median μ and
scale σ, if (Y − μ)/σ has a standard Cauchy distribution [32]. McCullagh [26]
combined the two parameters into a single complex-valued parameter θ = μ+ iσ
in the upper half-plane. The density function is given by

fY (x) =
σ

π|x− θ|2 , x ∈ R. (22)

In fact, McCullagh found it convenient to let σ be negative also. (The numerator
on the right-hand side of (22) is then replaced by |σ|.) Note that θ and θ̄ give
rise to the same distribution. Also, in the degenerate case σ = 0, the distribution
reduces to a point mass at μ.

In Section 2, we have introduced a further generalization, allowing the distri-
bution to be supported on any line L in C. The median μ is now any complex
number, σ is still the scale, and we add a third parameter α indicating the direc-
tion of L with respect to the positive real axis. (In principle, α ranges over [0, π),
but it will be more convenient for us to let it range over [0, 2π).) One readily
checks that (8) defines the density function of this distribution.

Let Y be a Cauchy distributed random variable, with parameter θ = μ+ iσ.
Since the transformation

x→ ix+ 1

−ix+ 1
, x ∈ R,

maps R into S1, the complex-valued random variable

Z =
iY + 1

−iY + 1

is supported on S1. The density of Z is given by

fZ(z) =
|1− |ψ|2|
2π|z − ψ|2 , z ∈ S1, (23)

where ψ = (iθ + 1)/(−iθ+ 1) (see [26]).
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The distribution defined by this density function is the circular Cauchy distribu-
tion, and we write Z ∼ C�(ψ). (The parameter ψ was referred to as eccentricity
in Section 2.)

The circular Cauchy distribution (a.k.a. the wrapped Cauchy distribution) is
a lesser known distribution, although defined already by Lévy [24]. The family
of circular Cauchy distributions is closed under Möbius transformations [26].
Moreover, circular Cauchy distributions enjoy the following properties [12,26]:

1) C�(0) is the uniform measure on S1˙

2) For every ψ, the distributions C�(ψ) and C�(1/ψ) coincide. Thus, it suffices
to consider ψ-s in the unit disc.

3) As |ψ| increases from 0 to 1, the distribution deviates more and more from
the uniform distribution and becomes concentrated near ψ/|ψ|. As ψ → ψ0

for some ψ0 ∈ S1, the distribution converges to a point mass at ψ0.

4) IfM is the Möbius transformation defined byM (z) = β0z with β0 ∈ S1, then
M
(
C�(ψ)

)
= C�(β0ψ).

5) If M is the Möbius transformation defined by M (z) = (z + β1)/(β̄1z + 1)
with β1 ∈ C, then M

(
C�(ψ)

)
= C�

(
(ψ + β1)/(β̄1ψ + 1)

)
.

6) IfM (z) is the Möbius transformation defined byM (z) = β0 ·(z+β1)/(β̄1z+1)
with β0 ∈ S1 and β1 ∈ C, thenM

(
C�(0)

)
= C�(β0β1). (This property follows

directly from the two preceding ones, but it will be convenient to have it
handy.)

7) If Z1 and Z2 are independent and Z1 ∼ C�(ψ1), Z2 ∼ C�(ψ2) with |ψ1|,
|ψ2| ≤ 1, then Z1Z2 ∼ C�(ψ1ψ2).

The following example helps understanding the property 3) better.

Example. In Figure 3, we have “depicted” C�(ψ) for four values of the para-
meter ψl = 0.2l · exp(iπ/4), 1 ≤ l ≤ 4. We have started with the 300 points
exp (2πik/300), 0 ≤ k ≤ 299. The (discrete) uniform distribution over
these 300 points approximates the uniform distribution over S1, which is C�(0).
By the property 5), the measure C�(0) is taken under the Möbius transformation

Mψ(z) = (z + ψ)/(ψ̄z + 1), z ∈ C∞, to C�(ψ).

Thus, for each of the four values above of ψ, we have drawn the images of those
300 points underMψ. The uniform measure over these points is an approximation
of C�(ψ).

For more information on the circular Cauchy distribution, see [12,24–26,34].
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(a) ψ = 0.2 exp(iπ/4). (b) ψ = 0.4 exp(iπ/4).

(c) ψ = 0.6 exp(iπ/4). (d) ψ = 0.8 exp(iπ/4).

Figure 3. The distribution C�(ψ) for several values of ψ. Note how |ψ|
and arg(ψ) are reflected by the figures.

In Section 2, we have defined a generalization of the circular Cauchy distribu-
tion, allowing the distribution to be supported on any circle in C. We added two
new parameters; location − the center of the circle, and scale − the radius of the
circle. The eccentricity means the same as in the case of an S1-supported circu-
lar Cauchy distribution. One readily checks that (9) defines the density function
of this distribution.
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Our main result in this section specifies how Möbius transformations act
on the distribution C�(0). We will explain below that it allows finding how they
act on any C(μ, σ, α) and C�(C,R, ψ).

����	�� 3.1� Let M be any Möbius transformation:

M (z) =
az + b

cz + d
, z ∈ C∞, (a, b, c, d ∈ C, ad− bc �= 0).

(i) If |c| = |d|, then
M
(
C�(0)

)
= C(μ, σ, α),

where

μ =
1

2

(
a

c
+
b

d

)
, σ =

1

2

∣∣∣∣ac − b

d

∣∣∣∣ , α = arg

(
i

(
a

c
− b

d

))
.

(ii) If |c| �= |d|, then
M
(
C�(0)

)
= C�(C,R, ψ),

where C and R are as in (19) and

ψ =
||c|2 − |d|2|
|c|2 − |d|2 · bc− ad

|bc− ad| ·
c̄

d
.

P r o o f.
(i) In this case d �= 0, so we may rewrite M in the form M =M1 ◦M2, where

M1(z) =
a
c z +

b
d

z + 1
, M2(z) =

c

d
z, z ∈ C∞.

By the property 4) above

M
(
C�(0)

)
=M1 ◦M2

(
C�(0)

)
=M1

(
C�(0)

)
. (24)

The Möbius transformation

T2(z) =
iz + 1

−iz + 1
, z ∈ C∞,

maps R ∪ {∞} onto S1. Therefore, the image of S1 under M1 is same as the
image of R ∪ {∞} under M1 ◦ T2:

M1 ◦ T2(x) =
a
c

(
ix+1
−ix+1

)
+ b

d

ix+1
−ix++1

+ 1

=
1

2

(
a

c
+
b

d

)
+ i

1

2

(
a

c
− b

d

)
x

= μ+ σ1x, x ∈ R ∪ {∞},

(25)

where μ = 1
2

(
a
c +

b
d

)
and σ1 = i

(
a
c − b

d

)
. By (25), the image of R under M1 ◦T2

is the line L passing through the point μ and making an angle of α = arg(σ1)
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with the positive real axis. By [26] and [5, p.83], under the transformation T2,
the image of the standard Cauchy distribution C(0, 1, 0) is C�(0). Hence we may
rewrite (24) in the form

M
(
C�(0)

)
=M1 ◦ T2

(
C(0, 1, 0)

)
. (26)

By (21) and (25), the density function f1 of the distribution M1 ◦ T2
(
C(0, 1, 0)

)
on the line L is

f1(z) = f
(
(M1 ◦ T2)−1(z)

) ∣∣∣∣ ddz (M1 ◦ T2)−1(z)

∣∣∣∣
=

1

π
· 1

1 + |(z − μ)/σ1|2
∣∣∣∣ ddz

(
z − μ

σ1

)∣∣∣∣
=

1

π|σ1| ·
1

1 + |(z − μ)/σ1|2
, z ∈ L.

(27)

Hence, by (8), (26), and (27), we have M
(
C�(0)

)
= C(μ, σ, α), where σ = |σ1|.

(ii) Define a Möbius transformation M3 by

M3(z) =
z − C

R
, z ∈ C∞. (28)

By (19), the Möbius transformation M3 ◦M maps S1 onto itself. By (19) and
(28), we have for z ∈ C,

M3 ◦M (z) =

(
az + b

cz + d
− ac̄− bd̄

|c|2 − |d|2
)
· ||c|

2 − |d|2|
|bc − ad|

=
||c|2 − |d|2|
|c|2 − |d|2 · 1

|bc− ad| ·
(az + b)(|c|2 − |d|2)− (cz + d)(ac̄− bd̄)

cz + d

=
||c|2 − |d|2|
|c|2 − |d|2 · bc− ad

|bc− ad| ·
d̄z + c̄

cz + d

=
||c|2 − |d|2|
|c|2 − |d|2 · bc− ad

|bc− ad| ·
d̄

d
· z + c̄/d̄

(c/d)z + 1
.

(29)

By the property 6) above and (29),

M3 ◦M
(
C�(0)

)
= C�(ψ), (30)

where ψ = ||c|2−|d|2|
|c|2−|d|2 · bc−ad

|bc−ad| · c̄d . By (30),

M
(
C�(0)

)
=M−1

3 C�(ψ). (31)
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The density function f2 of the distribution C�(ψ) may be written in the form

f2
(
exp(iθ)

)
=

|1− |ψ|2|
2π| exp(iθ)− ψ|2 , θ ∈ [0, 2π). (32)

By (32), the density function f3 of the distribution M−1
3

(
C�(ψ)

)
on O(C,R) is

f3
(
C +R exp(iθ)

)
= f2

(
M3

(
C + R exp(iθ)

)) ∣∣∣∣ 1R · d

dθ

(
M3

(
C +R exp(iθ)

))∣∣∣∣
=

|1− |ψ|2|
2π |exp(iθ)− ψ|2 ·

∣∣∣∣ 1R · d

dθ

(
exp(iθ)

)∣∣∣∣
=

|1− |ψ|2|
2π |exp(iθ)− ψ|2 · 1

R
, θ ∈ [0, 2π). (33)

Hence, by (9), (31), and (33), we have

M
(
C�(0)

)
=M−1

3

(
C�(ψ)

)
= C�(C,R, ψ). �

Note that we have stated in Theorem 3.1 only to what measure the uniform
distribution C�(0) on S1 is mapped under any Möbius transformation. This
allows us finding the image of any Cauchy measure and circular Cauchy measure.
Indeed, let L be a line inC, endowed with measure C(μ, σ, α), andM any Möbius
transformation. By Theorem 3.1. (i), letting Mμ,σ,α(z)=(az + b)/(z + 1), where
a = μ+ exp

(
i(α− π/2)

)
σ and b = μ− exp

(
i(α− π/2)

)
σ, we have

Mμ,σ,α

(
C�(0)

)
= C(μ, σ, α).

Therefore, M
(
C(μ, σ, α)

)
= M ◦Mμ,σ,α

(
C�(0)

)
. Similarly, let O(C,R) be any

circle, endowed with the measure C�(C,R, ψ). It follows from the property 6)
and Theorem 3.1. (ii) that

M
(
C�(C,R, ψ)

)
=M ◦M−1

3 Mψ

(
C�(0)

)
,

where M3(z) = (z − C)/R and Mψ(z) = (z + ψ)/(ψ̄z + 1).

We mention in passing that the circular Cauchy (as well as its generalization
to higher-dimensional spheres [5, 6, 9, 11]) distribution is usually used to model
angular data. Examples of such data are migration of turtles [28], orientation
of ants towards a black target [1, 28], and wind direction data [1, 12]. The data
lies in [0, 2π], but it makes little sense to treat it as real data in this interval.
It is more natural to view it as data on the unit circle in the plane. Thus, viewing
the data as corresponding to complex numbers on the unit circle is a matter
of convenience, but the data is not really complex-valued. In our case, though,
the circular Cauchy distribution really describes the behaviour of complex-valued
data.
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4. Discussion and Intuition

Suppose we fix λ1 and λ2, with |λ1| = |λ2| and λ2/λ1 not a root of unity.
What can be said about the Kepler sets of all sequences an = c1λ

n
1 + c2λ

n
2 ,

as c1, c2 vary over C? By Remark 1, only the absolute ratio r = |c2/c1| plays
a role in determining the Kepler set. Without loss of generality, we may therefore
restrict our attention to (an) of the form

an = λn1 + rλn2 , n ≥ 0,
(
r ∈ (0,∞)

)
.

Let us describe how the Kepler set changes as r varies from 0 to ∞. For r ≈ 0,
by (7), the circle O(C,R) has its center close to λ1 and its radius close to 0.
Indeed,

an+1

an
=
λn+1
1 + rλn+1

2

λn1 + rλn2
≈ λn+1

1

λn1
= λ1,

which shows that the consecutive ratios become close to λ1.

Rewrite the formula for C in (7) in the form:

λ1 = (1− r2)C + r2λ2 (34)

Thus, for 0 < r < 1, it follows from (34) that λ1 is a convex combination
of C and λ2. Put differently, C lies on the line passing through λ1 and λ2,
so that λ1 is between λ2 and C. It will follow from the proof of Theorem 2.2 that
the Kepler set of (an)

∞
n=0 is the image of S1 under the Möbius transformation

T (z) = rλ2z+λ1

rz+1 . The Möbius transformation defined by

M3(z) =
1

R
(z − C), z ∈ C∞,

maps O(C,R) to S1. By (19),

M3

(
T (z)

)
=

|1− r2|
r|λ2 − λ1| ·

(
λ1 + rλ2z

1 + rz
− λ1 − r2λ2

1− r2

)

=
|1− r2|
1− r2

· λ2 − λ1
|λ2 − λ1| ·

z + r

rz + 1

= α · z + r

rz + 1
, z ∈ S1,

where α = |1−r2|
1−r2 · λ2−λ1

|λ2−λ1| ∈ S1. Since M3 maps Do(C,R) onto Do(0, 1), and the

complement of Do(C,R) onto the complement of Do(0, 1), we have

M3

(
T (0)

)
= αr and

∣∣M3

(
T (0)

)∣∣ = r < 1.

Hence, T (0) = λ1 is inside O(C,R) and T (∞) = λ2 is outside.
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Figure 4. The Kepler sets of the sequences an = λn1 + rλn2 , where
λ1 = (3 + 4i)/5, λ2 = (5 − 12i)/13, with various values of r. For r = 1,
the Kepler set is the line L. For r = 0.2, 0.4, 0.6, 0.8 we get four circles

above L, and for r = 1/0.2, 1/0.4, 1/0.6, 1/0.8 − their mirror images with
respect to L.

As r increases from 0 to 1, the center gets further away from λ1 and the radius
increases. As r → 1−, both the center and the radius tend to∞. By Theorem 2.4,
in the process, |ψ| increases from 0 to 1, while arg(ψ) = arg(λ2 − λ1) remains
fixed. Thus, the distribution we get on O(C,R) changes gradually from a uniform
measure (in the limit as r → 0) to become more and more concentrated near
the intersection of O(C,R) with the interval [λ1, λ2]. The density on O(C,R) is
largest at the point closest to λ2, and becomes smaller as we get further from λ2.
(See Figure 4.)

The circles we obtain, considered as circles in the Riemann sphere, are pairwise
disjoint and converge to a great circle as r → 1−. This great circle is the Kepler
set for r = 1, which is the line mean perpendicular to the interval [λ1, λ2]
(see Figure 4).

For r > 1, the situation is similar. The Kepler set of (an)
∞
n=0 is the same as

that of 1
r
an=λ

n
2+

1
r
λn1 , so that we get the same picture as for r<1, where λ1, λ2

switch roles.


���	� 3� Since the Kepler sets are invariant under the transformation S,
the transformation S partitions C∞ into disjoint S-invariant circles and an S-
-invariant line. Thus, S is a semi-simple transformation according to the termi-
nology in [33, p. 121].
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We explain intuitively why only |c2/c1| is important. Shifting the sequence,
we may consider the sequence an+k = c1λ

k
1λ

n
1 + c2λ

k
2λ

n
2 with arbitrary k in-

stead of an. Thus, the coefficients c1, c2 give rise to the same Kepler set as
do the coefficients c1λ

k
1 , c2λ

k
2 for any k. Taking a sequence (ki)

∞
i=0 for which

(c2/c1)(λ2/λ1)
ki −−−→

i→∞
|c2/c1|, we see that c1, c2 may be replaced by |c1|, |c2|.

5. Proofs

P r o o f o f L e mm a 2.1. The characteristic polynomial of (an)
∞
n=0 is given

by f(x) = x2 − cx − d, and its roots are λ1,2 = (c ± √
c2 + 4d)/2. If c = 0

or c2 + 4d = 0, then λ2/λ1 is a root of unity. Also, λ1 and λ2 cannot be both
real, as otherwise the equality |λ1| = |λ2| would imply that c = 0.

Since |λ1| = |λ2|, the line segment [λ1, λ2] is perpendicular to [0, c/2].

It follows that
√
c2 + 4d/c ∈ iR, so that (c2 + 4d)/c2 ∈ {x : x < 0}. Hence

d < −c2/4.
Write an = c1λ

n
1 + c2λ

n
2 for suitable non-zero c1, c2, depending on the initial

values a0, a1. Suppose that an = 0 for some n. Then

(λ2/λ1)
n = (−c1/c2). (35)

If λ2/λ1 is not a root of unity, then (35) can have at most one solution n ∈ Z. �

P r o o f o f T h e o r e m 2.2. 1. We have

an+1

an
= λ1 · c2/c1 · (λ2/λ1)

n+1 + 1

c2/c1 · (λ2/λ1)n + 1
. (36)

Since λ2/λ1 is not a root of unity, the sequence
(
(λ2/λ1)

n
)∞
n=0

is dense in S1

(see [31, Proposition 1.3.4]). Therefore, the Kepler set of (an)
∞
n=0 is

K =

{
λ1 · (c2/c1)(λ2/λ1)z + 1

(c2/c1)z + 1
: z ∈ S1

}
. (37)

We now continue separately in the two cases |c1| = |c2| and |c1| �= |c2|.
If |c1| = |c2|, as z varies over S1, so does (c2/c1)z. Hence we may write K

in a simpler form

K =

{
λ2z + λ1
z + 1

: z ∈ S1

}
. (38)

It follows that K = T1(S
1), where T1 is the Möbius transformation given by

T1(z) =
λ2z + λ1
z + 1

, z ∈ C∞. (39)
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Let T2 be the Möbius transformation defined by

T2(z) =
iz + 1

−iz + 1
, z ∈ C∞, (40)

and notice that it takes R ∪ {∞} onto S1. Thus, K = T1 ◦ T2(R ∪ {∞}). Now

T1 ◦ T2(x) = λ1 + λ2
2

(
i · λ2 − λ1
λ1 + λ2

x+ 1

)
, x ∈ R ∪ {∞}. (41)

Since i · λ2−λ1

λ1+λ2
is real, the image of R ∪ {∞} under T1 ◦ T2 is the line passing

through the origin and the point (λ1 + λ2)/2.

Now consider the case |c1| �= |c2|. Let c2/c1 = r exp(iφ) for some r > 0 and
φ ∈ [0, 2π), with r �= 1. Replacing z in (37) by exp(iφ)z, we see that

K =

{
rλ2z + λ1
z + 1

: z ∈ S1

}
.

Denoting by T the Möbius transformation given by

T (z) =
rλ2z + λ1
rz + 1

, z ∈ C∞, (42)

we obtain K = T (S1). By [4, § 41–44] (see the result mentioned in Subsec-
tion 3.1), T (S1) = O(C,R), where the center C and radius R are given by

C =
λ1 − r2λ2
1− r2

=
|c1|2λ1 − |c2|2λ2

|c1|2 − |c2|2 , (43)

and

R =
|rλ1 − rλ2|
|1− r2| =

|c1||c2||λ1 − λ2|
||c1|2 − |c2|2| . (44)

A routine calculation shows now that

R2 + |λ1|2 = |C|2. (45)

Thus, R < |C|, so that that the origin is outside O(C,R).

2. Let L be a line passing through the origin and making an angle θ with the
positive real axis. Choose λ1 = exp(i(θ − ε)) and λ2 = exp(i(θ + ε)) for some
ε ∈ (0, π/2) which is not a rational multiple of π. By part 1. (i), the line L is the
Kepler set of the sequence (an)

∞
n=0, given by an = λn1 + λn2 for each n.

Let O(C,R) be a circle such that R < |C|. We need to construct a second-
-order linear recurrence sequence (an)

∞
n=0 whose Kepler set is O(C,R). It is

easily seen that the circles O(0,
√|C|2 −R2) and O(C,R) intersect orthogo-

nally. (Refer to Figure 5 in what follows.) Draw through C a line intersecting

O(0,
√|C|2 −R2) at two points. Let λ1 be the intersection point closer to C, and

λ2 − the one farther away. Perturbing this line if necessary, we may assume that
λ2/λ1 is not a root of unity. We can write λ1 as a convex combination of λ2 and C,
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Figure 5. Construction of a second-order recurrence sequence whose
Kepler set is the dashed red circle O(2 + 2i, 3/2). The roots need to lie

on the dotted black circle O(0,
√

|2 + 2i|2 − (3/2)2) = O(0,
√
23/2).

say λ1 = (1 − r2)C + r2λ2 for some r ∈ (0, 1). Since |λ1|2 = |λ2|2 = |C|2 − R2,

we have R = r |λ1−λ2|
1−r2 . It follows from Theorem 2.2. 1. (ii) and (42), (43), (44)

that O(C,R) is the Kepler set of the sequence (an)
∞
n=0, given by an = λn1 + rλn2

for each n. �

In the next proof, we will make use of

�	��������� 5.1 ([23, p.178])� Let (xn)
∞
n=0 be a sequence in a compact Haus-

dorff space X, distributed according to some probability measure ν on X.
Let Y be another compact Hausdorff space and f : X → Y a continuous function.
Then the sequence (f(xn))

∞
n=0 is distributed in Y according to f(ν).

The proof is immediate.

P r o o f o f T h e o r e m 2.4. 1. Refer again to (36):

an+1

an
= λ1 · c2/c1 · (λ2/λ1)

n+1 + 1

c2/c1 · (λ2/λ1)n + 1
. (36)

The sequence (c2/c1 · (λ2/λ1)n)∞n=0 is distributed according to the uniform mea-
sure C�(0) on S1 (see [23, Example 2.1]). By Proposition 5.1, the Kepler mea-

sure of the sequence (an)
∞
n=0 is T1

(
C�(0)

)
, where T1(z) =

λ2z+λ1

z+1 . From Theo-

rem 3.1 we obtain T1
(
C�(0)

)
= C(μ, σ, α), with μ = λ1+λ2

2 , σ =
∣∣λ2−λ1

2

∣∣, and
α = arg

(
i(λ1 − λ2)

)
= arg(λ1 + λ1) = arg(μ).
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2. Rewrite (36) in the form

an+1

an
=
r · exp(iθ) · λ2 (λ2/λ1)n + λ1
r · exp(iθ) · (λ2/λ1)n + 1

,

where c2/c1 = r exp(iθ) for some r > 0 and θ ∈ (0, 2π). Thus the sequence(
exp(iθ) · (λ2/λ1)n

)∞
n=0

is distributed according to C�(0) on S1. By Proposi-

tion 5.1, Theorem 3.1, (42), (43), and (44), the Kepler measure of the sequence
(an)

∞
n=0 is T

(
C�(0)

)
= C�(C,R, ψ), where

T (z) =
rλ2z + λ1
rz + 1

, and ψ = r · |1− r2|
1− r2

· λ2 − λ1
|λ2 − λ1| . �

Proof of Theorem 2.5. 1. Only if: Let (an)
∞
n=0 be a second-order linear recur-

rence sequence with Kepler measure C(μ, σ, α). Let λ1 and λ2 be the roots of the
characteristic polynomial of (an)

∞
n=0. It follows from the discussion in Sections 1

and 2 that |λ1| = |λ2| and λ2/λ1 is not a root of unity. By Theorem 2.2. 1. (i), we
have μ = (λ1 + λ2)/2, σ = |(λ1 − λ2)/2| and α = arg(μ). The triangle �Oλ1λ2
(where O denote the origin) is an isosceles triangle. The line passing through O
and μ bisects the side [λ1, λ2] of the triangle. Hence, this line is also a height
of the triangle. It follows that λ1=μ+ i(μ/|μ|)σ and λ2=μ− i(μ/|μ|)σ. We have

λ2
λ1

=
1− iσ/|μ|
1 + iσ/|μ| = exp(−2i arctan(σ/|μ|)).

Since λ2/λ1 is not a root of unity, arctan(σ/|μ|) is not a rational multiple of π.

If: Choose λ1 = μ+ i(μ/|μ|)σ and λ2 = μ− i(μ/|μ|)σ. We have

1

π
arg (λ2/λ1) =

−2

π
arctan (σ/|μ|) �∈ Q.

It follows from Proof of Theorem 2.4. 1. that the Kepler measure of the sequence
(an)

∞
n=0, given by an = λn1 + λn2 for n ≥ 0, is C(μ, σ, α).

2. Since C�(C,R, ψ) = C�(C,R, 1/ψ̄) for all ψ ∈ C with |ψ| �= 1, it suffices
to prove the theorem for |ψ| < 1.

Only if: Let (an)
∞
n=0 be a second-order linear recurrence sequence with Kepler

measure C�(C,R, ψ). Let λ1 and λ2 be the roots of the characteristic polynomial
of (an)

∞
n=0. As in the first part of the proof, |λ1| = |λ2| and λ2/λ1 is not a root

of unity. Write an in the form

an = c1λ
n
1 + c2λ

n
2 , n = 0, 1, 2, . . . ,

for suitable non-zero c1 and c2 with |c2| �= |c1|. Suppose, say, that, |c2| < |c1|.
Put r = |c2/c1| < 1. By Theorem 2.4. 2,

ψ = r
λ2 − λ1
|λ2 − λ1| . (46)
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By (7) and (46), ∣∣∣∣ψ − C′

R′

∣∣∣∣ = 1

R′

∣∣∣∣r(λ2 − λ1)

|λ2 − λ1| +
C

R

∣∣∣∣
=

1

RR′

∣∣∣∣rR(λ2 − λ1)

|λ2 − λ1| + C

∣∣∣∣
=

1

|λ1|
∣∣∣∣ r2

1− r2
(λ2 − λ1) +

λ1 − r2λ2
1− r2

∣∣∣∣
=

1

|λ1

∣∣∣∣(1− r2)λ1
(1− r2)

∣∣∣∣ = 1. (47)

Hence ψ lies on the circle O(C′, R′). By (7), Theorem 2.4.2, and (46), we have

C +Rψ = λ1 and C + R/ψ̄ = λ2. Hence
1
π arg (λ2/λ1) =

1
π arg

(
C+R/ψ̄
C+Rψ

)
�∈ Q.

If: Let λ1 = C + Rψ and λ2 = C + R/ψ̄. Since ψ lies on the circle O(C′, R′),
we have

Cψ̄ + C̄ψ = R(−C′ψ̄ − C̄′ψ)

= R
(|C′ − ψ|2 − |C′|2 − |ψ|2)

= R
(
R′2 − |C′|2 − |ψ|2)

= R(−1− |ψ|2). (48)

By (48), ∣∣∣∣λ2λ1
∣∣∣∣
2

=
|C +R/ψ̄|2
|C +Rψ|2

=
|C|2 +R2/|ψ|2 +R(Cψ̄ + C̄ψ)/|ψ|2

|C|2 −R2

=
|C|2 +R2/|ψ|2 +R(−R−R|ψ|2)/|ψ|2

|C|2 −R2

= 1. (49)

Hence |λ1| = |λ2|, and from (11) it follows that λ2/λ1 is not a root of unity.
Define a linear recurrence sequence (an)

∞
n=0 by

an = λn1 + |ψ|λn2 , n = 0, 1, 2, . . .

By Theorem 2.4. 2. the Kepler measure of (an)
∞
n=0 is C�(C,R, ψ). �

P r o o f o f P r o p o s i t i o n 2.6. Define the Möbius transformations R and T
by

R(z) =
λ2
λ1
z, T (z) =

rλ2z + λ1
z + 1

, for z ∈ C∞.
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The uniform measure on S1 is the unique R-invariant probability measure [31,
Proposition 6.4.4]. By (5) and (36), the diagram

S1 S1

O(C,R) O(C,R)

R

T T

S

(50)

is commutative. Therefore, ν = C�(C,R, ψ) is the unique S-invariant mea-
sure [13, p.145], where ψ is as in Theorem 2.4. By (14), for every continuous
function f : O(C,R) → C,

1

N

N−1∑
n=0

f
(
Sn(x)

) −−−−→
n→∞

∫
O(C,R)

fdν (51)

uniformly on O(C,R). �

P r o o f o f T h e o r e m 2.7. It is enough to prove the theorem for real-valued h.
Let f3 be as in the proof of Theorem 3.1. By (33) and (51), for z ∈ O(C,R)

1

N

N−1∑
n=0

h
(
Sn(z)

) −−−−→
n→∞

∫
O(C,R)

hdf3

=

∫ 2π

0

h
(
C + R exp(iθ)

)
f3
(
C +R exp(iθ)

)
R · dθ

=

∫ 2π

0

h
(
C + R exp(iθ)

) |1 − |ψ|2|
2π |exp(iθ)− ψ|2

1

R
·Rdθ

=

∫ 2π

0

h
(
C + R exp(iθ)

) |1 − |ψ|2|
2π |exp(iθ)− ψ|2 dθ.

(52)
By [30, Theorem 11.9] and (52), for every z ∈ O(C,R)

1

N

N−1∑
n=0

h
(
Sn(z)

) −−−−→
n→∞ h(C +Rψ) =

{
h(λ1), |c2| < |c1|,
h(λ2), |c1| < |c2|.

(53)

Putting z = a1/a0 in (53), we obtain

1

N

N−1∑
n=0

h

(
an+1

an

)
−−−−→
n→∞

{
h(λ1), |c2| < |c1|,
h(λ2), |c1| < |c2|.

(54)

�
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