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ABSTRACT. We examine four different notions of variation for real-valued func-
tions defined on the compact ring of integers of a non-Archimedean local field,
with an emphasis on regularity properties of functions with finite variation, and

on establishing non-Archimedean Koksma inequalities. The first version of vari-
ation is due to Taibleson, the second due to Beer, and the remaining two are
new. Taibleson variation is the simplest of these, but it is a coarse measure of ir-
regularity and it does not admit a Koksma inequality. Beer variation can be
used to prove a Koksma inequality, but it is order-dependent and not transla-
tion invariant. We define a new version of variation which may be interpreted as

the graph-theoretic variation when a function is naturally extended to a certain
subtree of the Berkovich affine line. This variation is order-free and translation
invariant, and it admits a Koksma inequality which, for a certain natural family
of examples, is always sharper than Beer’s. Finally, we define a Fourier-analytic
variation and a corresponding Koksma inequality which is sometimes sharper
than the Berkovich-analytic inequality.

Communicated by Robert Tichy

1. Introduction

LetK be a locally compact field equipped with a nontrivial, non-Archimedean
absolute value | · |. Examples include the p-adic field Qp for a prime number p,
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or more generally any finite extension of Qp, as well as the field of fractions
Fq((T )) of the formal power series ring Fq[[T ]] over a finite field Fq. (According
to the classification theorem for local fields ([9] § 4.2), these examples exhaust
all possibilities). Let O = {x ∈ K | |x| ≤ 1} be the compact ring of integers
in K, and let μ be the Haar measure on O normalized so that μ(O) = 1.

Let {Xn} be a sequence of finite subsets of O such that |Xn| → +∞. Such a
sequence is said to be equidistributed in O if, for every disc D ⊆ O, we have

lim
n→+∞

|Xn ∩D|
|Xn| = μ(D). (1)

A standard approximation argument can be used to show that an equivalent
condition characterizing equidistribution is that, for all continuous functions
f : O → R, we have

lim
n→+∞

1

|Xn|
∑
x∈Xn

f(x) =

∫
O
f dμ. (2)

Thus if a finite set X is distributed nearly uniformly throughout O, then the
Riemann-type sum

(1/|X|)
∑
x∈X

f(x)

should closely approximate the integral
∫
Of dμ.

To make this idea quantitative, one defines the discrepancy of a finite subset
X ⊆ O by

Δ(X) = sup
D⊆O

∣∣∣∣ |X ∩D|
|X| − μ(D)

∣∣∣∣ , (3)

the supremum over all discs D ⊆ O. Thus for a given finite set of points X, the
quantity Δ(X) measures the maximal difference, over all discs D ⊆ O, between
the actual proportion of the points occurring in the disc D and the expected
proportion. It is then desirable to obtain a result of the following type.

��������	
���
� ����

 �����
�	��� For a particular class of suffi-
ciently regular functions f : O → R, the inequality∣∣∣∣∣ 1

|X|
∑
x∈X

f(x)−
∫
O
f dμ

∣∣∣∣∣ ≤ C(f)Δ(X) (4)

holds, where C(f) is a constant depending only on f .

In the well-developed study of equidistribution on the circle group R/Z, the
inequality analogous to (4) is due to Koksma (see [5] § 2.5), and the quantity
C(f) is (up to a constant) the real-analytic variation V (f) =

∫
R/Z

|f ′(x)| dx of f.
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Consequently, the real integral
∫
R/Z

f(x) dx can be approximated numerically

using low-discrepancy sequences, an idea which forms the basis of quasi-Monte
Carlo integration. Niederreiter [8] has provided an exposition of quasi-Monte
Carlo methods, and Morokoff-Caflisch [6] have done an extensive experimental
study of the effectiveness of quasi-Monte Carlo methods in evaluating integrals
in single and multi-dimensions.

In the non-Archimedean setting, there are multiple ways one might define
a notion of the variation of a function f : O → R. In this paper we examine
four possibilities for such a definition, with an emphasis on regularity proper-
ties of functions with finite variation, and also with an eye toward establishing
Koksma inequalities of the form (4).

The first two notions of variation we consider were initiated by Taibleson [11]
and Beer [2], both in the 1960s. Despite working at nearly the same time, these
two authors seem to have been unaware of each other’s work. One of our goals is
to give an overview of their ideas and to provide a comparison of their relative
strengths and weaknesses.

Taibleson’s version of variation, which we consider in § 3, has perhaps the
simplest and most elegant definition. One considers any partition of O into a fi-
nite collection discs, next sums the maximum differences in the values taken
by f in each disc, and finally takes the supremum over all such partitions.
This variation is typically the easiest to calculate in specific examples, and it
is translation invariant with respect to the group structure on O. Moreover,
functions with finite Taibleson variation have at most countably many discon-
tinuities, as we show in § 3, and they satisfy a decay condition on their Fourier
coefficients, as was shown by Taibleson [11].

Taibleson variation is majorized by all three of the other notions of vari-
ation we consider, but no general inequalities exist in the opposite direction,
which may be an indication that Taibleson variation is a rather coarse measure
of irregularity. Indeed, we will see examples in which Taibleson variation fails
to detect a certain type of oscillation which the other notions of variation are
sensitive to. Because of this lack of sensitivity to oscillation, we can show that
it is actually impossible to prove a Koksma inequality of the form (4) in which
the constant C(f) depends only on the Taibleson variation of f . Thus for the
purposes of establishing a Koksma inequality, a different idea is needed.

In § 4, we describe the approach of Beer, who was the first to prove a Koksma
inequality of the form (4). Beer’s construction involves selecting a certain dic-
tionary ordering on O which allows one to (essentially) identify O with the real
unit interval [0, 1] using base q expansions of real numbers. Then one can use a
real analytic argument to emulate the proof of the classical Koksma inequality.
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One drawback of Beer’s approach is that the value of the Beer variation of a
function is not absolute, but rather it depends on the arbitrary choice of an
ordering on O. Moreover, Beer variation is not translation invariant, which is
unfortunate because O is a group.

In § 5, we define a new notion of variation, which eliminates the drawbacks
suffered by both the Beer and Taibleson variations. This new notion may be
interpreted as the graph-theoretic variation when a function f : O → R is
naturally extended to a function on a certain subtree of the Berkovich affine line
associated to the local field K. Like Taibleson variation, this Berkovich-analytic
variation is order-free and translation invariant. But we are also able to prove
a Koksma inequality for Berkovich-analytic variation, in contrast to Taibleson
variation, for which no Koksma inequality is possible. We also prove a strong
regularity condition for functions of finite Berkovich-analytic variation, showing
that every such function is equal almost everywhere to a continuous function.

In § 6, we give a fourth approach, proving a Koksma inequality of the type (4)
using Fourier analysis on the compact group O. We declare the constant C(f)
that arises in this inequality the Fourier-analytic variation of f ; roughly speaking,
this constant is finite when the Fourier coefficients of f decay rapidly enough.
Like Berkovich analytic variation, the Fourier-analytic variation of a function
is always larger than the Taibleson variation, and functions with finite Fourier-
analytic variation satisfy a strong regularity property.

In § 7, we summarize how the three known non-Archimedean Koksma in-
equalities compare with one another for the sample application f(x) = |x− c|t
for c ∈ O and t > 0. In this family, our Berkovich-analytic Koksma inequality
is always sharper than Beer’s Koksma inequality. Our Fourier-analytic Koksma
inequality is sharper than Beer’s result for large t, and sharper than both Beer’s
result and our Berkovich-analytic result as t → 0.

Niederreiter [7] has derived a general Fourier-analytic Koksma inequality
on an arbitrary compact abelian group G. In contrast to our Fourier-analytic
result, Niederreiter’s approach does not involve any notion of discrepancy de-
fined directly on the group G, but instead it considers the distribution of points
on the unit circle under the collection of all character maps γ : G → C. On the
other hand, the constant in Neiderreiter’s Koksma inequality is a weighted sum
of the absolute value of the Fourier coefficients, which does bear some to the
constant in our Theorem 6.3.
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2. Review of Local fields

Throughout this paper K is a field which is locally compact with respect to
a nontrivial, non-Archimedean absolute value | · |, and O = {x ∈ K | |x| ≤ 1}
is its compact ring of integers. Let π ∈ O be a uniformizing parameter; this
means that |π| is maximal among all x ∈ O with |x| < 1, and πO is the unique
maximal ideal of O. Because K is assumed to be locally compact, the residue
field O/πO must be finite, and we denote its order by q. We may assume without
loss of generality that the absolute value | · | is normalized so that |π| = 1/q.

Given an element a ∈ K and a real number r > 0 with r ∈ qZ, denote by

Dr(a) = {x ∈ K | |x− a| ≤ r}
the closed disc in K with center a and radius r. Letting μ denote the Haar
measure on O, normalized so that μ(O) = 1, the normalization of the absolute
value implies that the Haar measure of a disc is the same as its radius; that is
μ(Dr(a)) = r.

It is useful to fix a complete set S of coset representatives in O for the residue
field O/πO, with the assumption that 0 ∈ S. As is well-known, each element
x ∈ O can be written uniquely as a power series x =

∑
k≥0 akπ

k in π, for ak ∈ S;

see [9] § 4.2.
If A is a subset of O, we denote by XA(x) the characteristic function of A.

3. Taibleson variation

The first notion of variation we consider, due to Taibleson [11], has the sim-
plest definition. Taibleson was considered only the case of functions defined
on the formal power series ring O = Fp[[T ]] over a finite field Fp, but extending
this definition to our more general setting is straightforward.

By aTaibleson partition of O we mean any finite collection Π of discs which
form a partition of O. Given a function f : O → R and a Taibleson partition Π
of O, define

VΠ(f) =
∑
D∈Π

sup
x,y∈D

(
f(x)− f(y)

)
.

Define the Taibleson variation of f by VTaib(f) = supΠ VΠ(f), the supremum
over all Taibleson partitions of O.
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Example. Consider the characteristic function f = XA : O → R of a proper
subdisc A � O. We show that VTaib(f) = 1. By taking the partition to be
just Π = {O}, we see that VΠ(f) = 1. For any other partition Π, note that
either A is strictly contained in some D ∈ Π, or some D ∈ Π is contained in A.
If A is strictly contained in some D ∈ Π, then VΠ(f) = 1, but if A contains some
D ∈ Π, then f is constant on each D ∈ Π and so VΠ(f) = 0. We conclude that
VTaib(f) = 1.

Example. Let c ∈ O, let t > 0, and consider the function f : O → R defined
by f(x) = |x−c|t. We will show that VTaib(f) = 1. By taking the partition to be
just Π = {O}, we see that VΠ(f) = 1. For any other partition Π, let Dc be the
disc containing c, and suppose that Dc has radius r. Then f is constant on each
D �= D0, and it follows that VΠ(f) ≤ rt ≤ 1. We conclude that VTaib(f) = 1.

������	�	�� 3.1� If a function f : O → R has finite Taibleson variation, then
there exists a countable subset Z of O such that f is continuous at every point
in O \ Z.

P r o o f. For each x ∈ O, define φ(x) = lim supy→x |f(y)− f(x)|, and note that
f is continuous precisely at those x ∈ O with φ(x) = 0. Assume that the set
Z = {x ∈ O | φ(x) > 0} is uncountable. Then there exists ε > 0 and an infinite
sequence {xm}∞m=1 of distinct points in Z with φ(xm) ≥ ε for all m. (If no
such ε > 0 existed, then Z = ∪k≥1{x ∈ O | φ(x) ≥ 1/k} would be countable.)
For each M ≥ 1, let Π be a Taibleson partition with the property that, for each
1 ≤ m ≤ M , each of the points x1, . . . , xM are in distinct discs of the partition.
Then VΠ(f) ≥ εM and hence VTaib(f) = +∞. �

Example. This example shows that the converse of Proposition 3.1 is false,
by constructing a continuous function f : O → R with VTaib(f) = +∞.
Let {cm}∞m=1 be an infinite sequence of nonzero points in O with cm → 0, and
let {Dm}∞m=1 be a sequence of disjoint discs in O with cm ∈ Dm and 0 �∈ Dm

for all m. Let f : O → R be a function which is locally constant on each disc
Dm, and which takes exactly two values on each Dm, the values 0 and 1/m.
Next define f(x) = 0 for all x ∈ O \ (∪mDm). Then for each M ≥ 1 one can
construct a Taibleson partition Π containing the discs D1, . . . , DM (and some
other discs), and

VΠ(f) ≥ 1 + 1/2 + 1/3 + · · ·+ 1/M.

It follows that VTaib(f) = +∞ by the divergence of the harmonic series.

Despite the previous example, the following partial converse of Proposition 3.1
for Lipschitz functions is available.
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������	�	�� 3.2� If a function f : O → R is Lipschitz continuous with constant
C ≥ 0, then VTaib(f) ≤ C.

P r o o f. By hypothesis |f(x) − f(x)| ≤ C|x − y| for all x, y ∈ O. If D ⊆ O
is a disc, then its radius is μ(D), and so supx,y∈D |f(x) − f(y)| ≤ Cμ(D).
It follows that if Π is any Taibleson partition of O, we have VΠ(f) ≤ C
because

∑
D∈Π μ(D) = μ(O) = 1. We conclude that VTaib(f) ≤ C. �

Example. In this example we construct a function f : O → R which is contin-
uous, but not Lipschitz continuous, and which has finite Taibleson variation.

For each k ≥ 1, let Ak = D1/qk+1(πk). Every x ∈ Ak satisfies |x| = 1/qk and
hence the Ak are pairwise disjoint. Define a function f : O → R by

f(x) =
∑
k≥0

(−1)k

k + 1
XAk

(x). (5)

We show that VTaib(f) = 1. To see this, we first claim that if D ⊆ O is any
disc which does not contain 0, then f is constant on D. This is clearly the case
if D is either contained in some Ak or is disjoint from all of the Ak, so the
only case left to check is when D properly contains some Ak. But if D properly
contains Ak, then the radius of D is at least 1/qk and D contains πk, whereby
0 ∈ D1/qk(π

k) ⊆ D, contradicting the asumption that 0 �∈ D.

Since f is constant on any disc which does not contain 0, such discs cannot
contribute to the variation VΠ(f) associated to any Taibleson partition Π of O.
If Π is a Taibleson partition of O and D0 ∈ Π denotes the disc containing 0,
then

VΠ(f) = sup
x,y∈D0

|f(x)− f(y)| ≤ 1,

because all partial sums of the alternating harmonic series
∑

k≥0(−1)k/(k + 1)

are in the interval [0, 1]. Choosing Π = {O} shows that VΠ(f) = 1 can be
achieved, and therefore VTaib(f) = 1.

We note that f is locally constant except at 0, and it is continuous at 0 by the
convergence of the alternating harmonic series. To see that f is not Lipschitz
continuous if |x| = 1/qm, then |f(0)− f(x)| is the error term in the alternating

harmonic series
∑

0≤k≤m(−1)k/(k+1), which is ≈ 1
m , and thus no bound of the

form |f(0)− f(x)| ≤ C|x| = C/qm is possible.

In the previous example, the fact that discs not containing zero cannot con-
tribute to the Taibleson variation leaves one with the impression that Taibleson
variation is too coarse to detect the kind of oscillation exhibited by alternating
sums of the type (5). Indeed in § 5, we will show that f has infinite Berkovich-
analytic variation.
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Our final result in this section is the following theorem, which shows that it is
not possible to prove a Koksma inequality of the form (4) in which the constant
C(f) depends only on the Taibleson variation VTaib(f). Once again the culprit
is the lack of sensitivity of Taibleson variation to oscillation.

������
 3.3� For each integer M ≥ 1, there exists a locally constant function
f : O → R and a finite subset X of O such that VTaib(f) = 2 and∣∣∣∣∣ 1

|X|
∑
x∈X

f(x)−
∫
O
f dμ

∣∣∣∣∣ ≥ 2MΔ(X).

P r o o f. For each k ≥ 0, let

Ak = D1/qk+1(πk) = {πk + ak+1π
k+1 + ak+2π

k+2 + · · · | ai ∈ S}
Every x ∈ Ak satisfies |x| = 1/qk and hence the Ak are pairwise disjoint. Define
f : O → R by

f(x) =
∑

0≤k≤2M−1

(−1)kXAk
(x).

Note that f is a slight variant of the function considered in Example 3. By the
same argument used in Example 3, because f is constant on any disc which does
not contain 0, we have VTaib(f) = 2.

Our strategy is to construct a set X which has very small discrepancy, except
that X∩Ak has one “extra” point when k is even, and one “missing” point when
k is odd. In this way the set X will take advantage of the oscillation built into
the function f . Let T ≥ 2M be an integer, and define

Y =
{
a0 + a1π + · · ·+ aT−1π

T−1 ∈ O | ai ∈ S
}
,

thus |Y | = qT. Next define

X = Y ∪ {1 + πT, π2 + πT, . . . , π2M−2 + πT
} \ {π, π3, . . . , π2M−1

}
.

Thus |X| = |Y | = qT, but X differs from Y in that one point πk + πT has been
added to X in each of the M discs A0, A2, . . . , A2M−2 with even indices, and one
point πk has been removed from X in each of the M discs A1, A3, . . . , A2M−1

with odd indices. Explicitly,

|X ∩ Ak| = qT−(k+1) + (−1)k. (6)

We will show that Δ(X) ≤ 1/qT. Thus we must show that∣∣∣∣ |X ∩D|
|X| − μ(D)

∣∣∣∣ ≤ 1/qT (7)

for all discs D ⊆ O. Suppose that D has radius μ(D) = 1/qn.
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We first consider the case n ≥ T + 1. Then D can contain at most one point
of X, as any two distinct points x, x′ ∈ X satisfy |x− x′| ≥ 1/qT > 1/qn. Thus

|X ∩D| = θ where θ is either 0 or 1, and |X∩D|
|X| −μ(D) = θ−qT−n

qT
, and (7) holds.

If instead n = T , then D can contain at most two points of X, and D contains
two points of X only when these two points are a pair πk and πk+πT for even k.

Thus |X ∩D| = θ where θ is either 0, 1 or 2, and |X∩D|
|X| − μ(D) = θ−1

qT
, and (7)

holds.

Finally we consider the case 0 ≤ n < T . By an argument described in
Example 3, at least one of the following cases must hold: either (i) D ⊆ Ak

for some k = 0, 1, 2, . . . , 2M − 1, or (ii) D is disjoint from all of the discs
A0, A1, A2, . . . , A2M−1, or (iii) D contains 0.

First, if D ⊆ Ak for some k = 0, 1, 2, . . . , 2M − 1, then |X ∩D| = qT−n + θ,
where θ ∈ {−1, 0, 1}. Note that θ = 1 can only occur when k is even, due to the
presence of the “extra point” πk + πT in Ak, while θ = −1 can only occur when
k is odd, due to the absence of the point πk, which has been removed from X.

We then have |X∩D|
|X| −μ(D) = qT−n+θ

qT
− 1

qn = θ
qT

, and (7) holds. If D is disjoint

from all of the discs A0, A1, A2, . . . , A2M−1, then |X ∩D| = qT−n and (7) holds
in this case as well.

Finally, assume that D contains 0, thus D = D1/qn(0). If n > 2M−1, then D
is disjoint from all of the discs A0, A1, A2, . . . , A2M−1, a case which has already
been treated. If 0 ≤ n ≤ 2M−1, then D contains the discs An, An+1, . . . , A2M−1

and is disjoint from the discs A0, A1, . . . , An−1. Therefore |X ∩D| = qT−n + θ,
where θ is the number of even indices k ∈ [n, 2M − 1] minus the number of odd
indices k ∈ [n, 2M − 1]. Thus θ ∈ {−1, 0} and once again (7) holds, completing
the proof that Δ(X) ≤ 1/qT .

Finally, we use (6) to calculate

1

|X|
∑
x∈X

f(x)−
∫
O
f dμ =

1

qT

2M−1∑
k=0

(−1)k|X ∩ Ak| −
2M−1∑
k=0

(−1)kμ(Ak)

=
1

qT

2M−1∑
k=0

(−1)k
(
qT−(k+1)+ (−1)k

)−2M−1∑
k=0

(−1)kq−(k+1)

= 2M/qT

≥ 2MΔ(X),

completing the proof. �
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Inspection of the proof of Theorem 3.3 shows that for arbitrary M ≥ 1, the
sets X satisfying the conclusion can be found with arbitrarily small discrep-
ancy Δ(X). This is notable because the case of greatest interest in any Koksma
inequality is the case of a sequence {Xn} of equidistributed sets.

4. Beer variation

In this section we describe Beer’s notion [2] of the variation of a function
f : O → R. Recall from § 2 that, given any complete set S of coset representatives
in O for the residue field O/πO, with 0 ∈ S, each element x ∈ O can be written
uniquely as a power series in π with coefficients in S. In order to define Beer
variation, we need to fix once and for all an order on the set S, and we do so
by indexing the elements of S as

S = {s0, s1, s2, . . . , sq−1}.
Here we are generalizing the construction of Beer, who formulated her definition
only in the case O = Zp and S = {0, 1, 2, . . . , p− 1}.

Fix a (large) positive integer λ, and let m0,m1,m2, . . . ,mqλ−1 be the list

of all qλ elements of O of the form

mi = a0 + a1π + a2π
2 + · · ·+ aλ−1π

λ−1,

written in the dictionary ordering according to the coefficients

a0, a1, a2, . . . , aλ−1 ∈ S

and with respect to the ordering of the set S. For each i=0, 1, 2, . . . , qλ−1,
let Ei = D1/qλ(mi). We call the collection of discs E0, E1, E2, . . . , Eqλ−1

the ordered Beer partition of O associated to S and λ. Given a function
f : O → R, let

Vλ(f) = sup
xi∈Ei

qλ−1∑
i=1

|f(xi)− f(xi−1)|. (8)

It is easy to see that Vλ(f) is monotone increasing as a sequence in λ, since
the ordered Beer partition associated to λ+1 is finer than that associated to λ.
The Beer variation of f is defined as

VBeer(f) = lim
λ→+∞

Vλ(f). (9)

The motivation for the dictionary ordering considered by Beer can be ex-
plained as follows. Given any 0 ≤ k ≤ λ and a0, a1, . . . , ak−1 ∈ S, the disc with
center a = a0 + a1π + · · · + ak−1π

k−1 and radius 1/qk in O can be written as
D1/qk(a) = a + πkO. Thus D1/qk(a) is the set of all elements x ∈ O whose
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first k terms in its π-adic expansion begin with a0+a1π+a2π
2+ · · ·+ak−1π

k−1.
We conclude that any disc in O is the union of a block of consecutive discs Ei

in the dictionary ordered partition E0, E1, E2, . . . , Eqλ−1 of O.

We observe that the point α =
∑

k≥0 s0π
k = s0/(1−π) is contained in the first

disc E0 of the ordered partition for all λ ≥ 1, and similarly β =
∑

k≥0 sq−1π
k =

sq−1/(1 − π) is always contained in the last disc Eqλ−1. Consequently, as the
following examples show, the behavior of a function f : O → R at the points α
and β has a strong influence on the evaluation of the Beer variation (in much
the same way that the endpoints effect the classical real valuation of a function
f : [0, 1] → R). In particular, Beer variation depends on the choice of the ordered
set S of coset representatives for the quotient O/πO.

Example. Consider the characteristic function f = XA : O → R of a proper
subdisc A � O. We show that

VBeer(f) =

{
1 if either α ∈ A or β ∈ A,

2 if α �∈ A and β �∈ A.
(10)

(Note that the disc A cannot contain both α and β because of the assumption

that A �= O together with the fact that |α − β| = 1.) Fix λ ≥ 1 large enough
so that the radius of A is ≥ 1/qλ. Then A is the union of a block of consecutive
discs Ei in the ordered partition, but the block does not contain all of the discs
Ei because A �= O. If α ∈ A then this is an initial block E0, E1, . . . En, and
it follows that Vλ(f) = 1. Similarly, Vλ(f) = 1 if β ∈ A. If neither α nor β is
in A, then A is the union of a block of discs Ei containing neither E0 nor Eqλ−1.
Therefore, Vλ(f) = 2, and (10) follows.

This example is similar to the case of the classical real variation of the charac-
teristic function of a proper subinterval [a, b] of [0, 1], which is equal to 1 if a = 0
or b = 1, and is equal to 2 if 0 < a < b < 1.

Example. Let c ∈ O, let t > 0, and consider the function f(x) = |x − c|t.
We show that

VBeer(f) = |α− c|t + |β − c|t.
In particular,

1 ≤ VBeer(f) ≤ 2, with VBeer(f) = 1 if and only if c = α or c = β.

We first consider the case that c = α. Note that f(x) = |x − α|t is constant
on every disc in O that does not contain α. For fixed large λ, in the ordered
partition E0, E1, . . . , Eqλ−1 associated to λ, we can group the discs Ei into λ+1
blocks, where f(x) = |x − α|t is constant on each block, except the first block
which contains only E0. Thus the sum occurring in the definition of VBeer(f)
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given by (8) is maximized when x0 = α, and the choices of x1, x2, . . . , xqλ−1

in their respective discs Ei are arbitrary. Since

0 = f(x0) ≤ f(x1) ≤ · · · ≤ f(xqλ−1) = 1,
it follows that

Vλ(f) =

qλ−1∑
i=1

|f(xi)− f(xi−1)| = 1.

and we conclude that VBeer(f) = 1. The proof in the case c = β is similar.

Assume that c �= α and c �= β. Then f(x) = |x− c|t takes a constant value Ci

on each partition disc Ei except the one containing c, call it Ei0 . The sequence
C0, C1, . . . , Ci0−1 starts at |α − c|t and is monotone decreasing, the sequence
Ci0+1, Ci0+2, . . . , Cqλ−1 is monotone increasing and ends at |β − c|t, and thus
the sum occurring in the definition of VBeer(f) given by (8) is maximized when
xi0 = 0, and the choices of the other xi in their respective discs Ei are arbitrary.
A calculation similar to the one above shows that VBeer(f) = |α− c|t + |β − c|t.

Again we point out the similarity of this example to the classical real valuation
of the function f : [0, 1] → R defined by f(x) = |x − c|t for c ∈ [0, 1], which is
equal to |c|t + |1− c|t.
������	�	�� 4.1� For any f : O → R, we have VTaib(f) ≤ VBeer(f).

P r o o f. Let Π be a Taibleson partition of O. For each disc D ∈ Π, consider
arbitrary αD, βD ∈ D with αD �= βD, and without loss of generality assume
that f(βD) ≤ f(αD).

We produce a corresponding Beer partition as follows. Take λ ≥ 1 large
enough so that al of the discs in the Taibleson partition has radius at least 1/qλ,
and αD �≡ βD (mod πλ) for all D ∈ Π. Let E0, E1, . . . , Eqλ−1 be the ordered
Beer partition of O associated to λ.

For each disc D ∈ Π, by our choice of λ we know that D is a union of consecu-
tive discs Es, Es+1, . . . , Et in the Beer partition. The point αD is in one of these
discs, say Ea, and βD is in another disc, say Eb. Select xa = αk, xb = βk, and
make arbitrary choices for the xi ∈ Ei with i �= a and i �= b. Presuming a > b,
we have

f(αD)− f(βD) = f(xa)− f(xb)

=
∑

b<i≤a

f(xi)− f(xi−1)

≤
∑

b<i≤a

|f(xi)− f(xi−1)|

≤
∑

s<i≤t

|f(xi)− f(xi−1)|.
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If instead b < a, we still have

f(αD)− f(βD) ≤
∑

s<i≤t

|f(xi)− f(xi−1)|
by a similar argument.

Now, summing over all discs in the Taibleson partition we obtain∑
D∈Π

(
f(αD)− f(βD)

) ≤
∑

1<i≤qλ−1

|f(xi)− f(xi−1)|

≤ Vλ(f) ≤ VBeer(f).

Taking the supremum over all choices of αD, βD ∈ D for all D ∈ Π, we
obtain VΠ(f) ≤ VBeer(f), and finally taking the supremum over all Taibleson
partitions Π, we conclude that VTaib(f) ≤ VBeer(f). �

Combining Proposition 4.1 with Proposition 3.1 we obtain the following reg-
ularity property for functions with finite Beer variation.

������	�	�� 4.2� If a function f : O → R has finite Beer variation, then
there exists a countable subset Z of O such that f is continuous at every point
in O \ Z.

On the other hand, it also follows from Proposition 4.1 and Example 3 that
a continuous function need not have finite Beer variation.

Beer used her notion of variation to prove a p-adic Koksma inequality,
as we now describe. For the purposes of Beer’s theorem, we say a function
f : O → R is integrable if there exists sequences un, vn : O → R of func-
tions (for n ≥ 1), each defined as a finite linear combination of characteristic
functions of discs, with un ≤ f ≤ vn and

∫
O(vn − un) dμ → 0. This notion is

comparable to Riemann integrability in real analysis. As might be expected, the
class of integrable functions f : O → R in the sense of Beer contains all contin-
uous functions, but is strictly smaller than the class of all (measure-theoretic)
Haar-integrable functions.

������
 4.3 (Beer [2])� If f : O → R is an integrable function and X is a
finite subset of O with discrepancy Δ(X), then∣∣∣∣∣ 1N ∑

x∈X

f(x)−
∫
O
f dμ

∣∣∣∣∣ ≤ 2qVBeer(f)Δ(X).

One way of viewing Beer’s proof of this result is to note that, using the dic-
tionary ordering on O, one can essentially identify O with the unit interval [0, 1]
of the real line, using base q expansions of real numbers. Then the proof of Theo-
rem 4.3 follows precisely the same argument as the proof of the classical Koksma
inequality for a real interval. We refer the reader to [2] for details.

33



CLAYTON PETSCHE — NAVEEN SOMASUNDERAM

However, Beer’s approach has a notable shortcoming. In order to reduce the
proof of Theorem 4.3 to the proof of the classical real Koksma inequality, one
needs to make an arbitrary choice of an ordering on O, and the value of VBeer(f)
depends on this choice. Moreover, Beer variation is not translation invariant;
that is, when f : O → R and c ∈ O, it is not necessarily the case that f(x) and
f(x− c) have the same Beer variation. This is unfortunate, since O is a group.

5. Berkovich-analytic variation

In view of the previous two sections, it would be desirable to define a notion
of variation on O which is order-free and translation invariant (like Taibleson
variation), but which admits a Koksma inequality (like Beer variation). We define
such a variation in this section.

Let DO denote the collection of all subdiscs D of O. Define a relation ≺
on DO, declaring that D′ ≺ D whenever D′ ⊆ D and μ(D′) = 1

qμ(D). Thus

for each disc D ∈ DO, there are precisely q discs D′ satisfying D′ ≺ D, and
these discs form a partition of D.

Let f : O → R be a Haar-integrable function. For each disc D ∈ DO, we
define

f(D) =
1

μ(D)

∫
D

f dμ,

the average value taken by f on the disc D. In this way we have extended
f : O → R to a function f : O � DO → R; in a slight abuse of notation we use
f to denote both functions. We now define the Berkovich-analytic variation
of f : O → R by

VBerk(f) =
∑

D∈DO

∑
D′≺D

|f(D′)− f(D)|. (11)

Thus VBerk(f) records the absolute differences between the average value of f
on a disc D and all of its q subdiscs D′ with D′ ≺ D, and sums this amount
over all subdiscs D of O.

It is conceptually helpful to interpret VBerk(f) as the variation of f when it
is naturally extended to a function on a certain infinite subtree of the Berkovich
affine line over K. To understand this interpretation, we define an infinite tree
TO associated to the compact local ring O, as follows. The vertices of TO are
in bijective correspondence with the discs D ⊆ O; abusing notation slightly we
also denote by D the vertex of TO associated to the disc D. We declare that two
vertices D′ and D of TO are connected by an edge if D′ ≺ D as discs. Thus TO
is a complete q-ary rooted tree. The root vertex O meets q edges, sharing one
with each of its children vertices D′ ≺ O of radius 1/q. Each non-root vertex D
shares one edge with its parent vertex and q edges with its children vertices.

34



NON-ARCHIMEDEAN KOKSMA INEQUALITIES
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Figure 1. The extended infinite rooted tree TO when O = Z3, with detail

on the first three levels showing vertices associated to discs of radius 1,
1/3, and 1/9.

If we define TO = O � TO, the disjoint union of O and the rooted tree TO,
then TO can be naturally identified with a subset of the Berkovich affine line
A1

Berk,K over the completion K of the algebraic closure of K, as described say

in Berkovich [3] or Baker-Rumely [1]. Alternatively, TO may be identified with
a subset of the Bruhat-Tits tree associated to PGL2(O), see [4].

If f : O → R is Haar-integrable, we extend f to a function f : TO → R

as follows. For each vertex D of TO, define f(D) = μ(D)−1
∫
D
f dμ, as in the

definition of Berkovich-analytic variation VBerk(f). On each edge of the tree TO,
say an edge connecting vertices D′ and D for D′ ≺ D, we extend f linearly
given the knowledge of the values f(D′) and f(D). We may now reinterpret the
Berkovich analytic variation defined in (11) as a graph theoretic variation

VBerk(f) =
∑
E

sup
x,y∈E

|f(x)− f(y)|,

the sum taken over all edges E in the tree TO. Note that in our case, it has been
mandated that f is linear on each edge E, and hence supx,y∈E |f(x) − f(y)|
is always achieved by choosing x and y to be the two endpoints of E.

Example. Consider the characteristic function f = XA : O → R of a proper
subdisc A � O We show that

VBerk(f) = 2
(
1− μ(A)

)
(12)

In particular 2− 2
q < VBerk(f) < 2.
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We first observe that, if a disc D ⊆ O does not properly contain A, then f is
constant on D and hence |f(D′)− f(D)| = 0 for all D′ ≺ D. Assuming that A
has radius μ(A) = 1/qk, we may label as

A = Dk ≺ Dk−1 ≺ · · · ≺ D1 ≺ D0 = O
the ascending chain of discs containing A, where Dm has radius 1/qm. Thus

VBerk(f) =
∑

0≤m≤k−1

∑
D′≺Dm

|f(D′)− f(Dm)|. (13)

If 0 ≤ m ≤ k − 1, then f(Dm) = qm−k, f(Dm+1) = qm−k+1, and f(D′) = 0
for the remaining q − 1 discs D′ ≺ Dm. Thus∑

D′≺Dm

|f(D′)− f(Dm)| = qm−k+1 − qm−k + (q − 1)qm−k. (14)

We obtain (12) from (13) and (14) using a gemetric series calculation.

Example. Let c ∈ O, let t > 0, and consider the function f : O → R defined
by f(x) = |x− c|t. We will show that

VBerk(f) =
2(q − 1)

q − q−t
.

In particular, 1 < VBerk(f) < 2.

By translation invariance we may assume without loss of generality that c = 0
and thus f(x) = |x|t. If a disc D ⊆ O does not contain zero, then f is constant
on D and hence

∑
D′≺D |f(D′) − f(D)| = 0. Thus letting Dn = D1/qn(0),

we have

VBerk(f) =
∑
n≥0

∑
D′≺Dn

|f(D′)− f(Dn)|.

We calculate

f(Dn) =
1

μ(Dn)

∫
Dn

|x|t dμ(x)

= qn
∑
k≥n

μ (Dk \Dk+1) q
−kt

= qn
∑
k≥n

(
q−k − q−k−1

)
q−kt

= Cq−nt
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via a geometric series calculation, where C = q−1
q−q−t < 1. If D′ ≺ Dn but

D′ �= Dn+1, then D′ does not contain 0 and hence f(D′) = q−nt. Therefore

VBerk(f) =
∑
n≥0

⎛⎜⎜⎝|f(Dn+1)− f(Dn)| +
∑

D′≺Dn

D′ �=Dn+1

|f(D′)− f(Dn)|

⎞⎟⎟⎠
=
∑
n≥0

(
C
(
q−nt − q−(n+1)t

)
+ (q − 1)(q−nt − Cq−nt)

)
=
(
C(1 − q−t) + (q − 1)(1− C)

)∑
n≥0

q−nt

=
(
C(1 − q−t) + (q − 1)(1− C)

) 1

1− q−t
= 2C,

which is the desired identity.

The definition of the Berkovich-analytic variation of a Haar-integrable func-
tion f : O → R depends only on the values of integrals of f taken over discs,
and therefore VBerk(f) = VBerk(g) whenever f = g Haar-almost everywhere.
However, functions with finite Berkovich-analytic variation still satisfy a strong
regularity condition, as the following result shows.

������
 5.1� If f : O → R is Haar-integrable and VBerk(f) < +∞, then
there exists a unique continuous function g : O → R such that f(x) = g(x)
for Haar-almost all x ∈ O.

P r o o f. Define a sequence of function gn : O → R (for n ≥ 0) by

gn(x) = f
(
D1/qn(x)

)
= qn

∫
D1/qn(x)

f dμ.

Then define g : O → R by g(x) = limn→+∞ gn(x). To see that this limit exists,
note that for n1 < n2 we have

|gn2
(x)− gn1

(x)| ≤
∑

n1≤n≤n2−1

|gn+1(x)− gn(x)|

≤
∑
n≥n1

|gn+1(x)− gn(x)|

≤
∑
n≥n1

∑
D∈DO

μ(D)=1/qn

∑
D′≺D

|f(D′)− f(D)|.
(15)
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The last expression is the tail of the convergent series (11) defining Berkovich-
analytic variation. Since the left-hand-side of (15) is majorized by the tail of a
convergent series, it follows that the sequence {gn(x)} is Cauchy and hence
converges. Moreover, taking n2 → +∞ we see that |g(x)−gn(x)| is also bounded
above by the tail of the convergent series (11), which shows that the convergence
gn → g is uniform.

If |x − y| = 1/qn, then D1/qn(x) = D1/qn(y) and so gn(x) = gn(y), and
therefore |g(x)− g(y)| ≤ |g(x)− gn(x)|+ |gn(y)− g(y)| → 0

as n → +∞, proving that g is continuous.

If D ⊆ O is any disc, then∫
D

g(x) dμ(x) = lim
n→+∞

∫
D

gn(x) dμ(x)

= lim
n→+∞ qn

∫
D

∫
D1/qn (x)

f(y) dμ(y) dμ(x)

= lim
n→+∞ qn

∫
D

∫
D1/qn (y)

f(y) dμ(x) dμ(y)

= lim
n→+∞ qn

∫
D

μ
(
D1/qn(y)

)
f(y) dμ(y)

= lim
n→+∞

∫
D

f(y) dμ(y)

=

∫
D

f(y) dμ(y).

The first equality in the preceding calculation is an interchange of limit and
integral which is justified by the dominated convergence theorem, as gn → g
uniformly and g is continuous and hence bounded. In the interchange of integrals
in the third equality, we note that because D is fixed and n → +∞, we may
assume that 1/qn ≤ μ(D), and in this case

{(x, y) | x ∈ D and y ∈ D1/qn(x)} = {(x, y) | y ∈ D and x ∈ D1/qn(y)}.
Finally, setting F (x) = f(x)−g(x), we have

∫
D F dμ = 0 for all discs D ⊆ O,

and therefore F = 0 Haar-almost everywhere by Lemma 5.2, completing the
proof of the theorem. �

��


 5.2� If F : O→R is a Haar-integrable function which satisfies∫
D

F dμ=0 for all discs D ⊆ O,

then F (x) = 0 for Haar-almost all x ∈ O.
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P r o o f. Any nonempty open subset U of O is a countable union of discs, and
therefore

∫
U
F dμ = 0 for all open U ⊆ O. Taking complements we obtain∫

K
F dμ = 0 for all closed sets K ⊆ O.

For the sake of obtaining a contradiction, assume that {x ∈ O | F (x) �= 0}
has positive Haar measure. Then at least one of

{x ∈ O | F (x) > 0} or {x ∈ O | F (x) < 0}
has positive Haar measure; assume without loss of generality that it is the
former. Since Haar measure is finite on O, it is inner regular, and therefore
there exists a closed subset K ⊆ {x ∈ O | F (x) > 0} with μ(K) > 0.
Together, the facts that

μ(K) > 0 and F (x) > 0 for all x ∈ K

imply that
∫
K
F dμ > 0, a contradiction. �

The converse of Theorem 5.1 is false; that is, not every continuous function
has finite Berkovich-analytic variation. Indeed, in Example 3 we constructed a
continuous function with infinite Taibleson variation. By the following result,
this continuous function has infinite Berkovich-analytic variation as well.

������	�	�� 5.3� For any continuous f : O → R, we have VTaib(f) ≤ VBerk(f).

P r o o f. The graph-theoretic idea behind this proof is as follows: if Π is a Taible-
son partition, D ∈ Π is a disc, and x, y ∈ D, then |f(x) − f(y)| is majorized
by the variation of f : TO → R along the interval Ix,y in TO which traverses
from x ∈ O “up” to the smallest disc D|x−y|(x) = D|x−y|(y) containing both x
and y, and then “down” from this disc to y ∈ O. Moreover, the intervals Ix,y are
disjoint for fixed x, y ∈ D as D ranges over all of the discs in a given Taibleson
partition.

To make this precise, let D0⊆O be a disc, and let x, y∈D0 with |x−y|=1/qn.
To ease the notation define αk = f

(
D1/qk(x)

)
and βk = f

(
D1/qk(y)

)
. Since f is

continuous, we have

αk → f(x) and βk → f(y) as k → +∞.

Since D1/qn(x) = D1/qn(y), we have αn = βn, and thus if k > n, a telescoping
series calculation gives

|f(x)− f(y)| = |f(x)− αn + βn − f(y)|
≤ |f(x)− αk|+ |βk − f(y)|

+

k−1∑
n=i

(|αi+1 − αi|+ |βi+1 − βi|) .
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Letting k → +∞ we obtain

|f(x)− f(y)| ≤
∞∑
i=n

(|αi+1 − αi|+ |βi+1 − βi|)

≤
∑

D⊆D0

∑
D′≺D

|f(D′)− f(D)|.

Summing over all discs in a Taibleson partition Π = {D1, D2, . . . , DM} of O,
we have∑

Dm∈Π

sup
x,y∈Dm

|f(x)− f(y)| ≤
∑

Dm∈Π

∑
D⊆Dm

∑
D′≺D

|f(D′)− f(D)|

≤
∑
D⊆O

∑
D′≺D

|f(D′)− f(D)|

= VBerk(f).

We obtain the desired inequality VTaib(f) ≤ VBerk(f) by taking the supremum
over all Taibleson partitions Π of O. �

Example. In this example we show that no inequality in the opposite di-
rection of Proposition 5.3 is possible. As in Example 3, for each k ≥ 0, we
define Ak = D1/qk+1(πk), and that the discs Ak are pairwise disjoint. Define
f : O → R by

f(x) =
∑
k≥0

(−1)k

k + 1
XAk

(x). (16)

We showed in Example 3 that this function is continuous, but not Lipschitz
continuous, and that it has finite Taibleson variation.

We can use the graph-theoretic interpretation of Berkovich-analytic variation
to give a simple proof that VBerk(f) = +∞. Since f takes the constant value
(−1)k/(k + 1) on each disc Ak, we have f(Ak) = (−1)k/(k + 1). For each k ≥ 0
let Ik be the interval in the tree TO formed by the union of three edges:

• first the edge from Ak = D1/qk+1(πk) “up” to D1/qk(0);

• next the edge from D1/qk(0) “down” to D1/qk+1(0), and

• finally the edge from D1/qk+1(0) “down” to Ak+1 = D1/qk+2(πk+1).

The values taken by f : TO → R along the interval Ik traverse from

f(Ak) = (−1)k/(k + 1) to f(Ak+1) = (−1)k+1/(k + 2),

and hence the variation of f on Ik is at least |f(Ak)− f(Ak+1)| = 1
k+1 + 1

k+2 .
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The intervals Ik are disjoint in TO and therefore the Berkovich-analytic variation
VBerk(f) is minorized by the divergent series

∑
k≥0(

1
k+1 +

1
k+2 ), and we conclude

that VBerk(f) = +∞.

Finally, we are ready to prove our non-Archimedean analogue of Koksma’s
inequality using Berkovich-analytic variation.

������
 5.4� If f : O → R is a continuous, Haar-integrable function and X
is a finite subset of O with discrepancy Δ(X), then∣∣∣∣∣ 1N ∑

x∈X

f(x)−
∫
O
f dμ

∣∣∣∣∣ ≤
(
1 +

1

q

)
VBerk(f)Δ(X). (17)

P r o o f. Let N = |X|, and for each disc D ⊆ O, define quantities

ND = |X ∩D|
ED =

∑
x∈X∩D

f(x)−NDf(D) =
∑

x∈X∩D

(
f(x)− f(D)

)
.

Note that ND depends onX, and ED depends on both X and f , but we suppress
these dependencies to ease the notation. Note also that NO = N , and the left-
hand-side of the desired inequality (17) can be written as |EO|/N .

The quantity ED satisfies the identity

ED =
∑

D′≺D

ED′ +
∑

D′≺D

(
ND′ − ND

q

)(
f(D′)− f(D)

)
, (18)

which is elementary to check by simplifying the right-hand-side and using the
identities ∑

D′≺D

ND′ = ND and
∑

D′≺D

f(D′) = qf(D).

This can be viewed as a recursion formula for ED in terms of ED′ over the q
subdiscs D′ ≺ D. Since μ(D′) = 1

q
μ(D) we have the estimate∣∣∣∣ND′ − ND

q

∣∣∣∣ = ∣∣∣∣ND′ − μ(D′)N +
1

q

(
μ(D)N −ND

)∣∣∣∣
≤ N

(∣∣∣∣ND′

N
− μ(D′)

∣∣∣∣+ 1

q

∣∣∣∣ND

N
− μ(D)

∣∣∣∣)
≤ N

(
1 +

1

q

)
Δ(X),

41



CLAYTON PETSCHE — NAVEEN SOMASUNDERAM

and applying this to (18) we obtain

|ED| ≤
∑

D′≺D

|ED′ |

+N

(
1 +

1

q

)
Δ(X)

∑
D′≺D

|f(D′)− f(D)|. (19)

Let M ≥ 1 be an arbitrary positive integer. Iterating the bound (19) over all
discs D ⊆ O with 1/qM−1 ≤ μ(D) ≤ 1, we obtain

|EO| ≤
∑
D⊆O

μ(D)=1/qM

|ED| + N

(
1 +

1

q

)
Δ(X)

×
∑
D⊆O

1/qM−1≤μ(D)≤1

∑
D′≺D

|f(D′)− f(D)|

≤
∑
D⊆O

μ(D)=1/qM

|ED|+N

(
1 +

1

q

)
Δ(X)VBerk(f). (20)

To complete the proof of the theorem, let ε > 0 be arbitrary. Since f : O → R

is continuous on a compact space, it is uniformly continuous, so there exists
M ≥ 1 so large that |f(x)− f(y)| ≤ ε whenever |x− y| ≤ 1/qM .

It follows that if D ⊆ O is a disc of radius 1/qM , then

|ED| =
∣∣∣∣∣ ∑
x∈X∩D

(
f(x)− f(D)

)∣∣∣∣∣ ≤ εND

and hence ∑
D⊆O

μ(D)=1/qM

|ED| ≤
∑
D⊆O

μ(D)=1/qM

εND = εN

since the discs of radius 1/qM are a partition of O. Applying this last estimate
to (20) we have

|EO|
N

≤ ε+

(
1 +

1

q

)
Δ(X)VBerk(f). (21)

Since ε > 0 is arbitrary, we obtain (17), completing the proof. �
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6. Fourier-analytic variation

In this section we derive a Koksma inequality using Fourier analysis on the
local ring O. Rudin [10] is a standard reference for general Fourier analysis

on locally compact abelian groups. Let Ô be the Pontryagin dual group of O;
that is, the group of continuous additive characters γ : O → T under pointwise

multiplication, where T = {z ∈ C | |z| = 1} is the circle group. Let γ0 ∈ Ô
denote the trivial character, thus γ0(x) = 1 for all x ∈ O.

Given a character γ ∈ Ô, define the level of γ to be the smallest nonnegative
integer 
 with the property that γ(x) = 1 for all x ∈ π�O. We denote the level

of a character γ ∈ Ô by 
(γ). To see that such an integer always exists, let
T+ = {z ∈ T | Re(z) > 0} be the open right unit semicircle. Since γ(0) = 1 and
γ is continuous, there exists a neighborhood π�O of zero such that γ(x) ∈ T+

for all x ∈ π�O. Moreover, since π�O is a subgroup of O we must have that the
image γ(π�O) is a subgroup of T. The only subgroup G of T entirely contained
in T+ is the trivial subgroup, because any z �= 1 in T has the property that some
positive power of z has nonpositive real part. We conclude that γ(π�O) = {1}.

For each L ≥ 0, the set ÔL = {γ ∈ Ô | 
(γ) ≤ L} is a subgroup of Ô. Note
that if 
(γ) ≤ L, then γ factors through the quotient O/πLO, and this induces an

isomorphism between ÔL and the dual group of O/πLO. Since finite groups are

self-dual, we conclude that ÔL has order qL; in other words, Ô contains exactly
qL characters of level at most L. A simple counting argument then shows that

for each 
 ≥ 1, Ô contains exactly q�−1(q − 1) characters of level equal to 
.

��


 6.1�

(a) For all L ≥ 0 and x ∈ O, we have∑
�(γ)≤L

γ(x) =

{
qL if |x| ≤ 1/qL,

0 if |x| > 1/qL.

(b) Let γ ∈ Ô be a nontrivial character of level 
 = 
(γ) ≥ 1, and let c1, . . . , cq�

be a complete set of coset representatives for the quotient O/π�O. Then∑
1≤i≤q�

γ(ci) = 0.

P r o o f.

(a) If |x| ≤ 1/qL then every character γ with 
(γ) ≤ L takes the value 1 at x, and
there are qL such characters. If |x| > 1/qL, then x is nonzero in the finite

quotient group O/πLO, and so there exists a character γ1 ∈ Ô of level


(γ1) ≤ L with γ1(x) �=1. Since ÔL={γ ∈ Ô | 
(γ)≤L} is a subgroup of Ô,
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we have ∑
�(γ)≤L

γ(x) =
∑

�(γ)≤L

(γ1γ)(x) = γ1(x)
∑

�(γ)≤L

γ(x)

which is possible only if
∑

�(γ)≤L γ(x) = 0, since γ1(x) �= 1.

(b) Since γ has level 
 it factors through the quotient O/π�O and defines a
nontrivial character on that group. The desired identity then follows from
a similar argument as the second case of part (b), with the group O/π�O
in place of ÔL. �

Since O is compact, Ô is discrete. Therefore we may associate to any Haar-
integrable function f : O → C its Fourier series

f(x) ∼
∑
γ∈ ̂O

f̂(γ)γ(x), (22)

where the Fourier coefficients of f are defined by

f̂(γ) =

∫
O
f(x)γ(x) dμ(x).

The following result states that partial sums of the Fourier series of f , ordered
with respect to level, converge to f at all points of continuity. This was proved
by Taibleson [11] in characteristic p using more or less the same argument.
We include the proof of the more general statement here.

������	�	�� 6.2� If f : O → C is Haar-integrable and continuous at x ∈ O,
then

f(x) = lim
L→+∞

∑
�(γ)≤L

f̂(γ)γ(x).

If f is continuous at all x ∈ O, then the convergence is uniform.

P r o o f. For each L ≥ 0 we define KL : O → R by

KL(x) =
∑

�(γ)≤L

γ(x) =

{
qL, if |x| ≤ 1/qL,

0 if |x| > 1/qL.
(23)

The stated identity was proved in Lemma 6.1 (a). This family of functions may
be viewed as an analogue for the local ring O of the Dirichlet kernel on the
circle group R/Z. We observe from (23) that KL : O → R is nonnegative,∫
O KL dμ = 1, and KL(y) = 0 whenever |y| > 1/qL.
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An elementary calculation provides the convolution identity

(f ∗KL)(x) =

∫
O
f(x− y)KL(y) dμ(y) =

∑
�(γ)≤L

f̂(γ)γ(x).

Assume that f is continuous at x, and let ε > 0 be arbitrary. Then we can find
an L0 large enough so that

|f(x− y)− f(x)| < ε whenever |y| ≤ 1/qL0 .

Assuming that L ≥ L0, we have∣∣∣∣∣∣
⎛⎝ ∑

�(γ)≤L

f̂(γ)γ(x)

⎞⎠−f(x)

∣∣∣∣∣∣ =
∣∣∣∣∫Of(x− y)KL(y) dμ(y)−f(x)

∣∣∣∣
=

∣∣∣∣∫Of(x− y)KL(y) dμ(y)−
∫
O
f(x)KL(y) dμ(y)

∣∣∣∣
=

∣∣∣∣∣
∫
|y|≤1/pL

(
f(x− y)−f(x)

)
KL(y) dμ(y)

∣∣∣∣∣
≤ ε

∫
|y|≤1/pL

KL(y) dμ(y) = ε,

(24)

establishing the desired convergence at x. If f is continuous on O, then it is uni-
formly continuous since O is compact. In this case the choice of L0 is independent
of x and the convergence f ∗KL → f is uniform. �

We are now ready to prove a Fourier-analytic Koksma inequality on O,
which may be viewed as a non-Archimedean analogue of a result by Kuipers-
Niederreiter; see [5] p. 161. Given a Haar-integrable function f : O → C, define
its Fourier-analytic variation by

VFourier(f) =
∑
γ∈ ̂O
γ �=γ0

q�(γ)|f̂(γ)|.

������
 6.3� Let f : O → R be a continuous function, and let X be a finite
subset of O with discrepancy Δ(X). Then∣∣∣∣∣ 1

|X|
∑
x∈X

f(x)−
∫
O
f dμ

∣∣∣∣∣ ≤ VFourier(f)Δ(X). (25)
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P r o o f.
Without loss of generality, we may assume that VFourier(f) < +∞, since other-
wise (25) holds trivially. It follows from this assumption and Proposition 6.2 that
the Fourier series (22) converges absolutely and uniformly to f(x) for all x ∈ O.

Since f̂(γ0) =
∫
O f dμ, we have∣∣∣∣∣ 1

|X|
∑
x∈X

f(x)−
∫
O
f dμ

∣∣∣∣∣ =
∣∣∣∣∣∣ 1

|X|
∑
x∈X

∑
γ∈ ̂O

f̂ (γ)γ(x)−
∫
O
f dμ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
γ �=γ0

f̂(γ)

(
1

|X|
∑
x∈X

γ(x)

)∣∣∣∣∣∣
≤
∑
γ �=γ0

|f̂(γ)|
∣∣∣∣∣ 1

|X|
∑
x∈X

γ(x)

∣∣∣∣∣ .
Let γ ∈Ô be a nontrivial character of level 
= 
(γ) ≥ 1. Letting c1, . . . , cq� ∈O
be a set of distinct coset representatives for O/π�O, we have a partition of O
into q� discs D1, . . . , Dq� of radius 1/q

� centered at c1, . . . , cq� (respectively), and
γ is constant on each disc Di. By Lemma 6.1 (b) we have∑

i

γ(ci) = 0,

and thus ∣∣∣∣∣ 1

|X|
∑
x∈X

γ(x)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

1≤i≤q�

γ(ci)

(
1

|X|
∑
x∈X

XDi
(x)− q−�

)∣∣∣∣∣∣
≤

∑
1≤i≤q�

∣∣∣∣∣ 1

|X|
∑
x∈X

XDi
(x)− q−�

∣∣∣∣∣
≤ q�Δ(X).

Combining the last two displayed estimates we obtain (25). �

Example. Let c ∈ O, let t > 0, and consider the function f : O → R defined
by f(x) = |x− c|t. We show that

VFourier(f) =
qt(qt − 1)(q − 1)

(qt+1 − 1)(qt−1 − 1)
. (26)
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By translation invariance we may assume without loss of generality that c = 0
and thus f(x)= |x|t. For each j≥0 define the disc Dj={x ∈ O | |x|≤1/qj} and
the circle Sj = {x ∈ O | |x| = 1/qj}. Since f(x) takes the constant value 1/qtj

on each Sj , we have

f(x) =

∞∑
j=0

1

qtj
XSj

(x)

=

∞∑
j=0

1

qtj
(XDj

(x)−XDj+1
(x)
)

= XD0
(x) +

∞∑
j=1

(
1

qtj
− 1

qt(j−1)

)
XDj

(x)

= XD0
(x) +

∞∑
j=1

1− qt

qtj
XDj

(x).

For D = D1/qk(0) and a nontrivial character γ ∈ Ô, it follows from Lemma 6.1

(a) that X̂D(γ) = 1/qk when 
(γ) ≤ k, and X̂D(γ) = 0 otherwise. Since γ �= γ0
we have X̂D0

(γ) = 0 and thus

f̂(γ) =
∑

j≥�(γ)

1− qt

q(t+1)j
=

C

q(t+1)�(γ)
,

where C = qt+1(1−qt)
qt+1−1 . Since for each 
 ≥ 1 there are exactly q�−1(q−1) characters

in Ô of level equal to 
, we obtain

VFourier(f) =
∑
γ �=γ0

q�(γ)|f̂(γ)|

=
∑
�≥1

q�−1(q − 1)q�
|C|

q(t+1)�

=
|C|(q − 1)

q(qt−1 − 1)
,

which is (26).

A standard argument shows that functions with finite Fourier-analytic vari-
ation satisfy a strong regularity property, as the following proposition shows;
compare with the analogous result for Berkovich-analytic variation, Theorem 5.1.
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������	�	�� 6.4� If f : O → R is Haar-integrable and VFourier(f) < +∞, then
there exists a unique continuous function g : O → R such that f(x) = g(x)
for Haar-almost all x ∈ O.

P r o o f. It follows from the assumption VFourier(f) < +∞ and Proposition 6.2
that the Fourier series (22) converges absolutely and uniformly to a continuous
function g : O → R. Since f and g have the same Fourier coefficients, it follows
from Parseval’s identity on O that

∫
O |f − g|2 dμ = 0, which implies that f = g

Haar-almost everywhere. �

The following result gives a relationship between the Taibleson and Fourier-
-analytic variations. In particular, it shows that any real-valued function
with rapidly decaying Fourier coefficients must have finite Taibleson variation.

������	�	�� 6.5� For any continuous f : O → R, we have

VTaib(f) ≤ (2/q)VFourier(f).

P r o o f. Without loss of generality, we may assume that VFourier(f) < +∞,
since otherwise there is nothing to prove. It follows from this assumption and
Proposition 6.2 that the Fourier series (22) converges absolutely and uniformly
to f(x) for all x ∈ O. Let X be a disc in O of radius 0 < r ≤ 1, say r = 1/qk

for k ≥ 0. For any pair x, y ∈ X and any character γ ∈ Ô of level 
 = 
(γ),
we have

|γ(x− y)− 1| ≤ 2rq�−1.

For if 
 ≤ k, then since |x − y| ≤ r ≤ 1/q� and γ takes the constant value 1
on π�O, we have γ(x− y) = 1. If on the other hand 
 > k, then q ≤ q�−k = rq�

and thus |γ(x− y)− 1| ≤ 2 ≤ 2rq�−1.

It follows that for all x, y ∈ X, we have

|f(x)− f(y)| =
∣∣∣∣∣∣
∑
γ �=γ0

f̂(γ)
(
γ(x)− γ(y)

)∣∣∣∣∣∣
≤
∑
γ �=γ0

|f̂(γ)| |γ(x− y)− 1|

≤
∑
γ �=γ0

|f̂(γ)|2rq�(γ)−1

= (2/q)rVFourier(f).

(27)

The result follows by applying the upper bound (27) to each term in the sum
VΠ(f) associated to any Taibleson partition, and taking the supremum over all
Taibleson partitions. �
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7. Comparing the Koksma inequalities

As a sample application, we consider f : O → R defined by f(x) = |x − c|t
for c ∈ O and t > 0, and we compare the constants C(f) in the Koksma inequal-
ities of Theorems 4.3, 5.4, and 6.3, for the Beer variation, Berkovich-analytic
variation, and Fourier-analytic variation, respectively. These were calculated
in Examples 4, 5, and 6, respectively.

CBeer(f) = 2qVBeer(f) = 2q(|α− c|t + |β − c|t),

CBerk(f) =

(
1 +

1

q

)
VBerk(f) =

2(q2 − 1)

q(q − q−t)
,

CFourier(f) = VFourier(f) =
qt(qt − 1)(q − 1)

(qt+1 − 1)(qt−1 − 1)
.

Note that because |α− β| = 1, we have 2q ≤ CBeer(f) ≤ 4q, with both extremes
possible depending on the value of c.

We first observe that CBerk(f) < CBeer(f) is true for all q and t > 0, and thus
the Berkovich-analytic Koksma inequality is always sharper than Beer’s result
for this family of functions.

When t is large we have CFourier(f) ≈ q−1, which is smaller than CBeer(f), but
not as small as CBerk(f) ≈ 2(q2−1)/q2, except for q = 2. But as t → 0 and hence
f(x) → 1 (except at x = c), we have CFourier(f) → 0 but CBerk(f) → 2(q+1)/q,
and thus CFourier(f) is the better constant in this range.

�����������
���� We thank David Finch for helpful suggestions about this
work.
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