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ABSTRACT. Defined by Borel, a real number is normal to an integer base b ≥ 2
if in its base-b expansion every block of digits occurs with the same limiting
frequency as every other block of the same length. We consider the problem
of insertion in constructed base-b normal expansions to obtain normality to
base (b+ 1).

Communicated by Arne Winterhof

1. Problem description and statement of results

Defined by Émile Borel, a real number is normal to an integer base b ≥ 2 if
in its base-b expansion every block of digits occurs with the same limiting fre-
quency as every other block of the same length. Equivalently, a real number x is
normal to base b if the fractional parts of x, bx, b2x, . . . are uniformly distributed
modulo one in the unit interval.
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There are many ways to modify normal numbers preserving normality to a
given base. A major result is Wall’s theorem [10] showing that the subsequences
of a base-b expansion along arithmetic progressions preserve normality, crowned
by Kamae’s and Weiss’ [14] complete characterization of the subsequences that
preserve normality. Other normality preserving operations are addition by some
numbers [1, 19, 22], multiplication by a rational [10], transformations by some
finite automata [8] and there are more.

Another form of modification transfers normality from base b to normality
to base (b − 1): Vandehey [21, Theorem 1.2] proved that, when b ≥ 3, the
subsequence of a base-b normal expansion formed by all the digits different
from (b − 1) is normal to base (b − 1). Thus, the removal of all the instances
of the digit (b − 1) from a normal base-b expansion yiellds a sequence normal
to base b.

Here we consider the dual problem of transferring normality from base b
to base (b+ 1). Specifically, we consider the following:

�������� How to insert digits along a normal base-b expansion so that the
resulting expansion is normal to base (b+ 1)?

There are two versions of the insertion problem:

– when insertion freely uses all the digits in base (b+ 1),

– when insertion is limited just to the new digit.

In the present work we tackle the free insertion problem on a class of con-
structed normal numbers. Since we look at normality to just one base at a
time, instead of fractional expansions of real numbers we deal with sequences
of symbols in a given alphabet and we talk about normality to that alphabet.
We state the results as transferring normality from an alphabet A to the alpha-

bet Â = A ∪ {σ} with σ not in A.

We consider constructed sequences that are the concatenation of perfect neck-
laces over the alphabet A of linearly increasing order. After insertion, the result-
ing sequence is also a concatenation of perfect necklaces of linearly increas-

ing order but over the alphabet Â. Perfect necklaces were introduced in [2].
They are a variant of the classical de Bruijn sequences. The of perfect necklaces
of linearly increasing order is a normal sequence (this is proved in Proposition 6).

We give an effective construction that controls the distance between each
occurrence of the new digit and the next. An effective construction is a prescrip-
tion on how to perform the insertion while reading the input sequence from left
to right. We prove the following.

56



INSERTION IN CONSTRUCTED NORMAL NUMBERS

	
����� 1� Let A and Â be alphabets such that Â = A∪{σ} with σ not in A.
Let v ∈ Aω be the concatenation of (n, n)-perfect necklaces over the alphabet A

for n = 1, 2, . . . Then, there is an effective construction of a sequence v̂ ∈ Âω

normal to the alphabet Â such that v is a subsequence of v̂ and v̂ is the concate-

nation of (n, n)-perfect necklaces over the alphabet Â for n = 1, 2, . . . Moreover,
for every integer N greater than |A|, in between the occurrences of the symbol σ
in v̂ just before and just after position N , there are at most 2|A| + log| ̂A|(N)

symbols.

The one symbol insertion problem has already an adroit solution on arbitrary
normal sequences:

	
����� 2 (Zylber [23, Theorem 1])� Let A and Â be alphabets such that

Â = A ∪ {σ} with σ not in A. Let the sequence v ∈ Aω be normal to the alpha-

bet A. Then, there exists a sequence v̂ ∈ Âω normal to the alphabet Â such that
r(v̂) = v, where r is the retract that removes all the instances of the symbol σ.

Zylber gives a construction that, in general, is not effective. It becomes
effective when the input sequence v ∈ Aω satisfies the following condition.
First consider the simple discrepancy of a sequence (xn)n≥1 of real numbers
in the unit interval with respect to an interval I,

dN,I

(
(xn)n≥1

)
=

∣∣∣∣ 1N#{n : 1 ≤ n ≤ N, xn ∈ I} − |I|
∣∣∣∣ .

Let b be the cardinality of the alphabet A and let x be the real number whose
expansion in base b is the input sequence v ∈ Aω. Zylber’s construction becomes
effective when there is a computable upper bound of the simple discrepancies

dN,I

(
(b�n)x mod 1

)
n≥1

for infinitely many integer values �, and for every interval I of the form(
a

b�
,
a+ 1

b�

)
, with 0 ≤ a < b� − 1.

There are many cases where this condition holds. It follows from Proposition 4
that one instance is the concatenation of the n-ordered necklaces for n = 1, 2, . . .
(the n-ordered necklace is the perfect necklace given by the concatenation of all
words of length n in lexicographic order),

It remains to study how to compare the discrepancy of (bnx mod 1)n≥0 and
the discrepancy of

(
(b + 1)ny mod 1

)
n≥0

when the base-(b + 1) expansion of y

results from insertion in the base-b expansion of a normal number x. It may
be possible to obtain metric results similar to those obtained by Fukuyama and
Hiroshima [12] for some subsequences of (bnx mod 1)n≥0.
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This document is organized as follows: Section 2 presents the basics of perfect
necklaces and Section 3 solves the free insertion problem on the concatenation
of perfect necklaces.

2. Perfect necklaces and nested perfect necklaces

We start with some notation. A word is a finite sequence of symbols in a given
alphabet. For a finite alphabet A, we write |A| for its cardinality, An for the set
of all words of length n, A∗ for the set of all words and Aω for the set of all
infinite sequences.

The positions in words and in sequences are numbered starting at 1. We write
v[i] for the symbol at position i and we write v[i, j] for the symbols of v from
position i to position j. The length of a word v is |v|. Let θ : A∗ → A∗ be the
rotation operator,

(θv)[i] = v[(i+ 1) mod |v| ].
We write θn for the application of the rotation n times.

A circular word or necklace is the equivalence class of a word under rotations.
To denote a necklace we write [w], where w is any of the words in the equivalence
class. E.g., [000] contains a single word 000 because for every i, θi(000) = 000,
and [110] contains three words because

θ0(110) = 110, θ1(110) = 101 and θ2(110) = 011.

2.1. Perfect necklaces

Perfect necklaces are a variant of the classical de Bruijn sequences and they
were introduced in [2]. A de Bruijn sequence of order n over the alphabet A is
a necklace of length |A|n and each word of length n occurs in it exactly once.

���
�
�
�� (Perfect necklace)� A necklace is (n, k)-perfect if each word of length
n occurs k many times at positions different modulo k, for any convention of the
starting point.

Thus, each (n, k)-perfect necklace has length k|A|n. Notice that (n, 1)-perfect
necklaces coincide with the de Bruijn sequences of order n.

Consider the alphabet A = {0, 1}. The following are (2, 2)-perfect necklaces,

[00 01 10 11] and [00 10 01 11].

This is a (3, 3)-perfect necklace

[000 110 101 111 001 010 011 100].
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The following are not (n, n)-perfect

[00 01 11 10] and [000 101 110 111 010 001 011 100].

���
�
�
�� (Ordered necklace)� For an alphabet A and a positive integer n, the
n-ordered necklace is the concatenation of all words of length n in lexicographic
order.

These are the n-ordered necklaces over the alphabet A = {0, 1} for n = 1, 2, 3,

[01], [00 01 10 11], [000 001 010 011 100 101 110 111].

Every n-ordered necklace is (n, n)-perfect. Inexplicably, this was not observed
by Barbier [3,4] nor by Champernowne [9].

������ ([2, Theorem 5])� Identify words of length n over the alphabet A with
the integers 0 to |A|n − 1. Let r coprime with |A|. The concatenation of words
corresponding to the arithmetic sequence 0, r, 2r, . . . , (|A|n − 1)r yields a (n, n)-
-perfect necklace. By taking r = 1 we obtain that the n-ordered necklaces are
(n, n)-perfect.

������
�
�� 1� In the n-ordered necklace over the alphabet A, for each sym-
bol a ∈ A, in between two occurrences of a there can be up to n|A| − 1 symbols.

P r o o f. The n-ordered necklace is the concatenation of all words of length n
in lexicographical order. Consider |A| + 1 many consecutive of these words,
u1, . . . u|A|+1. Observe that the last symbol in u1 is necessarily the same as the
last symbol in u|A|+1. Let a be that symbol. In between these two occurrences
of a there are n|A| − 1 symbols. For some choices of u1, . . . u|A|+1 these are the
only two occurrences of a in these words. All the other cases yield a smaller
number of symbols between two occurrences of a. �

A particular class of perfect necklaces, called nested perfect necklaces, were
introduced in [5] generalizing a construction given by M. Levin in [16, Theo-
rem 2]. A (n, k)-perfect necklace over the alphabet A is nested if n = 1 or it
is the concatenation of |A| nested (n− 1, k)-perfect necklaces. For example, the
following is a nested (2, 2)-perfect necklace over the alphabet A = {0, 1},⎡⎣ 0011︸ ︷︷ ︸

(1,2)-perfect

0110︸ ︷︷ ︸
(1,2)-perfect

⎤⎦ .
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Each of these 8 are (1, 4)-perfect necklaces.

[00001111], [01011010],

[00111100], [01101001],

[00011110], [01001011],

[00101101], [01111000].

- The concatenation in each row yields a (2, 4)-perfect necklace.

- The concatenation of the first two rows yields a nested (3, 4)-perfect necklace.

- The concatenation of the last two rows yields a nested (3, 4)-perfect necklace.

- The concatenation of all rows yields a nested (4, 4)-perfect necklace.

The n-ordered necklaces are perfect but not nested, e.g., for

A = {0, 1, σ} and n = 2,⎡⎣ 00 01 0σ︸ ︷︷ ︸
not (1,2)-perfect

10 11 1σ︸ ︷︷ ︸
not (1,2)-perfect

σ0 σ1 σσ︸ ︷︷ ︸
not (1,2)-perfect

⎤⎦ .

2.2. Perfect necklaces as Eulerian cycles in astute graphs

The (n, k)-perfect necklaces are characterized with Eulerian cycles in the so
called astute graphs.

���
�
�
�� (Astute graph)� The astute graph GA(n, k) is a pair (V,E) where

V =
{
(w,m) : w ∈ An, m ∈ {0, . . . k − 1}}

and

E =
{(

(w,m), (w′,m′)
)
: w[2, n] = w′[1, n− 1], m′ = (m+ 1) mod k

}
.

Thus, GA(n, k) has k|A|n vertices and k|A|n+1 edges. It is Eulerian because it
is strongly regular (all vertices have in-degree and out-degree equal to |A|) and
strongly connected (every vertex is reachable from every other vertex). Notice
that GA(n, 1) is the de Bruijn graph of words of length n over the alphabet A.

������
�
�� 2 ([2, Corollary 14])� Each (n, k)-perfect necklace over the alpha-
bet A can be constructed as an Eulerian cycle in GA(n− 1, k).

In some cases several Eulerian cycles in GA(n − 1, k) yield the same (n, k)-
-perfect necklace, this happens when there is a period inside a cycle.
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������ ( [2, Theorem 20])� The number of (n, k)-perfect necklaces over a b-
-symbol alphabet is

1

k

∑
db,k|j|k

e(j)φ(k/j),

where:

• db,k =
∏

pαi

i , such that {pi} is the set of primes that divide both b and k,

and αi is the exponent of pi in the factorization of k,

• e(j) = (b!)jb
n−1

b−n is the number of Eulerian cycles in GA(n−1, j), where
|A| = b,

• φ is Euler’s totient function, φ(m) counts the positive integers less than
or equal to m that are relatively prime to m.

������ ( [5, Theorem 2])� For each d = 0, 1, 2, . . . there are 22
d+1−1 binary

nested
(
2d, 2d

)
-perfect necklaces.

2.3. Counting aligned and non-aligned occurrences of words

For the number of occurrences of a word u in a word v at any position we
write |v|u, |v|u =

∣∣{i : v[i, i+ |u| − 1] = u}∣∣.
For example, |00010|00 = 2. We are interested in counting occurrences of a
word u in a word v when [v] is a perfect necklace.

������
�
�� 3� If [v] is a (n, k)-perfect necklace over the alphabet A, then
for every word u of length at most n,

k|A||v|−|u| − |u|+ 1 ≤ |v|u ≤ k|A||v|−|u|.

Recall that the positions in words are numbered starting at 1. Given two
words v and u, we write ||v||u for the number of occurrences of u at the positions
of v congruent to 1 modulo the length of u, that we call aligned occurrences,

||v||u =
∣∣{i : v[i, i+ |u| − 1] = u and i ≡ 1 mod |u|}∣∣.

For example, ||00000||00 = 2 and ||1001||00 = 0.

The relation between |v|u and ||v||u is as follows,

|v|u =

|u|−1∑
i=0

||v[1 + i, |v|]||u.

So, for any single symbol a in the alphabet A, |v|a = ||v||a.
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Consider the alphabet A with cardinality b. Identify infinite sequences in Aω

with real numbers in the unit interval according to their expansion in base b.
Identify the ith word in the lexicographic order among all the words in A� with
the ith interval among the b� intervals(

a

b�
,
a+ 1

b�

)
for 0 ≤ a < b�.

Then, the number of aligned occurrences of a word u in A� in initial segments
of a sequence v ∈ Aω allows us to compute the simple discrepancy

dN,I

(
(b�nv mod 1)n≥1

)
=

∣∣∣∣∣ 1N#{n : 1 ≤ n ≤ N,
(
b�nv mod 1

) ∈ I} − |I|
∣∣∣∣∣,

where I is the interval identified with the word u.

������
�
�� 4�

(1) If [v] is (n, n)-perfect over the alphabet A, then for every word u of length �,
where � divides n,

||v||u = |A|n−�n/�.

(2) If [v] is the n-ordered necklace, then for every word u of length �, where �
divides n, and for any position t in v,

|A|−�t/�−O(t/n) ≤ ||v[1, t]||u ≤ |A|−�t/�+O(t/n).

P r o o f.

(1) To count the number of occurrences of u of length � in [v], with 1 ≤ � ≤ n,
we count how many times u occurs at the beginning of a word of length n.
There are |A|n−� many different words of length n that start with u, and each
occurs n times in [v] at positions that are different modulo n. Notice that v has
length n|A|n, which is multiple of n and multiple of �.

In the last n positions of v there are n/� of them that are multiple of �, and
each of them can be the start of a circular occurrence of some uw with |uw| = n.
Thus, number of aligned occurrences of u in v is

|A|n−Ln/�.

and coincides with the number of aligned occurrences of u in the necklace [v].
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(2) Suppose v is the concatenation of blocks B0 . . . B|A|n−1, where each block
has the form

qn−1qn−2 . . . q−1q0,

the qs are symbols in A. Identify the symbols in A with the digits in bas |A|.
Suppose the tth symbol of v occurs within pn−1pn−2 . . . p1p0 then

t = n

n−1∑
j=0

pj|A|j + θn, with 0 < θ ≤ 1.

Suppose u has length � less than or equal to n. Let gn,k(v, t, u) denote the number
of times that u occurs undivided in the first t digits of v with the first digit of
u as the kth digit of a block in v. Let us say that a block is of type B if the
word u occurs at position k. We count the number of blocks of type B in v up
to position t. With u fixed in position k in the blocks of type B,

first k−1 digits of the block︷ ︸︸ ︷
pn−1pn−2 . . . pn−(k−1)

digits of u︷ ︸︸ ︷
u1u2 . . . u�

n−k−�+1 digits︷︸︸︷. . .︸ ︷︷ ︸
block B

we may choose the last n − � − k + 1 digits of the blocks in |A|n−�−k+1 ways.
Having chosen these, in order to ensure that the blocks of type B lay in v[1, t],
we shall be able to choose the first k − 1 digits of the blocks of type B in this
number of ways,

n−1∑
j=n−(k−1)

pj|A|j+k−n−1

or
n−1∑

j=n−(k−1)

pj|A|j+k−n−1 + 1.

Then, if k ≤ n− �+ 1,

gn,k(v, t, u) = |A|n−�−k+1
n−1∑

j=n−k+1

pj|A|j+k−n−1 + θ′,

= |A|−�
n−1∑

j=n−k+1

pj|A|j + θ′|A|n−k+1,

where 0 ≤ θ′ ≤ 1.
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Let K = n mod �. To obtain a lower bound of ||v[1, t]||u we sum gn,k(v, t, u)
for every k such that (k mod �) = K,

||v[1, t]||u ≥
∑

k:(k mod �)=K
1≤k≤n−�+1

gn,k(v, t, u)

≥
∑

k:(k mod �)=K
1≤k≤n−�+1

|A|−�
n−1∑

j=n−k+1

pj |A|j

= |A|−�
n−1∑

j=�+K

�j/�	pj|A|j

≥ |A|−�/�

⎛⎝ n−1∑
j=�+K

npj |A|j −
n−1∑

j=�+K

(n− j)pj |A|j
⎞⎠

= |A|−�t/�−O(t/n). �

Finally, notice that the aligned occurrences of u can occur at most once in be-
tween every two blocks of v,

||v[1, t]||u ≤

⎛⎜⎜⎝ ∑
k:(k mod �)=K
1≤k≤n−�+1

gn,k(v, t)

⎞⎟⎟⎠+O(t/n)

=

⎛⎜⎜⎝ ∑
k:(k mod �)=K
1≤k≤n−�+1

|A|−�
n−1∑

j=n−k+1

pj|A|j

⎞⎟⎟⎠+O(t/n)

= |A|−�

⎛⎝ n−1∑
j=�+η


j/��pj|A|j
⎞⎠+O(t/n)

≤ |A|−�/�

⎛⎝ n−1∑
j=�+K

npj |A|j −
n−1∑

j=�+η

(n− j)pj|A|j
⎞⎠+ O(t/n)

= |A|−�t/�+ O(t/n).
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2.4. From perfect necklaces to normal sequences

We show that the concatenation of perfect necklaces of linearly increasing
order is normal. To prove it we use Piatetski-Shapiro’s theorem [7,17,18].

������
�
�� 5 (Piatetski-Shapiro theorem)� The sequence v ∈ Aω is normal
if and only if there is positive constant C such that for all words u,

lim sup
n→∞

|v[1, n]|u
n

≤ C|A|−|u|.

������
�
�� 6� The concatenation of (n, k)-perfect necklaces over the alpha-
bet A, for n = 1, 2, . . . and kn a linear function of n, is normal to the alphabet A.

P r o o f. Let M (0) = 0 and for j ≥ 1,

M (j) =

j∑
i=1

ki|A|i.

Fix N and letm be the minimum integer such that N ≤ M (m). By Proposition 3
for every u of length �,

|v[1, N ]|u ≤ |v[1,M (m)]|u

≤
m∑
i=1

|v[M (i− 1) + 1,M (i)]|u + �− 1

≤
m∑
i=1

ki|A|i−� + �− 1 ≤ km|A|m+1|A|−� +m�.

Since kn is linear in n, for every n we have kn/kn−1 is a constant c. Then, using

km−1|A|m−1 < M (m− 1) and M (m) ≤ km|A|m+1,

lim sup
N→∞

|v[1, N ]|u
N

≤ lim sup
m→∞

|v[1,M (m)]|u
M (m− 1)

≤ lim sup
m→∞

km|A|m+1|A|−� +m�

km−1|A|m−1
≤ c|A|2|A|−�.

Piatetski-Shapiro theorem (Proposition 5) holds with C = c|A|2 and v is normal.
�

Actually Proposition 6 holds for kn being polynomial in n and the same proof
applies. The concatenation of nested perfect necklaces of exponentially increasing
order also yields normal sequences, but the same proof does not apply.
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Normal numbers are exactly those real numbers x for which (bnx)n≥1 is
uniformly distributed modulo one (see [7, 11, 15]), which means that the dis-
crepancy of the first N terms

DN

(
(bnx mod 1)n≥0

)
= sup

γ∈[0,1)

∣∣∣∣ 1N |{n ≤ N : (bnx mod 1)} < γ| − γ

∣∣∣∣
goes to 0 as N goes to infinity. For sequences of the form (bnx mod 1)n≥1 the
smallest known discrepancy of the first N terms is O

(
(logN)2/N

)
, see [7, 16].

Expansions made of nested perfect necklaces of exponentially increasing order
yield real numbers x with this property.

������ ([5, Theorem 1])� Let b a prime number. The base-b expansion of the
number defined by M.Levin using Pascal triangle matrix modulo 2 is the con-
catenation of nested (2d, 2d)-perfect necklaces for d = 0, 1, 2, . . . And for every

number x whose base-b expansion is the concatenation of nested (2d, 2d)-perfect
necklaces for d = 0, 1, 2 . . . , DN

(
(bnx mod 1)n≥0

)
is O

(
(logN)2/N

)
.

In general, the discrepancy associated to the concatenation of (n, k)-perfect
necklaces has not been studied. One exception is the discrepancy associated
to the concatenation n-ordered necklaces which is exactly the discrepancy
associated to Champernowne’s sequence [9] proved in [20], see also [7,11].

������ ([20, Theorem 1])� The number x whose base b expansion is the con-
catenation of the n-ordered necklaces for n = 1, 2, . . . DN

(
(bnx mod 1)n≥0

)
is

O
(
1/(logN)

)
.

3. Free insertion

3.1. Tools to prove Theorem 1

Consider the alphabets A and Â = A ∪ {σ} for σ not in A. Since the length
and lexicographic order on words over the alphabet A respects the length and

lexicographic order on words over Â, by inserting suitable symbols in suitable
positions in each n-ordered necklace over A we obtain each n-ordered necklace

over Â. For example, for A = {0, 1} and Â = {0, 1, σ}, and writing inserted
symbols in boldface,

0 1�00 01�10 11 000 001�010 011�100 101�110 111 0000 0001 . . .

0 1σ 00 01 0σ 10 11 1σ σ0 σ1 σσ 000 001 00σ 010 011 01σ 0σ0 0σ1 0σσ 100 101 10σ
110 111 11σ 1σ0 1σ1 1σσ σ00 σ01 σ0σ σ10 σ11 σ1σ σσ0 σσ1 σσσ 0000 0001 . . .
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Much more is true: for any (n, k)-perfect necklace over the alphabet A there is

a (n, k)-perfect necklace over the alphabet Â such that the first is a subsequence
of the second. The reason is that, by Proposition 2 perfect necklaces correspond
to Eulerian cycles on astute graphs, the astute graph GA(k, n− 1) is a subgraph
of G

̂A(k, n− 1), and any cycle in an Eulerian graph can be embedded into a full
Eulerian cycle. This can be constructed with Hierholzer’s algorithm for joining
cycles together to create an Eulerian cycle of a graph. However this method does

not guarantee that in the resulting (n, k)-perfect necklace over the alphabet Â,
there will be a small gap between one occurrence of the symbol σ and the next.

The following lemma gives a method to insert symbols in a (n, n)-perfect neck-
lace ensuring a small gap condition. The lemma extends the work for de Bruijn
sequences in [6, Theorem 1].

����� 1 (Main lemma)� Assume the alphabets A and Â = A ∪ {σ} for σ
not in A. For every (n, n)-perfect necklace [v] over the alphabet A there is a

(n, n)-perfect necklace [v̂] over the alphabet Â such that v is a subsequence of v̂.
Moreover, for each such [v] there is [v̂] satisfying that in between any occurrence
of the symbol σ and the next there are at most n+ 2|A| − 2 other symbols.

By Proposition 1 the n-ordered necklace over the alphabet Â fails the small
gap condition required in Lemma 1 (Main lemma). For instance, for A = {0, 1},
Â={0, 1, σ} and n=2, there are occurrences of σ with more than n+2|A|−2=4
symbols in between (the inserted symbols are in boldface):

[v] =
[
00 01�10 11�

]
,

[v̂] =

⎡⎣ 00 01 0︸ ︷︷ ︸
5 symbols

σ 10 11 1︸ ︷︷ ︸
5 symbols

σ σ0 σ1 σσ

⎤⎦ .

However, this other insertion satisfies the small gap condition:

[v̂] =

⎡⎣ 0︸︷︷︸σ 00 01︸ ︷︷ ︸
4 symbols

σ 1 10︸︷︷︸
3 symbols

σσ 01︸︷︷︸
2 symbols

σσ 11︸︷︷︸
2+1 symbols

⎤⎦ .

To prove Lemma 1 (Main lemma) we start with a (n, n)-perfect necklace [v]
over the alphabet A, we consider an Eulerian cycle in GA(n − 1, n) that cor-
responds to [v] and we extend it to an Eulerian cycle in graph G

̂A(n − 1, n).

The (n, n)-perfect necklace that describes this cycle is the wanted [v̂].

Since for every pair of positive integers n, k, we have that GA(n, k) is a sub-
graph of G

̂A(n, k) the following is well defined.
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���
�
�
�� (Augmenting graph)� The augmenting graph X
̂A(n − 1, n) is the

directed graph (V,E), where

V = Ân−1,

E =

⎧⎪⎪⎨⎪⎪⎩
(
(au,m),

(
ub, (m+ 1)mod n

))
: u ∈ Ân−2, a, b ∈ Â(

|au|σ > 0 or |ub|σ > 0
)
,

m ∈ {0, . . . , n− 1}

⎫⎪⎪⎬⎪⎪⎭ .

Each vertex inX
̂A(n−1, n) that is also a vertex in GA(n−1, n) has exactly one

incoming edge and exactly one outgoing edge. This outcoming edge is associated
to new symbol σ.

We say that two cycles are disjoint if they have no common edges. We prove
Lemma 1 (Main lemma) constructing an Eulerian cycle in G

̂A(n−1, n) by joining
the given Eulerian cycle in GA(n− 1, n) with disjoint cycles of the augmenting
graphX

̂A(n−1, n) that we call petals. These petals must exhaust the augmenting
graph X

̂A(n− 1, n). Recall that θ is the rotation operation on words that shifts
one position to the right.

���
�
�
�� (Necklaces on pairs (u,m))� Assume the alphabet Â and a positive

integer n. For u ∈ Ân and m between 0 and n− 1, the necklace [(u,m)] is:

[(u,m)] =
{
(u,m), (θ(u), (m+ 1)mod n), . . . , (θn−1(u), (m+ n− 1)mod n)

}
.

������
�
�� 7� The set of edges in G
̂A(n− 1, n) can be partitioned in disjoint

simple cycles identified by the necklaces of pairs [(u,m)], for u ∈ Ân and m
between 0 and n− 1.

P r o o f. Let u ∈ Ân−1, let a ∈ Â and let m ∈ {0, . . . n − 1}. Consider the
elements in [(ua,m)] and the sequence of edges

(ua,m) → (
θ(ua), (m+ 1) mod n

) → (
θ2(ua), (m+ 2) mod n

) → · · ·
· · · → (

θn(ua), (m+ n)mod
)
.

The vertices related by these edges are pairwise different except

(ua,m) =
(
θn(ua), (m+ n)mod n

)
.

Thus, these n edges form a simple cycle in G
̂A(n − 1, n). For each congruence

class m, the partition of the set of words of length n in the equivalence classes
given by their rotations determines a partition of the set of edges in G

̂A(n−1, n)
into disjoint simple cycles. �

Proposition 7 induces the following.
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���
�
�
�� (Graph of necklaces)� Define C
̂A(n, n) as the graph (V,E), where

V = {[(u,m)] : u ∈ Ân, m = 0, . . . , n− 1}

E =

{
(x, y) : there is (au,m) ∈ x and there is (uc, (m+ 1) mod n) ∈ y,

for u ∈ Ân−1, a, c ∈ Â

}
.

Define the graph Ĉ
̂A(n, n) as the subgraph of C

̂A(n, n) whose vertices contain
at least one occurrence of the symbol σ.

A petal for a vertex in GA(n − 1, n) is a union of disjoint cycles in X
̂A(n −

1, n) that correspond to necklaces of length n that have at least one occurrence

of symbol σ. These necklaces are vertices in Ĉ
̂A(n, n).

���
�
�
�� (Petal for vertex in GA(n − 1, n))� A petal for vertex (u,m) in

GA(n− 1, n) is a cycle in X
̂A(n− 1, n) induced by a subgraph of Ĉ

̂A(n, n) that
contains the necklace [(uσ,m)].

To exhaust X
̂A(n− 1, n) we partition it in petals. For this we define a Petals

tree. Recall that a tree is a directed acyclic graph with exactly one path from
the root to each vertex.

���
�
�
�� (Petals tree)� A Petals tree for Ĉ
̂A(n, n) consists of a root [r] that

branches out in a subgraph of Ĉ
̂A(n, n) including all its vertices. It has height n,

the vertices at distance d to the root have exactly d occurrences of the new
symbol σ, for d = 0, . . . , n. The root [r] is a necklace that corresponds to an
Eulerian cycle in GA(n− 1, n).

There are many Petals trees for Ĉ
̂A(n, n), any one is good for our purpose.

A Petals tree can be obtained by any algorithm that finds a spanning tree of a
graph, as Kruskal’s greedy algorithm for the minimal spanning tree, or it can be

constructed using the classical Breath First search on Ĉ
̂A(n, n).

We now focus on how to insert the petals in the given Eulerian cycle
in GA(n − 1, n) but satisfying the small gap condition. Since each vertex u
of GA(n− 1, n) occurs exactly |A| times in the given Eulerian cycle, we have |A|
many possibilities to place the petal for u. To determine where to place it,
we divide the given Eulerian cycle in as many consecutive sections as the num-
ber of vertices in the graph GA(n−1, n). We say that an Eulerian cycle is pointed
when there is a designated first edge.
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���
�
�
�� (Section of a cycle)� For a pointed Eulerian cycle in GA(n − 1, n)
given by the sequence of edges e1, . . . , en|A|n and an integer j such that 1 ≤ j ≤
n|A|n−1, the jth section of the cycle is the sequence of the |A| vertices that are
heads of ej|A|, . . . , ej|A|+|A|−1 .

We would like to choose one vertex from each section to place a petal.
The difficulty is that each vertex occurs |A| times in the Eulerian cycle but
not necessarily at |A| different sections. We pose a matching problem.

���
�
�
�� (Distribution graph)� Given pointed Eulerian cycle in GA(n−1, n)
the Distribution graph DA(n − 1, n) is a |A|-regular bipartite graph, one part
consists of the vertices in GA(n − 1, n), the other part consists of the sections
of the Eulerian cycle. There is an edge from a vertex u in GA(n − 1, n) to a
section j if u belongs to the section j.

A matching in a Distribution graph is a set of edges such that no two edges
share a common vertex. A vertex is matched if it is an endpoint of one of the
edges in the matching. A perfect matching is a matching that matches all vertices
in the graph.

������
�
�� 8� For every Distribution graph DA(n − 1, n) there is a perfect
matching.

P r o o f. Consider a finite bipartite graph consisting of two disjoint sets of ver-
tices X and Y with edges that connect a vertex in X to a vertex in Y. For a
subset W of X, let N(W ) be the set of all vertices in Y adjacent to some element
in W. Hall’s marriage theorem [13] states that there is a matching that entirely
covers X if and only if for every subset W in X, |W | ≤ |N(W )|.

Consider a Distribution graph DA(n− 1, n) and call X to the set of vertices
GA(n − 1, n) and Y to the set of sections. For any W ⊆ X such that |W | = r,
the sum of the out-degree of these r vertices is r|A|. Since the in-degree of each
vertex in Y is |A|, we have that |N(W )| ≥ r. Then, there is a matching that
entirely covers X. Furthermore, since the number of vertices is equal to the
number of sections, |X| = |Y |, the matching is perfect. �

To obtain a perfect matching in a Distribution graph we can use any
method to compute the maximum flow in a network. We define the flow network
by adding two vertices to the Distribution graph, the source and the sink. Add
an edge from the source to each vertex in X and add an edge from each vertex
in Y to the sink. Assign capacity 1 to each of the edges of the flow network.
The maximum flow of the network is |X|. This flow has the edges of a perfect
match.

We have the needed tools for the awaiting proof.
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Proof of Lemma 1 (M a i n l e mm a). Assume [v] is a (n, n)-perfect necklace
over the alphabet A. We construct a (n, n)-perfect necklace [v̂] over the alpha-

bet Â. By Proposition 2, we need to construct an Eulerian cycle in G
̂A(n−1, n).

Consider a pointed Eulerian cycle in GA(n − 1, n) with starting edge de-
termined by v and consider its n|A|n−1 sections. By Proposition 8 we choose
one vertex in each section according to a perfect matching. Fix any Petals tree
for C

̂A(n, n) with root [v]. The construction traverses the graph G
̂A(n − 1, n)

until it obtains an Eulerian cycle in this graph. The construction inserts one
petal in each section of the Eulerian cycle in GA(n − 1, n). All the sections are
considered, one after the other, until all sections have been considered.

The construction starts at section 0, and at each step of the construction there
is a current section. The traversal of of G

̂A(n−1, n) starts at the starting vertex
of the pointed Eulerian cycle in GA(n−1, n) . Each time an edge is traversed, the
current vertex becomes the edge’s endpoint. Let (u,m) be the current vertex.

Case (u,m) is a vertex in GA(n− 1, n). If (u,m) is the chosen vertex in the

current section and the petal for (u,m), which starts with [uσ,m] in Ĉ
̂A(n, n),

has not been inserted yet, then insert it now: traverse the edge that adds the
symbol σ and continue traversing the edges in G

̂A(n−1, n) corresponding to the
petal for (u,m). If the petal for (u,m) has already been inserted or (u,m) is not
a chosen vertex, then continue with the traversal of edges corresponding to the
current section. If the current section is exhausted, the next section becomes
the current section.

Case (u,m) is not a vertex in GA(n−1, n). If [uσ,m] is a child of the current
vertex in the Petals tree and it has not been inserted yet, then traverse the
edge that adds the symbol σ and continue traversing the edges in G

̂A(n− 1, n)
corresponding to the petal for (u,m). Otherwise continue with the traversal
of the edges corresponding to the petal that (u,m) was already part of.

Finally, we prove the minimal gap condition. Obviously, each section of the
Eulerian cycle in GA(n − 1, n) has no occurrence of the symbol σ. A petal
for a vertex (u,m) in GA(n − 1, n) necessarily starts with the edge that adds

the symbol σ right after u, and this petal corresponds to a path in Ĉ
̂A(n, n).

Since each section has |A| edges, if we place one petal in each section, then two
consecutive petals are at most 2|A| − 1 edges away. Pick a section and let (u,m)
be the chosen vertex and let (u′,m′) be the chosen vertex in the next section.

In case the petal for (u,m) corresponds just the single vertex [uσ,m] in Ĉ
̂A(n, n),

then it is a cycle in G
̂A(n − 1, n) consisting of exactly n edges. So, in between

the occurrence of σ in the petal for (u,m) and the first occurrence of σ in the
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petal for (u′,m′) there are at most

n− 1 + 2|A| − 1 = n+ 2|A| − 2 other symbols.

In case, the petal for (u,m) consists of more than one vertex in Ĉ
̂A(n, n),

then before completing the traversal of the n edges corresponding to [uσ,m],
the construction:

(1) first branches out to another vertex in Ĉ
̂A(n, n) and

(2) then traverses the corresponding edges in G
̂A(n − 1, n) that relate vertices

having at least one occurrence of the symbol σ,

(3) returns back to (u,m), necessarily from a vertex (σw, (m−1) mod n), where
w is the prefix of u of length n− 2.

So, in between the last occurrence of σ in the petal for (u,m) and the first
occurrence of σ in the petal for (u′,m′) there are at most

n− 1 + 2|A| − 1 = n+ 2|A| − 2 other symbols.

It remains to argue what happens inside a petal. The vertices in Ĉ
̂A(n, n) corre-

spond to edges in theG
̂A(n−1, n) that relate vertices with at least one occurrence

of the symbol σ. This ensures that in between any two successive occurrences
of σ inside a petal there are at most

n− 1 symbols.

We conclude that in the traversal of G
̂A(n− 1, n) in between any occurrence

of σ and the next there are at most

n+ 2|A| − 2 other symbols. �

�������� Fix A = {0, 1} and Â = {0, 1, σ}.
Let [v] be the n-ordered necklace for n = 2,

[v] = [00 01 10 11].

Fix an Eulerian cycle for [v] in GA(1, 2).

Since GA(1, 2) has 4 vertices, divide it in 4 sections:

- Section 0 contains the vertices (0, 0) and (0, 1).

- Section 1 contains the vertices (0, 0) and (1, 1).

- Section 2 contains the vertices (1, 0) and (0, 1).

- Section 3 contains the vertices (1, 0) and (1, 1).
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The following choice gives a perfect match:

- Section 0 : (0, 0),

- Section 1 : (1, 1),

- Section 2 : (0, 1),

- Section 4 : (1, 0).

Consider the following Petals tree with root [r] = [00011011].

[r]

[0σ, 0] [0σ, 1]

[σσ, 0]

[1σ, 0]

[σσ, 1]

[1σ, 1]

Figure 1. The Petals tree.

This Petals tree (see Fig. 1) has 4 branches, each one is a petal for a vertex
in GA(1, 2):

(1) The first branch is a petal for (0, 0), It results in the sequence σ0 to be
inserted (right after the 0 that appears at an even position).

(2) The second branch is a petal for (0, 1). It is the join of two vertices in the
tree, which results in the sequence σσ0 to be inserted (right after the 0 that
appears at an odd position).

(3) The third branch is a petal for (1, 0). It results in the sequence σσ1 to be
inserted (right after the 1 that appears at an even position).

(4) The fourth branch is a petal for (1, 1). It results in the sequence σ1 to be
inserted (right after the 1 that appears at an odd position).

The construction follows the Eulerian cycle for [v] in GA(1, 2) and, in each
section it inserts the petal for the chosen vertex for a perfect match, immediately
after it. Thus:

- in section 0 it inserts the edges for [0σ, 0] at (0, 0),

- in section 1 it inserts the edges for [1σ, 1] at (1, 1),

- in section 2 it inserts the edges for [0σ, 1] and [σσ, 0] at (0, 1) and

- in section 3 it inserts the edges for [1σ, 0]and [σσ, 0] at (1, 0).
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The result is the (1, 2)-perfect necklace [v̂] over the alphabet Â. The inserted
symbols are in boldface:

[v̂] = [0σ 00 01 σ1 10 σσ 01 σσ 11].

It satisfies the small gap condition because in between any occurrence of σ
and the next there are at most 4 other symbols, which is less that the allowed
because n = 2, |A| = 2 and n+ 2|A| − 2 = 5 symbols.

3.2. Proof of Theorem 1

Suppose v ∈ Aω is the concatenation of (n, n)-perfect necklaces over the
alphabet A, for n = 1, 2, . . . Apply the Lemma 1 (Main lemma) to each of these
(n, n)-perfect necklaces over the alphabet A and obtain (n, n)-perfect necklaces

over the alphabet Â. By Proposition 6, their concatenation is normal to the

alphabet Â.

Fix a positive integer N. Recall that the length of a (n, n)-perfect necklace

over the alphabet Â is n|Â|n. Let m be the smallest integer such that such that

N ≤
m∑
i=1

i|Â|i.

Therefore, |Â|m < N , hence, m ≤ log| ̂A| N.

Consider the possibilities for the occurrences of σ in v̂ just before and just
after position N. We need to analyze two cases.

Case they are both inside the same (n, n)-perfect necklace. Lemma 1
(Main lemma) proved that the number of symbols in between is less than 2|A|+n,
henceforth less than 2|A|+m.

Case they are not in same perfect necklace. Notice that in the proof
of Lemma 1 (Main lemma) the Eulerian cycle over alphabet A is divided in sec-
tions of size |A|, independently of the value of n. Assume that N is in the (m,m)-

perfect necklace over Â. First suppose that the occurrence before position N is in
the (m−1,m− 1)-perfect necklace. The construction in Lemma 1 ensures that σ
occurs in the last |A|+m symbols of this necklace and the next occurrence of σ
is in the first |A| + 1 symbols of the (m,m)-perfect necklace. Thus, in between
these two occurrences of σ there are at most 2|A|+m−1 symbols. Now suppose
that the occurrence after position N is in the (m + 1,m+ 1)-perfect necklace.
Then, there is an occurrence of σ in the last |A|+m+1 symbols of the (m,m)-
-perfect necklace and the next occurrence of σ is in the first |A|+1 symbols of the
(m+ 1,m+ 1)-perfect necklace. Therefore, in between the two occurrences of σ
are at most 2|A|+m symbols.
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Since m ≤ log
̂A N, it follows that for every N the number of symbols in be-

tween these occurrences of σ before an after position N is at most

2|A|+ log| ̂A| N.

This concludes the proof of Theorem 1. �

���������������� Thanks to Olivier Carton for his comments on a previous
version of this work. This research was supported by grant PICT 2018–2315
ANPCyT Argentina.
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[6] BECHER, V.—CORTÉS, L.: Extending de Bruijn sequences to larger alphabets, Inform.
Process. Lett. 168 (2021), art. no. 106085, 6 pp.

[7] BUGEAUD, Y.: Distribution Modulo one and Diophantine Approximation. In: Tracts
in Mathematics, Vol. 193, Cambridge University Press, Cambridge, 2012.

[8] CARTON, O.—ORDUNA, E.: Preservation of normality by transducers, Information and

Computation (2020), art. no. 104650.

[9] CHAMPERNOWNE, D.: The construction of decimals normal in the scale of ten,
J. London Math. Soc. s1–8 (1933), 254–260.

[10] WALL, D. D.: Normal Numbers. PhD Thesis, University of California, Berkeley, 1949.

[11] DRMOTA, M.—TICHY, R.: Sequences, Discrepancies and Applications. In: Lecture
Notes in Math. Vol. 1651, Springer-Verlag, 1997.

[12] FUKUYAMA, K.: The law of the iterated logarithm for discrepancies of {θnx}, Acta
Math. Hungar. 118 (2008), 155–170.

[13] HALL, P.: On representatives of subsets, J. London Math. Soc. 10 (1935), 26–30.

[14] KAMAE, T.—WEISS, B.: Normal numbers and selection rules, Israel J. Math. 21 (1975),
101–110.

[15] KUIPERS, L.—NIEDERREITER, H.: Uniform distribution of sequences. In: Pure Appl.

Math, Wiley-Interscience, New York-London-Sydney, 1974.

[16] LEVIN, M. B.: On the discrepancy estimate of normal numbers, Acta Arithm. 88 (1999),
99–111.

75
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