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ABSTRACT. In this note we give an overview of the currently known best lower
and upper bounds on the size of a subset of Z

n
m avoiding k-term arithmetic

progression. We will focus on the case when the length of the forbidden progression

is 3. We also formulate some open questions.

Communicated by László Mérai

1. Introduction

There has been great interest in finding progression-free sets in the group
Z
n
m :=

(
Z/(mZ)

)n
, especially when m=3 or 4. This topic was studied in detail

in very recent papers by the current author with Elsholtz (see [8]) and with
Palincza (see [12]). Here, we summarize the results of those papers together
with several further earlier results (from [2, 4, 5, 7, 14]) and finally we conclude
with some open problems. We concentrate on sets S ⊆ Z

n
m of maximal size

|S| = rk(Z
n
m) with no k distinct elements in arithmetic progression. We are
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interested in the growth rate when k and m are fixed and n → ∞, though
other settings would also be interesting (and also studied, for instance, in finite
geometry).

Let us formulate first some easy observations. It is well known that construc-
tions can be lifted to higher dimensions and yield asymptotic results by a simple
product construction:

����� 1.1� Let us assume that either q is a prime power or k = 3.

a) Let S1 ⊆ Z
n1
q and S2 ⊆ Z

n2
q be k-progression-free sets, then S1 × S2 ⊆

Z
n1+n2
q is also k-progression-free, consequently

rk(Z
n1+n2
q ) ≥ rk(Z

n1
q ) rk(Z

n2
q ).

b) A repeated application of part a) gives:

rk(Z
nt
q ) ≥ (

rk(Z
n
q )
)t
.

Lemma 1.1 directly implies (with the help of Fekete’s lemma) the following
proposition.

���	�
����
 1.2� Let us assume that either q is a prime power or k = 3 such
that q ≥ k ≥ 3. Then the limit

αk,q := lim
n→∞

(
rk(Z

n
q )
)1/n

exists.

That is, for prime power q we have

rk(Z
n
q ) =

(
αk,q − o(1)

)n
,

where the sign in −o(1) attempts to illustrate that in fact we must have

rk(Z
n
q ) ≤ αn

k,q for every n,

again, by Lemma 1.1. However, a priori it is not clear at all whether αk,q < q
holds for any pair of k and q. It is a major question (for any pair of q ≥ 3 and
k ≥ 3) whether the quantity αk,q is smaller than q (then we say that rk(Z

n
q ) is

exponentially small), or αk,q = q.

In Section 2, we discuss the known bounds for k = 3, in Section 3 we mention
some results about the case k ≥ 4, finally several questions are posed in Section 4.

2. Bounds on r3(Z
n
m)

The first nontrivial case is when the length of the forbidden arithmetic pro-
gression is k = 3. The multidimensional case of no 3 points in arithmetic progres-
sion has frequently been studied, especially modulo m = 3. Here the questions
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of “no arithmetic progression x1+x3=2x2” and “no zero sums x1+x2+x3 = 0”
turn out to be equivalent as 1 ≡ −2 mod 3. This can also be formulated as there
are “no three points on a (n affine) line”, the problem is known as the “cap
set problem”. There were important contributions by Brown and Buhler [3],
Frankl, Graham and Rödl [9], Meshulam [11], Lev [10], Bateman and Katz [1],
Sanders [16], Croot, Lev and author of this note [4], Ellenberg and Gijswijt [7].

As it turns out that there are some differences between the cases when m is
odd and when m is divisible by 4, since in case of 4 | m it may happen that in a
non-constant 3-term arithmetic progression a, b, c we have a = c. Note that the
case when m is an even number not divisible by 4 easily reduces to the odd case,
in fact

r3(Z
n
m) = 2nr3(Z

n
m/2)

for m ≡ 2 (mod 4).

Let us start with summarizing the results in the case m = 4. Introducing
an entirely new approach, based on the polynomial method rather than Fourier
techniques, Croot, Lev and the present author [4] proved that

r3(Z
n
4 ) ≤ 4γn = 3.61 . . .n ,

where γ ≈ 0.926.

As a lower bound Elsholtz and the present author [8] proved that for n > 1
we have

r3(Z
n
4 ) ≥ max

0≤t≤n

n∑
i=t+1

(
n

i

)
A(i, i− t), (1)

where A(m, d) denotes the largest possible size of a code in F
m
2 with minimum

distance at least d. Note that A(m, 1) = 2m (all vectors can be taken) and
A(m, 2) = 2m−1 (all codewords can be taken with even Hamming-weight).

As a consequence of this result the following lower bound can be obtained
by choosing t in an optimal way (which satisfies t ≈ 2n/3):

r3(Z
n
4 ) 	

3n√
n
,

which implies that there exists a progression-free set S ⊆ Z
n
4 with

|S| 	 40.7924n.

In fact to get a lower bound for r3(Z
n
m) one can look for constructions in small

dimensions, however, finding exact values of r3(Z
n
m) turns out to be difficult even

in small dimensions. The following values are known [8] in case of m = 4:

r3(Z
1
4) = 2, r3(Z

2
4) = 6, r3(Z

3
4) = 16, r3(Z

4
4) = 42, r3(Z

5
4) = 124.
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Note that lifting

r3(Z
5
4) = 124 only yields r3(Z

n
4 ) ≥

(
1241/5 − o(1)

)n
=

(
2.622 . . .− o(1)

)n
which is considerably worse than the bound 3n/

√
n. It is also worth noting that

for all the cases n ≤ 5 the lower bound in (1) turns out to be the tight answer.

In view of the above results, and also of an upper bound in a relevant case
Elsholtz and the present author [8] formulated the following conjecture:

��
������� 1�

r3(Z
n
4 ) =

(
3− o(1)

)n
, i.e., α3,4 = 3.

To describe the case when the conjectured bound holds, let us give a reformu-
lation of the problem of determining r3(Z

n
4 ). Let us say that a system of subsets

A(x) ⊆ F
n
2 (x ∈ F

n
2 ) satisfies property (∗), if the following implication holds

∀x ∈ F
n
2 (y ∈ x+A(x)+̂A(x) =⇒ A(y) = ∅), (∗)

where +̂ denotes the restricted sumset, that is,

x+A(x)+̂A(x) = {x+ u+ v : u, v ∈ A(x), u �= v}.
(Note that for A(x) = ∅, we define x+A(x)+̂A(x) := ∅.) It can be shown that the
maximal possible size of

∑
x∈F

n
2
|A(x)| for a system of subsets {A(x) : x ∈ F

n
2 }

satisfying property (∗) is exactly r3(Z
n
4 ), so property (∗) nicely captures the

condition that the “corresponding” set A ⊆ Z
n
4 is free of 3-term arithmetic

progressions.

In [8] we proved the following

������� 2.1� If the system of subsets A(x) satisfies (∗) and all non-empty
subsets A(x) are subspaces, then∑

x∈F
n
2

|A(x)| ≤ 3n.

For general even m we [8] proved the following lower bound.

������� 2.2� Let m ≥ 4 be even. There exists some Cm > 0 such that

r3(Z
n
m) ≥ Cm√

n

(
m+ 2

2

)n

.

With

σm =

√
m4+8m3+4m2−48m

2880 one can choose Cm =
1

3
√
3σm

.

For large m one has that Cm ∼ 8
√
5√

3m2
.
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Let us continue now with the odd case. The method introduced in [4] also led
to the result

r3(Z
n
3 ) ≤ 2.756n

by Ellenberg and Gijswijt [7].

More generally, for primes p ≥ 3 and some positive constant δp

r3(Z
n
p ) ≤ (p− δp)

n.

Indeed the argument yields [2] the bound

r3(Z
n
p ) ≤

(
J(p)p

)n
,

where

J(p) =
1

p
min
0<t<1

1− tp

(1− t) t(p−1)/3
. (2)

As J(p) is decreasing and J(3) ≤ 0.9184 one can conclude that for every m ≥ 3
the following holds (see, e.g., [2] and [14]):

r3(Z
n
m) ≤ (0.9184m)n (3)

for every m ≥ 3. To see this it suffices to notice that r3(Z
n
m1m2

) ≤ mn
1 r3(Z

n
m2

)
for every m1 and m2 and that each 3 ≤ m has 4 or an odd prime among its
divisors.

For more on different interpretations of the proof of the upper bounds we
refer the readers to [4,7,13,18,19].

We shall mention that although the method could be applied for any finite
field Fq with q = pα, however, since r3(F

n
q ) = r3(F

αn
p ) the relevant cases are

those when the prime power q is a prime. (The resulting upper bound from the
application to Fpα is worse than the bound coming from the case of Fp.)

Lower bounds for progression-free sets in G = Z
n
3 has also been studied

in detail. It is known (see Edel [5] for the history and current record) that
there is a set S with

|S| > 2.217389n = |G|β with β =
log 2.217389

log 3
≈ 0.724851.

The currently strongest lower bound example comes from a product construc-
tion, based on an example in dimension 480.

There are only very few explicit values known:

r3(Z
1
3) = 2, r3(Z

4
3) = 20,

r3(Z
2
3) = 4, r3(Z

5
3) = 45,

r3(Z
3
3) = 9, r3(Z

6
3) = 112.
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The author of the 6-dimensional result (Potechin [15]), and the authors of the
classification of the unique 5-dimensional extremal set [6] (required for the
6-dimensional case by Potechin) mentioned that they used computer calcula-
tions.

For general odd m we [8] proved the following lower bound:

������� 2.3� Let m ≥ 5 be odd. There exists some Cm > 0 such that

r3(Z
n
m) ≥ Cm√

n

(
m+ 1

2

)n

.

Moreover, with

σm =

√
1

2880
(m4 + 4m3 − 14m2 − 36m+ 45)

the value Cm = 1
3
√
3 σm

is admissible. For increasing odd m asymptotically

Cm ∼ 8
√
5√

3m2

holds.

3. Bounds when k ≥ 4

We have seen that r3(Z
n
m) is exponentially small when m ≥ 3, that is,

α3,m < m. For longer progressions it has not yet been decided in the cases
4 ≤ k ≤ m whether rk(Z

n
m) is also exponentially small or of order of magnitude(

m− o(1)
)n

(as n → ∞) with the exception of the case 6 | m and k ∈ {4, 5, 6},
when the quantity rk(Z

n
m) is exponentially small, namely:

������� 3.1 ( [12])� If 6 | m and k ∈ {4, 5, 6}, then rk(Z
n
m) ≤ (0.948m)n,

if n is sufficiently large. Specially, r6(Z
n
6 ) ≤ 5.709n.

As a lower bound we know only the following easy consequence of the lower
bound for r3(Z

n
3 ):

4.434n ≤ 2nr3(Z
n
3 ) = r3(Z

n
6 ) ≤ r6(Z

n
6 ).

Note that in case of non prime power m and longer progressions Lemma 1.1
is not applicable, furthermore, the product construction can indeed fail to work.
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Let us illustrate this by the case k = 6,m = 6. In dimension 1 the set A =
{0, 1, 2, 3, 4} is free of 6-term arithmetic progressions. By taking

A×A = {0, 1, 2, 3, 4}× {0, 1, 2, 3, 4}
we obtain a 25-element subset of Z2

6 which contains the following 6-term arith-
metic progression:

(0, 0), (2, 3), (4, 0), (0, 3), (2, 0), (4, 3).

Although the product construction is not applicable, the value of r6(Z
2
6) still

turns out to be 25 = 52, however, we [12] showed that

r6(Z
3
6) < 125 =

(
r6(Z6)

)3
.

The lower bound constructions from Theorem 2.2 and Theorem 2.3 may be
generalized in various ways, as an illustration we list some lower bounds obtained
in similar manners.

������� 3.2 ([8])� The following holds:

r4(Z
n
11) 	

7n

n3
.

������� 3.3 ([8])� Let m = ps be a pure prime power, s ≥ 2. Let k = ps−1+1.
Then there exist constants Cm > 0 and 0 < cm ≤ m/2 such that the following
holds

rk(Z
n
m) ≥ Cm

(m− p+ 1)n

ncm
.

��������� 3.4 ([8])� There exist positive constants Cm and cm ≤ m/2 such
that the following holds

r5(Z
n
8 ) ≥ C8

7n

nc8
,

r10(Z
n
27) ≥ C27

25n

nc27
,

r26(Z
n
125) ≥ C125

121n

nc125
,

r102(Z
n
1012) ≥ C10201

10101n

nc10201
.

������� 3.5 ([8])� Let m = ps be a pure prime power, s ≥ 3. Let k = ps−2+1.
Then there exist constants Cm > 0 and 0 < cm ≤ m/2 such that the following
holds:

rk(Z
n
m) ≥ Cm

(m− 2p2 + 2p)n

ncm
.

For p=2, this is certainly not the best possible. By Theorem 2.2 for m=8,
k=3 one can use 5 digits, rather than 4.
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��������� 3.6 ([8])� There exist positive constants Cm and cm ≤ m/2 such
that the following holds:

rp+1(Z
n
p3) ≥ Cp+1

(p3 − 2p2 + 2p)n

ncp+1
,

r4(Z
n
27) ≥ C27

15n

nc27
,

[r82(Z
n
729) ≥ C729

717n

nc729
,

[r6(Z
n
125) ≥ C125

85n

nc125
,

[r26(Z
n
625) ≥ C625

585n

nc625
.

4. Questions

For prime power values of m there has been some improvements on the trivial
corollaries of the prime case, like

r3(Z
n
9 ) ≤ 3nr3(Z

n
3 )

Namely, the method was adapted to odd prime powers [2,13,17] and also to the
technically more difficult even case for m = 23 = 8. For r3(Z

n
8 ) the trivial

implication is r3(Z
n
8 ) ≤ 2nr3(Z

n
4 ) ≤ 7.222n,

however, Petrov and Pohoata [14] could prove that

r3(Z
n
8 ) ≤ 7.09n

also holds.

It would be interesting to see similar improvements for such composite m’s
that are not prime powers. For instance, it is clear that

r3(Z
n
15) ≤ min

(
3nr3(Z

n
5 ), 5

nr3(Z
n
3 )
)
,

but is it possible to improve on this bound?

���
���
 1� Is it true that α3,15 < min(3α3,5, 5α3,3)?

According to Proposition 1.2 the quantity
(
rk(Z

n
m)

)1/n
converges when m is

a prime power. This should also hold for an arbitrary integer m, however we do
not see a proof of this statement.

���
���
 2� Does
(
rk(Z

n
m)

)1/n
converge? Specially, does

(
r6(Z

n
6 )
)1/n

converge?
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For r6(Z
n
6 ) we gave only the trivial lower bound 2nr3(Z

n
3 ) ≤ r6(Z

n
6 ). We ask

whether this bound can be improved by an exponential factor:

���
���
 3� Is it true that (2 + ε)nr3(Z
n
3 ) ≤ r6(Z

n
6 ) for some ε > 0 (not

depending on n)?

It is known that rk(Z
n
m) is exponentially smaller than mn when k = 3 or

6 | m and k ∈ {4, 5, 6}. It would be interesting to add further pairs of k and m
into this list. On the other hand, as far as we know, no pair of k ≥ 3 and m ≥ 3
is known when rk(Z

n
m) is not exponentially small, which motivates the question

below:

���
���
 4� Does there exist m ≥ k ≥ 3 such that rk(Z
n
m) =

(
m− o(1)

)n
?
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[9] FRANKL, P.—GRAHAM, R. L.—RÖDL, V.: On subsets of abelian groups with no 3-
-term arithmetic progression, J. Combin. Theory, Ser. A 45 (1987), no. 1, 157–161.

[10] LEV, V. F.: Progression-free sets in finite abelian groups, J. Number Theory 104 (2004),
162–169.

[11] MESHULAM, R.: On subsets of finite abelian groups with no 3-term arithmetic progres-

sions, J. Comb. Theory, Ser. A 71 (1995), 168–172.

[12] PACH, P. P.—PALINCZA, R.: Sets avoiding six-term arithmetic progressions in Z
n
6 are

exponentially small, SIAM Journal Discrete Math. (to appear)

9
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