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ABSTRACT. The higher-dimensional generalization of the weighted g-adic sum-
-of-digits functions sq,~(n), n = 0,1,2,..., covers several important cases of se-
quences investigated in the theory of uniformly distributed sequences, e.g.,
d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences.
We prove a necessary and sufficient condition for the higher-dimensional weighted
g-adic sum-of-digits functions to be uniformly distributed modulo one in terms
of a trigonometric product. As applications of our condition we prove some upper
estimates of the extreme discrepancies of such sequences, and that the existence
of distribution function g(z) = x implies the uniform distribution modulo one
of the weighted g-adic sum-of-digits function sq~(n), n = 0,1,2,... We also
prove the uniform distribution modulo one of related sequences hisq,~(n) +
h2sq,~(n + 1), where hy and ho are integers such that h; + he # 0 and that
the akin two-dimensional sequence (sq,~(n),sq,~(n + 1)) cannot be uniformly
distributed modulo one if ¢ > 3. The properties of the two-dimensional sequence
(sqy(n),sqv(n + 1)), n =0,1,2,..., will be instrumental in the proofs of the
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final section, where we show how the growth properties of the sequence
of weights influence the distribution of values of the weighted sum-of-
-digits function which in turn imply a new property of the van der Corput
sequence.

Communicated by Friedrich Pillichshammer

1. Introduction

Let d € N be a fixed positive integer[] Given a real number z, let |z denote
the integral part of x, and {z} = z— | 2] be the fractional part of z or the residue

of # modulo one in symbols # mod 1. Finally, let [|2]| = min ({z},1 — {z}) be
the distance to nearest integer function.
A sequence of the d-dimensional vectors Z,, n = 0,1,2,..., in R? is said

to be uniformly distributed mod 1 (abbreviated to u.d. mod 1) if
. A([@b);N;Z, mod 1) 1
Jim i =10~ o) 1)

j=1

for all intervals [@,b) C [0,1)% with @ = (a1,...,aq) and b = (by,...,bq).
Here, A(I; N;,) denotes the number of elements, out of the first N elements
of the sequence #,, n = 0,1,2,..., that lie in set I C R% If #, € [0,1)?
for each n, we simply say that &, is uniformly distributed (abbreviated to u.d.).

In () we can obviously restrict the definition to intervals of the form [0, ¥)
where # = (M, 2 . 2(d) € [0,1)% If there exists a strictly increasing
sequence of positive integers N'= (N3 < N; < N3 < ...) such that

A([0,@); Nj@amod 1) 1 ()
Jj=1
for all £€[0,1)? then the sequence #,, n=0,1,2,..., is called N'-almost u.d.

mod 1.
Weyl’s criterion (see, e.g. [11], p. 48]) says that the sequence Z,,,n = 0,1,2,...,
in R? is u.d. mod 1 if and only if

| Nl B
: -~ 2mi(h,Tpn) __
lim N nz:% e =0, (3)

N—o0

n what follows, N, Ng, Z will always denote the set of positive, non-negative or of the all
integers, and R the set of real numbers.
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where (7, 7) stands for the standard inner product in R%, and it is A -almost
u.d. mod 1 if and only if

N;—1

19 T

lim — e2mi{hin) — 4
Jj—o0 Nj Y;O ( )
in both cases for every lattice point he 74, h £ 0.

The theory of uniform distribution (abbreviated also to u.d.) is not restricted
only to the interval [0,1). A more general case can be considered: If [a,b) C R
is a non-degenerate (finite) interval, the sequence z,, n = 0,1,2,..., of real
numbers from [a, b) is said to be u.d. with respect to interval [a,d) if for any
subinterval [c, d) of [a,b) we have

A(le,d); Nyzp,)  d—c

li = .
Jim N - (5)

In what follows let
’7:(707’71372,-~-) <6>

always denote a sequence of real numbers, and ¢ a fixed positive integer greater
or equal to 2. For a non-negative integer n with base ¢ representation

n=mng+niq+nog®+ - +ng +--, (7)
with n; in the set of g-adic digits {0,1,...,¢ — 1} for j > 0 we have n;, # 0

for £ = [log,n| and n; = 0 for j > . The weighted g-adic sum-of-digits
function is defined by the equation

Sq (1) = Yomo +y1n1 + y2ne + - -+ Yeng. (8)

A special case of this definition is presented by the g-adic van der Corput se-

quence [T1 p. 127]

no niy no Ny
¢q<n>:_+_+_+'”+ﬁa

where v; = ¢7¢~! for all i € Ny. The g-adic van der Corput sequence is a well
known prototype of a u.d. sequence.

To consider a d-dimensional generalization with d > 1, let (¢1,42,...,44)
be a d-tuple of positive integers greater or equal to 2 and

n @ @

~M Yo M e
(2) @ @ @
~
r=|"|={" " 7 9)
.d .d .d
oo TS A
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be a d x oo-matrix over R and with v; = (7;1)7 7;2), e ,vj(d)) transposed in the

(j + 1)st column, j =0,1,2,... If n = Z;io ny)qf is the g;-adic representation
of n, and n(" = (n(()i) , ngi), ngi), .. ) is the (infinite) row vector of the digits of the
¢;-adic representation of n, then

Sgs (0 (n) = <.y(i)7 n(i)>.

For every n € Ny define

Squ,nqa, (M) = (Sql,'y(n (n), Sy (n),..., 8 quy (@) (n)) (10)
If g =q2 =+ = qq = q, we write
Sq,F(n) = (8q7'y(1) (n)7 8q7'y(2) (n)7 ctt 8q7'y(d) (n)) (11)

Let us mention several related examples:

EXAMPLE 1. If ¢;’s are pairwise coprime integers greater or equal to 2 and fyj(i) =

qi_j_1 foralli=1,...,d and j =0,1,2,..., then the resulting sequence ([I0) is
the d-dimensional van der Corput-Halton sequence which is u.d. in [0, 1)<.

EXAMPLE 2. If 4\ = g/a; for all i € {1,...,d} and all j € N, we obtain
the d-dimensional Kronecker sequence which is u.d. mod 1 in [0,1)% if and
only if 1, a1, ..., a4 are linearly independent over Q (see e.g. [5]). If d = 1 this
sequence is u.d. if and only if oy is irrational.

ExAMPLE 3. The following example is of a “hybrid type” (cf. [I6, p. 377]).
Let (x(l)(n), oz (n)), n =0,1,2,..., be an s-dimensional van der Corput-
Halton sequence and (y(l)(n), oy (n)), n =0,1,2,..., be a t-dimensional
Kronecker sequence such that s > 1 and ¢ > 1. Then the so-called Halton-
-Kronecker sequence given by (z((n),...,2®)(n),yM(n),...,y®(n)),
n = 0,1,2,...,is u.d. mod 1 in [0,1)**" if and only if its Kronecker part is
u.d. mod 1 in [0,1)"

EXAMPLE 4. Let d be a positive integer and let s((]d) (n) = E;io n? denote
the sum of the dth powers of the g¢-adic digits of the positive integer n.
If 8 € R then sequences of the form 95((;1) (n) with n running over Ny or over
the set of prime numbers were studied by several authors. We get a special
case of the weighted g-adic sum-of-digits functions in the case where the weights

form a constant sequence v; = 6 for all j = 0,1,2,..., and the exponent
d =1, that is sg~(n) = 93((11)(71). M. Mendes France [15] proved that sequence
9381)(71), n = 0,1,2,..., is u.d. mod 1 if and only if € is irrational. This re-

sult was later reproved by J.Coquet who proved that for every k € N the
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sequence Qsék) (n), n =0,1,2,..., is u.d. mod 1 if and only if 4 is irrational B
Ch. Mauduit and J.Rivat [I4, Théoréeme 2] proved that 93511)(11) is u.d. mod 1
when @ is irrational and n runs through the prime numbers only. R. F. Tichy and
G. Turnwald [2I] proved estimates for the discrepancy of the sequence asgd) (n),
n=0,1,2,..., for irrational « of finite approximation type 7

EXAMPLE 5. If the g¢;’s are pairwise coprime bases and the coordinates of 7;,
j =0,1,2,..., are constant sequences, i.e., ¥; = (ai,...,aq) for all j € Ny,
then (I0) is u.d. in [0,1)? if and only if a1, ..., aq are irrational numbers [3].

In [I7] (c.f. also [19], 1.22]) F. Pillichshammer proposed the following general
problem:

OPEN QUESTION. Let qq,...,qq be a d-tuple of pairwise coprime integers greater
or equal to 2. Under which conditions on the weight sequences forming I is the

sequence
SQ1,---7Qd,F<n>> n=20,1,2..., (12)

u.d. mod 1¢

In the same paper F. Pillichshammer proved the following resultf] when all
the bases coincide.

PRrOPOSITION 1 ([I7, Theorem 1]). Let the base g € N be at least 2. The sequence

sq,r(n) is u.d. mod 1 if and only if for every integral vector h e 74 \ {0} one
of the following conditions is fulfilled: either

Z (R, ) 1% = oo, (13)
<h77k>q¢Z

or, there exists a non-negative integer k with
() ¢ Z  and  (h,k)q € Z. (14)

2Coque‘c [1] also proved that if the real sequence A(n),n = 0,1,2,..., is well distributed mod 1,
A([a,b);N; d

that is, if for every subinterval [a,b) C [0, 1), we have limy_; oo (la.0); ’113““ mo 1) =b—a

uniformly in k£ = 0,1,2,..., then so is sequence )\(st(ll)(n))7 n=0,1,2,... He claims that (1)

the converse is also true, (2) if A(sgl)(n)), n =0,1,2,..., is u.d. mod 1, then it also is the

sequence A(n), n = 0,1,2,..., and that (3) if a g-additive sequence is u.d. mod 1, then it is

well distributed.

3The irrational number « is of type 7 if given € > 0, h7¢||ha > c(a, €) for all positive integers
h and c¢(a, €) a positive constant.

4A forerunner of this result can be found in [I3] and a generalization in [9].
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Note, that the g-adic van der Corput sequence, where d = 1, satisfies (I4]).
To see this take k = s where s is the maximal exponent such that ¢**! divides h.
Kronecker sequences and Drmota-Larcher’s result mentioned in Example[lin the
one-dimensional case fulfill (I3) due to irrationality of weights.

R.Hofer [§] proved a related sufficient condition on the weight sequences which
gives a partial answer to Pillichshammer’s question. Her condition for the u.d.
mod 1 of the sequence (I2) requires the divergence of the series

e . . 2
> Hh (4§21 — a8 H
=0

for each dimension j € {1,...,d} and every non-zero integer h. Unfortunately,
her sufficient condition is not necessary. Her sufficient condition generalized that
proved in [3] for sequences mentioned in Example [l It also does not cover some
prototype classes of u.d. sequences as the d-dimensional Kronecker sequences or
d-dimensional van der Corput-Halton ones.

R.Hofer et al. [9] proposed a further generalization of the one-dimensional
weighted g-adic sum-of-digits function, called generalized weighted digit-block-
-counting function. Their conditions guaranteeing its u.d. mod 1 generalize (I3))
and (I4)) but are rather technical.

2. Outline of the paper

In Theorem [Tl of Section Bl we replace conditions (I3]) and (I4) with one involv-
ing a trigonometric product. More precisely, sequence s, r(n), n = 0,1,2,...,
is u.d. mod 1 if and only if

(h,3;)¢1L

for every integral vector i € Z% \ {0}.

In Section [, Theorem [2 gives an upper bound for the discrepancy of the
sequences S, r(n) mod 1, n = 0,1,2,..., based on this trigonometric product.
Example [T applies Theorem [2] to the case of a weight sequence v, = {na},
n=20,1,2,..., where « is an irrational number.

In Theorem [3 of Section [§] we prove that for the u.d. mod 1 of the weighted
sum-of-digits function s, ~(n), n = 0,1,2,..., it is necessary and sufficient
to possess the distribution function g(z) = x.
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In Section B in Theorems @ and Bl we prove that the u.d. of the sequence
sq~(n), n € Ny, pulls along also the u.d. of the sequence (hisq~(n) +
hasg~(n + 1)) mod 1, n € Ny, for all hy, hy € Z satisfying hy + hy # 0, but
not that of the two-dimensional sequence

(8qy(n),Sqy(n+1))mod 1, n=1,2,... (15)

In the final Section [[ in Theorem Bl we work out a new property of the
g-adic van der Corput sequence. Namely, if the weights vx, A = 0,1, 2,..., satisfy
conditions

Yo=zv =20,

(a-1)) wm=1,
=0

then the g-adic van der Corput’s sequence is the only u.d. sequence modulo one
meeting these two conditions.

3. A trigonometric criterion

The trigonometric factors appear in our criterion via the following well-known

equations q—1 | sin wqa|
627rinfﬂ _ {q sin x|’ if X ¢ Z7
nZ:(J 1, if x € Z.

Since the points €207 g27ile  o27i(a=1)2 Jie on the unit circle, the triangular

1
p (16)

inequality yields the inequality % ‘ZZ;B e?minz| <1 or
sin mqx
[snmgr g e (17)
q| sin x|
If moreover we have 2™ =£ 1 for some n € {0,1,...,¢q — 1} and ¢ > 2, then

% S2971 e2mine Jies strictly inside the unit circle, that is

[sinmga] (18)
q| sin x|
for all ¢ € N, ¢ > 2, and for all z € (0,1). On the other hand, if x € Z, then

arguing with the so-called removable singularity technique, we can put
|sinmqz|

1. (19)

q|sinmz|
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The next criterion we were not able to trace in the literature. Its proof can also
be based on Theorem 1 of [2[f1 or from its generalization Theorem C (ii) of [10]
using ([I6]). We offer here a direct and more transparent proof of its statement.

THEOREM 1. Let ¢ > 2 be an integer and I' be the d x oo-matrix of real
weights [@). Then the sequence sqr(n), n = 0,1,2,..., is u.d. mod 1 if and
only if for every integral vector h € 74 \ {6} we have

i)l

—1 =
h V5]

N—oo % q|sin(
(h:’h)fZ

Proof. Let @ = (¢° < ¢* < ¢* < ---). In this part of the proof we show that
relation (20) is equivalent to the Q-almost u.d. mod 1 of the sequence sq r(n),

n=0,1,2,... To prove this, we use Weyl’s sum for ¢’V terms with n represented
in form N1
n=mng+niqg+---+nyn_1q , n; €{0,1,...,q—1} (21)
and with an arbitrary integral vector i € Z%\ {0}.
Then
g -1 gV -1
_N Z 2mi( hsq r(n)) — qN Z 277121 1 hj s_y(])(n)
n=0
1 q_1 2 @)
_ 27 $°¢ 1 hy E o nl'yl]
LS st
q no=0 ny—1=0
1 4 = d () d )
N v Z e2mino iy ki p2mina -1 X5y kil
n():O nN,1:0

—1

Q

[
2| =
M

L)

d qg—1 d
H 7T17’L()h7’yo § : H 2min N _ 1h]7N>1

_
I |

2

1 . 1! ,
N 2ming (h,5o) =z 627TinN—1<h7'7N—1> ) 29
(q > i) (15 22)

no=0 q ny_1=0

Relation (I6) implies that the sums in the parentheses where the scalar product
in the summands is an integer are equal to 1. Application of the first part of the

5The paper contains small inaccuracies. For instance, the paper quoted in footnote 4 on p. 292
appeared in 1963, or the proof of Proposition 5 implies a strict inequality in its statement.
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same relation ([I6]) to the remaining sums in parentheses of (22]) yields a product
containing only factors with non-integral scalar products

N
1 qz_l i (R, 5q.1(n)) Jﬁl | sinmq(h, 7;)] (23)
— e Sa = —_
e =0 alsinm(h,7;)]
(h,7;)¢Z

Weyl’s criterion (@) immediately finishes this part of the proof.

Now we prove that the Q-almost u.d. mod 1 of the sequence s, (n), that is
the validity of (20), implies its u.d. mod 1.

Given a positive integer M let
N

¢V <M < ¢Vt oand M:ijqj with m; € {0,1,...,¢ — 1} for each j.
j=0
Split the set of all !
N
n’s with Ogn:anqj < M-1, where n; €{0,1,...,¢—1}, j=0,1,...,N,
j=0

into the following disjoint subsets

Ay ={0<n<M-1:n9€{0,1,...,g—1},...,ny—1 €{0,1,...,¢— 1},
ny € {0,1,...,myn — 1}},

Ay ={0<n<M-1:ny€e{0,1,...,q—1},...,ny—2€{0,1,...,q— 1},

ny-1 € {0, ].,. oMMy —1 — 1},”]\[ = mN},

A; ={0<n<M-1:ny€e{0,1,....q—1},...,ny_; €{0,1,...,¢— 1},

ny—j+1 €{0,1,...,my_j41 — 1}, nN_jp2 = MN_ji2,..., AN =MN},

Ay ={0<n<M-1:noe{0,1,...,¢—1},n1 €{0,1,...,my — 1},
Mo = Ma,...,MN_1 = MN_1,NN = MN },
Ang1={0<n <M —1:n9€{0,1,...,mo—1},n1 = my,ng = mo,...,
NN-_1=MyN_1,nN =My }.
For the cardinalities |A;| of sets A;, j =1,...,N 41, we have
|A;| =my_jr1-gV T i =1,2,.. N +1, (24)

where if MmN—j4+1 = 0, then ‘AJ| =0.
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Let i € Z%\ {0} be an arbitrary integral vector. Then

g—1 g—1
Zezwi@,sq,r(n» _ (Zezmo@m) >y G2minn (AN —5) | 5

nEAj no=0 TLN_]':O

mN—j+1-1
E e2minN—jt1(hAN—j+1) | 2minN—jta(h,TN—j+2) . ..

nN—;j+1=0 . =
627rmN_1(h,7N_1)

Taking into account (24) and again applying (I6]) to every expression in paren-
theses we obtain

ﬁ 3 o2mi(sg r(m) | _
J

neA;
N—j (o : -
|sinmg(h, 3i)| | [sinamy—j1(h N —j41)] (25)
o alsinm(h, )l | my—jaalsinm(h, YN ji)]
(h7e)¢Z

The second factor appears in (25) only if <E,7’N_j+1> ¢ 7, otherwise, it is
equal to 1. In any case it is < 1 due to (I7).

Let k be an integer such that 1 < k < N, then

k N—-k—1

A1 UApo U UAn| = ¢V Fmy_r+ 4 MN_k—1 4 - +mo

< gN=F+l -1 — O (N—k+1
<gq =0 (q ), (26)

q—1

since m; < ¢ for each i.

Returning back to the estimates of Weyl’s sum, compute

1=, i(Fysq 1 (n)) : 4] 1 i (R, 5q.1(n)) gN =kl
_ Tl ,Sq’[‘n < _ - Tl ,Sq’[‘n O
% 2 M| % ~o(5r)

j=1 t=0 Q|Sin77< ) Yt
(hAt)EZ
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because |A;|/M < ¢=9%2? and ¢V < M. The last estimate holds for an arbitrary k
such that 1 < k < N. Our assumption that

for N — oo implies that for a fixed j we also have

Nr‘f | sinwq(h, %)

i q| sin(h, ¥)|
()2
Fixing k and letting N — 0o we obtain from ([27)

M-1
1 1
<of——).
- (q’“‘1>

- Z e2mi(Rsq,r(n))
n=0

Since the above inequality holds for every fixed k € N and all sufficiently large

M € N, we have

1 'S i 1
lim sup — Z e2mi(h,sq,r(n)) <O< k;_1>'

—0 as N — oo.

M — o0 M n—0 q
Consequently,
L ~
: . 27ih,sq,r(n)) | —
| 2 0
and the sufficiency of (20) follows. O

There are several simple situations where the series (I3) diverges. For in-
stance, if the sequence of elements ||<l_i,%>||, k=0,1,2,..., satisfying condi-
tion <H, ﬁ’k>q ¢ 7 has a non-vanishing limit point. More explicitly, if the sequence
<E, ) mod 1, k=0,1,2,..., has a limit point lying in (0,1), then (I8) implies
that the right-hand (23) tends to zero. This argument has the following simple
consequences:

COROLLARY 1. (i) If a sequence <}_i,f_y'k> mod 1, k = 0,1,2,..., has a limit

point in the open interval (0,1) for every non-zero integer /;, then sequence
Sqr(n)mod 1, n=0,1,2,..., is u.d.

(ii) If a sequence <}_i,f_y'k> mod 1, k = 0,1,2,..., has mod 1 different lim inf

and limsup for every mon-zero integral vector i_i, then sequence sq r(n) mod 1,
n=20,1,2,..., is u.d.
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Similarly, if in the one-dimensional case the sequence < has an irrational
limit point modulo one. This limit point trivially lies in the interior of the unit
interval, and consequently such sequence sq~(n) mod 1,n=0,1,2,..., is w.df
A related d-dimensional problem was also considered by F. Pillichshammer’s [17,
Example 2]. The next example covers these cases:

EXAMPLE 6. Assume that the sequence of the d-dimensional vectors of weights
Y = (fyj( ),7](2), . yj(d)) modulo one has a limit point 5= (p(), p®, ..., p(@®)
for which the elements of the set {1, p}), p®) ... p(D} are linearly independent
over Q. Then the sequence s, r(n) is u.d. mod 1.

To see this, let ng, £k =0,1,..., be such that
Vrs (’yr(llk),'y}i),...,'y(d ) mod 1 — p'= (p(l),p(2), e ,p(d)) for k — oc.

Then for every h € Z4\ {0} the number (k, 7) is irrational and (I8) implies that

the number
[sinmq(h, )|

gl sinw(h, 3|’
say = &, is strictly less than 1. Then for all sufficiently large k we have
[sinq(h, 7| _ 1

= 14+¢) <1
q|sinw(h, Yn,)| 2< 2

and consequently also

L alsina( 7))
(h,Vn) ¢Z

that is, sq.r(n), n=0,1,2,... is u.d. mod 1.
REMARK 1. Notice that Theorem [l implies the “if” part of Pillichshammer’s

condition (I4]). Namely, if for every integral vector h e 74 \ {6} there exists

positive integer k such that <l_i, §k> ¢ 7 and <ﬁ, 7k>q € Z, then the product (20)
vanishes.

4. Discrepancy estimates

The quality of distribution modulo one of a sequence Z,, n = 0,1,2,...,
in R? is measured by quantities called discrepancies. In the theory of the uni-
form distribution, the knowledge of a suitable discrepancy estimate of a sequence

6This is a generalization of Amer. Math. Monthly Problem 6542 [1987, 386] proposed by
A. M. Odlyzko.
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distribution is more valuable than the plain information of its uniform distribu-
tion. From the variety of the discrepancy notions, the (extreme) discrepancy

of the finite sequence Zy, Z1,..., Zas_1 of real numbers is defined by
o - S A(I; M;Z, mod 1
DM<In):DM(ZEo,...,$M_1)= sup ( ]\; ) —)\d<I) s
1C[0,1)4

where I = [ay,81) X -+ X [ag, B4) stands for a rectangle with sides paral-
lel to axes and Agq(I) denotes its d-dimensional volume. A sequence of points
Zn, n=0,1,2,..., in the d-dimensional space R? is u.d. mod 1 if and only if
Dy (Zo, ..., Zp—1) — 0 for M approaching +oo.

One of the fundamental tools used in proofs devoted to bounding the dis-
crepancy of sequences is the classical Erdés-Turdn inequality (cf. [I2] Theorem
2.5]) and variants thereof [20] p. 1-44]) or their generalizations (cf. [12], p. 116] or
[20, p. 1-63]). One of them, the Erdés-Turdn-Koksma inequality gives an upper
bound for the discrepancy of a sequence in the d-dimensional unit cube [0, 1]%
in terms of exponential sums:

LEMMA 1 (Erdds-Turdn-Koksma'’s inequality). [ Let %o, Ta, ..., Trr_1 be points
in the d—dimensional unit cube [0,1)¢ and H be an arbitrary positive integer.
Then for discrepancy D (%)) we have

1
r(h)

D(Zn) < Cy %"’— > : (28)

0< ||l oo <H

1 M—-1 .
il 2mi(h,@n)
Tk

n=0

where r(h) = [1; max(1, [hi)), [|7llc = max [hi], h = (hy,...,hq) € Z% and

the constant Cy only depends on the dimension d.

Inserting the estimate (23) and (27) which are part of the proof of Theorem [I]
we can reformulate (28) as follows:

THEOREM 2. Let ¢ > 2, N, M be positive integers such that ¢ < M < ¢V+1.
Let I' be the d x oo-matrix of real weights [@). Then for the discrepancy of the
sequence

sqr(n) modl, n=0,1,2,...,M —1,

we have

"For a general form of the involved absolute constants consult [6].
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Dy (sq,p(n) mod 1)

k N—j | . _—

L 1 WE | sin wq(h, 7:)| 1

<Cy|—=+ Z - ( q Jj+2 " +O(

H - - ]
0<||Rlloe <H r(h) j=1 @t;;)ﬂqumw(h, )] q

(29)
for every integer k satisfying 1 < k < N.

ExAMPLE 7. Consider the one-dimensional application of Theorem 2lin the case
where the weight sequence = is given by relation

Y ={na}, n=0,1,2..., (30)

where « is an irrational number.

Note that the weight sequence 7, = {an}, n = 0,1,2,..., is u.d. modulo
one and hence, if ¥ € (0,1) then there exists a subsequence of weights ~,,,
k = 1,2,3,..., converging to 7, and for any positive integer h we have
hYn, — h7. There also exist ¢ = ¢(h) > 0 and 0 < § = d(h,e) < 1 such
that

£ _ &N . |sinmghyy, |
c - =, — 1 — k<4
T <’7 n + h) HIPHES q| sin Thy,, |
This implication remains valid even for every =, satisfying
€ €
elvy——-7++ 31
Tn (7 R h) (31)

when replacing ~,, in the above inequality.
Now, given an H € N, let I be an interval of the form |I| = {k;a} with k; € N
such that the inclusion e ¢
re(i-77+%)
holds for every h = 1,2,...,H. Denote dp(¢) = maxp—1.2, . md(h,e). Rela-
tion (BI]) implies the implication

| sin wqhyn|

T €L = < do(e) (32)

q| sin why,|

for all 7, € I (not only for those with ~,, € I). If we denote
A(a,b) = #{a <n < by € T},

then for every 7, (not only for v, € I due to (7)) we have

. A,
H |Sln77q i | §50(5)A(a’b)~ (33)

aZnsh | sin why, |

Notice that we simultaneously have hv,, ¢ Z.
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Let I be an interval such that |I| = {k;a} with k1 € N. Then by the result

of E. Hecke [7] (cf. also [18]) we have
(b—a)l| — 2k < #{a<n<b{na} €I} < (b—a)ll| + 2k (34)

for every a < b, and A(a,b) > (b — a){k1a} — 2k;.

If ¢V < M < ¢Vt and integer k satisfies 1 < k < N, then relations (29)
implies

D (8q,4(n) mod 1) <

k

1 | sin mqh;| 1
Cy —+logeH<Z = H s o<qk_1>>
=0

and using (B84)) we obtain

D (8q,(n) mod 1) <

k

1 1 (N—j—1){kia}—2k 1
Cy E+logeH<Z(1j—_250 '+ 0 =,

Jj=1

This discrepancy estimate implies that the sum-of-digits function sg~(n),
n =0,1,..., with weight sequence v, = {na}, n =0,1,2,..., and « € R\ Q
is u.d. modulo one. Nevertheless, the mere fact that such a sequence s4 (n),
n=0,1,...,is u.d. modulo one also follows from (I3]).

5. Distribution functions of s,~(n) mod 1

Due to some inconsistencies in the definitions of distribution functions let us
recall some definitions for reader’s convenience.
Let x,,, n = 0,1,2,..., be a sequence of numbers taken from the unit inter-
val [0,1). Then
A([O,x),N, xn)

Fy(z) = N if z €10,1),
1 if x = 1.
is the so-called step distribution function of the finite sequence xg,...,Tn_1

over [0,1). In general, a function g : [0,1] — [0,1] is called a distribution
function if:

(i) g(x) is non-decreasing,
(ii) g(0) =0 and g(1) = 1.
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We shall identify any two d.f.s g1, g2 if g1(z) = g2(z) for every their common
continuity point z € [0, 1], or equivalently, if g1 (z) = g2(z) a.e. on [0, 1].
Distribution function g(x) is called a distribution function of sequence z,,,
n=0,1,2,...,if there exists an increasing sequence of positive integers Ny, No, . ..
such thatfl
lim Fy,(z) =g(x) a.e. on][0,1].
k—o0

Finally, distribution function g(x) is called an asymptotic distribution
function of the sequence z,, n = 0,1,2,..., if imy_ o Fn(z) = g(z) a.e.
on [0,1]. Sequence z,, n=0,1,2,...,is u.d. in [0, 1] if and only if g(z) = z is its
asymptotic distribution function.

Before stating the main result of this part, we prove the following two lemmas:

LEMMA 2. Let A < B be positive integers and oq,aq,...,ag_1 be complex
numbers of magnitude not exceeding 1. Then

1A—1 1B—1
112w — 5D
j=0 j=0

<2]1 A (35)
J— B .

Proof. The triangle inequality yields

A1 B-1
<Y a =S oy < 14— Bl
j=0 §=0

Consequently,

+ 1—é
B
A-1

5> 0

B-1

Z %
Taking into account that an inequality |X — Y + T| < |Z]| implies | X — Y| <
|T| 4 |Z|, inequality (B6) concludes the proof of the Lemma. O

1 A
< =|B-Al=11-=|.
*B|B | ‘ B‘ (36)

8Note that in this case the a.e. convergence (almost everywhere convergence) is the same
as the weak convergence since every monotone function is almost everywhere continuous.
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LeEMMA 3. Let f be a g-additive function and ki, ko, N be positive integers such
that k1 < ko.Then

kag™ —1 kg —1 V-1
Z 627rihf(n) - Z e27rihf(n) < |k2 . k1| Ze2ﬂ'ihf(n) )

Proof. The g-additivity of f(n) implies that for arbitrary positive integers k
and N we have

kg™ —1 k—1¢N—1
Z e2mihf(n) _ Z Z p2mihf(n) | 2mihf(jq™)
n=0 =0 n=0
Consequently,
kg —1 gV -1

k—1
Z p2mihf(n)| _ Ze2mhf(n) ) Ze2m‘hf(qu) ) (37)
n=0 n=0 =0

Then assuming k1 < ko we have

kagN —1 V-1 ko—1
Z 2mihf(n)| _ Zezmhf(n) ) Ze%ihf(qu)
n=0 n=0 Jj=0
V-1 ki—1
< Zezm‘hf(n) . ( Ze2ﬂhf(qu) + (kz — k?1)>
n=0 7=0
kigN —1 V-1
_ Z eZwihf(n) + (]{72 _ kl) Ze2wihf(n) ’
n=0 n=0

where we used [B7) at the beginning and in the last line from the right to the
left. 0

Introducing factor ﬁ in the previous proof we obtain

COROLLARY 2. Let k1, ks, N be positive integers such that k1 < ko.Then

1 kog¥ -1 i 1 kg -1
2mihsq4(n)| « M 2mihsg,~(n)
N Z S N Z ¢ +
k2q™ | = ko kg™ =
N1
12 ) — e2mi Sq,~(n) ]

(-n)w|Z
THEOREM 3. If the function g(z) = =, x € [0, 1], is a distribution function of the
sequence sq~(n) mod 1, n=0,1,2,..., then this sequence is u.d., i.e., g(z) = x

is its asymptotic d.f.
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Proof. By Weyl’s criterion function g(z) = x is a distribution function of the

sequence Sq~(n)mod 1 if and only if there exists an increasing integral
sequence M;, j = 0,1,..., such that

M;—1
§ 627rihsq,.y(n)
n=0

for j running to oo for every h € Z \ {0}.

1
— —0
M;

Fix an arbitrary and sufficiently large integer Vy. Given a sufficiently large j,
let k; be the uniquely determined integer for which

kigNo < M; < (kj + 1)g™°. (38)
Clearly, if M; — oo then k; — oo, too. Lemma 2] and (B8) yield
1 ['& 2mihsg ~(n) 1 quNO_lzm‘hs (n) 2

and thus for M; — oo we obtain

quNO—l

E e27rihsq,.,(n)
n=0

Now suppose on the contrary, that sequence s, ~(n) mod 1 is not u.d. (i.e.,
g(x) = x is not its asymptotic distribution function). Since the sequence of prod-
ucts on the right-hand side of (23] is decreasing and all its elements lie in [0, 1],
Theorem [l and (23] show that sequence s4~(n) mod 1 is not u.d., if and only
if there exist an integer h and a positive § such that

1
quNO

—0 asj— oo (39)

V-1 N-1

1 2mih(sq.-(n)) | sin Tqh;
L[S L gl
| = bl q| sin why; |
hvyi€Z
if N — oo. Given kj, define N by inequalities
gN 17N < ki < gV o, (41)
If we denote ky = ¢V ~No, then (@) implies
V-1 1 kag™No—1
Ii - 2mih(sq,~(n)) = 1 2mihsg ~(n) =4 42
Nso q nz—o c N kogMNo nZ_O € (42)
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Inserting k; for k1 and ¢ =0 for ko in Corollary 2] we obtain the inequality

it kj I
- 27rzhsq,y(n) < eQwihsqﬁ.y(n) +

2mih (
<1_qN No> No Z e (),

If M; — oo, then also k; — oo and N — oo. Inequalities (4I]) imply

k. N—-1-No 1
Ny 2 ! N-—No g4 (43)
q © q © q
Letting N — oo relations ([B9) and (43]) lead to a contradiction
1
5< (1 - —>5
q
and the proof is finished. O

6. Uniform distribution of (ks (n) + hase~(n+1)) mod 1

In this section we shall study two related sequences from the point of view
of their u.d. behaviour. Namely, the one-dimensional sequence

(h18q(n) + hasq(n+1)) mod 1, n=0,1,2,..., (44)
and the two-dimensional one

(R15g~(n), hasg~(n+1)) mod 1, n=0,1,2,..., (45)
where hy and hy are integers. It turns out that they behave quite differently.

THEOREM 4. If the sequence sq~(n)mod 1, n = 0,1,2,..., is u.d. then the
sequence (@) is also u.d. for every pair of integers (hi, ha) such that hy+hs # 0.

Proof. Weshall again employ Weyl’s criterion and as in the proof of Theorem/[Tl
also this one will be divided into two steps.

o

1°.  In the first step we prove that the sequence (h154,(n)+h2sq~(n-+1)) mod

1 is almost u.d. with respect to the sequence of indices ¢’¥, N = 1,2, ... provided
hl,hz € Z and hy + hy 35 0.
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Given a sufficiently large N, divide the set of all n, 0 < n < ¢~ — 1, written
in the form

n=ng+nig+ns+---+ny_1¢" "', where 0<n; <q-1, (46)
into the following disjoint subsets
PO:{OgngqN—l;nOE{0,1,...,q—2}, ny €{0,1,...,q—1},...
oy €{0,1,...,g—1}};
Plz{lgngqul;nozqfl, ny €{0,1,...,q—2},...
...,nN_le{O,l,...,q—l}};

Pt:{lgnSqul; nozq—l,nlzqflw._’nt_l:qil’
nt€{0717"'7q*2}7 nt+1€{0,1,...,q—1}’._.
...,nN_1€{0,1,...,q—1}};

PN—IZ{].STZSQN_17 nozq—]_,nl:q_l’”.’nN_2:q_1’
ny-1€{0,1,...,q—2}}
PN:{lSngqu17n0:qfl’ nl:qilv-“anN—ZIQ*l,

nN-1=4q— 1}.

Here

(g —1)gN 17, t=0,...,N—1,

|P| =

1, t=N.

Now we split Weyl’s surrf]
N_1
1<, i(h
- 27 18¢,~(n)+hasq ~(n+1))

into N + 1 subsums

o om0 for 0,1, .
neP;

To determine a suitable interrelationship between ¢ and n we shall employ an
idea developed in [4]. For every n with 0 < n < ¢~ — 1, there exists uniquely
determined 7 = 7(n), 0 <7 < N — 1, such that

n=(q-1)+(q-1)g++(@-1)¢ " +nq + +ny_1g"", (47
9The constant A is dissolved in both h1 and hs.
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i.e., 7 is the least index such that no =n; =---=n,_1 =¢q—1and n, < qg—1.
Ifn=¢"N —1, put 7= N.
Thus if 7(n) = t, that is if n € P, then
n=(=1)("+a'+ - +q )t + +nyoag™

Sqx(n) = (¢ = 1)(yo+m+- - +v—1)+vene+- - -+FyNv_1nN_1, (48)
n+1=0+0g+--+0¢" ' +(ns+1)g"+ - +nn_1¢" 1, (49)
Sqy(n+1) =0.(vo+- - -+y—1)+ (e + 1)y + neprvep1+ - Fnnv-_1yv-1, (50)
Sqy(n+1) =545(n) — (¢ —1)(yo+y1+--+ve—1)+7, (51)
and
h1sq.~(1n)+hesqy(n+1)
= (h1+h2)sq~(n)+ha (v — (g — 1) (Yo+y1+- - +7:-1))
= (hi+h2)((¢ = D(vo+r1+-+%-1))
+ha(ye—(g—1)(vo+1+- - +7-1))
+(h1 + ho) (yene 41041+ FyN—1nN—1)-
Then .
2mi(h1sq,~(n)+hasq ~(n+1
= S e2milhisany () Hhasy (+D)
neP;
= LNe2ﬂi((h1+hz)(q—1)(*m+71+~~~+%71)+h2(%—(q—l)(70+71+~~+%71)))
4 q—2 q—1 q—1
% Z Z Z 627”;((}"1+h2)('tht+'7t+1nt+1+"'+’7N—lnN—l)). (52)
nt:O nt+1:0 nN_1:O

and using (I6) we obtain for t =0,1,..., N — 1 that

qLN § " e2milhisg () +hasa(n41)

nepP;
— 1 . q—1 . 1 § 62ﬂi(h1+h2)7tnt
gN=N= g g =1 =
1 1S
i Z€2W1(h1+h2)’vt+1"t+1 R Z e2mi(hithe)yn—1nN 1
n¢41=0 q ny-1=0

1 g—1 [sinm(g—1)(hs+ho)y| Jﬁl |sin7wq(hy + ha)7;]

¢ ¢ (g=Vlsinm(hr+ha)y 25 alsinm(hn +ho)ysl’
(h1+h2)v; €2
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and
1

gV’

qLN 7 2milh sy (n) Hhasg o (41)

nePn
Consequently,

a" -1
E 627ri(h1Sq,‘v(”)+h25q,‘y(”+1))

n=0

1
gN

N
LN Z Z e27ri(h1Sq=7(n)+h23q,-y(n+1))
q

t=0 ncP;

N— N— :
qg—1 11 1—[1 |sinmg(hi + ha)vjl

1
a2 dsmr(n+ho)yl o g
(hi+h2)y; €2

IN

(53)

Q ‘

Now, split the last sum into two ones choosing an integer k between 0 and N
and obtain
k—1 N—1 N

1 |sinmg(h1 + h2)vyj| ¢—1 1 1
— 11 Ly Z—+q—N. (54)

— 4" 25 dlsinm(h eyl ¢ = q

(h1+h2)v; €Z

-1
<94
q

~

Assumption that s;~(n) mod 1, n =0,1,2,..., is u.d. implies via Theorem [I]
that for h; + he # 0 we have

N— .
Hl |sinmg(h1 + h2)v;|
- q|sin(hy + ha)v;|
(h1+h2)v; €2

as N — oo and thus for a fixed k and every t =0,...,k — 1 we also have

Aﬁl |sinq(hy + ha)7,]

o alsinm (o + ha)y|
(hi+h2)v; €Z

as N — oo. In other words, fixing k and letting N — oo, the right hand side
of (54) reduces to 1

— as N — oo.

q
The limit passage k& — oo then implies according to Weyl’s criterion that
sequence hisg~(n) + hasg~(n + 1) mod 1 is almost u.d. with respect to the
sequence of indexes ¢V, N =1,2,...
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0

2%, Now, we prove that the almost w.d. of (h15q~(n) + hasq~(n+ 1)) mod 1

with respect to the sequence of indices ¢V, N = 1,2, ..., implies its u.d. provided
S¢y(n) mod 1 is u.d.
Take an arbitrarily large integer M and squeeze it in the following way

qu§M<(k—|—1)qN,

where k£ and N are suitable integers which will be specified later. Then according
to Weyl’s criterion it is sufficient to prove that

1M
i nz_%e%”(hlsq*“’(")+h2s‘1*“’("+1)) -0 as M — oo. (55)
To do this, ([B5) implies
M—1
% Ze27ri(hlsq,.y(n)+hgsq,.,(n+1)) -
n=0 N
kq™ —1
1 2mi(h1sq,~(n)+hasq ~(n+1)
o 3 eriltnaatmrthan ) | <
n=0
kg™ kg™ 2
211 — — | < 2|1 — = . (56
’ M|~ ’ (k+1DgV| k+1 (56)

Since the weighted g-adic sum-of-digits function is g-additive, that is
sqﬁ(b +qu) = 5¢,~(b) + sq,.y(qu) for 0<b< ¢ and j e N,
we have for 0 < n < ¢V — 2 and j € Ny that

627Ti(h1'9q,'7(n+qu)+h23q,'y(n+1+qu))

627ri(h1sqﬁ.‘,(n)—i-hzsq,,‘,(n—i-l)) . 627ri(h1sq,,(qu)—i-hzsq,,(qu)).

Thus

k:qN—l

Z 627ri(h1sq,",(n)—i-hzsq,a,(n—i-l))

n=0

1 k—1qN -1

- }: Z e2mi(h1sg v (n+jq™ ) +hasq y(n+1+7q™))
kg™

1
kg™

§=0 n=0

k—1 (¢~ -2

1 . . N s
- g 627""(hlsq,‘y(n+ﬂq )thasq,~(n+1+5g")) +
kqg!V 4

7=0 n=0

627Ti(h13q,7(qN_1+qu)+h23q,‘y(qN+qu))
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For the absolute value we then obtain

1 k:qN—l
- Z ’627ri(h1Sqw(n)-i-hzsqw("'f‘l))‘
kq n=0
1 k—1 qN—2
< — Z Zezm'(hlsm(n+qu)+h2sq,7(n+1+jq”)) +1
kq =0 \ | n=0
|1z 1
- 627"i(h1sqw(n)‘f‘h@sqw(n"‘l)) + —
g gV’
n=0
Furthermore,
|1z
— Z 627"i(h1sqw(n)‘f‘h@sqw(n"‘l))
q n=0
1|7
== Z627ri(h1sq,.y(n)—i-hgsq,.y(n—i-l))
q n=0
_ o2mi(hisq (N =14jq" ) +hasq (¢ +ia™))
1 |r! 1
< — ZeQWi(hlqu(n)"‘h2sqw(n+1)) + —
V| = q
Finally,
1 kg —1
~ Z 627”-(’7'1311»7(") + h2sg,(n+1))
kq n=0
i 2
< — Ze27ri(h1sq,.‘,(n)—i-hgsq,.y(n—i-l)) + —. (57)
q 0 q
Along the same arguments to those accompanying (53]) we can prove that
1|
— Ze27ri(h1sq,.y(n)—l—hgsq,.y(n—i-l)) 0 as N — oo
q n=0
and (B7)) implies that also
1 kqN—1
— Z 627Ti(h1Sq»"r(n)‘i‘hZSqw(""‘l)) —-0 as N — oo.
kq n=0
and (B5) follows. O
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Weyl’s criterion shows a connection between the distribution properties of the
two-dimensional sequence

(sm(n), Sq~(n+ 1)) mod 1, n=0,1,2,...,

and sequence
hisg~(n) + hesg~(n+1)mod 1, n=0,1,2,...

More precisely, the sequence
(8qy(n), Sqy(n+1)) mod 1, n=0,1,2,...,
is u.d. if and only if
(hlsq,,y(n) + hosg~(n + 1)) mod1l, n=0,1,2,...,

is u.d. for all couples of integers (hi, ha) # (0,0). The trap is in the condition
h1 + hy # 0 as the next theorem shows. Some results on the distribution
of the sequence (sm(n), Sq~(n+ 1)) mod 1, n =0,1,2,..., will be proved also
in the next section.

THEOREM 5. Given an integer q > 2 and a sequence of real weights ~;,
i = 0,1,2,..., the two-dimensional sequence (sm(n),sm(n + 1)) mod 1,
n=20,1,2,..., cannot be u.d.

Proof. If his a non-zero integer, then (52) implies

LN 3 e2milhsas(n)hsq (1)
q

neP;
_ LNezm(—h(%—(q—l)(70+w1+---+w_1))) 3 1
q ny<g—2,n¢41<q—1,...,ny_1<qg—1
_ qLN627ri(—h(’yt—(q—l)('Y()+'Yl+"'+'Yt1)))(q — 1)gN—t L,
Therefore,
V-1
qiN Z627ri(hsq,..,(n)—hsq,-y(n-i-l))
n=0
1| 1
_ q9— Z — 627ri(—h(’7t—(q—l)(70+’71+---+%—1)))
q ¢
t=0
N
g—1 1 2
> (1-Y" =) >1-2,
and Weyl’s criterion confirms the statement of Theorem [l (]
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7. A new property of the van der Corput sequence

In this section we study the one-dimensional sum-of-digits functions sq (1)
with weights ~y; satisfying a summation criterion

(-1 =S (58)
=0

and a mnonoticity criterion
Y=1=v=>0 (59)

In Proposition Bl we prove that if S = 1 then the ¢g-adic van der Corput sequence
is the only uniformly distributed sequence of this form.

Notice that condition (B9) is not a restriction in general, for Proposition [I]
has the following simple consequence

COROLLARY 3. Given a sequence of weights v = {v0,71, - .. } and a permutation
7 of the set Ny of non-negative integers, then sequence sq~(n), n =0,1,2,...,
and sequence sq~, (n), n=20,1,2,..., are simultaneously u.d. mod 1 or simul-
taneously not u.d. mod 1, where ¥ = {Vr(0), Yr(1)s V(2)s - - - }-

Condition (B9) is, as expected, not necessary for a sequence sq~(n),

n=20,1,2,..., to be u.d. mod 1 as the following example shows: Let 6 be an
irrational number and let v; = @ for infinitely many indices j. Then s4(n),
n = 0,1,2,..., is u.d. mod 1. Another construction is given in the following
example:

EXAMPLE 8. Assume that the sequence of weights < contains an infinite subse-
quence of the form C;/ ¢’,j=0,1,2,...,in an arbitrary order and with possible
repetitions of each its term, where C}’s are integers coprime to g. Then rela-
tion (I4) shows that this sequence s;~(n), n =10,1,2,..., is u.d. mod 1.

In the proofs of the theorems in this section we employ some features of a
technique developed in [4] for two dimensional sequences (sq.(n), sq(n + 1)),
n=0,1,2,...

PROPOSITION 2. Let v be a non-increasing sequence of positive real weights,
i.e., (B9) holds. Then for each n =0,1,2,..., represented in the form (@), the
point (sq.~(n), Sq~(n+1)) lies on the diagonal of the two-dimensional interval

Loa=[g-D00+ - +7%-1).@-Do+mn+-) =l
X [’777 (q - 1)(’77' + Ve + o )] ) (60)
where T = 7(n) is defined in ([{&T).
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T—1
y=x*(qfl)( w) +r
=0

Sqy(n+1)

YT

"'-__(q -1) <-<>o ’Yj> —Yr41 =
g 5=0

|
|
|
|
|
|
|
|
|
|
|
|
% |
0 71 T—1 sq,),(n)

Sgy(n+1) | =8 —yrq1
i 1 1 1
(g—1) X Vi ~
=0 oo
(-1 <Z 'Yj) —Yr =
7=0
:S_’VT

FIGURE 1. Position of point (sq,(n), sq,~(n + 1)).

Here
Iy =00,(g=D)0+mn+-) =l xho(@—Do+mn+--)
= [07 1- ’YO] X [707 1] (61)

if S =11in (58). Also note that

00 T—1 00 7—1

(@=DY> v=w=2@-DY %+ %> v

§=0 §=0 j=r+1 §=0
since the ~;’s are positive, and thus the intervals I._;, 7 = 0,1,2,..., are non-
degenerate.
Proof of Proposition 2: In other words, assuming n is written in the

form (A7), the point
(8q77(n)78q7“/(n+1))7 n:071727"'7
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lies on the line segment (cf. Fig. [[]) with equation

with abscissas

€llg—Do+-+y-1),(@=D(vwo+rn+-) =]

and ordinates
€ s (@ =Dy + 41 +--0)l:

The equation for the line segment follows from (GIl), and the interval for the
z-coordinate follows from (@8]). To see this note that

$¢4() 2 (q=D)(Yo+ -+ 1) + 09 +0- Y1 +---
Sqy(n) S (@ =D+ +v-1) +(@=2) -y + (@ = D1 +yr42+ )
=(@-DMo+mn+-) =7 (63)
Similarly, (50) implies
Sqy(+1) > 0.(o+ 7+ +7-1)+ 0+ 1)y +0- v+ + 0y =7

Sqy(n+1) <(¢=2+ v+ (= Dyrpa -+ (@=Dyet+ -,

and Theorem is proved. g

PROPOSITION 3. Let v be a sequence of positive real numbers satisfying condi-
tions (B8) and [BY9). Let there exists A = 0,1,2,... such that

(@ =Dtz +mas ) <Mt (64)
Then the interval
[eS) A+1
J=|(a— 1)2%‘ — a1, (@ — 1)2%‘
j=0 Jj=0

with positive volume does not contain an element of the form sq ~(n).

Proof. In this case,
[e%s) A [e%s)
(@=1)Y 7% =1 = (q—l)z a1 D v — 1
=0 =0 J=AFL
A1

A
<(g-1) Z q—l)Z% (65)

that is, the intervals I and I,y are non—overlappmg (cf. Fig. ).
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(0,5) (S, 9)
(¢—1) Z]o'i,\-;-l')/j t+-
I
YA+1 ¢ -

| | -1 (@ =D X

| | It

| | S

| a 1

(a-D50m & :
(=1 (X50%) =t

v

(a— 1Y v
(=1 (X507) =2

FIGURE 2. Non-overlapping intervals I and Ix4;.

Let n be of form (7). If 7 > XA+ 1, then

Sqy(n) 2 (=D + -+ +-+7-1) = (@— v+ +as1),

and sq(n) ¢ J. If 7 < A+ 1, then due to the choice of 7 we have n, < ¢ — 2,
and therefore

Sqr(n) < (@—=1)(vo+ - +v=1)+ (@ = 1)vr =V + Nrg1¥r1 + -+ e
<l@-Dho+m+-) = <@=Dho+rn+-)=n

Again, sq~(n) ¢ J. Since interval J has a positive length, sequence s4(n),
n=0,1,2,..., cannot be u.d. with respect to interval [0, 5].
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PROPOSITION 4. Let v be a sequence of positive real numbers satisfying condi-
tions (68) and [BY9). Let there exits a A =0,1,2,... such that

(@ =D (M2 + M43+ ) > Mast1- (66)
Then sequence sq~(n), n=0,1,2,..., is not u.d. in the interval [0, S].

Proof. If there exits a A € Ny such that (¢ — 1)(vase + Yaxs + 1) > Yo+,

then
A+1

oo
@=D> v<@=1d %] —m,
=0 =0

i.e., the z-projections of two-dimensional intervals I, and 41 overlap in interval

(cf. Fig. B))
A1

Jo=g=DD v a=D D % | —nn
j=0 =0

If s4~(n) € Ji, then 7(n) > X + 2. If there exits a A € Ny such that

(@ =) (M2 + M43+ ) > Mg,

then
A+1

(@=D> vm<@=1D % | -1,
i=0 ‘

j=0

i.e., the z-projections of the two-dimensional intervals I, and 41 overlap in in-
terval (as for instance in cf. Fig. [3)

A+1

Ji=a=DY 3= D% |
Jj=0 j=0
Given an interval J C [0, 1), define
AN(J) = #{syn(n) € Jsn < N},
By(J) = #{sqm(n+1)€Jin< N},
Let intervals Jo and J3 be defined as indicated in Fig. 3l Then
An(J1) = By (J2) + By (J3)

while
|J1] = |Ja| = |J5].
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This contradicts with the u.d. of sequence s, 5(n), since in this case we simulta-

neously have

An(J1)
-~ | 1],

By (J2)
N _> |J2‘7

By(J3)

e . O
N | J5]

In the above Propositions, we studied weights -, such that

(@—=D(mgz gz +-) <mpr and (g—1D)(mg2 + a3 +-0) > g1

for some A. The remaining case (¢ — 1)(Vat+2 + Ya+3 + -+ ) = Ya+1 is handled
in the next proposition.

PROPOSITION 5. Let~y be a sequence of positive real numbers such that for every
A=0,1,2,... we have

(@ =Dtz + s+ ) = Mg (67)
If ~ satisfies conditions [B8)) and [9), and S = 1 then sequence sq~(n),
n=20,1,2,..., is the g-adic van der Corput sequence. Consequently, if v satis-

fies conditions (B8)), (B9) and S = 1 then every uniformly distributed v-weighted
q-adic sum-of-digits function sq~(n), n =0,1,2,..., is the g-adic van der Cor-
put sequence.

Proof. If for every A € N we have (¢ — 1)(ya42 +Vats + ) = Yat1, then the
assumptions

o0 oo
(@—=1)> w=1 and (¢—1)) v ="

j=0 j=1
imply that (¢ — 1)y + Yo = 1, that is 49 = ¢~ . The induction on n yields

V==Y == D ]| —@=Dm=r1—(a—1)m,
j=n+1 j=n

i.e., 7, = ¢~ " '. Proposition is proved. O

If S =1 and (€7) holds, then the fact that sequence s, ~(n), n =0,1,2,...,
is g-adic van der Corput’s sequence, also follows from Pillichshammer’s Proposi-
tion [l Namely, if S = 1 the above reasoning shows that all the weights must be

rational numbers. Along similar lines there follows that if taken in the irreducible
forms, their denominator must be positive powers of ¢, that is v, = ¢ - ¢~ M,
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J3 1

Jo

FIGURE 3. Overlapping intervals I and Ix41.

where ¢, is coprime to ¢ for every k. Given a k € N and taking h = ¢¥, con-
dition (I4]) shows that at least A\; equals k — 1. In other words, the set of \x’s
exhausts all the N. If at least one ¢; would be > 1, or at least one \x appears
twice, then the left hand side of (E8) would be greater than 1, a contradiction
which proves that starting s, 7(n), n =0,1,2,... is actually the g-adic van der
Corput sequence.

Notice the following result complementing the above results and follow-
ing directly from Pillichshammer’s Proposition [It Let the weight sequence -,
n=0,1,2,... satisfy the condition Y -, ||7,||* < co. Then:

o0
o If Eo 7nll < qul, then sq ,(n) is not u.d.
n=

o If Z Vel = Ll then s, ,(n) is u.d. if and only if it is a permutation

of the van der Corput sequence.
o If Z vl > 7= —L__ then sq,(n) is u.d. if and only if it contains terms of the

form Z—’“ where ny € N is coprime with g for all £ =1,2,3,.
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