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3Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Lecce ITALY
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ABSTRACT. Motivated by the maximal average distance of uniformly distribu-
ted sequences we consider some extremal problems for functionals of type

µC �→
∫ 1

0

∫ 1

0
F dµC ,

where µC is a copula measure and F is a Riemann integrable function on [0, 1]2

of a specific type. Such problems have been considered in [4] and are of interest
in the study of limit points of two uniformly distributed sequences.

Communicated by Robert Tichy

1. Introduction

According to [15], given a Riemann integrable function F defined on [0, 1]2 and
two uniformly distributed sequences (xn) and (yn) in [0, 1), a general problem
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is to find limit points of the sequence (see also [10])(
1

N

N∑
n=1

F (xn, yn)

)
N∈N

.

As noted for instance in [4, 6] (see also [5]), this problem is equivalent to deter-
mining extreme values of the functional

μC �→
∫ 1

0

∫ 1

0

F dμC (1)

over all possible copula measures μC . Indeed, as shown in [6], this problem
can be embedded in the general theory of mass transportation and optimal
transport (see, e.g., [1, 11, 14]), and has important applications especially in risk
management [13].

Here we focus on some results presented in [4] and [6] about extremes of func-
tionals of type (1). Specifically, we present some generalizations of previous
results by using different proof techniques. Although the general existence
results could be also derived via optimal transport techniques [11], the present
approach may provide an additional viewpoint to handle problems for uniformly
distributed sequences.

2. Main results

We start by introducing some notations that will be used in the sequel.

If ϑ is a measure on the Borel σ–algebra B(R2) of R2 then Gϑ denotes its
measure-generating function defined by

Gϑ(x, y) = ϑ
(
(−∞, x]× (−∞, y]

)
.

Vice versa, for every two-dimensional measure-generating function G the corres-
ponding measure on the Borel σ-algebra B(R2) will be denoted by ϑG or μG.

For every one-dimensional distribution function F the corresponding prob-
ability measure will be denoted by ξF and F− denotes the pseudo- (or left-)
inverse of F . Given one-dimensional distribution functions F1, F2 the Fréchet
class of F1, F2, i.e., the family of all two-dimensional d.f. with marginals
F1 and F2, will be denoted by F(F1, F2).

Finally, the class of bivariate copulas will be denoted by C. Two elements of C
are the independence copula Π, Π(x, y) = xy, the comonotonicity copula M,

M (x, y) = min(x, y),

and the countermonotonicity copula

W (x, y) = max(x+ y − 1, 0).

100
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For every H ∈ F(F1, F2), Sklar’s Theorem ensures that there exists a copula C,
which is unique if H is continuous, such that

H = C ◦ (F1, F2).

For more details, see [3].

The following result generalizes both Theorem 4 in [4] and Theorem 3.6 in [6]
in the sense that:

a) the integral is calculated over the product I1 × I2 of arbitrary intervals I1 :=
[a1, b1] and I2 := [a2, b2] of R with non-empty interior,

b) the marginal distributions may be discontinuous (see Corollary 2),

c) the integrand does not need to be smooth.

Additionally, the method of proof is new and is grounded on disintegration
of the copula measure (see [3]). It should also be noticed that the first
part of the Theorem has been essentially proved, in a different setting, in [11,
Theorem 3.1.2].

������� 1� Suppose that ϑ is a σ-finite (positive) measure on I1 × I2 =

[a1, b1] × [a2, b2] ⊆ R
2
such that Gϑ is finite on [a1, b1) × [a2, b2) and let F1, F2

be arbitrary continuous one-dimensional d. f. s fulfilling Fi(bi) − Fi(ai) = 1.
Let H∗ ∈ FF1,F2

be defined by H∗ = M ◦ (F1, F2) and set T ∗ := F−
2 ◦ F1.

Then we have
mGϑ

= sup
H∈F(F1,F2)

∫
I1×I2

Gϑ(x, y) dμH(x, y) =

∫
I1×I2

Gϑ(x, y) dμH∗(x, y)

=

∫
I1

Gϑ

(
x, T ∗(x)

)
dξF1

(x). (2)

Furthermore, the following two conditions are equivalent for every continuous
H ∈ F(F1, F2):

A)
∫
I1×I2

Gϑ(x, y) dμH(x, y) < mGϑ
.

B) ϑ
({(v, w) ∈ I1 × I2 : H(v, w) < H∗(v, w)}) > 0.

P r o o f. Fix H ∈ F(F1, F2) and let A ∈ C denote the corresponding copula
fulfilling H = A ◦ (F1, F2). Setting Γ := {(x, y, v, w) ∈ I1 × I2 × I1 × I2 : v ≤
x,w ≤ y} and letting μH ⊗ϑ denote the product measure of μH and ϑ, Fubini’s
theorem implies

μH ⊗ ϑ(Γ) =

∫
I1×I2

ϑ(Γ(x,y)) dμH(x, y) =

∫
I1×I2

Gϑ(x, y) dμH(x, y),

where Γ(x,y) = {(v, w) : (x, y, v, w) ∈ Γ} denotes the (x, y)-cut of Γ. Using the
fact that Γ(v,w) = {(x, y) ∈ I1 × I2 : (x, y, v, w) ∈ Γ} = [v, b1] × [w, b2], again
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applying Fubini’s theorem (this time in the other direction) and using continuity
of F1, F2 and Sklar’s theorem we get

μH ⊗ ϑ(Γ) =

∫
I1×I2

μH(Γ(v,w)) dϑ(v, w) =

∫
I1×I2

μH([v, b1]× [w, b2]) dϑ(v, w)

=

∫
I1×I2

(
1− F1(v)− F2(w) + A

(
F1(v), F2(w)

)︸ ︷︷ ︸
≤H∗(v,w)

)
dϑ(v, w) (3)

≤
∫
I1×I2

μH∗(Γ(v,w)) dϑ(v, w) = μH∗ ⊗ ϑ(Γ),

from which the first part of Eq. (2) follows immediately. Considering that

K
(
x, (−∞, y]

)
= KM

(
F1(x), [0, F2(y)]

)
= 1[0,y]

(
T ∗(x)

)
is a Markov kernel of H∗ (see [8]), the disintegration of the measure immediately
yields ∫

I1×I2

Gϑ(x, y) dμH∗(x, y) =

∫
I1

∫
I2

Gϑ(x, y)K(x, dy) dξF1
(x)

=

∫
I1

Gϑ

(
x, T ∗(x)

)
dξF1

(x),

which completes the proof of Eq. (2).

Concerning the equivalence stated in the theorem we obviously have equality
in (3) if, and only if,∫

(a1,b1)×(a2,b2)

A
(
F1(v), F2(w)

)
dϑ(v, w) =

∫
(a1,b1)×(a2,b2)

M
(
F1(v), F2(w)

)
dϑ(v, w)

holds, from which the result follows immediately. �
����		
�� 1� Under the assumptions of Theorem 1, Eq. (2) is also valid
for discontinuous F1, F2.

P r o o f. Using Eq. (3), considering

μH([v, b1]× [w, b2]) = lim
n→∞μH

(
(v − 1

n , b1]× (w − 1
n , b2]

)
= lim

n→∞

{
1− F1(v − 1

n)− F2(w − 1
n) +H(v − 1

n , w − 1
n)︸ ︷︷ ︸

≤H∗
(
v− 1

n ,w− 1
n

)
}

≤ lim
n→∞

μH∗
(
(v − 1

n , b1]× (w − 1
n , b2]

)
= μH∗([v, b1]× [w, b2])

and proceeding as in the proof of Theorem 1, the desired inequality is obtained.
�
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In case F1 and F2 are assumed to be continuous, all elements H ∈ F(F1, F2)
are continuous too. Hence, if H(v, w) < H∗(v, w) holds for some v, w ∈ I1 × I2,
then it also holds in a neighbourhood of (v, w). From this we directly get the
following result.

����		
�� 2� If, under the assumption of Theorem 1, ϑ has full support, then
H∗ is the unique element in F(F1, F2) attaining the maximum mGϑ

.

�

��	� 1� Suppose that I1 = I2 = [0, 1], that ϑ is an arbitrary finite measure
on [0, 34 ]

2 and that F1(x) = F2(x) = x1[0,1](x) + 1(1,∞)(x). Furthermore let H

denote the ordinal sum of M and Π with respect to the partition {[0, 3
4
], [3

4
, 1]}

(see [9]), i.e.,

H(x, y) =

⎧⎨
⎩

3

4
+

1

4
(4x− 3)(4y − 3), (x, y) ∈ [3/4, 1]2,

min(x, y), otherwise.

Then, obviously, F(F1, F2) = C and {(v, w) : H(v, w) 
= M (v, w)} = (34 , 1)
2.

Since ϑ
((

3
4 , 1
)2)

= 0 holds, according to Theorem 1 we have

mGϑ
=

∫
[0,1]2

Gϑ dμH =

∫
[0,1]2

Gϑ dμM ,

so the maximum mGϑ
is attained by two different copulas, M and H.

�

��	� 2� Assuming, as in the previous example, I1 = I2 = [0, 1], let Gϑ

be a convex combination of Π and M , that is, Gϑ = αΠ + (1 − α)M for some
α ∈ (0, 1). First, observe that ϑ has full support, since

ϑ = αμΠ + (1− α)μM and μΠ = λ2

has full support. So, in this case, according to Theorem 1 and Corollary 2, M is
the only copula attaining the maximum mGϑ

. Moreover,

mGϑ
=

∫
[0,1]2

αΠ+ (1− α)M dμM

= α

∫
[0,1]

Π(t, t) dλ(t) + (1− α)

∫
[0,1]

M (t, t) dλ(t)

=
α

3
+

1− α

2
=

1

2
− α

6
.

The following result provides a lower bound for integrals of type (2). It can
be proved by mimicking the arguments presented in Theorem 1.
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������� 2� Suppose that ϑ is a σ-finite (positive) measure on

I1 × I2 = [a1, b1]× [a2, b2] ⊆ R
2

such that Gϑ is finite on [a1, b1)× [a2, b2) and let F1, F2 be arbitrary continuous
one-dimensional d. f. s fulfilling Fi(bi)− Fi(ai) = 1. Let H∗ ∈ FF1,F2

be defined
by H∗ = W ◦ (F1, F2) and set T∗ := F−

2 ◦ (1− F1). Then we have

mGϑ
= inf

H∈F(F1,F2)

∫
I1×I2

Gϑ(x, y) dμH(x, y)

=

∫
I1×I2

Gϑ(x, y) dμH∗(x, y) =

∫
I1

Gϑ

(
x, T∗(x)

)
dξF1

(x).

(4)

Furthermore, the following two conditions are equivalent for every continuous
H ∈ F(F1, F2):

A)
∫
I1×I2

Gϑ(x, y) dμH(x, y) > mGϑ
.

B) ϑ
({(v, w) ∈ I1 × I2 : H(v, w) > H∗(v, w)}

)
> 0.

Now, fix y0 ∈ (0, 1) be arbitrary and suppose both that ϑ1 is a finite (positive)
measure on [0, 1]×[0, y0] and that ϑ2 is a finite (positive) measure on [0, 1]×(y0, 1].
Setting ϑ = ϑ1 − ϑ2 yields a finite signed measure on B([0, 1]2) with Jordan
decomposition ϑ1 − ϑ2 (see [12]).

In the following we will consider the (measurable and bounded) function

Gϑ(x, y) = ϑ([0, x]× [0, y]).

Slightly generalizing the results in [4, 6] we want to calculate

mGϑ
= sup

A∈C

∫
[0,1]2

Gϑ dμA. (5)

���
�� 1� Notice that, in [4, 6], instead of Gϑ, the integrand is assumed to

be a continuous function G on [0, 1]2 fulfilling ∂2G(x,y)
∂y∂x > 0 on (0, 1) × (0, y0)

and ∂2G(x,y)
∂y∂x < 0 on (0, 1)× (y0, 1). Such a function can be considered as special

cases of Gϑ. In fact, setting

ϑ1(E × F ) :=

∫
E×(F∩[0,y0 ])

∂2G(x, y)

∂y∂x
dλ2(x, y),

ϑ2(E × F ) :=

∫
E×(F∩(y0 ,1])

−∂2G(x, y)

∂y∂x
dλ2(x, y),

for E,F ∈ B([0, 1]) yields absolutely continuous, finite measures ϑ1, ϑ2.
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For ϑ = ϑ1−ϑ2 we obviously get Gϑ = G+a for some constant a ∈ R, implying

sup
A∈C

∫
[0,1]2

Gϑ dμA = sup
A∈C

∫
[0,1]2

G dμA + a.

Our general setting also includes the results from [15, Theorems 28 and 29]
and [2].

As already shown in [4, Theorem 8] the problem of calculating mGϑ
can be

reduced to a one-dimensional maximization problem. Before restating Theorem
8 in [4] and proving it in an alternative and shorter way we define the class Hy0

as the set of all y0-sections of copulas, i.e., the family of all the maps of the
form x �→ C(x, y0), x ∈ [0, 1], C ∈ C, and state some of its properties (see [7]).
First, it is clear that each element h ∈ Hy0

has the following properties:

i) h(0) = 0, h(1) = y0,

ii) h is non-decreasing and Lipschitz continuous (with Lipschitz constant L =
1) and

iii) h fulfils h(x) ∈ [W (x, y0),M (x, y0)].

Conversely, it is straightforward to verify that each function h : [0, 1] → [0, y0]
fulfilling properties (i)–(iii) is the y0-section of a copula. In fact, the function Ch,
defined by

Ch(x, y) =

⎧⎨
⎩

M
(
h(x), y

)
if (x, y) ∈ [0, 1]× [0, y0],

h(x) + (1− y0)W
(

x−h(x)
1−y0

, y−y0

1−y0

)
if (x, y) ∈ [0, 1]× (y0, 1].

(6)
is easily shown to be a copula whose y0-section coincides with h. Additionally,
setting h(x) = 1− (x− h(x)

)
for every x ∈ [0, 1] as well as

KCh
(x,E) = 1E

(
h(x)

)
h′(x) + 1E

(
h(x)

)(
1− h′(x)

)
(7)

for E ∈ B([0, 1]) and for every x ∈ [0, 1] at which h is differentiable (recall
that h is differentiable at λ-a.e. x ∈ [0, 1]), it is straightforward to verify that
KCh

is a Markov kernel of Ch (see, e.g., [16]) and that Ch concentrates its mass

on Γ(h)∪Γ (h) (where Γ(h) and Γ
(
h
)
denote the graphs of h and h, respectively)

in the sense that μCh

(
Γ(h) ∪ Γ(h)

)
= 1.

������� 3� Consider y0∈(0, 1) and suppose that ϑ1 is a finite (positive) meas-
ure on [0, 1]× [0, y0] and that ϑ2 is a finite (positive) measure on [0, 1]×(y0, 1].
Set ϑ = ϑ1 − ϑ2 and consider the (measurable and bounded) function

Gϑ(x, y) = ϑ([0, x]× [0, y]).
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The following equality holds:

sup
B∈C

∫
[0,1]2

Gϑ dμB = sup
h∈Hy0

∫
[0,1]2

Gϑ dμCh

= sup
h∈Hy0

∫
[0,1]

Gϑ

(
x, h(x)

)
h′(x)

+ Gϑ

(
x, h(x)

) (
1− h′(x)

)
dλ(x).

(8)

Moreover, the former upper bound is attained (i.e., is a maximum) if and only
if the latter is attained.

P r o o f. Let A ∈ C and set h(x) = A(x, y0) for every x ∈ [0, 1] and define two
new (conditional) probability measures μ+, μ− by

μ+(Ω) =
1

y0
μA

(
Ω ∩ ([0, 1]× [0, y0])

)
,

μ−(Ω) =
1

1− y0
μA

(
Ω ∩ ([0, 1]× [y0, 1])

)
for every Ω ∈ B([0, 1]2).

Calculating both marginals of μ+ and applying Theorem 1 directly yields T ∗ = h
as well as

∫
[0,1]×[0,y0]

Gϑ dμ
+ ≤ 1

y0

∫
[0,1]

Gϑ

(
x, h(x)

)
h′(x) dλ(x).

Considering that for every y ∈ (y0, 1] we have

Gϑ(x, y) = Gϑ(x, y0)− ϑ2([0, x]× [y0, y])

and setting

I =

∫
[0,1]×[y0,1]

Gϑ(x, y) dμ
−(x, y)

we get

I =

∫
[0,1]×[y0,1]

Gϑ(x, y0) dμ
−(x, y)−

∫
[0,1]×[y0,1]

ϑ2([0, x]×[y0, y]) dμ
−(x, y)

=
1

1− y0

∫
[0,1]

Gϑ(x, y0)(1−h′(x)) dλ(x)−
∫
[0,1]×[y0,1]

ϑ2([0, x]×[y0, y]) dμ
−(x, y)︸ ︷︷ ︸

I∗

,

whereby the last equality follows from the disintegration of a measure and the
fact that we have

KA

(
x, (y0, 1]

)
= 1− h′(x) for λ-a.e. x ∈ [0, 1].
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Calculating the marginals of μ− and applying Theorem 2 to I∗ we get T∗ = h
as well as

I∗ ≥ 1

1− y0

∫
[0,1]

ϑ2

(
[0, x]× [y0, h(x)]

)(
1− h′(x)

)
dλ(x),

so, altogether

I ≤ 1

1− y0

(∫
[0,1]

Gϑ(x, y0)
(
1− h′(x)

)
dλ(x) −

∫
[0,1]

ϑ2

(
[0, x]× [y0, h(x)]

)(
1− h′(x)

)
dλ(x)

)

=
1

1− y0

∫
[0,1]

Gϑ

(
x, h(x)

)(
1− h′(x)

)
dλ(x).

Considering μA = y0μ
+ + (1 − y0)μ

− we conclude that the first quantity
in Eq. (8) cannot be greater than the third one. Since, as direct consequence
of Eq. (7), we have∫

[0,1]2
Gϑ dμCh

=

∫
[0,1]

Gϑ

(
x, h(x)

)
h′(x)

+Gϑ

(
x, h(x)

) (
1− h′(x)

)
dλ(x)

and since Ch is a copula with y0-section h, the proof of Eq. (8) is complete. �

In general it seems unknown if, under the assumptions of Theorem 3, there is
a unique function h ∈ Hy0

attaining the maximum. In special cases, uniqueness
is clear - in the following we consider a slightly more general version of Example 3
in [4] and show uniqueness directly (without Euler equation).

�

��	� 3� As before suppose that y0 ∈ (0, 1). Let ϑ1 and ϑ2 denote absolutely
continuous measures with constant densities a > 0 on the rectangle [0, 1]× [0, y0]
and b > 0 on [0, 1]× (y0, 1], respectively, and set

ϑ := ϑ1 − ϑ2.

The corresponding function Gϑ is given by

Gϑ(x, y) =

{
axy if (x, y) ∈ [0, 1]× [0, y0],

axy0 − bx(y − y0) if (x, y) ∈ [0, 1]× (y0, 1].
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For arbitrary h ∈ Hy0
applying Theorem 3 and using integration by parts we get∫

[0,1]2
Gϑ dμCh

= a

∫
[0,1]

xh(x)h′(x) dλ(x)

+

∫
[0,1]

x [(a+ b)y0 − b+ bx− bh(x)]
(
1− h′(x)

)
dλ(x)

=
a

2

{
xh2(x)

∣∣∣1
0
−
∫
[0,1]

h2(x) dλ(x)

}

+
1

2b

{
x[(a+ b)y0 − b+ bx− bh(x)]2

∣∣∣1
0

−
∫
[0,1]

[(a+ b)y0 − b+ bx− bh(x)]2 dλ(x)

}

=
a

2
y20 −

a

2

∫
[0,1]

h2(x) dλ(x) +
a2

2b
y20

−
∫
[0,1]

[
(a+ b)y0 − b+ bx− bh(x)

]2
2b

dλ(x)

=

(
a

2
+

a2

b

)
y20

− 1

2b

∫
[0,1]

(ab+ b2)h2(x)

− 2b[(a+ b)y0 − b+ bx]h(x) dλ(x)

− 1

2b

∫
[0,1]

[(a+ b)y0 − b+ bx]2 dλ(x).

For fixed x the latter integrand becomes minimal if

h(x) := y0 +
b

a+ b
(x− 1).

The function
h1 : x �→ y0 +

b

a+ b
(x− 1)

is a global minimizer of the integral which, however, only lies in

Hy0
for y0 =

b

a+ b
.
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It is straightforward to verify that for y0 ≥ b
a+b the (piecewise linear) function h,

defined by

h(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x if x ∈
[
0,

(a+ b)y0 − b

a

]
,

y0 +
b

a+b(x− 1) if x ∈
(
(a+ b)y0 − b

a
, 1

]

is the best approximation of h1 in Hy0
. Figure 1 depicts a sample of the corre-

sponding copula Ch for the case a = b = 1 and y0 = 3
4 .

Figure 1.

Sample of size n = 1.000 of the unique maximizer Ch

in Example 3 for the case a = b = 1 and y0 = 3
4 .

Finally, we aim at showing that every h ∈ Hy0
is in fact a possible maximizer

in the sense that there exists some ϑ = ϑ1 − ϑ2 such that

sup
B∈C

∫
[0,1]2

Gϑ dμB =

∫
[0,1]2

Gϑ dμCh
.
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������� 4� For every h ∈ Hy0
there exists a measure ϑ on B([0, 1]2) such that

sup
B∈C

∫
[0,1]2

Gϑ dμB =

∫
[0,1]2

Gϑ dμCh
.

P r o o f. Fix h ∈ Hy0
and let ϑ denote the (singular) probability measure spread-

ing its mass uniformly on Γ(h). Thus, for every x ∈ [0, 1], we have

Gϑ

(
x, h(x)

)
= x,

and on the other hand,

Gϑ

(
x, h(x)

)
= Gϑ(x, y0) = x

as well. Hence ∫
[0,1]2

Gϑ dμCh
=

∫
[0,1]

x dλ(x) =
1

2
.

Let us now consider an arbitrary h∗ ∈ Hy0
, and let x ∈ [0, 1] be any point

at which both h and h∗ are differentiable. If h∗(x) < h(x) holds, then obviously,

Gϑ

(
x, h∗(x)

)
< x,

whereas
Gϑ

(
x, h∗(x)

)
= Gϑ(x, y0) = x,

so for those values of x one has

Gϑ

(
x, h∗(x)

) dh∗

dx
(x) +Gϑ

(
x, h∗(x)

) (
1− dh∗

dx
(x)
)
≤ x,

where the equality holds if and only if
dh∗

dx
(x) = 0. On the other hand, if

h∗(x) > h(x) holds, then it is easily checked that

Gϑ

(
x, h∗(x)

)
= Gϑ

(
x, h∗(x)

)
= x,

so for those values of x one has

Gϑ

(
x, h∗(x)

) dh∗

dx
(x) +Gϑ

(
x, h∗(x)

)(
1− dh∗

dx
(x)
)
= x.

This proves that the copula Ch associated to h is a maximizer of
∫
[0,1]2

Gϑ dμB

over all B ∈ C, and the maximum is equal to 1
2 . �
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