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ABSTRACT. Let p ≥ 3 be a prime, S ⊆ F2
p a nonempty set, and w : F2

p → R

a function with suppw = S. Applying an uncertainty inequality due to András
B́ıró and the present author, we show that there are at most 1

2
|S| directions in F2

p

such that for every line l in any of these directions, one has
∑

z∈l

w(z) =
1

p

∑

z∈F2p

w(z),

except if S itself is a line and w is constant on S (in which case all, but one

direction have the property in question). The bound 1
2
|S| is sharp.

As an application, we give a new proof of a result of Rédei-Megyesi about the
number of directions determined by a set in a finite affine plane.

Communicated by Jean-Louis Verger-Gaugry

1. Introduction

Let p be an odd rational prime, and let Fp denote the p-element field.
A direction in the affine plane F2

p is a pencil of p parallel lines; thus, there
are p+ 1 distinct directions.

Given a function w : F2
p → R (which can be thought of as a weight

assignment), we say that a direction is perfect with respect to w if every line
in this direction gets its exact share of the total mass of w; that is, for every
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line l in the direction in question, we have∑
z∈l

w(z) =
1

p

∑
z∈F2

p

w(z).

Write S := suppw. Choosing a line l ⊂ F2
p uniformly at random and considering

the variance of the random variable
∑

z∈l w(z), it is easy to show that for all
p+ 1 directions to be perfect it is necessary and sufficient that w be a constant
function. Consequently, if all directions are perfect, then either S = F2

p , or S = ∅.
In a similar way one can show that a necessary and sufficient condition for all,
but exactly one direction to be perfect is that w is constant on any line in the
unique “imperfect” direction; in this case S is a union of parallel lines, and
therefore |S| ≥ p.

How many perfect directions can there be given that S is small (but not
empty)? One easily verifies that if p is sufficiently large, then for |S| = 1 there
are no perfect directions, for |S| = 2 and |S| = 3 there is at most one perfect
direction, while for |S| = 4 there can be two perfect directions. The goal of this
note is to show that, generally, the number of perfect directions does not exceed
|S|/2.
������� 1� Let p ≥ 3 be a prime. If S ⊆ F2

p is nonempty, then for any function

w : F2
p → R with suppw = S there are at most 1

2 |S| perfect directions, unless S
is a line and w is constant on S (in which case there are p perfect directions).

A set S ⊆ F2
p is said to determine a direction if there is a line in this direction

containing at least two points of S. If |S| = p and w is the indicator function of S,
then any direction not determined by S is perfect. Thus, by Theorem 1, if |S| = p
and S is not a line, then there are at most p−1

2 directions not determined by S.

It follows that any set S ⊆ F2
p of size |S| = p determines at least p+3

2 directions,
unless S is a line. This is a well-known result due to Rédei and Megyesi [R73],
with alternative proofs given by Lovász and Schrijver [LS83], and by Dress,
Klin, and Muzichuk [DKM92]. Our Theorem 1 thus supplies yet another proof
of this result. In contrast with other proofs, our argument does not rely on the
polynomial method, employing Fourier analysis instead.

We refer the reader to [G03] for a historical account and summary of related
results.

The following examples show that the estimate of Theorem 1 is, in a sense,
best possible.

Example 1. The special orthogonal group SO(2, p) is cyclic of order p−(−1/p),
where (·/p) is the Legendre symbol. Assuming that 2n is an even integer dividing
p−(−1/p), let H ≤ SO(2, p) be the subgroup of order |H| = 2n, and let H0 < H
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be the subgroup of H of order |H0| = n. Fix arbitrarily a nonzero point z ∈ F2
p ,

define S to be the orbit of z under the action of H, and for x ∈ S let w(x) = 1
if x actually belongs to the orbit of z under the action of H0, and w(x) = −1,
otherwise. We leave it to the reader to verify that there are n = 1

2 |S| directions
determined by the pairs (x, y) ∈ S × S with w(x) �= w(y), and that all these
directions are perfect.

The next example originates, essentially, from Lovász-Schrijver [LS83].

Example 2. Let S be the graph of the function z 	→ z
p+1
2 , z ∈ Fp; that is,

S={(z, z p+1
2 ) : z ∈ Fp}. Then S determines p+3

2 directions, and since |S|=p, the
p−1
2 = 
|S|/2� undetermined directions are perfect with respect to the indicator

function of S.

Example 3. If l1, l2 ⊂ F2
p are nonparallel lines, and w is the difference of the

indicator functions of these lines, then S = (l1∪ l2)\ (l1∩ l2), |S| = 2(p−1), and
there are p−1 = |S|/2 perfect directions. Similarly, if S is a union of two parallel
lines, and w is constant and nonzero on each of these lines, then |S| = 2p and
there are p = |S|/2 perfect directions.

We prove Theorem 1 in the next section, and discuss related open problems
in the concluding Section 3.

2. The proof of Theorem 1

We begin with setting up the notation and recalling basic facts and properties
of the Fourier transform on finite abelian groups.

For a subfield K of the field C and a finite, nonempty set G, by LK(G) we
denote the space of all functions from G to K with the inner product defined by

〈f, g〉 := 1

|G|
∑
z∈G

f(z) g(z), f, g ∈ LK(G),

the overline denoting the complex conjugation.

Suppose that G is a finite abelian group. Dual to G is the group of all homo-

morphisms from G to C×. The dual group is denoted Ĝ, its elements are called

characters, the identity element of Ĝ is the principal character. The Fourier

transform of a function f ∈ LK(G) is the function f̂ ∈ LC(Ĝ) defined by

f̂(χ) := 〈f, χ〉, χ ∈ Ĝ.

The function f ∈ LK(G) is constant if and only if its Fourier transform is zero
or supported on the principal character.
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For a subgroup H ≤ G, the set of all characters χ ∈ Ĝ containing H in their

kernel is a subgroup of Ĝ, denoted H⊥; thus,

H⊥= {χ ∈ Ĝ : χ(h) = 1 for any h ∈ H} ≤ Ĝ.

If H ≤ G is nonzero and proper, then so is H⊥≤ Ĝ. Writing 1H and 1H⊥ for the

indicator functions of H and H⊥, respectively, we have 1̂H = (|H|/|G|) · 1H⊥ .

For a function g ∈ LK(G) and an element z ∈ G, let gz ∈ LK(G) be defined by

gz(x) := g(z − x), x ∈ G.

The convolution of functions f, g ∈ LK(G) is the function

f ∗ g : z 	→ 〈f, gz〉, z ∈ G.

The Fourier transform of a convolution is the product of Fourier transforms:

f̂ ∗ g = f̂ · ĝ, f, g ∈ LK(G).

Our argument relies on the following uncertainty inequality for the rational-
valued functions on a finite affine plane.

������� 2 ([BL, Theorem 1])� For any prime p ≥ 3 and any function f ∈
LQ(F

2
p ), either 1

2
| supp f |+ 1

p− 1
| supp f̂ | ≥ p+ 1,

or there is a direction in F2
p such that f is constant on every line in this direction.

It may be worth commenting that the proof of Theorem 2 is a mixture of
Fourier-analytic and finite-geometry considerations. In particular, it uses the
classical estimate for the size of the smallest blocking set in a finite affine plane.

We now turn to the proof of Theorem 1.

If w is a constant function, then S = F2
p and the assertion is immediate;

assume thus that w is not constant. The case p = 3 is easy to verify, and we
further assume that p ≥ 5.

By the Dirichlet simultaneous approximation theorem, there exist arbitrarily
large integersQ, along with the corresponding integer-valued functions wQ on F2

p ,
such that ∥∥∥∥w − wQ

Q

∥∥∥∥
∞
<

1

2pQ
.

As a result, if Q is sufficiently large, then suppwQ = suppw, and for x, y ∈ S
we have w(x) = w(y) if and only if wQ(x) = wQ(y); also, a direction is perfect
with respect to w if and only if it is perfect with respect to wQ. Consequently,
passing from w to wQ, we can ensure that, in addition to being nonconstant,
w is also integer-valued.
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To every direction in F2
p there corresponds a nonzero, proper subgroup

H < F2
p ; specifically, the subgroup represented by the line through the origin

in the corresponding direction. As an immediate corollary from the definitions,
the direction corresponding to a subgroup H < F2

p is perfect if and only if the
convolution w ∗ 1H is a constant function; that is, the product ŵ · 1H⊥ vanishes
at every nonprinciple character; in other words, ŵ vanishes on every character
from H⊥ with the possible exception of the principle character.

Denote the number of perfect directions byN , so that the number of imperfect

directions is p + 1 − N. The group F̂2
p

∼= F2
p is a union of its p + 1 nonzero,

proper subgroups, with every nonprincipal character χ ∈ F̂2
p lying in exactly one

subgroup, and the principal character lying in all subgroups. Therefore, since ŵ
vanishes on the subgroups corresponding to the perfect directions, we have

| supp ŵ| ≤ (p− 1)(p+ 1−N) + 1. (1)

On the other hand, applying Theorem 2 to the function w, we conclude that
either 1

2
| suppw| + 1

p− 1
| supp ŵ| ≥ p+ 1, (2)

or there is a direction ∂ such that w is constant on every line in this direction.
In the former case, combining (2) and (1), and recalling that p ≥ 5, we get

p+ 1 ≤ 1

2
|S|+

(
(p+ 1−N) +

1

p− 1

)
<

1

2
(|S|+ 1) + p+ 1−N,

implying N ≤ 1
2 |S|. In the latter case, denoting by k the number of lines in the

direction ∂ on which w is nonzero, we have |S| = kp, while N = p (all directions
except ∂ are perfect). Consequently, N ≤ 1

2 |S|, unless k = 1, meaning that there
is a line on which w is constant and nonzero, and outside of which w vanishes.

This completes the proof of Theorem 1.

3. Open problems: restricting the weights

Suppose that w ∈ LC(F
2
p ) is not constant, and let S = suppw. If |S| < p, then

in every direction there is a line disjoint from S; hence, for perfect directions
to exist, the average value of w on F2

p must be zero. This suggests the following
problem: how many perfect directions can there be for a function w with a small
support given that the average of w is nonzero?

As we have just saw, one needs |S| ≥ p in order to have any perfect directions
at all.
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If |S| = p, then for any direction determined by S there is a line in this
direction disjoint from S; therefore, none of the directions determined by S
is perfect. On the other hand, if w is constant on S, then any direction not
determined by S is perfect. It follows that the largest possible number of perfect
directions is equal to the largest possible number of undetermined directions,
which is p+1 less the smallest possible number of determined directions. Apart
from the trivial case where S is a line, the smallest possible number of determined
directions is (p+ 3)/2 by the of Rédei-Megyesi result; thus, the largest possible
number of perfect directions (for S not being a line, |S| = p, and the average
of w nonzero) is (p+ 1)− 1

2 (p+ 3) = 1
2 (p− 1).

For |S| = p+1, one perfect direction is very easy to arrange, and a simple com-
binatorial argument shows that there cannot be two or more perfect directions.
Notice that this contrasts sharply the situation where |S| = p.

For |S| = p + 2 one can have two perfect directions (set w(z) = 1/2 for
z ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, and w(z) = 1 for z = (x, x) with x ∈ [2, p− 1]);
however, it is not clear to us whether there can be three or more perfect direc-
tions, nor what happens for |S| ≥ p+ 3.

Replacing the nonzero average assumption with the stronger assumption
that w attains real nonnegative values seems to result in an equally interest-
ing problem.
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