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ABSTRACT. We give a heuristic argument predicting that the number N∗(T )
of rationals p/q on Cantor’s middle thirds set C such that gcd(p, q) = 1 and q ≤ T ,
has asymptotic growth O(Td+ε), for d = dim C. Our heuristic is related to similar
heuristics and conjectures proposed by Fishman and Simmons. We also describe
extensive numerical computations supporting this heuristic. Our heuristic predicts

a similar asymptotic if C is replaced with any similar fractal with a description
in terms of missing digits in a base expansion. Interest in the growth of N∗(T ) is
motivated by a problem of Mahler on intrinsic Diophantine approximation on C.

Communicated by Yann Bugeaud

1. Introduction

Let C denote Cantor’s middle thirds set, i.e., all numbers represented as

x =

∞∑
1

ai3
−i with ai = ai(x) ∈ {0, 2} for all i.
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Let N∗(T ) denote the number of rationals number of the form p/q, with p and
q coprime, which belong to C and for which 0 < q ≤ T. Motivated by questions
in Diophantine approximation, our goal will be to understand the asymptotic
growth rate of N∗(T ).

Everything we will say in the sequel will apply with minor modifications to a
more general situation in which C is the set of numbers defined by a restriction
in a digital expansion, i.e., for some integer b ≥ 3 and some proper subset F
of {0, . . . , b− 1} we will let C denote the set of numbers x =

∑∞
1 aib

−i with all
ai ∈ F . To simplify notation we will stick throughout to the standard ternary
set. When writing a rational as p/q we always assume that p and q are coprime.

Fix c ∈ (0, 1), let IT denote the interval [(1− c)T, T ] and let

N(T )
def
= #

{
p

q
∈ C : q ∈ IT

}
,

Ñ(T )
def
= #

{
p

q
∈ C purely periodic : q ∈ IT

}
,

Ñ∗(T ) def= #

{
p

q
∈ C : 0 < q ≤ T,

p

q
is purely periodic

}
.

Note that these quantities depend on c but this will be suppressed from the nota-
tion. The notations A(T ) = O(B(T )) and A(T ) � B(T ) mean that A(T )/B(T )
is bounded above by a positive constant, and A(T ) � B(T ) means that the
A(T ) � B(T ) � A(T ).

��������	� 1
 Let d be the Hausdorff dimension of C, i.e., d = log 2/ log 3, and

in the general case, d = log |F|/ log b. For each ε > 0 we have Ñ(T ) = O(T d+ε).

This conjecture was also made by Broderick, Fishman and Reich in [BFR], and
futher heuristics and conjectures which imply Conjecture 1 were given by Fish-
man and Simmons in [FS, § 5]. An upper bound N(T ) = O(T 2d) was obtained
by Schleischitz in [Sch, Thm. 4.1].

Our heuristic actually predicts a more precise upper bound for Ñ(T ), see
Remark 4.1. The exponent d is optimal in view of Proposition 3.3.

Since numbers in C are explicitly given in terms of their base 3 expansion,
it is possible to count their number as a function of the complexity of their base
3 expansions. But this says nothing about the denominator q in reduced form;
it may happen that a rational with a complicated base 3 expansion corresponds
to a reduced fraction p/q with q small. The basic heuristic principle behind
Conjecture 1, is that the two events of having a small denominator relative to the
complexity of the base 3 expansion, and of belonging to C, are probabilistically
independent. We will make this heuristic more precise below.
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Some computational evidence for Conjecture 1 is given in [BFR]. Our goal
in this paper is to present more evidence supporting it. We will prove that the

conjectured asymptotics are lower bounds forN∗(T ) and Ñ∗(T ); we will describe
extensive computations consistent with this conjecture; and we will discuss the
heuristic motivating Conjecture 1, exhibiting some numerical results which lend
some support to this heuristic.

Organization of the paper

In § 2 we discuss some problems in Diophantine approximation which led us to
this problem, and derive a Diophantine consequence from Conjecture 1. In § 3 we
discuss basic properties of base 3 expansions, which yield lower bounds on N∗(T )
and Ñ∗(T ). We also explain that the main quantity of interest is Ñ(T ). In § 4

we introduce a simple probabilistic model and use it to predict Ñ(T ). Some
oversimplifications in the probabilistic models lead to incorrect predictions, and
we modify the model slightly in § 5 to remedy this, at the same time showing that
the revised model makes the same predictions for the growth of the expectation

of Ñ(T ). We discuss fluctuations and the relation of expectations to asymp-
totic behavior, in § 6. Our computational evidence for our conjectures are given
throughout the paper.

2. Motivation and historical background

The classical problem in Diophantine approximation may be formulated as
follows. Given a decreasing function ϕ : R+ → R+ and a real number x, are there
infinitely many rationals p/q such that |x− p/q| < ϕ(q)? In case this holds one
says that x is ϕ-approximable. For some choices of x and ϕ, determining whether
x is ϕ-approximable is considered hopelessly difficult (e.g. ϕ(q) = 10−100/q2,
with x = 21/3 or π); a fruitful line of research is to fix ϕ and ask about the mea-
sure of ϕ-approximable numbers, with respect to some measure. Some classical
results in diophantine approximation are:

(Dirichlet): Every x is 1/q2-approximable.

(Khinchin): With respect to Lebesgue measure, if
∑

qϕ(q) converges, then
almost no x is ϕ-approximable, and if

∑
qϕ(q) diverges, then almost every

x is ϕ-approximable.

(Jarńık): The set

BA
def
=

{
x : ∃c > 0 s.t. x is not c/q2−approximable

}
has Hausdorff dimension 1, but Lebesge measure zero.
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One measure to consider in place of Lebesgue measure in such statements,
is the coin tossing measure (assigning equal probability 1/2 to the digits 0,2
in base 3 expansion) on Cantor’s ternary set C. We give a brief list of activity
concerning this type of question.

In 1984, Mahler [M] asked how well numbers in C can be approximated

(i) by rationals in R� C.
(ii) by rationals in C.

Question (i) can be formalized in various ways, e.g., for which functions ϕ, does C
contain ϕ-approximable numbers? For which ϕ is almost every number in C (with
respect to the natural coin-tossing measure) ϕ-approximable? For which ϕ is the
set of numbers in C which are ϕ-approximable of the same Hausdorff dimension
as that of C? There has been a lot of recent activity concerning these and similar
questions, see [W, F, LSV, Bu, S, SW] and the references therein.

Question (ii), which is referred to as an intrinsic approximation problem, has
not been nearly as well studied. Broderick, Fishman and Reich [BFR] proved
an analogue of Dirichlet’s theorem for Cantor sets and other missing digit sets.
Fishman and Simmons [FS] extended the main result of [BFR] to a more gen-
eral class of fractal subsets of R. A major difficulty in intrinsic approximation
problems is that there is no reasonable understanding of the growth of the func-

tion N(T ), Ñ(T ) as described above; bounds on these functions will yield some
progress on Mahler’s question (ii).

In particular, Conjecture 1 implies (see [BFR] for the derivation):

��������	� 2
 For almost every x ∈ C, with respect to the coin-tossing mea-
sure, for any ε > 0, there are only finitely many rationals p/q ∈ C such that∣∣∣∣x− p

q

∣∣∣∣ < 1

q1+ε
. (2.1)

It was shown in [BFR] that for each x ∈ C, there are infinitely many p/q ∈ C
for which |x − p/q| < q−1(log q)−1/d. Thus the exponent in (2.1) cannot be
improved.

3. Notation, basic observations, and a lower bound

The number x =
∑∞

1 ai(x)3
−i is rational if and only if the sequence (ai(x))i≥1

is eventually periodic, i.e., there are integers i0 = i0(x) ≥ 0 and � = �(x) > 0,
called, respectively, the length of initial block and period, such that

ai(x) = ai+�(x), for all i > i0, (3.1)

and (3.1) does not hold for any smaller i0 or �.
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We say that x is purely periodic if i0 = 0. It is elementary to verify the following
(see also [BFR, Lemma 2.3])

�	���
����� 3.1
 Suppose x is a rational in C, with (ai), i0 and � as above.
Then we may write x = P/Q, where

P =

i0∑
j=0

aj3
i0+�−j −

i0∑
j=0

aj3
i0−j +

�∑
j=1

ai0+j3
�−j , and Q = 3i0(3� − 1)

(this fraction need not be reduced). In particular:

• If x is a rational in C with period � and initial block of length i0, then there
is an integer N such that 3i0x−N is a purely periodic rational in C with
period �.

• if x = p/q is purely periodic, where gcd(p, q) = 1, then q is a divisor
of 3� − 1 and � is the order of 3 in the multiplicative group (Z/qZ)×.

As mentioned above, throughout this paper, the notation x = p/q will mean
that x is a reduced rational in C, i.e., gcd(p, q) = 1. The notation x = P/Q will
mean that x is a rational in C, not necessarily reduced.

The following proposition follows from standard calculations and is left to the
reader.

�	���
����� 3.2
 Fix c, c′ ∈ (0, 1) and define Ñ(T ) and Ñ ′(T ) using c and c′,
respectively. Fix ε > 0. If Ñ(T ) � T d+ε, then the same holds for Ñ ′(T ), N(T ),

Ñ∗(T ), and N∗(T ).

�	���
����� 3.3
 There is c1 > 0 such that for all T > 3 we have Ñ∗(T ) ≥
T d/2 and N∗(T ) ≥ c1 log(T )T

d.

P r o o f. Let � = 	log3 T 
 ≥ 1, i.e., T ∈ [3�, 3�+1]. There are 2� purely periodic
Cantor rationals of the form P/Q with Q = 3� − 1. Bringing them to reduced
form, they are of the form p/q with q ≤ T. In particular

Ñ∗(T ) ≥ 2� =
(
3�+1

)d
/2 ≥ T d/2 .

Similarly, any rational of the form P/Q, where Q = 3i0(3�−i0 − 1) will con-
tribute to N∗(T ). For each such Q, there are 2�−i0 possibilities for the dig-
its in the periodic part of P/Q, and 2i0 for the digits in the initial block.
An exercise involving the inclusion/exclusion principle (which we omit),
implies that the repetition in this counting is negligible, i.e., up to a constant,
the number of distinct rationals P/Q written in this form is at least � 2�.
This proves the claim. �
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4. The heuristic

In this section we justify an upper bound of the form Ñ(T ) = O(T d+ε).
Our approach is to assign to each reduced rational p/q a probability that it

belongs to C, and bound the expectation of the random variable Ñ(T ) with
respect to this probability. For a related approach, and other statements implied
by related arguments, see [FS, § 5]. Let Q = 3� − 1 and consider the rationals
P/Q in the interval [0, 1]. There are 3� such rationals, and of these, 2� belong
to C. By Proposition 3.1, they are precisely the purely periodic Cantor rationals
with period dividing �. That is, fixing Q, the proportion of rationals P/Q ∈ [0, 1]

which belong to C is
(
2
3

)�
.

Motivated by this we define our probabilistic model. By Proposition 3.1,
p/q ∈ C is purely periodic if and only if 3 does not divide q. For each ratio-
nal p/q ∈ [0, 1], with q not divisible by 3, our model stipulates:

(∗) The probability that p/q ∈ C is
(
2
3

)�
, where � = �(q) is the smallest num-

ber for which Q = 3� − 1 is divisible by q; the events p/q ∈ C are completely
independent.

Note that � is the order of 3 in the multiplicative group Cq
def
= (Z/qZ)×.

Let φ(q) = #Cq be the Euler number of q. We may take representatives of ele-
ments of Cq to be the integers p between 0 and q − 1 coprime to q, so we find

that the expected number of p/q in C with fixed denominator q is φ(q)
(
2
3

)�(q)
.

Thus

E

(
Ñ(T )

)
=

∑
q∈IT

φ(q)

(
2

3

)�(q)

≤
∑
q∈IT

T

(
2

3

)�(q)

= T
∑

�≥log3 T+c′
#L(�, T )

(
2

3

)�

,

(4.1)

where
L(�, T ) = {q ∈ IT : �(q) = �} and c′ = log3(1− c).

We now need to bound the terms #L(�, T ). First we choose λ = 2−d
1−d .

For � ≥ λ log3 T we can use the trivial bound #L(�, T ) ≤ T , since

T 2
∑

�≥λ log3 T

(
2

3

)�

� T 2−λ+λd = T d.
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So it only remains to show

T

λ log3 T∑
�=log3 T+c′

#L(�, T )

(
2

3

)�

= O(T d+ε). (4.2)

For � ∈ [log3 T + c′, λ log3 T ], we use the obvious inequality
#L(�, T ) ≤ τ

(
3� − 1

)
, where τ(n) denotes the number of divisors of n.

It is well-known that
τ(n) ≤ 2(1+o(1)) log n/ log logn. (4.3)

In our situation we have 3� − 1 ≤ Tλ, so

τ
(
3� − 1

) ≤ 22λ logT/ log logT = T 2λ/ log logT ,
implying

T

λ log3 T∑
�=log3 T+c′

#L(�, T )

(
2

3

)�

≤ Tλ log3 TT
2λ/ log logT

(
2

3

)log3 T+c′

� log T T d+2λ/ log logT .

from which (4.2) follows.

����	� 4.1


1. In (4.1) we used the inequality φ(q) ≤ q ≤ T. But in fact it is well-known that
on average φ(q) � q, so we actually expect

Ñ(T ) � T

λ log3 T∑
�=log3 T+c′

#L(�, T )

(
2

3

)�

. (4.4)

2. Our arguments show that the right hand side of (4.4) behaves like

O
(
log T T d+2λ/ log log T

)
.

In estimating the cardinality of L(�, T ) we used the bound (4.3) which is optimal
for a general n. However it may be that for numbers of the form n = 3� − 1
a better bound exists, see [E] for related results. If so, then our heuristic would

predict a better bound for Ñ(T ).

5. A revised model

The heuristic above relied on the basic statement (∗). However, this assump-
tion leads to some clearly incorrect predictions, namely:
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(i) Primitive words: In deriving (∗) we calculated the frequency of purely
periodic rationals with period dividing �, belonging to C. It would have
been more precise to count the purely periodic rationals with period ex-
actly �, belonging to C. By Proposition 3.1, rationals with period exactly �
correspond to primitive words w in the alphabet {0, 1, 2} of length �, i.e.,
those w for which there is no proper divisor k of � such that w is a concate-
nation of identical words of length k. A standard application of the inclu-
sion/exclusion principle gives that the number of primitive words of length
� from an alphabet of size a is

m(�, a)
def
=

∑
d|�

μ

(
�

d

)
ad, (5.1)

where μ is the Möbius function.

(ii) Multiples of �: Fix q and let

Nq = #{p : p/q ∈ C}, (5.2)

and let � = �(q). Since C is invariant under multiplication by 3 mod 1,
whenever p/q ∈ C we also have p′/q ∈ C, where p′ = 3p mod q.
This means that the set {p : p/q ∈ C} consists of orbits for the action
of 3 on Cq, and in particular, � divides Nq.

(iii) Divisibility by 2: Let Q = 3� − 1. Our model predicts that there are
φ(Q)(2/3)� rationals in C with denominator Q, coming from P ∈ {0, . . .
. . . , Q− 1} such that P/Q belongs to C and gcd(P,Q) = 1. However Q is
even and if P/Q is in C, then so is P , since it may be written in base 3
using the letters 0 and 2 only. That is, the actual number is zero. A sim-
ilar observation holds for any q, which divides Q = 3�− 1 but does not
divide Q/2.

One may define a revised model as follows: for each q, let H be the group
generated by 3 in Cq. By observation (ii), for each coset X ∈ Cq/H, all number
of the form p/q, p ∈ X simultaneously belong or do not belong to C; if they all
do, we will write X ∈ C. With this notation, our revised model stipulates that:

(∗∗) Suppose q is not divisible by 3 and divides (3� − 1)/2, where � = �(q).

For each X ∈ Cq/H, the probability that X ∈ C is m(�,2)
m̄(�,3) , where m(�, a) is

defined by (5.1) and m̄(�, a) is the set of primitive words of length � in the
symbols {0, 1, 2} defining even numbers.
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Note that our choice of probability takes into account (i) and (iii). It is not
hard to show that

m(�, 2)/m̄(�, 3)

(2/3)�
→�→∞ 2,

and using this, that the arguments given in § 4 also apply to the second model,
yielding the same prediction. That is, model (∗∗) also implies Conjecture 1.
Moreover, when � is prime, it is easy to check using (5.1) and the definition of m̄

that the difference between 2
(
2
3

)�
and m(�,2)

m̄(�,3)
is negligible. Nevertheless, when

testing our heuristic, there will be a difference between models (∗) and (∗∗).
For sufficiently small values of q we have computed the actual values of Nq as
defined in (5.2), and one may compare them to the number

MLO(q)
def
= round

(
φ(q) ·m(�, 2)

m̄(�, 3)

)
. (5.3)

See Figures 1 and 2.

T

Figure 1. The summed number of purely periodic Cantor rationals Ñ(T ),

its approximation F (T ) :=
∑

q∈IT
3�q

round
((

2
3

)�(q)· 2 · φ(q)
)
from model (∗),

and its approximation M(T ) :=
∑

q∈IT

3�q| 3�(q)−1
2

MLO(q) from model (∗∗), where

IT :=[(1− c)T, T ] for c = 1
2
. More data points shown in Figure 3.

The notation round(x) stand for the closest integer to x, and the letters MLO

stand for most likely outcome, since there is no other number more likely to
occur as the value of Nq, under probabilistic model (∗∗).
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Figure 2. Ratios
M(T )

Ñ(T )
and

F (T )

Ñ(T )
for c = 1

2
. Our heuristic predicts that

this graph tends to 1 at infinity.

Using inclusion/exclusion and Möbius inversion, one can show (for more
details see [T]) that the number of even (as numbers in base 3) primitive words
of length � with symbols in the alphabet {0, 1, . . . , a− 1} is∑

d|�, �
d even

μ

(
�

d

)
ad +

∑
d|�, �d odd

μ

(
�

d

)⌈
ad

2

⌉
.

As a consequence one obtains a simple formula for m̄(�, 3). This allows us
to compute MLO(q) and hence to plot Figures 1 and 2. As can be seen in the
Figures, within the range of our database of Cantor rationals, both models (∗) and
(∗∗) give good approximations for the number of purely periodic Cantor rationals.
The fit is not perfect though, and the plots reveal other interesting features. We
try to explain some of these below.

6. Remarks on fluctuations, Bourgain’s theorem, and
symmetries

6.1. Deviations from the mean

An obvious objection to the line of reasoning presented above, is that our

prediction for Ñ(T ) is based on bounds on its expectation. That is, we have

shown that our heuristic implies E(Ñ(T )) = O(T d+ε), but in order to justify

Ñ(T ) = O(T d+ε) one needs additional arguments, which we now briefly indicate.
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Table 1. Denominators qn such that for all q < qn+1 admitting Cantor
rationals of denominator q, �(q)/ log3 q ≤ �(qn)/ log3 qn. For all q < 310

admitting Cantor rationals of denominator q, we have �(q)/ log3 q ≤
�(q4)/ log3 q4.

qn �(qn)/ log3 qn

q0 = 3 1.0

q1 = 30 1.292030029884618

q2 = 84 1.4876881693076203

q3 = 146 2.6453427135663814

q4 = 386 2.951356044207975

Table 2. The numbers q = 3r +1, r = 4, . . . , 13 where our heuristic gives

poor predictions. When revising the prediction by a factor of (3/2)r, which
is the factor taking into account a symmetry ω �→ ωω̄, we obtain a much
better prediction.

r q = 3r + 1 Nq MLO(q)
Nq

MLO(q)

(
2
3

)r Nq

MLO(q)

4 82 16 3 5.333 1.053

5 244 30 4 7.5 0.988

6 730 48 4 12 1.053

7 2188 126 7 18 1.053

8 6562 240 9 26.667 1.04

9 19684 414 11 37.636 0.979

10 59050 820 14 58.571 1.016

11 177148 2024 23 88 1.017

12 531442 4008 31 129.29 0.996

13 1594324 8190 42 195 1.002

If for some ε > 0 there is an unbounded sequence of T for which Ñ(T ) ≥
T d+ε, then (possibly modifying the constants ε and c) we can take this to be
a subsequence of the numbers in the form Tk = (1 + c)k. For each k we let Xk

denote the random variable, in model (∗), counting the number of p/q ∈ C with

q ∈ ITk
. We will show that the probability that Xk exceeds T d+ε

k is O(T−ε
k ), and

hence is summable; from this it follows by Borel-Cantelli that the probability
that for infinitely many k we have Xk ≥ T d+ε

k is zero.
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We continue to denote by c′, λ the constants as in § 4, and write T = Tk

to simplify notation. Let X
(1)
k (respectively, X

(2)
k ) be the number of p/q con-

tributing to Xk with �(q) > λ log3 T (respectively, log3 T + c′ ≤ �(q) ≤ λ log3 q).

Let �0 = λ log3 T , which is a lower bound for �(q) when p/q contributes to X
(1)
k .

Since there are fewer than T 2 rationals p/q with q ∈ IT , the probability that

X
(1)
k ≥ T d+ε is smaller than the probability that a binomial random variable

with probability

p =

(
2

3

)�0

= T (d−1)λ

and T 2 trials we will have T d+ε successes. By the Markov inequality, this proba-

bility is bounded above by T 2+(d−1)λ−d−ε = T−ε. The proof for X
(2)
k is similar,

again using the Markov inequality and the bounds used in the proof of (4.2).

6.2. Large � and Bourgain’s theorem

To highlight the sensitivity of Ñ(T ) to fluctuations, consider the expression

�̂(q) =

{
�(q), Nq �= 0
0, otherwise

(with Nq as in (5.2));

that is, �̂(q) is the order of 3 in (Z/qZ)× when there are rationals with de-

nominator q in C, and zero otherwise. Clearly the nonzero values of �̂(q) range

between log3 q and q. If one could prove that �̂(q) � log3 q one would obtain
a simple proof of Conjecture 1. Note that the heuristic behind Artin’s conjec-
ture (see [Mo]) predicts that there are infinitely many q for which �(q) � q,
so that this may appear at first sight to be wildly optimistic. However our re-
striction Nq �= 0 is a stringent one. In fact, our computations found that for all

3 ≤ q < 310, �̂(q) < 3 log3 q (see Table 1). This gives some evidence toward the
following conjecture of Fishman and Simmons [FS, Conj. 5.6]: for some c > 0,

there are only finitely many Cantor rational q for which �̂(q) ≥ c log q.

On the other hand, by observation (ii), a large value of �̂(q) would make a

large contribution to Ñ(T ) when q ∈ IT . For example, if there were infinitely

many q for which �̂(q) > qd+ε, then their contribution alone would yield a
contradiction to Conjecture 1. However, a difficult result of Bourgain [B] implies

that for any δ > 0, �̂(q) � qδ. Bourgain’s theorem is much stronger inasmuch as
it implies that the cosets of the subgroup H equidistribute in the interval [0, 1]
when �(q) > qδ, while to obtain the upper bound above, one only needs to know
that if �(q) > qδ , then any coset for H contains at least one point in the interval

(1/3, 2/3). It would be of interest to obtain better upper bounds on �̂(q) than
those implied by Bourgain’s theorem.
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6.3. Additional sources of fluctuations

It is easy to show that (4.4) predicts a lower bound Ñ(T ) � T d. However

we do not expect a precise asymptotic in the form Ñ(T ) ∼ cT d, that is, we do

not expect the limit of Ñ(T )/T d to exist. There are two reasons for fluctuations
in this expression. First consider the numbers of the form q = (3�−1)/2, for which
�(q) = �. If c < 2/3, depending on the choice of T , the range IT may or may
not contain one such number. In case it does, this contributes a term of order
(2/3)� � T d to the sum, which would contribute to the main term. Thus we
have fluctuations according as the window IT does or does not contain such q,
or for general c ∈ (0, 1), depending on the number of such q in the interval IT .
See Figure 3.

Although these fluctuations would contradict a precise asymptotic Ñ(T )∼cT d,

they do not preclude the weaker statement Ñ(T ) � T d. A potentially more seri-
ous source of fluctuations in (4.4) is the number #L(�, T ), which could fluctuate
considerably due to fluctuations in the numbers τ(3�−1). It would be interesting
to determine the asymptotic behavior of the right hand side of (4.4).

6.4. Symmetries

Heuristics (∗) and (∗∗) can also be used to make predictions for the num-
ber Nq of Cantor rationals with a fixed denominator q. However in this regime,
our computations reveal many values of q for which the heuristic gives inac-
curate predictions. Some of these are shown in Tables 2 and 3. The numbers
in Table 2 are all of the form 3r + 1, and in Table 3 we show all numbers q
for which �(q) = 24 and the prediction is inaccurate by a factor of 4 or more.
We will consider a possible explanation for these inaccuracies by introducing
a (non-rigorous) notion of ‘symmetries’ in base 3 expansion.

The identity 32r−1
2 = (3r−1)(3r+1)

2 easily implies the following (we leave details
to the reader): suppose a purely periodic rational in base 3 expansion has re-
peating block ω ∈ {0, 2}r, where r is the length of ω, and ω̄ is the block obtained
from ω by replacing occurences of 0 with 2 and 2 with 0. Then the word ωω̄
of length 2r obtained by concatenating ω, ω̄ defines (via an infinite base 3 expan-
sion 0.ωω̄ωω̄ . . .) a number in C whose denominator divides 3r + 1. This implies

that any p
3r−1 ∈ C gives rise to some p′

3r+1 ∈ C (and in fact, by observation (ii)

in § 5, to the ×3-orbit of this word, which typically contains 2r numbers). It
can be deduced that heuristic (∗∗) underestimates numbers p′/q′ with q′ divid-
ing 3r+1, arising in this way, by a factor of approximately (3/2)r. The revised
heuristic is borne out by Table 2, where the last column corrects heuristic (∗∗)
by this factor, giving a good fit with the data.
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(a) c = 0.25

T

(b) c = 0

(c) c = 0.5 (d) c = 0.25

(e) c = 0

Figure 3. For different values of c (which determine the intervals IT :=
[(1 − c)T, T ]), we plot the summed number of purely periodic Cantor ra-

tionals Ñ(T ) and its approximation M(T ) from model (∗∗). As predicted
in § 6.3, there are more fluctuations for smaller c.

The mapping ω �→ ωω̄ used above is for us an example of a symmetry
in base 3. Here is another example. Suppose ω, ω̄ ∈ {0, 2}r are as in the previ-
ous paragraph, and suppose 0 and 2 denote strings of length r consisting only
of the digit 0 (respectively 2). Then one may check, this time using the identity
33r−1 = (3r−1)(32r+3r+1), that repeating blocks ωω̄0 and ωω̄2 give numbers

86



RATIONALS IN THE CANTOR SET

in C whose denominator divides 32r+3r+1. For example, taking r = 7, we have
q = 314 + 37 + 1 = 4785157, our heuristic (∗∗) gives MLO(q) = 1771, and
our computer program finds Nq = 4158, which is a poor fit. The number
of strings of the form ωω̄0 and ωω̄2, along with all their cyclic permutations
(taking into account observation (ii) in § 5) is 2562. Some of these give a subset
of the ones already considered in heuristic (∗∗), so taking this symmetry into

account we should expect 2562 · φ(q)
q = 2365 ≤ Nq. This indeed gives a better

(albeit still not very precise) prediction. We suspect that there are more symme-
tries contributing to the numbers Nq and hope to return to this issue in future
work. In Table 5 we have tabulated the numbers qr for r = 2, . . . , 10, along with
the numbers of strings of the above form multiplied by φ(q)/q, and compared
this prediction with the actual number of strings of this form which are reduced
rationals with denominator qr.

When � = kr for k, r ∈ N, k ≥ 2, we can often make a similar construction
of a repeating block of length � which is composed of k sub-blocks of size r
(in the preceding two paragraphs we gave examples with k = 2, 3). The result
will be that for the numbers

q = 3(k−1)r + 3(k−2)r + · · ·+ 3r + 1,

Nq will be significantly larger than predicted by our heuristic. The same will be
true for large divisors q′ of such q. Thus if � has many divisors, there will be
many values of q for which our predictions will be poor. In all of them we expect
our heuristic to give a number which is smaller than the correct value, and we
do not expect such very poor predictions to occur when � is prime. These two
expectations are borne out in Tables 3 and 4 below. We invite the reader to try
to find explanations for the numbers appearing in Table 3; note that we have
explained the appearance of 531442 using a symmetry ω �→ ωω̄, and that 589771
and 84253 are large divisors of 316 +38 +1 and can thus be explained using the
symmetries ω �→ ωω̄0, ω �→ ωω̄2.

Appendix A. Computing the Cantor rationals of given
denominator

In this appendix, we give an algorithm to compute the set of rational numbers
in the Cantor set of given denominator q, namely the Cantor rationals of reduced
form p

q . It is stated in Algorithm 1 below, and has been implemented by the

authors in Pari/GP. We denote by �(q) the order of the element 3 in the group
of multiplicative units in the ring Z/qZ with q elements.
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Algorithm 1 Computation of the Cantor rationals of denominator q

Input: A natural number q.
Output: The set of Cantor rationals of reduced form p

q
.

Carry out the prime decomposition of q.
Create a mask M as the set of multiples of the primes in q satisfying that the
multiples are strictly smaller than q.
Denote by t the multiplicity of 3 in the prime decomposition of q.
Let q′ := q

3t
.

Compute �(q′) := order of 3 in the multiplicative group of the ring Z/q′Z.
Initialize the passlist as an empty list.
for p running from 1 through q − 1, do

if p is not an element of the mask M or the passlist, then

Let T := p
q (3

�(q′) − 1)3t. Let A := T mod (3�(q
′) − 1).

if A �= 0 mod (3�(q
′) − 1), then

Let a be the lift of A to {1, . . . , 3�(q′) − 2}ternary.
if the digits of a are in {0, 2}, then

Let s :=
(

T−a

3�(q
′)−1

)
ternary

.

if the digits of s are in {0, 2}, then
The fraction p

q
is a Cantor rational.

Record it into the set of Cantor rationals of denominator q.
Add 3-power multiples (if q �= 0 mod 3) of p
and their reflections to the passlist.

else
No 3-power multiples of p

q are Cantor rationals.

Add 3-power multiples of p and their reflections to the mask M .
end if

end if
else

if the digits of
(

T

3�(q
′)−1

)
ternary

or
(

T

3�(q
′)−1

− 1
)
ternary

are in {0, 2}, then
The fraction p

q is a Cantor rational.

Record it into the set of Cantor rationals of denominator q.
Add 3-power multiplesif 3 � q of p and their reflections to the passlist.

else
No 3-power multiples of p

q
are Cantor rationals.

Add 3-power multiples of p and their reflections to the mask M .
end if

end if
end if

end for
Output the rationals p

q for p in the passlist.
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Table 3. All values of q with �(q) = 24 for which our heuristic makes a
prediction which is incorrect by a factor of 4 or more. Note that in all of
these examples, Nq > MLO(q). At least three, and probably all, of the
entries in the table are related to the symmetries discussed in § refsubsec:
symmetries.

q �(q) Nq MLO(q)
Nq

MLO(q)

12962 24 72 1 72

14965 24 48 1 48

29848 24 48 1 48

84253 24 96 9 10.391

129620 24 48 6 8

181468 24 96 9 10.391

239440 24 96 11 8.727

259240 24 48 12 4

298480 24 96 11 8.727

531442 24 4008 31 129.29

589771 24 336 55 6.109

4731130 24 960 222 4.324

21257680 24 4176 985 4.24

�	���
����� A.1
 The set computed by Algorithm 1 contains all the Cantor
rationals of denominator q for its reduced form. This algorithm terminates within
finite time.

P r o o f.

• The period length of p
q in the ternary system is given by �(q′). Hence, the

finite sequence a of ternary digits is precisely the periodical sequence in p
q .

Furthermore,
s(3�(q

′) − 1) + a

(3�(q′) − 1)3t
=

p

q
.

So, the sequence s is precisely the sequence of ternary digits preceding the
periodical part in the ternary expansion of p

q . By the elementary ternary

digits property of the Cantor set, Algorithm 1 decides if p
q is a Cantor

rational. The mask M allows it to check all suitable fractions p
q . Here,

and for establishing the passlist, we make use of the well-known symmetry
of the Cantor set: If x is an element of the Cantor set, then the same holds
for (1− x), x

3 , and—provided that it is in the unit interval—3x.
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• The loop in Algorithm 1 consists of (q − 1) repetitions, which contain a
finite number of finite-time steps. �

����	� A.2


• The mask M can be omitted and a coprimality check for (p, q) inserted,
to obtain a simpler algorithm which is mathematically equivalent to Al-
gorithm 1. The difference lies in the efficiency: In fact, the mask M is a
powerful tool to reduce the time needed to carry out the algorithm, mini-
mizing the number of iterations of most expensive steps, which grows fast
with q.

• Even more important for the efficiency is the sub-algorithm testing the
belonging of the ternary digits to the set {0, 2}, because the numbers to
be tested are incredibly great integers.

Table 4. Some numbers q < 3�(q)−1
2

for which �(q) is a prime, including

all such q with 11 ≤ �(q) ≤ 23. In this case, symmetries are impossible and
our heuristic works well for each individual q.

q �(q) Nq MLO(q)
Nq

MLO(q)

23 11 0 0 −
47 23 0 0 −
683 31 0 0 −
1597 19 0 1 0

1871 17 0 4 0

3851 11 88 89 0.989

28537 29 0 0 −
34511 17 68 70 0.971

102673 31 0 1 0

363889 19 304 328 0.927

59 · 28537 29 0 26 0

4404047 31 62 31 2

20381027 29 232 319 0.727

1001523179 23 178480 178481 0.999994
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Table 5. The numbers qr = 32r + 3r + 1 with the contribution of the
symmetries of the form ω �→ ωω̄0 and ω �→ ωω̄2. The number Xr counts

all strings of length 3r of the specified form, Yr =
⌊
Xr · φ(qr)

qr

⌋
, and Zr is

the actual number of Cantor rationals with denominator qr of this special

form.

r qr Nqr Xr Yr Zr Yr +MLO(qr)

1 13 6 6 6 6 13

2 91 12 18 14 12 27

3 757 54 54 54 54 93

4 6643 120 156 122 120 202

5 59293 450 420 388 390 638

6 532171 1368 1062 978 1008 1641

7 4785157 4158 2562 2365 2436 4136

8 43053283 9744 5976 4663 4560 8654

9 387440173 38988 13608 13450 13500 26931

10 3486843451 91440 30450 23224 23520 50961

���������������
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