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ABSTRACT. In 1986, Proinov published an explicit lower bound for the di-
aphony of finite and infinite sequences of points contained in the d—dimensional
unit cube [Proinov, P.D.:On irregularities of distribution, C. R. Acad. Bulgare
Sci. 39 (1986), no.9, 31-34]. However, his widely cited paper does not con-
tain the proof of this result but simply states that this will appear elsewhere.
To the best of our knowledge, this proof was so far only available in a monograph
of Proinov written in Bulgarian [Proinov, P.D.: Quantitative Theory of Uniform
Distribution and Integral Approzimation, University of Plovdiv, Bulgaria (2000)].
The first contribution of our paper is to give a self contained version of Proinov’s
proof in English. Along the way, we improve the explicit asymptotic constants
implementing recent, and corrected results of [Hinrichs, A.—Markhasin, L.:
On lower bounds for the La-discrepancy, J. Complexity 27 (2011), 127-132.]
and [Hinrichs, A.—Larcher, G.: An improved lower bound for the Lo-discrepancy,
J. Complexity 34 (2016), 68-77]. (The corrections are due to a note
in [Hinrichs, A.—Larcher, G. An improved lower bound for the Lo-discrepancy,
J. Complexity 34 (2016), 68—77].) Finally, as a main result, we use the method
of Proinov to derive an explicit lower bound for the dyadic diaphony of finite and
infinite sequences in a similar fashion.

Communicated by Peter Kritzer

1. Introduction

The beginnings of the theory of uniform distribution modulo one can be at-
tributed to the work of H. Weyl [25] of 1916. Van der Corput [22] 23] later
conjectured that no sequence can be, in some sense, too evenly distributed.

© 2020 BOKU-University of Natural Resources and Life Sciences and Mathematical Institute,
Slovak Academy of Sciences.

2010 Mathematics Subject Classification: 11K38.

Keywords: La-discrepancy, (dyadic) diaphony, Walsh system, Haar system.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

39



NATHAN KIRK

In 1954, K. Roth [21] improved on the thoughts of Van der Corput publishing a
celebrated sharp lower bound for the £5—discrepancy of an d—dimensional finite
sequence, oy. In particular,

log N) ‘2"
Lon(on) = c(d)%

where ¢(d) is a constant dependent only upon the dimension (d > 2). The result
of Roth has specific importance throughout this paper. For a more detailed
and comprehensive history of the beginnings and development of the quantitive
measures of uniform distribution theory, we refer the reader to the survey [1J.

Motivated by the heavy influence of trigonometric summations in Weyl’s
Criterion for uniform distribution modulo one and the inequality of Erdds-
-Turén [5, [T1], P. Zinterhof proposed a new measure of irregularity of distri-
bution in [26] which he named, diaphony, denoted throughout by Fp. Similar
to the above result for the Lo-discrepancy, in 1986 P. Proinov published results
[17] allowing one to calculate exact lower bounds for the diaphony of arbitrary
d—dimensional sequences.

Of particular concern to the author is a simple corollary of Proinov’s work
concerning the lower bound of one-dimensional sequences contained in the unit
interval. Tt is known [I7] and will be shown in this paper, that for an infinite

one-dimensional sequence o,
Viog N
Fy(o) 2 e =2 (+)

holds for infinitely many IV, where ¢ > 0 is an absolute constant. It is therefore

natural to consider, what is the largest value of ¢ for which () holds for all one-

dimensional sequences ¢ for infinitely many N7 To investigate, we define the

asymptotic constant for the diaphony of an infinite one-dimensional sequence o,
NFN (0’)

=1 —
J@) =R e w

f* = int (o)
the one-dimensional diaphony constant. That is, f* is the supremum over all ¢
such that @) holds. Study in areas of the same flavour have appeared recently
in the form of asympototic constants of the corresponding notions of (star and
extreme) discrepancy [12} (13| [15] [16]. Returning to our motivation, in his 1986
paper Proinov states a lower bound for f* This paper is widely cited however
the proofs of several of the results are not included in the text and instead, they
are simply said to appear elsewhere. Therefore, the first aim of this paper is
to make these proofs accessible. Further to collating these hidden proofs, and

and denote by
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due to recent results improving lower bounds of the Lo-discrepancy in [10] and
[9], we update and improve the results concerning lower bounds of the diaphony
of general d—dimensional sequences and state the up-to-date one-dimensional
diaphony constant.

As discussed above, the concept of the diaphony is based on the trigonometric
function system. However, introduced by Hellekalek and Leeb in [§], another
notion of diaphony exists based on the (dyadic) Walsh function system [ This is
aptly named, dyadic diaphony and denoted throughout by Fb ~B Tt is already
known [2] that for the dyadic diaphony,

a—1
Fon(oy) > 5(d)w’
N

where oy is a finite sequence contained in the d—dimensional unit cube, and
é(d) is a constant dependent only upon the dimension. In this paper, after un-
derstanding Proinov’s methods in the case of the classical diaphony, we move
in the latter stages to use these same techniques in the setting of the dyadic
diaphony. In doing so, we arrive at analogous explicit lower bounds for the
dyadic diaphony and hence finish by stating an equivalent lower bound for the
one-dimensional dyadic diaphony constant,

NF.
f3 := inf lim sup 72’1\’(0)

7 Nooo VIgN

In what follows, Section 2.1 gives the necessary preliminaries which allow the
statement of Proinov’s Theorems in Section 2.2. We proceed to give the means
in which we can state the updated constant for the diaphony and a new constant
for the dyadic diaphony in Sections 2.3 and 2.4, respectively. Section 3.1 contains
a high level overview of the proof of Proinov, while Section 3.2 follows to give
full, detailed proofs. Lastly, Section 4 gives a proof for the main result in the
derivation of the explicit lower bound for the dyadic diaphony.

1J. Walsh published his namesake function system in 1923, [24].

2Tt was found that there exists an innate relationship between the function system that is
chosen and the type of constructions of sequences that can be analysed with the corresponding
Weyl summations. For example, the trigonometric function system is well suited to study lattice
point sequences and in this instance, the Walsh function system is better suited to analyse
digital nets and sequences, [14].
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2. Statement of results

2.1. Preliminaries and notation

Discrepancy. In this paper we are concerned with the distribution of points
in the d—dimensional unit cube, [0,1)%. Let oy = (a;)}Y, be a finite sequence
of points contained in [0,1)¢. For any point v = (y1,72,...,74) € [0,1)¢ define
the discrepancy function as,

9(0.7),03. ) = 5 3 v a) = Aal(0,7).

where X is the characteristic function of the subinterval [0,+) and, A¢([0,7)) =
Hle v; is the usual d—dimensional Lebesque measure.

The £, —discrepancy of a sequence oy is a measure of the irregularity of dis-
tribution of oy, and is obtained by taking the £,—norm (1 < p < oo) of the
discrepancy function.

L,n(on) = ||g([077)7UN’ N) Hz:p

Let 0 = (by)neny C [0,1)? be an infinite sequence. From the initial segment
formed by the first N terms of o, we can write oy = (b;); and therefore
define L, n(0) := L, n(oN).

g([O,‘y), ON, N) ‘p d~y>p.

Diaphony. In 1976, P. Zinterhof proposed the concept of diaphony. It is ap-
propriate that some further notation is now introduced. For any finite sequence
on = (a;)Y, contained in [0,1)?, define the trigonometric sum

N
1
Sny(on;m) = N ze(m -a;),
i—
where we have set e(z) = exp(2miz) throughout for simplicity. For every lattice
point m = (my,...,mg) € Z¢, we define R(m) := Hle max (1, [myl).
Let o be a finite sequence contained in [0, 1)¢. The diaphony of o is defined by

Sy(on;m 2\2

mezd
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In the case that o denotes an infinite sequence in [0,1)¢, adopting the same
notion as above we truncate o to the finite sequence oy, then set

FN(O') = FN(UN).

Dyadic diaphony. The dyadic diaphony as introduced in [] is the final mea-
sure of irregularity of distribution in which we will be interested. The key dif-
ference between the classical diaphony and dyadic diaphony is the replacement
of the trigonometric functions with the dyadic Walsh functions[

For k € Ny with base 2 representation k = k12471 + -+ + k12 + Ko, where
k; €{0,1} and k,_1 # 0, we define the k' (dyadic) Walsh function waly, : R —
{—1,1}, periodic with period one, by

Walk(l‘) = (_1)m1no+--.+xana_1’

for x € [0,1) with base 2 representation x = %- + 22 +--- (unique in the sense
that infinitely many of the digits x; must be zero). For dimension d > 2, we
define the d—dimensional k*" (dyadic) Walsh function waly : R? — {—1,1} by

waly (x H Walk (x5)

where k = (k1,...,kq) € Nd and x = (21,...,74) € [0,1)%. The system {waly :
k € N¢} is called the d—dimensional (dyadic) Walsh function system.
The dyadic diaphony of a finite sequence oy = (a;)]¥; contained in [0, 1)¢
defined as,
2)%

1
Fyn(on) = <3d—_

‘—Zwalk(ai)
1
where for k = (ky,...,kq) € N&, rao(k) := H] 1 r2(k;), and

1 if k=0,
Tz(k) =

2720 if 20 <k < 29t with a € Np.

kENd\{O}

In the scenario that we have an infinite sequence o C [0,1)?, again simply take
the initial segment formed by the first N terms of o.

3It is worth noting that the dyadic diaphony was extended once more to arbitrary bases
(b > 2) using the b—adic Walsh function system in [7], named the b—adic diaphony. See the
open problem on page 11.
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Walsh series. A Walsh system analogue of the trigonometric Fourier series
exists, named the Walsh series (in some literature, the Walsh-Fourier Series).
For a function f : [0,1)? — R, we define the k' (dyadic) Walsh coefficient
of f by

fk) = /[0 b f(x)walk(x) dx

for x € [0,1)% and k € Ng. We can form the Walsh series of f as
Fx)~ D Flkwalk(x).
keNg

It is appropriate to note that Parseval’s identity holds for the Walsh coefficients
due to the completeness of the Walsh function system. That is,

[ e = 3 (gl

keNg

We refer to [[3], Appendix A] for a full treatment of the theory of the Walsh
function system and for justification of all above.

Symmetric sequences. Finally, we introduce an important symmetrisation
technique used in [19, 20]. Let oy = (a;))Y; be a finite sequence contained
in [0,1)4, and let x = (z1,72,...,24) € [0,1)% We say that point x has mul-
tiplicity p (0 < p < d) with respect to oy, if exactly p terms of ox coincide
with x.

The sequence o is called symmetric if for any point x = (x1, ..., 24) €[0,1)%,
all points of the form
(T1 + (*1)7—1.’1}1, To + (*1)72.’1}2, ceey Td + (*1)ded> (**)

have the same multiplicity with respect to o, when 7; € {0,1} independently
for 1<i<d. Now let 6y =(b;)¥_; be a symmetric sequence contained in [0, 1).
We say oy is generated by sequence o, = (a;)_4 if:
(1) N =24n, and
(2) a point x = (z1,...,74) € [0,1)% is a term of the sequence o, then
each point of type (H) is a term of the sequence &y, where 7; € {0, 1},
(1<i<d) independentlyﬂ

4Note that every point z € [0, l)d can be regarded as one-term sequence, so every point
x € [0,1)% generates at least one symmetric sequence in [0,1)? consisting of p = 2¢ points.
Conversely, every symmetric sequence in [0, l)d consisting of p = 2% terms is generated by any
of its terms.

44



ON PROINOV'S LOWER BOUND FOR THE DIAPHONY

See Figure [l and Figure 2 below.

Let & = (b, )nen be an infinite sequence, & is said to be symmetric if for any
n € N the finite sequence consisting of p = 2¢ terms,

b—1)p+1, Pr-1)p+2, - Prp (1)

is symmetric. We say that the infinite symmetric sequence = (b,,),av is gener-
ated by an infinite sequence o= (a, )nen if for any n €N, the finite sequence ()
is generated by the point a,,.

1.0 . o 1.0 XY KR Qoo
. ‘ & . c - . A}
. A TR S .
0.8 . o * 08f % ge ° e,
° ° % 4 . . . o®
. ° e ® o c . . ° o ® oo
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06/ . o6, * ., . T
° . e %o ° oo ° e ®
[ . [ ° . . o [ ] . . .o [ . L[] o .
o o o
L] » L]
0.4t 04F ° ¢ .
° ® o0 te e © . ° . o 4 o0
L] L] L] . . L]
. o . . ) °
02} ot o2 &% .
° ° L] ° hd ° ... .. L] ° ®
o . D [} . " e D ]
e ® . . I ) . YY) L %e®. N Y TY .
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
FIiGURE 1. FIGURE 2.
A random sequence The symmetric sequence
On = (ai)?:l C [07 1)27 &N - (bl)f\;l C [07 1)27
with n = 50. generated by o,
(from Fig. 1).

REMARK 1. The above statements regarding generating symmetric sequences
have the following equivalent formation.

We say that the symmetric sequence 6 is generated by o,, = (a;)!"_,, if every
term of g can be represented as

1

with 1 < k < n, 8 € Z;. Zg denotes the subset of all d—dimensional points
of the form @ = (01,...,604) with each coordinate §; = £1 for 1 < j < d, and
the binary operation between 6 and a; is component-wise multiplication.
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2.2. The results of Proinov

Proinov’s argument comes in three main steps. An overview of the high-level
structure of the proof is contained in Section 3.1.

In the first instance, Proinov lower bounds the diaphony of a sequence with
the Lo-discrepancy of the symmetrised version of the sequence. Theorems 1 and 2
below cater to finite and infinite sequences, respectively.

THEOREM 1. Let 6 be any finite symmetric sequence consisting of N = 2n
terms contained in [0,1), and let o, be any finite sequence also contained
in [0,1)% consisting of n terms which generates 6. Then the inequality,

[:27]\[(5'1\]) S C(d)Fn(O'n)

o(d) ::%\/G—%) ((1+%)d—1>. (1)

THEOREM 2. Let & be any infinite symmetric sequence contained in [0,1)%, and
let o be any infinite sequence contained in [0,1)% which generates &. Then for a
natural number N > 2% the following inequality holds

holds with

Lan(5) < C(d)Fu(o) + (29 = 1)/N,

where n = |N/2%] and C(d) defined as in ().

This now allows for the application of the classical lower bound result of Roth.

Proinov extends the inequality of Roth to consider infinite sequences contained
in [0,1)9.

THEOREM 3. Let d > 1. For any infinite sequence o contained in [0,1)?, we
have the following inequality

lim sup M > a(d)
2

N—oo (logN)
with constant «(d) defined as,

a(d) : L 7 (2)

 44+3(dlog 2)
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We take a brief aside at this point to note that in [3], Theorem 3.20 cites a
slightly altered constant than a(d) as stated above. In this paper, the author
moves forward with constant (2]) as defined and used by Proinov to record a self-
contained derivation of Proinov’s lower bound for the one-dimensional diaphony
constant, f* In any case, the constant a(d) is soon abandoned and replaced
by the updated constant (d) in (Bl) which is used for the remainder of the text.

Returning to the results, Proinov combines all the preceding observations
to derive his main results regarding the lower bound for the diaphony of finite
and infinite sequences in Theorems 4 and 5, respectively.

THEOREM 4. Let d > 2. For any finite sequence oy contained in [0, l)d, we
have the following inequality

lim sup M > a(d—1)p(d)

N—oo (logN) =z

with a(d) defined as in [2l) and constant B(d) defined as

B(d) = 27 3 : (3)
(3 —1)((n2 +6)¢ — 724)

THEOREM 5. Let d > 1. For any infinite sequence o contained in [0,1)?,

where a(d) and B(d) are defined in @) and ().

2.3. Improvements after 1986

As a simple Corollary of Theorem 5 (setting d = 1), the lower bound of the
one-dimensional diaphony constant known to Proinov is

f =0.0147 . .. (4)

. T

” 256+/log 2

Looking again at Theorem 5, the constants «(d) and (3(d) are responsible
for arriving at (@)). In particular, a(d) originates from the celebrated Theorem
of Roth regarding a lower bound for the Lo-discrepancy. The authors in [10]
improve this classical result via an adaptation of Roth’s method considering cer-
tain Fourier coefficients of the discrepancy function with respect to the Haar
basis. We formulate this below as Theorem A, however note that the con-
stant v(d) as stated is an edited version to that which was originally published.
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It was flagged in a later publication [9] by the same co-author that the proof
contains a small inaccuracy and instructions are given on how one rectifies this
issue, leading to constant ({]). For clarity, we attach an appendix which contains
the adjusted proof of the L,-discrepancy result.

THEOREM A. (A. Hinrichs & L. Markhasin, 2011). Let d > 2. For a finite
sequence oy contained in [0,1)?, we have

(log N) ="

Lon(on) 2 y(d—=1)——

with constant y(d) defined as,

1
v(d) = NI TR

()

Subsequently, mimicing the proofs of Theorem 3 and Theorem 5 with constant
a(d) replaced with v(d), we arrive at the following updated results in the general
d—dimensional case.

THEOREM 6. Let d > 1. For any infinite sequence o contained in [0,1)¢, we
have the following inequality

NL:Q,N(O—)
d
2

lim sup > v(d)

N—oo (logN)
with y(d) defined as in ().

THEOREM 7. Let d > 1. For any infinite sequence o contained in [0, l)d, we
have

. NFN(U)
lﬂrvnffop (log N)? > B(d)v(d)

with B(d) and v(d) are defined as in @) and ().

One further improvement was made for sequences contained within the unit
square, [0, 1)2. The two authors in [9] derive a much improved lower bound for the
Lo-discrepancy of 2—dimensional finite sequences using a variant of the method
from the earlier paper, [10]. For convenience, this is made explicit in Theorem
B below and we refer to Section 2 of [9] for a derivation and explicit form of the
constant.
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THEOREM B. (A. Hinrichs & G. Larcher, 2016). For a finite sequence oy con-
tained in [0,1)?, the following inequality holds
log N
N

Using a similar argument to that of Theorem 3, it can be shown that one can
use the results of (d + 1)—dimensional finite point sets to study d—dimensional
infinite sequences. Therefore, we can implement this 2—dimensional asymptotic
constant to gain a most improved lower bound of the one-dimensional diaphony
constant.

EQJV(O'N) Z 0.0515599...-

COROLLARY 1.
f*>0.0515599...- 7 =0.1619...

2.4. An extension to the dyadic diaphony

Finally, we apply the technique of Proinov to derive an explicit lower bound
for the dyadic diaphony. As above, we consider similar lower bounds for the
one-dimensional dyadic diaphony constant which we define as

e en NF; (o)
> = inf lim sup —=——=.
fa =1y Nooo  VIogN
THEOREM 8. Let o be any finite symmetric sequence contained in [0,1)
1

sisting of N = 2%n terms with o, any finite sequence contained in [0,1)¢ con-
sisting of n terms which generates on. Then

Lo n(Gn) < 6(d)Fon(on)

d con-
d

holds with constant,
5(d) =34 —1. (6)

THEOREM 9. Let G be any infinite symmetric sequence contained in [0,1)% and
let o be any infinite sequence contained in [0,1)% which generates &. Then for a
natural number N > 2d,

Lon(6) < 0(d)Fop(0) + (29 = 1)/N,
where n = | N/2%| and 5(d) defined as in (G).
THEOREM 10. Let d > 2. For any finite sequence oy contained in [0,1)%, the
following inequality holds
. NF; n(on)
1IMsup ———1
N—oo (logN)™ =
with v(d) defined as in [Bl) and
pu(d) =

> v(d - 1)p(d)

1
2d.\/3d — 1
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THEOREM 11. Let d > 1. For any infinite sequence o contained in [0,1)%,

: NFy n(o)
lim sup ————= > ~v(d)u(d
i sup (log V) > y(d)u(d)

with y(d) and p(d) defined as in [@B) and ([T).

Theorems 10 and 11 allow the computation of exact lower bounds for general
d—dimensional sequences. However, once again we can use Theorem B to calcu-
late the best lower bound for the newly defined one-dimensional dyadic diaphony
constant.

COROLLARY 2.

1
> > 0.0515599...- —— = 0.0182...
f2 2\/5
Open Problem. We leave it as an open problem to derive similar lower bounds
using Proinov’s methods for the b—adic diaphony of sequences contained in the
d—dimensional unit cube. (See Footnote 3 in Section 2.1).

As a first step, one would need to formulate a similar inequality to those
of Theorems 1 and 8 giving a relationship between the b—adic diaphony and
the Lo-discrepancy, explicitly forming a constant similar to C(d) or §(d), respec-
tively. It is reasonable to conjecture that this constant would depend on (and
only on) the dimension d, and the choice of base b.

3. The proofs of Proinov

In this Section, we present the proofs of Proinov. To the best of our knowledge,
with the exception of Theorem 3, the only record of these proofs are contained
in Proinov’s monograph [I8] which is written in Bulgarian and not widely avail-
able. Proinov’s proof of Theorem 3 is given in full as Theorem 2.2 in [4], we refer
the curious reader to this survey.

In Section 3.1, we outline the argument of Proinov since his method is of gen-
eral interest and will also be used in Section 4 to derive a lower bound for the
dyadic diaphony. Section 3.2 contains the full proofs of Theorems 1, 2, 4 and 5.
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3.1. The main ideas of Proinov

We outline the major steps used to formulate Theorem 4, the Theorem con-
cerning explicit lower bounds for the diaphony of finite sequences contained
in [0, 1)%. The extension to infinite sequences (to derive Theorem 5) follows from
several technical Lemmas, the details of which are outlined in the next subsec-
tion.

In the first instance, Proinov formulates Theorem 1 which lower bounds the
diaphony of a sequence by the Lo-discrepancy of the symmetrised version of the
sequence. That is, for finite sequences o,, and symmetric &y contained in [0, 1)?
consisting of n and N = 29n terms, respectively, such that o, generates &y,
we have

Lon(on) < C(d)Fy(on)

holds with constant C(d) defined as previously in ([l). There is significant ma-
chinery involved in deducing this result. Specifically, the discrepancy function
g([O, ¥),0n, N ) defined in the introduction is expanded as a Fourier series

g([077)a&NaN) ~ Z b\(m)e(m"}/)a
meZ4

where g(m) denote the Fourier coefficients. Proinov then implements Parse-
val’s identity with the discrepancy function to obtain an expression for the Lo-
discrepancy in terms of the Fourier coefficients

oo

2

=Y [gm)*.

mezZ?

Subsequently, with some rigorous calculation one finds that the summation above
can be approximated as

~ 2 2 |Sn (0; m) |2
Y [gm) <@ ) T Rm)
meZe meZd
with all terms on the right-hand side of this inequality defined as in Section 2.1,
and C(d) as in (). Putting the last two lines together obtains the desired result
for Theorem 1

L3 n(on) < CHd)F (o).
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Rearranging Theorem 1, and taking Roth’s 1954 classical lower bound for the
Lo-discrepancy while noting that
1

o)~

where 3(d) is defined as ([B]), we arrive with some small manipulation at

2¢5(d),

Fo(ow) > a(d— 1)) 18N =

n

as required with an explicit lower bound for the diaphony of an arbitrary finite
sequence contained in [0, 1)<

3.2. The proofs of Theorems 1, 2, 4 and 5

Proof of Theorem 1. Let 0, = (a;)".; C [0,1)¢ be any finite sequence
which generates a symmetric sequence 6 = (b;)Y.; C [0,1)%, containing n and
N = 29 terms, respectively. From the definition of the sequence &y which is
generated by o,,,

N n

1 Z 1 Z Z 1

ﬁ X IX’V(bi) B 2dn i=10¢cZ X’Y<§(1 B 9) +9ai>’
1= 1= d

where the set Z; is defined as in Remark 1. Therefore, we rewrite the discrepancy
function as

B 1 & 1
g([077)aUNa N) = ﬁ Z Z X~ <§(1 - 0) + 9az> - /\d([037)) (8)
i=10€7,y
The function can be written asymptotically equal to a Fourier series
meZ4

where g(m) denote the Fourier coefficients. Each g(m) can be calculated by
) = [ 9(10.9), 5w, N)elom -7 dy. ©)
0,1

We need the following one-dimensional integrals defined and denoted
1

A(m) ::/0 ve(—m~y)dy and B(m,a) ::/ e(—my) dy

a

formeZ and a € E.
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It is easily calculated that

__1 i
A(m) = { Zmim 70 (10)
% if m =0,
and
L —ma) — i
B(m,a) _ {(27rim) (6( ma) 1) fm # 0’ (11)
1—a if m=0.

Using equations (8) to (II)) and by writing
1
C.(0) 1= 5(1-6) + 0a,

we obtain the following expression for the Fourier coefficients.

gom) = 5> > /[ | a(Coelom ) - | xa(0.)e(-m ) dy

i=16cZ [0,1)
1 < 1
=52 2 /6(—m~7) dy —/ Aa([0,))e(—m - y) dy
K i=10cZy" 56 [0,1)d

n d 1 d 1
= % > > H/c e(—=m;;) dvj — H/O%‘ e(—=m;v;) dv;
ij j=1

i=160€Z4 j=1
1 n d d
~ LSS Blmc) - [T Atm) (12)
i=1j=16,=%1 j=1

Note that

which follows from

Z B(0,Gy) = Z 1—Gj

0;==%1 0;==%1

Il
—_
|
N
DN | —
—
—
|
>
.
~—
+
>
.
s
~.
.
~__—

|
—
—_
|
Q
Sh
.
~—
_|_
—~
—_
|
—_
_|_
Q
Sh
.
~—
|
=

(13)
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Using Parseval’s identity

L3 n(on) = /[0 y
=3 ) = Y )], (14)

meZd meZd

2
g([oa’)’)a&NaN)’ d7

li
where Z denotes the sum without the zero index.

Let A be an arbitrary nonempty subset of {1,2,...,d}. Denote by M(A), the
set consisting of integer points m = (my,...,mgq) such that m; # 0 (1 < j < d)
if and only if j € A. We define

2
¢(A) = Y [g(m)] (15)
meM(A)
and it is therefore easy to see that (I4) can be written in the following form

W= Y Y

p=1|A|=p meM (A)

d
“3 % o). (16)

The sum is over all subsets A of {1,2,...,d} such that |[A| = p, for 1 < p < d.

Now fix A as some nonempty subset of {1,2,...,d} with p elements. We prove

the estimate |S o

G(A) < C*d) > m (17)
meM(A)

with constant C'(d) as in (). Returning to the expression (I2)) for the Fourier

coefficients, take m € M(A). It follows from the work done so far that

~ —1)P
9m) = i e R(m) PR (m) Z 11 > (e(=tymyai) —1) - (27Ti)1£2d—)PR(m)

i=1jcAf;=%£1

(18)
and we make the following transformation
IT > (e(=05mjai) = 1) = T (e(mjasy) + e(=mjai;) - 2)
JEAB;=+1 jeA
= Zr(e)e(em-ai). (19)
ecE(A)
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r is a coefficient function and E(A) denotes all points € = (e1,...,€4) such
that €; (1 < j < d) is equal to one of —1,0,1if j € A and €¢; = 0, otherwise.
The operation between € and m is component-wise multiplication. Note that
clearly |E(A)| = 3P since |A| = p, and moreover it is easily seen that

r(0) = (=2) (20)
and

r(e)] <2771 (21)

for all € # 0. Now from (I8), (I9) and (20),

g(m (em - a (=1)7
9m) = S0 o PR m>zzle€§(14) ) G2 R ()
1 N o A e
2d(27ri)PR(m)€€EZ(A)( (s €m)+ G R m)  (@ri)Pad-r R(m)
1 ’
= S 2o em)

By this last equality and ([21]), we obtain the following estimate for the Fourier
coefficients of the discrepancy function

2r—1

|g(m)| < m

1 Sp(op; em)
Z R(m) ‘

ecE(A)

< 1 Z, ’Sn(dn,em)’,
= 2d+1gp R(m)
ecE(A)
and using the Cauchy-Schwarz inequality on the right-hand side of the above
gives

~ 2 3F—1 S ( O'n, €m)
|g(m)| = dt1i,2p Z | m) |
ecE(A)

recalling that |E(A)| = 3P. Returning to (IH),
3P -1
¢(4) < Ad+ 1 2p Z (e (22)
ecE(A)
where we have written

Qe) := Z M.

2
meM(A) R (m)
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For any nonempty subset B of the set {1,2,...,d}. We introduce the set U(B),
consisting of all points € = (e1,...,€q) such that e, = £1if j € B and ¢; =0
otherwise. Clearly, |U(B)| = 2/5l. We can now identify

Y-y Y Y 0 2

ecE(A) q=1 BCA ecU(B)
|Bl=q

where the summation on the right hand side is over all possible subsets B of A
consisting of ¢ elements (1 < ¢ < p). Let B be a fixed nonempty ¢ element
subset of A. Then for € € U(B),

Qe) = Z —|Sn(an;6m)|

meni(ry  F(m)

B <, 1\ | S (o em)|2

) 2 Pm
m=-—00 meM (B)

T\ ’Sn(an;em)’2
- (?> 2 " m
meM(B)

(Y el 2

2
meM(B) R (m)

where the last equality holds since € € U(B) has the effect of permuting the
elements of the set M(B) in the summation. Therefore from ([23) and (24)),
we have

2 on;m) |’
3 Q(G)S%lz(p) 3 %, (25)

ecE(A) meM(A)
where » .
3
po) =3 (%)X Y
q=1 BCA ecU(B)
|Bl=q
p q
6
> (%) X
q=1 BCA
|Bl=q
P q p
- P 6 - 6
() () - 2

56
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From (22)), (25) and (20), conclude that
2
1 1 6 \P ’Sn(an;m)’
o) < g (1 - 3_p> ((1 t) - 1) 2 R*(m)
meM(A)

Hence bearing in mind that for p < d,

- 3) (e 57 ) et

and the assertion (I7) is proved. Now, to finish from (I6]) and (7))

Guen ey, Yy ol

p=1]A|=p meM(A)

_02 d) Z’S U"’m>|

meZd
= C*(d)F;(on)

and by square rooting, we have the statement. (]

Proof of Theorem 2. Let & be an infinite symmetrical sequence contained
in [0,1)¢, and let o be an infinite sequence contained in [0, 1)% which generates &.
Let a natural number N > 2¢, then set n = LN/QdJ and m = 2%n. Firstly, notice

that
29p < N < 2%(n+1). (27)

From the definitions of symmetrisation in Section 2.1, set 7., to be the sequence
a-771 == <b13b27 cee 7bm>>

consisting of the first n terms of sequence o. Applying Theorem 1 to sequences
om and o, we have

where C(d) is as in ().
The next step requires a well known technical Lemma.

LEMMA 1. Let 1 < p < co. Let o be any infinite sequence contained in [0, 1)d.
Then for every n € N with n < N, the following inequality holds

NL, n(o) <nLlyn(o)+ N —n.
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Proof. Let n € Nsuch that 1 <n < N, and x € [0,1)? be an arbitrary point.
Write 0 = (a, )nen, then

ZXX(ai) = ZXX(ai) + p(x), (29)

where the function p satisfies the condition
0<pkx)<N-—-n (30)

Using (29)), the discrepancy function can be written as

Ng([0,x),0,N) = Zxx(ai) — N)q([0,%))

— Z xx(a;) + p(x) — NAq([0,x))

> Xx(ai) = nXa([0,x)) + nXa([0,x)) + p(x) — NAa([0,x))

Z Xx(a;) — n)\d([O, X)) + q(x)

= ng([O,x), o, n) + q(x), (31)
where the function ¢ denotes,
1) = p(x) — (N = n)Aq([0,%)). (32)

From (30), (32)) and noting that

0 < X([0,x)) <1

we can conclude
lg(x)] < N —n. (33)

Now we use ([BI)), (33) and the definition of the £,—discrepancy to imply
NLpn () = N g0, NI,
= lIng(-,0,n) +q()l,
< nllgC,o,m)lz, + lall,
=nLpn(o) + HQH£,,
<nLyn(c)+ N —n,

which concludes the proof of the Lemma. O
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Returning to the proof of Theorem 2, from ([27)) we see that
1<m<N and N-m<2%—1.
Therefore applying Lemma [l with p = 2,
NLyn(6) <mLom(5) + N —m < NLo,y(5) +2% — 1.

C tly,
onsequently. Lon(5) < Lom(3) + (21— 1)/N, (34)

and concluding from (28)) and (34),
Lo n(6) < C(d)F,(a) + (27 = 1)/N
we obtain the required statement. O

Proof of Theorem 4. Let o be a finite sequence contained in [0,1)?, and
let &, denote a symmetric sequence consisting of n = 29N terms, which is
generated by on. Recall Theorem 1

Lon(0n) < C(d)Fn(on) (35)
and note the relation 1
_ od

o = 280 (36)

with 3(d) defined as in [B]). Therefore we can rewrite (35]) as

1

F > = n(0n) = d n(0n),

N(oN) = C(d)EZ’ (0n) = 298(d) L2,n(5n) (37)

lower bounding the diaphony by the Ls—discrepancy of the symmetrised se-
quence. At this time, we recall Roth’s result regarding the lower bound for the
Lo-discrepancy. It states i
1 d-1
£2(5) 2 afd - 1) 1B
n
with constant «(d) defined as in (). Thus
Lo n(6r) > ad — l)n_l(logn)%

a—1

=a(d—1)(2N)"!(log(2¢N)) 2

> a(d—1)27*N""(log N) > (38)
Putting together (37) and ([B8)), we conclude that
Fy(on) > 2°8(d)L2.n(50)
> 298(d)[a(d — 1)27*N " (log N) =]
— o(d — 1)B(d) N~ (log N)F
as required. O
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Proof of Theorem 5. Let o be an infinite sequence contained in [0,1)%
Let & be an infinite symmetric sequence contained in [0, 1)¢ which is generated
by o. Choose arbitrary constants A(d), A;(d) and As(d) such that

0 < A(d) < A1(d) < Az(d) < a(d)B(d).
Then clearly,

and from Theorem 3,

Az (d)
A(d)
for infinitely many N. We choose sufficiently large enough N which satisfies (39)
and the conditions

(VBN

NLy n(5) > (log V) (39)

25 A1 (d)
V2 R - A w

and
Aa(d)(log N)? — (27— 1)B(d) > Ay (d)(log N)*?. (41)

Observe from [{0) that N > 2¢. Set n = | N/2¢] and rearranging the statement
of Theorem 2 with ([B6]), we can write

NFE,(0) > 2%B(d)N Ly n(5) — 2% (27 — 1)B(d). (42)
Using (D),
N A(d) N
= |N/2% > = —1> —
ot 1 (H)(3)
and conversely,
_ d| <« N
n=|N/2¢ < YR
Putting the last two inequalities together, we obtain
2dA1 (d)n
N<—F+ 43
n<Ns—0 (43)

From (39)), (1)) and (42
NF,(0) > 27 45(d)(log N) ¥ — 242 — 1)4(d)

> 24 (d)(log N)#.
It follows from the last line and ([A3]), that
F,(0) > A(d)n ' (logn)%. (44)

The statement is now proved for all n < N.
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To show for all infinitely many n € N, we proceed via the following. Let
(Nk)ken be an infinite sequence of natural numbers satisfying the condition

N1 > N +20 (k=1,2,..) (45)

Let each member of the sequence (Ny)ren also satisfy conditions ([B9) to (4I)
with N = Ny, (k = 1,2,...). For each k € N, set np = |Ny/2¢] and by (@H)
it follows that,

ng<ng <ng<---

With the same steps that we used to prove ([@4]), we can conclude that
Fo, () > A(d)n; *(logny,) ®

for each k € N. Therefore, the estimate ([44)) is satisfied for infinitely many k € N.
Given that the constant A(d) is an arbitrary positive number less than a(d)3(d),
we have the Theorem. g

4. A key proof for the dyadic case

In this final section we prove the main result, Theorem 8 and note that The-
orems 9—11 can be shown along the same lines as the corresponding Theorems
for the classical diaphony, just incorporating Theorem 8 instead of Theorem 1.

Proof of Theorem 8. Let
on=(a); C[0,) and &y = (b)Y, c[0,1)¢

be finite sequences consisting of n and N = 2%n terms, respectively, such that
0, generates . Then from the definition of the sequence Gy, we can rewrite
the discrepancy function as follows.

907,55 N) = 53 30 xo (500 6a:) < Ma(fo,m). (46)

1=10€Zy
where Z; is defined as in Remark 1. The discrepancy function can then be written
asymptotically equal to a Walsh series. That is,

9([0,7), 55 N) ~ Y Gk)wali(v),
keNd

where each of the Walsh coefficients g(k) can be calculated by

90 = [ (07,55 Nl ay. (47)
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The following Lemma allows the computation of the integrals arising from
the expression above for the Walsh coefficients.

LEMMA 2. Let k € N. For x € [0,1), we define a,, = an(z) and b, = b, (x) by
ap:=m-2""<z<(m+1)-27"=:b, (48)
for some integers 0 < m < 2" and n > 0. Define and denote two integrals by
1 1
Ak, x) ::/ walg(v)dy and B(k) ::/’ywalk(’y) dy.
T 0

Then, A(k, z) = wal(z) (¢, —2) and B(k) =0,

where P, is defined as one of a, or b, depending on which is nearer to x.
(If x is the midpoint of (an,by), then set b, =b,.)

Proof. We begin with A(k,x). Section 3 of [6] discusses integrals of the form

Ji(x) = /Oxwalk(’y) dry

and gives a concise and intuitive result on how one can compute integrals of this
kind. Namely,

J(x) =waly(z)(z — ¥n),

where 1), is defined as in the statement of the Lemma above. Due to an elemen-
tary fact in the study of Walsh functions

1
/ wal,(y)dy =0
0
for all k # 0 and we can therefore conclude as required
1
Ak, x) = / waly () dy
ml T
= / waly (y)dy — / walg () dy
0 0

= —Ji(z) = walp(z) (¢¥n — ). (49)
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Moving on to the integral B(k), we use a simple integration by parts and (@3]
to show that

1
B9 = [ wali(2)dy
0
1
=- / Je(7v) dy
0
1
= / walg (7) (¥ —7) dy
0
1
= / waly () dy — B(k).
0
Therefore, conclude that B(k) = 0. O

We now return to the main body of the proof of Theorem 8. Use the expression

for the discrepancy function in ([#G]) and set
1
¢i(0) = 5(1 —0) + 0a;.

The Walsh coefficients from (47)) become

900 =50, 3- 3 [ xalComalimdy [ (0. )walu(a) b

i=10€Z, [0,1)¢
1 < /1
= waly () dy / Aa([0,7))waly () dy
2dn ; H;d ¢, [0,1)4

n d 1 d 1
1
=572 XL [ vty =TT [ )y (30
ij j=1

i=10€Zy j=1
From here we can first consider the coefficient g(0), noting that walp = 1.

~ 1 n d 1 d 1
70 =5, 3 S L[ a1 [ e
©J Jj=

i=10€Z3j=1

1 & 1
=g 2 11 2 - -113

i=1j=10=%+1 j=1
1 < 1
1=1
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As mentioned in Section 2.1, Parseval’s identity holds for the Walsh function

system. Hence,
Glow) = [
[0,1)¢

=3 ) = Y gL, (52)

keNg keNg

9([0,7),5n, N)Fd'v

/
where Z denotes the summation without the zero index.

For an arbitrary nonempty subset A of the set {1,2,...,d}, denote by M(A)
the set consisting of points k = (k1,. .., kq) € N& such that k; #0 (1 < j < d)
if and only if j € A. We define

=Y |aw)l". (53)

keM(A)

It is easy to see that (B2]) can be written in the form

£2NUN) ZZ Z |g

p=1|A|=p kEM(A)

PORAH (54)

p=1|Al=p
where the sum is over all subsets A of {1,2,...,d} such that
|Al =p, for 1<p<d.

Now fix A to be some p element subset of {1,2,...,d}. From Lemma [2] and
taking k € M(A), (B0) simplifies to

900 = 5> 3= [T wal, ) (0, — ).

i=10€Zy jEA

Then, noticing that (¢, — (i;) < 27" when we write k; = 2™ + k; for integers
0< k; < 2" and n; > 0 for each j € A, we obtain

(k) < %n ST X wab ()2, (55)

64
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Considering the product in (BH), first note the following elementary facts regard-
ing the dyadic Walsh functions. The Walsh functions are periodic with period
one, and therefore wal,(1 — z) = walg(—x). Furthermore, for all k¥ € Ny and
xz €10,1), we have

waly (z) = walg(—2x).
Thus,

I > wal,(¢y) 27 =[] 2™ (Walkj (aij) + walg, (1 — %‘))

JEAO;=+1 JjEA

= H =" (walk]. (aij) + Walk]. (*aij))
JEA

= H 27" <2walkj (aij)>
JEA

= 2" wali(a;) [[ 27" (56)

JEA
From (B3)) and (B6), ) n
(k) < ST H 21 Zwalk(ai)

jEA i=1

thus we obtain the following estimate of the Walsh coefficients

R 1 a1
jEA i=1
Squaring (57, 2
2 1 Con | 1 &
509 < 5y TT 27| S0 wal(an)
jEA i=1
2
Tz(k) 1 n
= EZwalk(ai) : (58)
=1

where we have denoted [];. 4 72(k;) by r2(k), and the function 77 is as in the
definition of the dyadic diaphony. Using (B3) and (G8]), we get

1TL
_Ef Ik (a;
n - 1Wak(a)

2

IN

YA < s 3 )

IN
(]
o
=

(59)
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Now concluding from (B3), (54) and (&9,

VEY Y Y

p=1|Al=pkeM(A)

Z k) % Z walk (a;)

1 n
_E Ik (a;
n s 1Wak(a)

2

keNg\{0}
1 1< ’
_ (ad
keNd\{o0} =1
::52(d)lﬂin(0n)
with constant §(d) is defined as in (). O

An Appendix - Proof of Theorem A

For the readers benefit we give a proof of the recent Ls-discrepancy result,
Theorem A, used in Section 2.3 of our paper to improve the lower bound results
of the one-dimensional constants.

The sketch of the proof, originally published in [I0], was later found to contain
a small inaccuracy and therefore after introducing some necessary preliminary
material, a complete and rectified proof is provided.

Preliminaries

We begin by noting that for the purposes of this appendix, an altered form
of the discrepancy function is used as in [I0]. Let Cp = (21,1] X -+ X (24, 1]
for z = (21,...,24) € [0,1)% and x € [0,1)? be an arbitrary point. Then define

g(x,on,N) = Z xc, (x) — NAq([0,x))

ZEON

for a finite N term sequence, o C [0,1)% Notice that the summation in the
definition above is simply the number of terms of the sequence oy that are
contained in the subinterval [0, x).
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Haar-coefficients of the Discrepancy Function. A dyadic interval of length
277 (j € Np) in [0, 1), is an interval of the form

1= [E, m + 1)
277 2
for m = 0,1,...,27 — 1. The Haar function h; = hj,, with support I is the
function on [0, 1) which is 1 on the left half of I , —1 on the right half of I, and
0 outside of I. The L., —normalised Haar system consists of all Haar functions
hjm (for j € Ng and m = 0,1,...,27 — 1) together with the indicator function
of [0,1), h_10. After normalisation in EQ([O, 1)), we obtain the orthonormal
Haar basis of Ez([O, 1))

Let N_y = {-1,0,1,2,...}, and define D; = {0,1,...,27 — 1} for j € Ny
and D_; = {0} for j = —1. In higher dimensions, i.e., d > 2, the Haar func-
tion hjm is given as the tensor product hjm(x) = hj, m, (1) ... hj, m,(zq) for
x = (1,...,24) € [0,1)4j = (j1,...,ja) € NY and m = (my,...,my) € Dj =
Dj, x---xD;,. We will call the subintervals of [0, 1)%, Ijm = Ij,.m, X X Ljy my
dyadic boxes. Note that all dyadic boxes with fixed j are congruent, hence we
call j the shape of the box Ijm. Lastly for j € N%,, let |j| = max(0,j1) +
max(0,j2) + -+ + max(0, j4). The Lo —normalised tensor Haar system con-
sists of all Haar functions hjm with j € N%; and m € ;. After normalisation
in £5([0,1)%), we obtain the orthonormal Haar basis of £5([0,1)?).

Parseval’s equality shows that the Lo-norm of a function f € EQ([O, l)d),
denoted | f|[,, can be computed as

£, = > 25 57 Jujml®,

jeN‘il meD;

where

mmzmﬂﬂz/ F(%) - hym(x) dx

[0,1)?
are the Haar-coefficients of f.
Useful Lemmas

We will require the following Lemmas.

LEMMA A. Let f(x) = x1...74 for x = (21,...,74) € [0,1)%. Let j € N,
m € D, and let pjm be the Haar-coefficient of f. Then,
Him = 2—2|j‘—2d.
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Proof. Forx € [0,1)¢, j € N and m € Dj, let

Hj,m = / )\d([O, X)) - hjm(x) dx
[0,1)4

:/ T1...2q - hjm(x)dx
[0.1)* ’

d 1
i=170

Note that for j; € Ny,

1
/ €Ty - hji,mi (l‘z) dxl = 2_2ji_2.
0

Therefore, we can conclude easily that

d
Hjm = H 2_2%_2
=1

— 9—21—2— - —2ja—2

9—2ljl—2d

as required.

LEMMA B. Fix z = (21,...,249) € [0,1)%, and let f(x) =

characteristic function for the subinterval C, = (z1,1] x ---

O

Xc, (x) be the
X (zq,1] with

x = (z1,...,24) € [0,1)% arbitrary. Let j € N¢,m € Dj and pjm be the

Haar-coefficient of f. Then
:uj,m = 07

whenever z is not contained in the interior of the dyadic box I , supporting Aj m.

Proof. Take z € [0,1)%, such that z ¢ Ij ym. Note in the first instance, that

[j,m 2/ X, (X) - hjm(x) dx
[0,1)4
1
:/ hjm(x) dx
d 1
:H/hﬁ,mi(l'i)dl'i-
=1 zZ4

1=
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So z ¢ Ij m implies that z; & I, 1, == [gjz, ";]fl) for some

ie{l,2,...,d} and m; € Dj,.
Thus, there are two cases to consider. Either:

(1) 2z > mz’i]j.rl, in which case h;, ,,, = 0 for all mleJ:l >z > 1. This implies

1
/ hj'hmi (l‘z) dl‘z =0.
Or, -
(2) z; < g7+, in which case

1
/ h’jmmi (xl) da; =0

i

since hj, m, equals 0 in

I, m; and / hj, m,(zi)dz; = 0.
I.

Ji g

Therefore, we can conclude for z ¢ Ij m,

pim= [ XL () hym(x) dx = 0
. [0,1)¢
as required. O
Main statement and proof

THEOREM A. For a finite sequence oy contained in [0,1)¢ the inequality

(log N) ="

Lon(on) >v(d—-1) N

holds with

(a) -
v(d) = .

V21 - 224+1/dl(log 2) &
Proof. Let on be a finite sequence contained in [0,1)%, and take arbitrary
x € [0,1)% Let j € Nd, m € Dj be such that no point of oy lies in the interior
of the dyadic box I, supporting hjm. Let p5m denote the Haar-coefficient
of the discrepancy function, which for the purposes of this proof as already
mentioned, we define as

g(x,0n,N) = Z X, (x) — N)\d([O,X)).

Now, the Lemmas above imply that
Hm = fN2—2|J\—2d7 where \_]| =j1+ jo+ -+ ja.
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Next note that for a fixed j € Ng, the cardinality of Dj is 2l and the interiors
of the dyadic boxes Ij m supporting hj m, are mutally disjoint. This implies that
there are at least 25/ — N such m € D for which no point in the N term sequence
on lies in the interior of the dyadic box Ij m supporting hj m.

Set M := [logy, N'|. Then from Parseval’s equality

L3 n(on) > N? Z olil (2l — N)g-4lil—4d
51>M

:2—4dN2 Z 4—|_]‘ _2—4dN3 Z 8_"”
li|>M lil>M

where the inequality is due to summing only those 5 m with j € Nd and m € D;
as chosen above. Considering the summations, the coefficient of M4~! in

Z g bl

[i[>M
is computed as
g M+
——  f 1.
G-D@-nt "7
This implies
4 Md—l
2 > 944 (N~ M)22
2y (o) 2 27 ) 3(d—1)!
8 M1
— ot (Nom M2
SERRE ]

Now let t = M —log, N, so that
0<t<1 and N27M =271

Then we get
L3 n(on) = w(logy N)*
if d—1 d—1
4 M~ 8 M*~
2—4d 2—2t - _ 2—4d 2—3t - > M —t d—1
( )S(d—l)! ( )7((1—1)!—“( )
which is satisifed if
W< b é(2—‘“) — §(2—5“) forall 0 <t < 1.
= 24d(d— 1)1\ 3 7 -

Or equivalently,

1 (1, 8 1
< (zy*—zy*) forall- <y<1
”24d(d1)!(3y 7y> oralgsys
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To finish, we require the minimal value of the expression above. This occurs
when y = 1, and equals %. It follows that we have arrived at the desired constant.
To obtain the exact order in the statement, recall that we must divide by N to
rectify the use of the altered discrepancy function throughout the proof. O

ACKNOWLEDGEMENTS. The author would like to express thanks in the first
instance to Friedrich Pillichshammer for supplying the chapters of Proinov’s
monograph. Gratitude is also expressed to Florian Pausinger for the numerous,
useful discussions in the development of this manuscript. A mention must be
given to the anonymous referee for the valuable feedback which was used while
improving the paper.

REFERENCES

[1] BILYK, D.: On Roth’s orthogonal function method in discrepancy theory, Unif. Distrib.
Theory 6 (2011), no. 1, 143-184.

[2] CRISTEA, L.L.—PILLICHSHAMMER, F.: A lower bound for the b—adic diaphony,
Rend. Mat. Appl. Ser. VII 27 (2007), 147-153.

[3] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Discrepancy Theory
and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.

[4] DICK, J.—PILLICHSHAMMER, F.: Ezplicit constructions of point sets and sequences
with low discrepancy, (P. Kritzer, ed. et al.), In: Uniform Distribution and Quasi-Monte
Carlo Methods. Discrepancy, Integration and Applications. Radon Ser. Comput. Appl.
Math. Vol. 15, De Gruyter, Berlin 2014, pp. 63-86.

(5] ERDOS, P—TURAN, P.: On a problem in the theory of uniform distribution, Indag.
Math. 10 (1948), 370-378.

[6] FINE, N. J.: On the Walsh Functions, Trans. Amer. Math. Soc. 65, No. 3 (1949), 372-414.

[7] GROZDANOV, V.—STOILOVA, S.: On the theory of b-adic diaphony, C.R. Acad.
Bulgare Sci. 54 (2001), 31-34.

[8] HELLEKALEK, P.—LEEB, H.: Dyadic diaphony, Acta. Arith. 80 (1997), no. 2, 187-196.

[9] HINRICHS, A.—LARCHER, G.: An improved lower bound for the La-discrepancy,
J. Complexity 34 (2016), 68-77.

[10] HINRICHS, A.—MARKHASIN, L.: On lower bounds for the Ls-discrepancy, J. Com-
plexity 27 (2011), 127-132.

[11] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. In: Pure and
Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney,
1974.

[12] LARCHER, G.: On the star-discrepancy of sequences in the unit-interval, J. Complexity
31 (2015), no. 3, 474-485.

[13] LARCHER, G.: On the discrepancy of sequences in the unit-interval, Indag. Math. (N.S.)
27 (2016), 546-558.

71



(14]

(15]
(16]
(17]
(18]
(19]
(20]

(21]
(22]

23]
(24]
(25]

(26]

NATHAN KIRK

LARCHER, G.: Digital Point Sets: Analysis and Application. In: Random and Quasi-
Random Point Sets, Lect. Notes in Stat. Vol. 138, Springer-Verlag, Berlin, 1998,
pp. 167-222.

LARCHER, G.—PUCHHAMMER, F.: An improved bound for the star discrepancy
of sequences in the unit interval, Unif. Distrib. Theory 11 (2016), no. 1, 1-14.

PAUSINGER, F.: On the intriguing search for good permutations, Unif. Distrib. Theory
14 (2019), no. 1, 53-86.

PROINOV, P.D.: On irregularities of distribution, C. R. Acad. Bulgare Sci. 39 (1986),
no.9, 31-34.

PROINOV, P.D.: Quantitative Theory of Uniform Distribution and Integral Approzima-
tion, University of Plovdiv, Bulgaria (2000). (In Bulgarian)

PROINOV, P.D.: On extreme and Lo-discrepancies of symmetric finite sequences, Serdica
Math. J. 10 (1984), 376-383.

PROINOV, P.D.: On the La-discrepancy of some infinite sequences, Serdica Math. J. 11,
(1985), 3-12.

ROTH, K.F.: On irregularities of distribution, Mathematika 1 (1954), 73-79.

VAN DER CORPUT, J. G.: Verteilungsfunktionen I, Proc. Akad. Amsterdam 38 (1935),
813-821. (In German)

VAN DER CORPUT, J. G.: Verteilungsfunktionen II, Proc. Akad. Amsterdam 38 (1935),
1058-1066. (In German)

WALSH, J.L.: A closed set of normal orthogonal functions, Amer. J. Math. 55 (1923),
5-24.

WEYL, H.: Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3,
313-352. (In German)

ZINTERHOF, P.: Uber einige Abschitzungen bei der Approzimation von Funktio-

nen mit Gleichverteilungsmethoden, Sitzungsber. Osterr. Akad. Wiss. Math.-Naturwiss.
KI. S.-B. II 185 (1976), 121-132. (In German)

Received July 20, 2020 Nathan Kirk
Accepted September 8, 2020 Mathematical Sciences Research Centre

72

School of Mathematics and Physics
Queen’s University Belfast
University Road

Belfast BT7 1NN

Northern Ireland

UNITED KINGDOM

E-mail: nkirk09Qqub.ac.uk



	1. Introduction
	2. Statement of results
	2.1. Preliminaries and notation
	2.2. The results of Proinov
	2.3. Improvements after 1986
	2.4. An extension to the dyadic diaphony

	3. The proofs of Proinov
	3.1. The main ideas of Proinov
	3.2. The proofs of Theorems 1, 2, 4 and 5

	4. A key proof for the dyadic case
	An Appendix - Proof of Theorem A
	Preliminaries
	Useful Lemmas
	Main statement and proof

	REFERENCES

