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ABSTRACT. In 1986, Proinov published an explicit lower bound for the di-
aphony of finite and infinite sequences of points contained in the d−dimensional

unit cube [Proinov, P.D.:On irregularities of distribution, C. R. Acad. Bulgare
Sci. 39 (1986), no. 9, 31–34]. However, his widely cited paper does not con-
tain the proof of this result but simply states that this will appear elsewhere.
To the best of our knowledge, this proof was so far only available in a monograph
of Proinov written in Bulgarian [Proinov, P.D.: Quantitative Theory of Uniform
Distribution and Integral Approximation, University of Plovdiv, Bulgaria (2000)].

The first contribution of our paper is to give a self contained version of Proinov’s
proof in English. Along the way, we improve the explicit asymptotic constants
implementing recent, and corrected results of [Hinrichs, A.—Markhasin, L.:
On lower bounds for the L2-discrepancy, J. Complexity 27 (2011), 127–132.]
and [Hinrichs, A.—Larcher, G.: An improved lower bound for the L2-discrepancy,
J. Complexity 34 (2016), 68–77]. (The corrections are due to a note

in [Hinrichs, A.—Larcher, G. An improved lower bound for the L2-discrepancy,
J. Complexity 34 (2016), 68–77].) Finally, as a main result, we use the method
of Proinov to derive an explicit lower bound for the dyadic diaphony of finite and
infinite sequences in a similar fashion.

Communicated by Peter Kritzer

1. Introduction

The beginnings of the theory of uniform distribution modulo one can be at-
tributed to the work of H. Weyl [25] of 1916. Van der Corput [22, 23] later
conjectured that no sequence can be, in some sense, too evenly distributed.
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In 1954, K. Roth [21] improved on the thoughts of Van der Corput publishing a
celebrated sharp lower bound for the L2−discrepancy of an d−dimensional finite
sequence, σN . In particular,

L2,N (σN ) ≥ c(d)
(logN)

d−1
2

N

where c(d) is a constant dependent only upon the dimension (d ≥ 2). The result
of Roth has specific importance throughout this paper. For a more detailed
and comprehensive history of the beginnings and development of the quantitive
measures of uniform distribution theory, we refer the reader to the survey [1].

Motivated by the heavy influence of trigonometric summations in Weyl’s
Criterion for uniform distribution modulo one and the inequality of Erdős-
-Turán [5, 11], P. Zinterhof proposed a new measure of irregularity of distri-
bution in [26] which he named, diaphony, denoted throughout by FN . Similar
to the above result for the L2-discrepancy, in 1986 P. Proinov published results
[17] allowing one to calculate exact lower bounds for the diaphony of arbitrary
d−dimensional sequences.

Of particular concern to the author is a simple corollary of Proinov’s work
concerning the lower bound of one-dimensional sequences contained in the unit
interval. It is known [17] and will be shown in this paper, that for an infinite
one-dimensional sequence σ,

FN (σ) ≥ c ·
√
logN

N
(∗)

holds for infinitely many N , where c > 0 is an absolute constant. It is therefore
natural to consider, what is the largest value of c for which (∗) holds for all one-
dimensional sequences σ for infinitely many N? To investigate, we define the
asymptotic constant for the diaphony of an infinite one-dimensional sequence σ,

f(σ) := lim sup
N→∞

NFN(σ)√
logN

and denote by
f∗ := inf

σ
f(σ)

the one-dimensional diaphony constant. That is, f∗ is the supremum over all c
such that (∗) holds. Study in areas of the same flavour have appeared recently
in the form of asympototic constants of the corresponding notions of (star and
extreme) discrepancy [12, 13, 15, 16]. Returning to our motivation, in his 1986
paper Proinov states a lower bound for f∗. This paper is widely cited however
the proofs of several of the results are not included in the text and instead, they
are simply said to appear elsewhere. Therefore, the first aim of this paper is
to make these proofs accessible. Further to collating these hidden proofs, and
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due to recent results improving lower bounds of the L2-discrepancy in [10] and
[9], we update and improve the results concerning lower bounds of the diaphony
of general d−dimensional sequences and state the up-to-date one-dimensional
diaphony constant.

As discussed above, the concept of the diaphony is based on the trigonometric
function system. However, introduced by Hellekalek and Leeb in [8], another
notion of diaphony exists based on the (dyadic) Walsh function system.1 This is
aptly named, dyadic diaphony and denoted throughout by F2,N .2 It is already
known [2] that for the dyadic diaphony,

F2,N (σN ) ≥ c̄(d)
(logN)

d−1
2

N
,

where σN is a finite sequence contained in the d−dimensional unit cube, and
c̄(d) is a constant dependent only upon the dimension. In this paper, after un-
derstanding Proinov’s methods in the case of the classical diaphony, we move
in the latter stages to use these same techniques in the setting of the dyadic
diaphony. In doing so, we arrive at analogous explicit lower bounds for the
dyadic diaphony and hence finish by stating an equivalent lower bound for the
one-dimensional dyadic diaphony constant,

f∗2 := inf
σ

lim sup
N→∞

NF2,N(σ)√
logN

.

In what follows, Section 2.1 gives the necessary preliminaries which allow the
statement of Proinov’s Theorems in Section 2.2. We proceed to give the means
in which we can state the updated constant for the diaphony and a new constant
for the dyadic diaphony in Sections 2.3 and 2.4, respectively. Section 3.1 contains
a high level overview of the proof of Proinov, while Section 3.2 follows to give
full, detailed proofs. Lastly, Section 4 gives a proof for the main result in the
derivation of the explicit lower bound for the dyadic diaphony.

1J. Walsh published his namesake function system in 1923, [24].
2It was found that there exists an innate relationship between the function system that is

chosen and the type of constructions of sequences that can be analysed with the corresponding
Weyl summations. For example, the trigonometric function system is well suited to study lattice
point sequences and in this instance, the Walsh function system is better suited to analyse
digital nets and sequences, [14].
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2. Statement of results

2.1. Preliminaries and notation

Discrepancy. In this paper we are concerned with the distribution of points
in the d−dimensional unit cube, [0, 1)d. Let σN = (ai)

N
i=1 be a finite sequence

of points contained in [0, 1)d. For any point γ = (γ1, γ2, . . . , γd) ∈ [0, 1)d define
the discrepancy function as,

g
(
[0,γ), σN , N

)
:=

1

N

N∑
i=1

χγ(ai)− λd
(
[0,γ)

)
,

where χγ is the characteristic function of the subinterval [0,γ) and, λd
(
[0,γ)

)
:=∏d

i=1 γi is the usual d−dimensional Lebesque measure.

The Lp−discrepancy of a sequence σN is a measure of the irregularity of dis-
tribution of σN , and is obtained by taking the Lp−norm (1 ≤ p ≤ ∞) of the
discrepancy function.

Lp,N (σN ) :=
∥∥g([0,γ), σN , N)∥∥Lp

=

(∫
[0,1)d

∣∣∣g([0,γ), σN , N)∣∣∣p dγ
)1

p

.

Let σ = (bn)n∈N ⊂ [0, 1)d be an infinite sequence. From the initial segment
formed by the first N terms of σ, we can write σN = (bi)

N
i=1 and therefore

define Lp,N (σ) := Lp,N (σN ).

Diaphony. In 1976, P. Zinterhof proposed the concept of diaphony. It is ap-
propriate that some further notation is now introduced. For any finite sequence
σN = (ai)

N
i=1 contained in [0, 1)d, define the trigonometric sum

SN (σN ;m) :=
1

N

N∑
i=1

e(m · ai),

where we have set e(x) := exp(2πix) throughout for simplicity. For every lattice

point m = (m1, . . . ,md) ∈ Z
d, we define R(m) :=

∏d
i=1max

(
1, |mi|

)
.

Let σN be a finite sequence contained in [0, 1)d. The diaphony of σN is defined by

FN (σN) :=

( ∑
m∈Zd

∣∣SN (σN ;m)
∣∣2

R2(m)

)1
2

.
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In the case that σ denotes an infinite sequence in [0, 1)d, adopting the same
notion as above we truncate σ to the finite sequence σN , then set

FN (σ) := FN (σN ).

Dyadic diaphony. The dyadic diaphony as introduced in [8] is the final mea-
sure of irregularity of distribution in which we will be interested. The key dif-
ference between the classical diaphony and dyadic diaphony is the replacement
of the trigonometric functions with the dyadic Walsh functions.3

For k ∈ N0 with base 2 representation k = κa−12
a−1 + · · ·+ κ12 + κ0, where

κi ∈ {0, 1} and κa−1 	= 0, we define the kth (dyadic) Walsh function walk : R →
{−1, 1}, periodic with period one, by

walk(x) := (−1)x1κ0+···+xaκa−1 ,

for x ∈ [0, 1) with base 2 representation x = x1

2 + x2

22 + · · · (unique in the sense
that infinitely many of the digits xi must be zero). For dimension d ≥ 2, we
define the d−dimensional kth (dyadic) Walsh function walk : Rd → {−1, 1} by

walk(x) :=

d∏
j=1

walkj
(xj),

where k = (k1, . . . , kd) ∈ N
d
0 and x = (x1, . . . , xd) ∈ [0, 1)d. The system {walk :

k ∈ N
d
0} is called the d−dimensional (dyadic) Walsh function system.

The dyadic diaphony of a finite sequence σN = (ai)
N
i=1 contained in [0, 1)d is

defined as,

F2,N(σN ) :=

(
1

3d − 1

∑
k∈Nd

0\{0}
r2(k)

∣∣∣∣ 1N
N∑
i=1

walk(ai)

∣∣∣∣2
)1

2

,

where for k = (k1, . . . , kd) ∈ N
d
0, r2(k) :=

∏d
j=1 r2(kj), and

r2(k) :=

{
1 if k = 0,

2−2a if 2a ≤ k < 2a+1, with a ∈ N0.

In the scenario that we have an infinite sequence σ ⊂ [0, 1)d, again simply take
the initial segment formed by the first N terms of σ.

3It is worth noting that the dyadic diaphony was extended once more to arbitrary bases
(b > 2) using the b−adic Walsh function system in [7], named the b−adic diaphony. See the
open problem on page 11.
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Walsh series. A Walsh system analogue of the trigonometric Fourier series
exists, named the Walsh series (in some literature, the Walsh-Fourier Series).
For a function f : [0, 1)d → R, we define the kth (dyadic) Walsh coefficient
of f by

f̂(k) :=

∫
[0,1)d

f(x)walk(x) dx

for x ∈ [0, 1)d and k ∈ N
d
0. We can form the Walsh series of f as

f(x) ∼
∑
k∈Nd

0

f̂(k)walk(x).

It is appropriate to note that Parseval’s identity holds for the Walsh coefficients
due to the completeness of the Walsh function system. That is,∫

[0,1)d

∣∣f(x)∣∣2 dx =
∑
k∈Nd

0

∣∣f̂(k)∣∣2.
We refer to [[3], Appendix A] for a full treatment of the theory of the Walsh

function system and for justification of all above.

Symmetric sequences. Finally, we introduce an important symmetrisation
technique used in [19, 20]. Let σN = (ai)

N
i=1 be a finite sequence contained

in [0, 1)d, and let x = (x1, x2, . . . , xd) ∈ [0, 1)d. We say that point x has mul-
tiplicity p (0 ≤ p ≤ d) with respect to σN , if exactly p terms of σN coincide
with x.

The sequence σN is called symmetric if for any point x=(x1, . . . , xd)∈ [0, 1)d,
all points of the form(

τ1 + (−1)τ1x1, τ2 + (−1)τ2x2, . . . , τd + (−1)τdxd

)
(∗∗)

have the same multiplicity with respect to σN , when τi ∈ {0, 1} independently
for 1≤ i≤d. Now let σ̃N =(bi)

N
i=1 be a symmetric sequence contained in [0, 1)d.

We say σ̃N is generated by sequence σn = (ai)
n
i=1 if:

(1) N = 2dn, and

(2) a point x = (x1, . . . , xd) ∈ [0, 1)d is a term of the sequence σn, then
each point of type (∗∗) is a term of the sequence σ̃N , where τi ∈ {0, 1},
(1 ≤ i ≤ d) independently.4

4Note that every point x ∈ [0, 1)d can be regarded as one-term sequence, so every point
x ∈ [0, 1)d generates at least one symmetric sequence in [0, 1)d consisting of p = 2d points.
Conversely, every symmetric sequence in [0, 1)d consisting of p = 2d terms is generated by any
of its terms.
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See Figure 1 and Figure 2 below.

Let σ̃ = (bn)n∈N be an infinite sequence, σ̃ is said to be symmetric if for any
n ∈ N the finite sequence consisting of p = 2d terms,

b(n−1)p+1,b(n−1)p+2, . . . ,bnp (†)
is symmetric. We say that the infinite symmetric sequence σ̃=(bn)n∈N is gener-
ated by an infinite sequence σ=(an)n∈N if for any n∈N, the finite sequence (†)
is generated by the point an.

Figure 1.
A random sequence

σn = (ai)
n
i=1 ⊂ [0, 1)2,

with n = 50.

Figure 2.
The symmetric sequence
σ̃N = (bi)

N
i=1 ⊂ [0, 1)2,

generated by σn

(fromFig. 1).

������ 1� The above statements regarding generating symmetric sequences
have the following equivalent formation.

We say that the symmetric sequence σ̃N is generated by σn = (ai)
n
i=1, if every

term of σ̃N can be represented as

1

2
(1− θ) + θai

with 1 ≤ k ≤ n, θ ∈ Zd. Zd denotes the subset of all d−dimensional points
of the form θ = (θ1, . . . , θd) with each coordinate θj = ±1 for 1 ≤ j ≤ d, and
the binary operation between θ and ai is component-wise multiplication.
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2.2. The results of Proinov

Proinov’s argument comes in three main steps. An overview of the high-level
structure of the proof is contained in Section 3.1.

In the first instance, Proinov lower bounds the diaphony of a sequence with
the L2-discrepancy of the symmetrised version of the sequence. Theorems 1 and 2
below cater to finite and infinite sequences, respectively.

�	�
��� 1� Let σ̃N be any finite symmetric sequence consisting of N = 2dn
terms contained in [0, 1)d, and let σn be any finite sequence also contained
in [0, 1)d consisting of n terms which generates σ̃N . Then the inequality,

L2,N(σ̃N ) ≤ C(d)Fn(σn)

holds with

C(d) :=
1

2d+1

√(
1− 1

3d

)((
1 +

6

π2

)d
− 1

)
. (1)

�	�
��� 2� Let σ̃ be any infinite symmetric sequence contained in [0, 1)d, and
let σ be any infinite sequence contained in [0, 1)d which generates σ̃. Then for a
natural number N ≥ 2d, the following inequality holds

L2,N (σ̃) ≤ C(d)Fn(σ) + (2d − 1)/N,

where n = �N/2d and C(d) defined as in (1).

This now allows for the application of the classical lower bound result of Roth.
Proinov extends the inequality of Roth to consider infinite sequences contained
in [0, 1)d.

�	�
��� 3� Let d ≥ 1. For any infinite sequence σ contained in [0, 1)d, we
have the following inequality

lim sup
N→∞

NL2,N(σ)

(logN)
d
2

≥ α(d)

with constant α(d) defined as,

α(d) :=
1

4d+3(d log 2)
d
2

. (2)
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We take a brief aside at this point to note that in [3], Theorem 3.20 cites a
slightly altered constant than α(d) as stated above. In this paper, the author
moves forward with constant (2) as defined and used by Proinov to record a self-
contained derivation of Proinov’s lower bound for the one-dimensional diaphony
constant, f∗. In any case, the constant α(d) is soon abandoned and replaced
by the updated constant γ(d) in (5) which is used for the remainder of the text.

Returning to the results, Proinov combines all the preceding observations
to derive his main results regarding the lower bound for the diaphony of finite
and infinite sequences in Theorems 4 and 5, respectively.

�	�
��� 4� Let d ≥ 2. For any finite sequence σN contained in [0, 1)d, we
have the following inequality

lim sup
N→∞

NFN (σN )

(logN)
d−1
2

≥ α(d− 1)β(d)

with α(d) defined as in (2) and constant β(d) defined as

β(d) := 2πd

√
3d

(3d − 1)
(
(π2 + 6)d − π2d

) . (3)

�	�
��� 5� Let d ≥ 1. For any infinite sequence σ contained in [0, 1)d,

lim sup
N→∞

NFN(σ)

(logN)
d
2

≥ α(d)β(d),

where α(d) and β(d) are defined in (2) and (3).

2.3. Improvements after 1986

As a simple Corollary of Theorem 5 (setting d = 1), the lower bound of the
one-dimensional diaphony constant known to Proinov is

f∗ >
π

256
√
log 2

= 0.0147 . . . (4)

Looking again at Theorem 5, the constants α(d) and β(d) are responsible
for arriving at (4). In particular, α(d) originates from the celebrated Theorem
of Roth regarding a lower bound for the L2-discrepancy. The authors in [10]
improve this classical result via an adaptation of Roth’s method considering cer-
tain Fourier coefficients of the discrepancy function with respect to the Haar
basis. We formulate this below as Theorem A, however note that the con-
stant γ(d) as stated is an edited version to that which was originally published.
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It was flagged in a later publication [9] by the same co-author that the proof
contains a small inaccuracy and instructions are given on how one rectifies this
issue, leading to constant (5). For clarity, we attach an appendix which contains
the adjusted proof of the L2-discrepancy result.

�	�
��� �� (A. Hinrichs & L. Markhasin, 2011)� Let d ≥ 2. For a finite
sequence σN contained in [0, 1)d, we have

L2,N (σN ) ≥ γ(d− 1)
(logN)

d−1
2

N

with constant γ(d) defined as,

γ(d) :=
1√

21 · 22d+1
√
d!(log 2)

d
2

. (5)

Subsequently, mimicing the proofs of Theorem 3 and Theorem 5 with constant
α(d) replaced with γ(d), we arrive at the following updated results in the general
d−dimensional case.

�	�
��� 6� Let d ≥ 1. For any infinite sequence σ contained in [0, 1)d, we
have the following inequality

lim sup
N→∞

NL2,N(σ)

(logN)
d
2

≥ γ(d)

with γ(d) defined as in (5).

�	�
��� 7� Let d ≥ 1. For any infinite sequence σ contained in [0, 1)d, we
have

lim sup
N→∞

NFN (σ)

(logN)
d
2

≥ β(d)γ(d)

with β(d) and γ(d) are defined as in (3) and (5).

One further improvement was made for sequences contained within the unit
square, [0, 1)2. The two authors in [9] derive a much improved lower bound for the
L2-discrepancy of 2−dimensional finite sequences using a variant of the method
from the earlier paper, [10]. For convenience, this is made explicit in Theorem
B below and we refer to Section 2 of [9] for a derivation and explicit form of the
constant.
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�	�
��� �� (A. Hinrichs & G. Larcher, 2016)� For a finite sequence σN con-
tained in [0, 1)2, the following inequality holds

L2,N(σN ) ≥ 0.0515599 . . . ·
√
logN

N
.

Using a similar argument to that of Theorem 3, it can be shown that one can
use the results of (d+ 1)−dimensional finite point sets to study d−dimensional
infinite sequences. Therefore, we can implement this 2−dimensional asymptotic
constant to gain a most improved lower bound of the one-dimensional diaphony
constant.


�
����� 1�
f∗ > 0.0515599 . . . · π = 0.1619 . . .

2.4. An extension to the dyadic diaphony

Finally, we apply the technique of Proinov to derive an explicit lower bound
for the dyadic diaphony. As above, we consider similar lower bounds for the
one-dimensional dyadic diaphony constant which we define as

f∗2 := inf
σ

lim sup
N→∞

NF2,N(σ)√
logN

.

�	�
��� 8� Let σ̃N be any finite symmetric sequence contained in [0, 1)d con-
sisting of N = 2dn terms with σn any finite sequence contained in [0, 1)d con-
sisting of n terms which generates σ̃N . Then

L2,N (σ̃N ) ≤ δ(d)F2,n(σn)

holds with constant,

δ(d) :=
√
3d − 1. (6)

�	�
��� 9� Let σ̃ be any infinite symmetric sequence contained in [0, 1)d, and
let σ be any infinite sequence contained in [0, 1)d which generates σ̃. Then for a
natural number N ≥ 2d,

L2,N(σ̃) ≤ δ(d)F2,n(σ) + (2d − 1)/N,

where n = �N/2d and δ(d) defined as in (6).

�	�
��� 10� Let d ≥ 2. For any finite sequence σN contained in [0, 1)d, the
following inequality holds

lim sup
N→∞

NF2,N(σN )

(logN)
d−1
2

≥ γ(d− 1)μ(d)

with γ(d) defined as in (5) and

μ(d) :=
1

2d
√
3d − 1

. (7)
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�	�
��� 11� Let d ≥ 1. For any infinite sequence σ contained in [0, 1)d,

lim sup
N→∞

NF2,N(σ)

(logN)
d
2

≥ γ(d)μ(d)

with γ(d) and μ(d) defined as in (5) and (7).

Theorems 10 and 11 allow the computation of exact lower bounds for general
d−dimensional sequences. However, once again we can use Theorem B to calcu-
late the best lower bound for the newly defined one-dimensional dyadic diaphony
constant.


�
����� 2�

f∗2 > 0.0515599 . . . · 1

2
√
2
= 0.0182 . . .

Open Problem� We leave it as an open problem to derive similar lower bounds
using Proinov’s methods for the b−adic diaphony of sequences contained in the
d−dimensional unit cube. (See Footnote 3 in Section 2.1).

As a first step, one would need to formulate a similar inequality to those
of Theorems 1 and 8 giving a relationship between the b−adic diaphony and
the L2-discrepancy, explicitly forming a constant similar to C(d) or δ(d), respec-
tively. It is reasonable to conjecture that this constant would depend on (and
only on) the dimension d, and the choice of base b.

3. The proofs of Proinov

In this Section, we present the proofs of Proinov. To the best of our knowledge,
with the exception of Theorem 3, the only record of these proofs are contained
in Proinov’s monograph [18] which is written in Bulgarian and not widely avail-
able. Proinov’s proof of Theorem 3 is given in full as Theorem 2.2 in [4], we refer
the curious reader to this survey.

In Section 3.1, we outline the argument of Proinov since his method is of gen-
eral interest and will also be used in Section 4 to derive a lower bound for the
dyadic diaphony. Section 3.2 contains the full proofs of Theorems 1, 2, 4 and 5.
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3.1. The main ideas of Proinov

We outline the major steps used to formulate Theorem 4, the Theorem con-
cerning explicit lower bounds for the diaphony of finite sequences contained
in [0, 1)d. The extension to infinite sequences (to derive Theorem 5) follows from
several technical Lemmas, the details of which are outlined in the next subsec-
tion.

In the first instance, Proinov formulates Theorem 1 which lower bounds the
diaphony of a sequence by the L2-discrepancy of the symmetrised version of the
sequence. That is, for finite sequences σn and symmetric σ̃N contained in [0, 1)d

consisting of n and N = 2dn terms, respectively, such that σn generates σ̃N ,
we have

L2,N(σ̃N ) ≤ C(d)Fn(σn)

holds with constant C(d) defined as previously in (1). There is significant ma-
chinery involved in deducing this result. Specifically, the discrepancy function
g
(
[0,γ), σ̃N , N

)
defined in the introduction is expanded as a Fourier series

g
(
[0,γ), σ̃N , N

) ∼
∑

m∈Zd

ĝ(m)e(m · γ),

where ĝ(m) denote the Fourier coefficients. Proinov then implements Parse-
val’s identity with the discrepancy function to obtain an expression for the L2-
discrepancy in terms of the Fourier coefficients∫

[0,1)d

∣∣∣g([0,γ), σ̃N , N)∣∣∣2 dγ = L2
2,N (σ̃N)

=
∑

m∈Zd

∣∣ĝ(m)
∣∣2.

Subsequently, with some rigorous calculation one finds that the summation above
can be approximated as

∑
m∈Zd

∣∣ĝ(m)
∣∣2 ≤ C2(d)

∑
m∈Zd

∣∣Sn(σn;m)
∣∣2

R2(m)

with all terms on the right-hand side of this inequality defined as in Section 2.1,
and C(d) as in (1). Putting the last two lines together obtains the desired result
for Theorem 1

L2
2,N (σ̃N ) ≤ C2(d)F 2

n(σn).
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Rearranging Theorem 1, and taking Roth’s 1954 classical lower bound for the
L2-discrepancy while noting that

1

C(d)
= 2dβ(d),

where β(d) is defined as (3), we arrive with some small manipulation at

Fn(σn) ≥ α(d− 1)β(d)
(log n)

d−1
2

n

as required with an explicit lower bound for the diaphony of an arbitrary finite
sequence contained in [0, 1)d.

3.2. The proofs of Theorems 1, 2, 4 and 5

P r o o f o f T h e o r e m 1. Let σn = (ai)
n
i=1 ⊂ [0, 1)d be any finite sequence

which generates a symmetric sequence σ̃N = (bi)
N
i=1 ⊂ [0, 1)d, containing n and

N = 2dn terms, respectively. From the definition of the sequence σ̃N which is
generated by σn,

1

N

N∑
i=1

χγ(bi) =
1

2dn

n∑
i=1

∑
θ∈Zd

χγ

(
1

2
(1− θ) + θai

)
,

where the set Zd is defined as in Remark 1. Therefore, we rewrite the discrepancy
function as

g
(
[0,γ), σ̃N , N

)
=

1

2dn

n∑
i=1

∑
θ∈Zd

χγ

(
1

2
(1− θ) + θai

)
− λd

(
[0,γ)

)
. (8)

The function can be written asymptotically equal to a Fourier series

g
(
[0,γ), σ̃N , N

) ∼
∑

m∈Zd

ĝ(m)e(m · γ),

where ĝ(m) denote the Fourier coefficients. Each ĝ(m) can be calculated by

ĝ(m) =

∫
[0,1)d

g
(
[0,γ), σ̃N , N

)
e(−m · γ) dγ. (9)

We need the following one-dimensional integrals defined and denoted

A(m) :=

∫ 1

0

γe(−mγ) dγ and B(m, a) :=

∫ 1

a

e(−mγ) dγ

for m ∈ Z and a ∈ E.
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It is easily calculated that

A(m) =

{− 1
2πim if m 	= 0,

1
2 if m = 0,

(10)

and

B(m, a) =

{(
1

2πim

)(
e(−ma)− 1

)
if m 	= 0,

1− a if m = 0.
(11)

Using equations (8) to (11) and by writing

ζi(θ) :=
1

2
(1− θ) + θai,

we obtain the following expression for the Fourier coefficients.

ĝ(m) =
1

2dn

n∑
i=1

∑
θ∈Zd

∫
[0,1)d

χγ(ζi)e(−m · γ) dγ−
∫
[0,1)d

λd
(
[0,γ)

)
e(−m · γ) dγ

=
1

2dn

n∑
i=1

∑
θ∈Zd

∫ 1

ζi

e(−m · γ) dγ −
∫
[0,1)d

λd
(
[0,γ)

)
e(−m · γ) dγ

=
1

2dn

n∑
i=1

∑
θ∈Zd

d∏
j=1

∫ 1

ζij

e(−mjγj) dγj −
d∏

j=1

∫ 1

0

γj e(−mjγj) dγj

=
1

2dn

n∑
i=1

d∏
j=1

∑
θj=±1

B(mj, ζij)−
d∏

j=1

A(mj). (12)

Note that

ĝ(0) =
1

2d
− 1

2dn

n∑
i=1

1 = 0

which follows from∑
θj=±1

B(0, ζij) =
∑

θj=±1

1− ζij

=
∑

θj=±1

1−
(
1

2
(1− θj) + θjaij

)

= (1− aij) + (1− 1 + aij) = 1. (13)
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Using Parseval’s identity

L2
2,N (σ̃N ) =

∫
[0,1)d

∣∣∣g([0,γ), σ̃N , N)∣∣∣2 dγ
=
∑

m∈Zd

∣∣ĝ(m)
∣∣2 =

∑′

m∈Zd

∣∣ĝ(m)
∣∣2, (14)

where
∑′

denotes the sum without the zero index.

Let A be an arbitrary nonempty subset of {1, 2, . . . , d}. Denote by M (A), the
set consisting of integer points m = (m1, . . . ,md) such that mj 	= 0 (1 ≤ j ≤ d)
if and only if j ∈ A. We define

φ(A) :=
∑

m∈M(A)

∣∣ĝ(m)
∣∣2 (15)

and it is therefore easy to see that (14) can be written in the following form

L2
2,N (σ̃N) =

d∑
p=1

∑
|A|=p

∑
m∈M(A)

∣∣ĝ(m)
∣∣2

=

d∑
p=1

∑
|A|=p

φ(A). (16)

The sum is over all subsets A of {1, 2, . . . , d} such that |A| = p, for 1 ≤ p ≤ d.
Now fix A as some nonempty subset of {1, 2, . . . , d} with p elements. We prove

the estimate

φ(A) ≤ C2(d)
∑

m∈M(A)

∣∣Sn(σn;m)
∣∣2

R2(m)
(17)

with constant C(d) as in (1). Returning to the expression (12) for the Fourier
coefficients, take m ∈M (A). It follows from the work done so far that

ĝ(m) =
1

2dn(2πi)pR(m)

n∑
i=1

∏
j∈A

∑
θj=±1

(
e(−θjmjaij)− 1

)− (−1)p

(2πi)p2d−pR(m)

(18)
and we make the following transformation∏

j∈A

∑
θj=±1

(
e(−θjmjaij)− 1

)
=
∏
j∈A

(
e(mjaij) + e(−mjaij)− 2

)
=
∑

ε∈E(A)

r(ε)e(εm · ai). (19)
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r is a coefficient function and E(A) denotes all points ε = (ε1, . . . , εd) such
that εj (1 ≤ j ≤ d) is equal to one of −1, 0, 1 if j ∈ A and εj = 0, otherwise.
The operation between ε and m is component-wise multiplication. Note that
clearly |E(A)| = 3p since |A| = p, and moreover it is easily seen that

r(0) = (−2)p (20)
and

|r(ε)| ≤ 2p−1 (21)

for all ε 	= 0. Now from (18), (19) and (20),

ĝ(m) =
1

2dn(2πi)pR(m)

n∑
i=1

∑
ε∈E(A)

r(ε)e(εm · ai)− (−1)p

(2πi)p2d−pR(m)

=
1

2d(2πi)pR(m)

∑′

ε∈E(A)

r(ε)Sn(σn; εm)+
(−2)p

(2πi)p2dR(m)
− (−1)p

(2πi)p2d−pR(m)

=
1

2d(2πi)pR(m)

∑′

ε∈E(A)

r(ε)Sn(σn; εm).

By this last equality and (21), we obtain the following estimate for the Fourier
coefficients of the discrepancy function

∣∣ĝ(m)
∣∣ ≤ 2p−1

2d(2π)p

∣∣∣∣∣ ∑′

ε∈E(A)

Sn(σn; εm)

R(m)

∣∣∣∣∣
≤ 1

2d+1πp

∑′

ε∈E(A)

∣∣Sn(σn; εm)
∣∣

R(m)
,

and using the Cauchy-Schwarz inequality on the right-hand side of the above
gives ∣∣ĝ(m)

∣∣2 ≤ 3p − 1

4d+1π2p

∑′

ε∈E(A)

∣∣Sn(σn; εm)
∣∣2

R2(m)

recalling that |E(A)| = 3p. Returning to (15),

φ(A) ≤ 3p − 1

4d+1π2p

∑′

ε∈E(A)

Ω(ε), (22)

where we have written

Ω(ε) :=
∑

m∈M(A)

∣∣Sn(σn; εm)
∣∣2

R2(m)
.
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For any nonempty subset B of the set {1, 2, . . . , d}. We introduce the set U (B),
consisting of all points ε = (ε1, . . . , εd) such that εj = ±1 if j ∈ B and εj = 0

otherwise. Clearly, |U (B)| = 2|B|. We can now identify∑′

ε∈E(A)

Ω(ε) =

p∑
q=1

∑
B⊂A
|B|=q

∑
ε∈U(B)

Ω(ε), (23)

where the summation on the right hand side is over all possible subsets B of A
consisting of q elements (1 ≤ q ≤ p). Let B be a fixed nonempty q element
subset of A. Then for ε ∈ U (B),

Ω(ε) =
∑

m∈M(A)

∣∣Sn(σn; εm)
∣∣2

R2(m)

=

( ∞∑′

m=−∞

1

m2

)p−q ∑
m∈M(B)

∣∣Sn(σn; εm)
∣∣2

R2(m)

=

(
π2

3

)p−q ∑
m∈M(B)

∣∣Sn(σn; εm)
∣∣2

R2(m)

=

(
π2

3

)p−q ∑
m∈M(B)

∣∣Sn(σn;m)
∣∣2

R2(m)
, (24)

where the last equality holds since ε ∈ U (B) has the effect of permuting the
elements of the set M (B) in the summation. Therefore from (23) and (24),
we have ∑′

ε∈E(A)

Ω(ε) ≤ π2pD(p)

3p

∑
m∈M(A)

∣∣Sn(σn;m)
∣∣2

R2(m)
, (25)

where

D(p) =

p∑
q=1

(
3

π2

)q ∑
B⊂A
|B|=q

∑
ε∈U(B)

1

=

p∑
q=1

(
6

π2

)q ∑
B⊂A
|B|=q

1

=

p∑
q=1

(
p

q

)(
6

π2

)q

=

(
1 +

6

π2

)p

− 1. (26)
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From (22), (25) and (26), conclude that

φ(A) ≤ 1

4d+1

(
1− 1

3p

)((
1 +

6

π2

)p
− 1

) ∑
m∈M(A)

∣∣Sn(σn;m)
∣∣2

R2(m)
.

Hence bearing in mind that for p ≤ d,

1

4d+1

(
1− 1

3p

)((
1 +

6

π2

)p
− 1

)
≤ C2(d),

and the assertion (17) is proved. Now, to finish from (16) and (17)

L2
2,N (σ̃N ) ≤ C2(d)

d∑
p=1

∑
|A|=p

∑
m∈M(A)

∣∣Sn(σn;m)
∣∣2

R2(m)

= C2(d)
∑

m∈Zd

∣∣Sn(σn;m)
∣∣2

R2(m)

= C2(d)F 2
n(σn)

and by square rooting, we have the statement. �

P r o o f o f T h e o r e m 2. Let σ̃ be an infinite symmetrical sequence contained
in [0, 1)d, and let σ be an infinite sequence contained in [0, 1)d which generates σ̃.
Let a natural number N ≥ 2d, then set n =

⌊
N/2d

⌋
and m = 2dn. Firstly, notice

that
2dn ≤ N < 2d(n+ 1). (27)

From the definitions of symmetrisation in Section 2.1, set σ̃m to be the sequence

σ̃m = (b1,b2, . . . ,bm),

consisting of the first n terms of sequence σ. Applying Theorem 1 to sequences
σ̃m and σn, we have

L2,m(σ̃) = L2,m(σ̃m) ≤ C(d)Fn(σn) = C(d)Fn(σ), (28)

where C(d) is as in (1).

The next step requires a well known technical Lemma.

����� 1� Let 1 ≤ p ≤ ∞. Let σ be any infinite sequence contained in [0, 1)d.
Then for every n ∈ N with n ≤ N , the following inequality holds

NLp,N (σ) ≤ nLp,n(σ) +N − n.
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P r o o f. Let n ∈ N such that 1 ≤ n ≤ N , and x ∈ [0, 1)d be an arbitrary point.
Write σ = (an)n∈N, then

N∑
i=1

χx(ai) =

n∑
i=1

χx(ai) + p(x), (29)

where the function p satisfies the condition

0 ≤ p(x) ≤ N − n. (30)

Using (29), the discrepancy function can be written as

Ng
(
[0,x), σ,N

)
=

N∑
i=1

χx(ai)−Nλd
(
[0,x)

)
=

n∑
i=1

χx(ai) + p(x)−Nλd
(
[0,x)

)
=

n∑
i=1

χx(ai)− nλd
(
[0,x)

)
+ nλd

(
[0,x)

)
+ p(x)−Nλd

(
[0,x)

)
=

[
n∑

i=1

χx(ai)− nλd
(
[0,x)

)]
+ q(x)

= ng
(
[0,x), σ, n

)
+ q(x), (31)

where the function q denotes,

q(x) := p(x)− (N − n)λd
(
[0,x)

)
. (32)

From (30), (32) and noting that

0 ≤ λd
(
[0,x)

) ≤ 1

we can conclude ∣∣q(x)∣∣ ≤ N − n. (33)

Now we use (31), (33) and the definition of the Lp−discrepancy to imply

NLp,N (σ) = N ‖g(·, σ,N)‖Lp

= ‖ng(·, σ, n) + q(·)‖Lp

≤ n ‖g(·, σ, n)‖Lp
+ ‖q‖Lp

= nLp,n(σ) + ‖q‖Lp

≤ nLp,n(σ) +N − n,

which concludes the proof of the Lemma. �
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Returning to the proof of Theorem 2, from (27) we see that

1 ≤ m ≤ N and N −m ≤ 2d − 1.

Therefore applying Lemma 1 with p = 2,

NL2,N(σ̃) ≤ mL2,m(σ̃) +N −m ≤ NL2,m(σ̃) + 2d − 1.

Consequently, L2,N (σ̃) ≤ L2,m(σ̃) + (2d − 1)/N, (34)

and concluding from (28) and (34),

L2,N (σ̃) ≤ C(d)Fn(σ) + (2d − 1)/N

we obtain the required statement. �

P r o o f o f T h e o r e m 4. Let σN be a finite sequence contained in [0, 1)d, and
let σ̃n denote a symmetric sequence consisting of n = 2dN terms, which is
generated by σN . Recall Theorem 1

L2,n(σ̃n) ≤ C(d)FN (σN ) (35)
and note the relation

1

C(d)
= 2dβ(d) (36)

with β(d) defined as in (3). Therefore we can rewrite (35) as

FN (σN ) ≥ 1

C(d)
L2,n(σ̃n) = 2dβ(d)L2,n(σ̃n), (37)

lower bounding the diaphony by the L2−discrepancy of the symmetrised se-
quence. At this time, we recall Roth’s result regarding the lower bound for the
L2-discrepancy. It states

L2,n(σ̃) ≥ α(d− 1)
(logn)

d−1
2

n
with constant α(d) defined as in (2). Thus

L2,n(σ̃n) ≥ α(d− 1)n−1(logn)
d−1
2

= α(d− 1)(2dN)−1
(
log(2dN)

) d−1
2

> α(d− 1)2−dN−1(logN)
d−1
2 . (38)

Putting together (37) and (38), we conclude that

FN (σN ) ≥ 2dβ(d)L2,n(σ̃n)

> 2dβ(d)[α(d− 1)2−dN−1(logN)
d−1
2 ]

= α(d− 1)β(d)N−1(logN)
d−1
2

as required. �
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P r o o f o f T h e o r e m 5. Let σ be an infinite sequence contained in [0, 1)d.
Let σ̃ be an infinite symmetric sequence contained in [0, 1)d which is generated
by σ. Choose arbitrary constants A(d), A1(d) and A2(d) such that

0 < A(d) < A1(d) < A2(d) < α(d)β(d).

Then clearly,
A2(d)

β(d)
< α(d).

and from Theorem 3,

NL2,N (σ̃) >
A2(d)

β(d)
(logN)

d
2 (39)

for infinitely many N. We choose sufficiently large enough N which satisfies (39)
and the conditions

N ≥ 2sA1(d)

A1(d)−A(d)
(40)

and
A2(d)(logN)

d
2 − (2d − 1)β(d) ≥ A1(d)(logN)

d
2 . (41)

Observe from (40) that N > 2d. Set n = �N/2d and rearranging the statement
of Theorem 2 with (36), we can write

NFn(σ) ≥ 2dβ(d)NL2,N(σ̃)− 2d(2d − 1)β(d). (42)

Using (40),

n = �N/2d > N

2d
− 1 ≥

(
A(d)

A1(d)

)(
N

2d

)
,

and conversely,

n = �N/2d ≤ N

2d
.

Putting the last two inequalities together, we obtain

n < N ≤ 2dA1(d)n

A(d)
. (43)

From (39), (41) and (42)

NFn(σ) ≥ 2dA2(d)(logN)
d
2 − 2d(2d − 1)β(d)

≥ 2dA1(d)(logN)
d
2 .

It follows from the last line and (43), that

Fn(σ) > A(d)n−1(logn)
d
2 . (44)

The statement is now proved for all n < N .
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To show for all infinitely many n ∈ N, we proceed via the following. Let
(Nk)k∈N be an infinite sequence of natural numbers satisfying the condition

Nk+1 > Nk + 2d (k = 1, 2, . . .) (45)

Let each member of the sequence (Nk)k∈N also satisfy conditions (39) to (41)
with N = Nk, (k = 1, 2, . . .). For each k ∈ N, set nk = �Nk/2

d and by (45)
it follows that,

n1 < n2 < n3 < · · ·
With the same steps that we used to prove (44), we can conclude that

Fnk
(σ) > A(d)n−1

k (lognk)
d
2

for each k ∈ N. Therefore, the estimate (44) is satisfied for infinitely many k ∈ N.
Given that the constant A(d) is an arbitrary positive number less than α(d)β(d),
we have the Theorem. �

4. A key proof for the dyadic case

In this final section we prove the main result, Theorem 8 and note that The-
orems 9−11 can be shown along the same lines as the corresponding Theorems
for the classical diaphony, just incorporating Theorem 8 instead of Theorem 1.

P r o o f o f T h e o r e m 8. Let

σn = (ai)
n
i=1 ⊂ [0, 1)d and σ̃N = (bi)

N
i=1 ⊂ [0, 1)d

be finite sequences consisting of n and N = 2dn terms, respectively, such that
σn generates σ̃N . Then from the definition of the sequence σ̃N , we can rewrite
the discrepancy function as follows.

g
(
[0,γ), σ̃N , N

)
=

1

2dn

n∑
i=1

∑
θ∈Zd

χγ

(
1

2
(1− θ) + θai

)
− λd

(
[0,γ)

)
, (46)

where Zd is defined as in Remark 1. The discrepancy function can then be written
asymptotically equal to a Walsh series. That is,

g
(
[0,γ), σ̃N , N

) ∼ ∑
k∈Nd

0

ĝ(k)walk(γ),

where each of the Walsh coefficients ĝ(k) can be calculated by

ĝ(k) =

∫
[0,1)d

g
(
[0,γ), σ̃N , N

)
walk(γ) dγ. (47)
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The following Lemma allows the computation of the integrals arising from
the expression above for the Walsh coefficients.

����� 2� Let k ∈ N. For x ∈ [0, 1), we define an = an(x) and bn = bn(x) by

an := m · 2−n ≤ x < (m+ 1) · 2−n =: bn (48)

for some integers 0 ≤ m < 2n and n ≥ 0. Define and denote two integrals by

A(k, x) :=

∫ 1

x

walk(γ) dγ and B(k) :=

∫ 1

0

γwalk(γ) dγ.

Then,
A(k, x) = walk(x)

(
ψn − x

)
and B(k) = 0,

where ψn is defined as one of an or bn depending on which is nearer to x.
(If x is the midpoint of (an, bn), then set ψn = bn.)

P r o o f. We begin with A(k, x). Section 3 of [6] discusses integrals of the form

Jk(x) :=

∫ x

0

walk(γ) dγ

and gives a concise and intuitive result on how one can compute integrals of this
kind. Namely,

Jk(x) =walk(x)
(
x− ψn

)
,

where ψn is defined as in the statement of the Lemma above. Due to an elemen-
tary fact in the study of Walsh functions∫ 1

0

walk(γ)dγ = 0

for all k 	= 0 and we can therefore conclude as required

A(k, x) =

∫ 1

x

walk(γ) dγ

=

∫ 1

0

walk(γ)dγ −
∫ x

0

walk(γ) dγ

= −Jk(x) = walk(x)
(
ψn − x

)
. (49)
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Moving on to the integral B(k), we use a simple integration by parts and (49)
to show that

B(k) =

∫ 1

0

γwalk(γ) dγ

= −
∫ 1

0

Jk(γ) dγ

=

∫ 1

0

walk(γ)
(
ψn − γ

)
dγ

= ψn

∫ 1

0

walk(γ) dγ −B(k).

Therefore, conclude that B(k) = 0. �

We now return to the main body of the proof of Theorem 8. Use the expression
for the discrepancy function in (46) and set

ζi(θ) :=
1

2
(1− θ) + θai.

The Walsh coefficients from (47) become

ĝ(k) =
1

2dn

n∑
i=1

∑
θ∈Zd

∫
[0,1)d

χγ(ζi)walk(γ) dγ −
∫
[0,1)d

λd
(
[0,γ)

)
walk(γ) dγ

=
1

2dn

n∑
i=1

∑
θ∈Zd

∫ 1

ζi

walk(γ) dγ −
∫
[0,1)d

λd
(
[0,γ)

)
walk(γ) dγ

=
1

2dn

n∑
i=1

∑
θ∈Zd

d∏
j=1

∫ 1

ζij

walkj
(γj) dγj −

d∏
j=1

∫ 1

0

γj walkj
(γj) dγj . (50)

From here we can first consider the coefficient ĝ(0), noting that wal0 = 1.

ĝ(0) =
1

2dn

n∑
i=1

∑
θ∈Zd

d∏
j=1

∫ 1

ζij

dγj −
d∏

j=1

∫ 1

0

γj dγj

=
1

2dn

n∑
i=1

d∏
j=1

∑
θ=±1

(1− ζij)−
d∏

j=1

1

2

=
1

2dn

n∑
i=1

1− 1

2d
= 0. (51)
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As mentioned in Section 2.1, Parseval’s identity holds for the Walsh function
system. Hence,

L2
2,N (σ̃N ) =

∫
[0,1)d

∣∣∣g([0,γ), σ̃N , N)∣∣∣2 dγ
=
∑
k∈Nd

0

∣∣ĝ(k)∣∣2 =
∑′

k∈Nd
0

∣∣ĝ(k)∣∣2, (52)

where
∑′

denotes the summation without the zero index.

For an arbitrary nonempty subset A of the set {1, 2, . . . , d}, denote by M (A)
the set consisting of points k = (k1, . . . , kd) ∈ N

d
0 such that kj 	= 0 (1 ≤ j ≤ d)

if and only if j ∈ A. We define

φ′(A) :=
∑

k∈M(A)

∣∣ĝ(k)∣∣2. (53)

It is easy to see that (52) can be written in the form

L2
2,N (σ̃N) =

d∑
p=1

∑
|A|=p

∑
k∈M(A)

∣∣ĝ(k)∣∣2
=

d∑
p=1

∑
|A|=p

φ′(A), (54)

where the sum is over all subsets A of {1, 2, . . . , d} such that

|A| = p, for 1 ≤ p ≤ d.

Now fix A to be some p element subset of {1, 2, . . . , d}. From Lemma 2 and
taking k ∈M (A), (50) simplifies to

ĝ(k) =
1

2dn

n∑
i=1

∑
θ∈Zd

∏
j∈A

walkj
(ζij)

(
ψnj

− ζij
)
.

Then, noticing that (ψnj
− ζij) ≤ 2−nj when we write kj = 2nj + k′j for integers

0 ≤ k′j < 2nj and nj ≥ 0 for each j ∈ A, we obtain

ĝ(k) ≤ 1

2dn

n∑
i=1

∏
j∈A

∑
θj=±1

walkj
(ζij) · 2−nj . (55)
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Considering the product in (55), first note the following elementary facts regard-
ing the dyadic Walsh functions. The Walsh functions are periodic with period
one, and therefore walk(1 − x) = walk(−x). Furthermore, for all k ∈ N0 and
x ∈ [0, 1), we have

walk(x) = walk(−x).
Thus,∏

j∈A

∑
θj=±1

walkj
(ζij) · 2−nj =

∏
j∈A

2−nj

(
walkj

(aij) + walkj
(1− aij)

)
=
∏
j∈A

2−nj

(
walkj

(aij) + walkj
(−aij)

)
=
∏
j∈A

2−nj

(
2walkj

(aij)
)

= 2pwalk(ai)
∏
j∈A

2−nj . (56)

From (55) and (56),

ĝ(k) ≤ 1

2d−pn

∏
j∈A

2−nj

n∑
i=1

walk(ai)

thus we obtain the following estimate of the Walsh coefficients∣∣ĝ(k)∣∣ ≤ 1

2d−p

∏
j∈A

2−nj

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣. (57)

Squaring (57), ∣∣ĝ(k)∣∣2 ≤ 1

4d−p

∏
j∈A

2−2nj

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣
2

=
r2(k)

4d−p

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣
2

. (58)

where we have denoted
∏

j∈A r2(kj) by r2(k), and the function r2 is as in the

definition of the dyadic diaphony. Using (53) and (58), we get

φ′(A) ≤ 1

4d−p

∑
k∈M(A)

r2(k)

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣
2

≤
∑

k∈M(A)

r2(k)

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣
2

. (59)
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Now concluding from (53), (54) and (59),

L2
2,N (σ̃N ) ≤

d∑
p=1

∑
|A|=p

∑
k∈M(A)

r2(k)

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣
2

=
∑

k∈Nd
0\{0}

r2(k)

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣
2

=
(
3d − 1

)( 1

3d − 1

∑
k∈Nd

0\{0}
r2(k)

∣∣∣∣∣ 1n
n∑

i=1

walk(ai)

∣∣∣∣∣
2)

= δ2(d)F 2
2,n(σn)

with constant δ(d) is defined as in (6). �

An Appendix - Proof of Theorem A

For the readers benefit we give a proof of the recent L2-discrepancy result,
Theorem A, used in Section 2.3 of our paper to improve the lower bound results
of the one-dimensional constants.

The sketch of the proof, originally published in [10], was later found to contain
a small inaccuracy and therefore after introducing some necessary preliminary
material, a complete and rectified proof is provided.

Preliminaries

We begin by noting that for the purposes of this appendix, an altered form
of the discrepancy function is used as in [10]. Let Cz := (z1, 1] × · · · × (zd, 1]
for z = (z1, . . . , zd) ∈ [0, 1)d and x ∈ [0, 1)d be an arbitrary point. Then define

g(x, σN , N) :=
∑
z∈σN

χCz
(x)−Nλd

(
[0,x)

)
for a finite N term sequence, σN ⊂ [0, 1)d. Notice that the summation in the
definition above is simply the number of terms of the sequence σN that are
contained in the subinterval [0,x).
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Haar-coefficients of the Discrepancy Function. A dyadic interval of length
2−j (j ∈ N0) in [0, 1), is an interval of the form

I :=

[
m

2j
,
m+ 1

2j

)
for m = 0, 1, . . . , 2j − 1. The Haar function hI = hj,m with support I is the
function on [0, 1) which is 1 on the left half of I , −1 on the right half of I, and
0 outside of I. The L∞−normalised Haar system consists of all Haar functions
hj,m (for j ∈ N0 and m = 0, 1, . . . , 2j − 1) together with the indicator function
of [0, 1), h−1,0. After normalisation in L2

(
[0, 1)

)
, we obtain the orthonormal

Haar basis of L2

(
[0, 1)

)
.

Let N−1 = {−1, 0, 1, 2, . . .}, and define Dj = {0, 1, . . . , 2j − 1} for j ∈ N0

and D−1 = {0} for j = −1. In higher dimensions, i.e., d ≥ 2, the Haar func-
tion hj,m is given as the tensor product hj,m(x) = hj1,m1

(x1) . . . hjd,md
(xd) for

x = (x1, . . . , xd) ∈ [0, 1)d, j = (j1, . . . , jd) ∈ N
d
−1 and m = (m1, . . . ,md) ∈ Dj :=

Dj1 ×· · ·×Djd . We will call the subintervals of [0, 1)d, Ij,m = Ij1,m1
×· · ·×Ijd,md

dyadic boxes. Note that all dyadic boxes with fixed j are congruent, hence we
call j the shape of the box Ij,m. Lastly for j ∈ N

d
−1, let |j| = max(0, j1) +

max(0, j2) + · · · + max(0, jd). The L∞−normalised tensor Haar system con-
sists of all Haar functions hj,m with j ∈ N

d
−1 and m ∈ Dj. After normalisation

in L2

(
[0, 1)d

)
, we obtain the orthonormal Haar basis of L2

(
[0, 1)d

)
.

Parseval’s equality shows that the L2-norm of a function f ∈ L2

(
[0, 1)d

)
,

denoted ‖f‖L2
, can be computed as

‖f‖2L2
=
∑

j∈Nd
−1

2|j|
∑
m∈Dj

∣∣μj,m

∣∣2,
where

μj,m = μj,m(f) =

∫
[0,1)d

f(x) · hj,m(x) dx

are the Haar-coefficients of f .

Useful Lemmas

We will require the following Lemmas.

����� �� Let f(x) = x1 . . . xd for x = (x1, . . . , xd) ∈ [0, 1)d. Let j ∈ N
d
0,

m ∈ Dj, and let μj,m be the Haar-coefficient of f . Then,

μj,m = 2−2|j|−2d.
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P r o o f. For x ∈ [0, 1)d, j ∈ N
d
0 and m ∈ Dj , let

μj,m =

∫
[0,1)d

λd
(
[0,x)

) · hj,m(x) dx

=

∫
[0,1)d

x1 . . . xd · hj,m(x) dx

=

d∏
i=1

∫ 1

0

xi · hji,mi
(xi) dxi .

Note that for ji ∈ N0,∫ 1

0

xi · hji,mi
(xi) dxi = 2−2ji−2.

Therefore, we can conclude easily that

μj,m =

d∏
i=1

2−2ji−2

= 2−2j1−2− ···−2jd−2

= 2−2|j|−2d

as required. �

����� �� Fix z = (z1, . . . , zd) ∈ [0, 1)d, and let f(x) = χCz
(x) be the

characteristic function for the subinterval Cz = (z1, 1] × · · · × (zd, 1] with
x = (x1, . . . , xd) ∈ [0, 1)d arbitrary. Let j ∈ N

d
0,m ∈ Dj and μj,m be the

Haar-coefficient of f . Then
μj,m = 0,

whenever z is not contained in the interior of the dyadic box Ij,m supporting hj,m.

P r o o f. Take z ∈ [0, 1)d, such that z /∈ Ij,m. Note in the first instance, that

μj,m =

∫
[0,1)d

χCz
(x) · hj,m(x) dx

=

∫ 1

z

hj,m(x) dx

=

d∏
i=1

∫ 1

zi

hji,mi
(xi) dxi.
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So z /∈ Ij,m implies that zi /∈ Iji,mi
:=
[
mi

2ji
, mi+1

2ji

)
for some

i ∈ {1, 2, . . . , d} and mi ∈ Dji .

Thus, there are two cases to consider. Either:

(1) zi ≥ mi+1
2ji

, in which case hji,mi
= 0 for all mi+1

2ji
≥ x ≥ 1. This implies∫ 1

zi

hji,mi
(xi) dxi = 0.

Or,

(2) zi <
mi

2ji
, in which case ∫ 1

zi

hji,mi
(xi) dxi = 0

since hji,mi
equals 0 in

Iji,mi
and

∫
Iji,mi

hji,mi
(xi) dxi = 0.

Therefore, we can conclude for z /∈ Ij,m

μj,m =

∫
[0,1)d

χCz
(x) · hj,m(x) dx = 0

as required. �

Main statement and proof

�	�
��� �� For a finite sequence σN contained in [0, 1)d, the inequality

L2,N (σN ) ≥ γ(d− 1)
(logN)

d−1
2

N

holds with

γ(d) :=
1√

21 · 22d+1
√
d!(log 2)

d
2

.

P r o o f. Let σN be a finite sequence contained in [0, 1)d, and take arbitrary
x ∈ [0, 1)d. Let j ∈ N

d
0,m ∈ Dj be such that no point of σN lies in the interior

of the dyadic box Ij,m supporting hj,m. Let μj,m denote the Haar-coefficient
of the discrepancy function, which for the purposes of this proof as already
mentioned, we define as

g(x, σN , N) :=
∑
z∈σN

χCz
(x)−Nλd

(
[0,x)

)
.

Now, the Lemmas above imply that

μj,m = −N2−2|j|−2d, where |j| = j1 + j2 + · · ·+ jd.
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Next note that for a fixed j ∈ N
d
0, the cardinality of Dj is 2

|j|, and the interiors
of the dyadic boxes Ij,m supporting hj,m are mutally disjoint. This implies that

there are at least 2|j|−N such m ∈ Dj for which no point in the N term sequence
σN lies in the interior of the dyadic box Ij,m supporting hj,m.

Set M := �log2N�. Then from Parseval’s equality

L2
2,N (σN) ≥ N2

∑
|j|≥M

2|j|
(
2|j| −N

)
2−4|j|−4d

= 2−4dN2
∑

|j|≥M

4−|j| − 2−4dN3
∑

|j|≥M

8−|j|

where the inequality is due to summing only those μj,m with j ∈ N
d
0 and m ∈ Dj

as chosen above. Considering the summations, the coefficient of Md−1 in∑
|j|≥M

q−|j|

is computed as
q−M+1

(q − 1)(d− 1)!
for q > 1.

This implies

L2
2,N(σN ) ≥ 2−4d

(
N2−M

)2 4
3

Md−1

(d− 1)!

− 2−4d
(
N2−M

)3 8
7

Md−1

(d− 1)!
.

Now let t =M − log2N , so that

0 ≤ t < 1 and N2−M = 2−t.

Then we get

L2
2,N (σN ) ≥ ω(log2N)d−1

if

2−4d
(
2−2t

)4
3

Md−1

(d− 1)!
− 2−4d

(
2−3t

)8
7

Md−1

(d− 1)!
≥ ω(M − t)d−1

which is satisifed if

ω ≤ 1

24d(d− 1)!

(
4

3

(
2−2t

)− 8

7

(
2−3t

))
for all 0 ≤ t < 1.

Or equivalently,

ω ≤ 1

24d(d− 1)!

(
4

3
y2 − 8

7
y3
)

for all
1

2
< y ≤ 1.
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To finish, we require the minimal value of the expression above. This occurs
when y = 1, and equals 4

21 . It follows that we have arrived at the desired constant.
To obtain the exact order in the statement, recall that we must divide by N to
rectify the use of the altered discrepancy function throughout the proof. �

����
������������ The author would like to express thanks in the first
instance to Friedrich Pillichshammer for supplying the chapters of Proinov’s
monograph. Gratitude is also expressed to Florian Pausinger for the numerous,
useful discussions in the development of this manuscript. A mention must be
given to the anonymous referee for the valuable feedback which was used while
improving the paper.
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Kl. S.-B. II 185 (1976), 121–132. (In German)

Received July 20, 2020
Accepted September 8, 2020

Nathan Kirk
Mathematical Sciences Research Centre
School of Mathematics and Physics
Queen’s University Belfast
University Road

Belfast BT7 1NN
Northern Ireland
UNITED KINGDOM

E-mail : nkirk09@qub.ac.uk

72


	1. Introduction
	2. Statement of results
	2.1. Preliminaries and notation
	2.2. The results of Proinov
	2.3. Improvements after 1986
	2.4. An extension to the dyadic diaphony

	3. The proofs of Proinov
	3.1. The main ideas of Proinov
	3.2. The proofs of Theorems 1, 2, 4 and 5

	4. A key proof for the dyadic case
	An Appendix - Proof of Theorem A
	Preliminaries
	Useful Lemmas
	Main statement and proof

	REFERENCES

