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ON THE MAXIMUM ORDER COMPLEXITY

OF THUE–MORSE AND RUDIN–SHAPIRO

SEQUENCES ALONG POLYNOMIAL VALUES

Pierre POPOLI

Institut Élie Cartan de Lorraine, Université de Lorraine, Vandœuvre-lès-Nancy, FRANCE

ABSTRACT. Both the Thue–Morse and Rudin–Shapiro sequences are not suit-
able sequences for cryptography since their expansion complexity is small and
their correlation measure of order 2 is large. These facts imply that these sequences
are highly predictable despite the fact that they have a large maximum order com-
plexity. Sun and Winterhof (2019) showed that the Thue–Morse sequence along

squares keeps a large maximum order complexity. Since, by Christol’s theorem,
the expansion complexity of this rarefied sequence is no longer bounded, this
provides a potentially better candidate for cryptographic applications. Similar
results are known for the Rudin–Shapiro sequence and more general pattern se-
quences. In this paper we generalize these results to any polynomial subsequence
(instead of squares) and thereby answer an open problem of Sun and Winterhof.

We conclude this paper by some open problems.

Communicated by Arne Winterhof

1. Introduction

Pseudorandomness, i.e., the study of phenomena related to randomness for de-
terministic objects, has grown to a large and important subject in number theory
and cryptography. In recent years, research focused in particular on automatic
sequences (e.g., Thue–Morse sequence, Rudin–Shapiro sequence), i.e., sequences
that are generated by a deterministic finite automaton. Such sequences are easy
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to generate and “regular” in some sense, but their behaviour changes radically
when the sequence is rarefied along a subsequence so that the rarefied sequence
shows pseudorandom behaviour. The aim of the present article is to study pseu-
dorandomness in the context of such polynomially rarefied automatic sequences.

To begin with, we first introduce various measures for pseudorandomness and
cite the results that are known in the context of classical automatic sequences.

���������� 1 (Maximum order complexity)� Let N be a positive integer with
N ≥ 2, and S = (sn)n≥0 be a sequence over {0, 1} with (s0, . . . , sN−2) �=
(a, . . . , a) for a = 0 or 1. The Nth maximum order complexity M (S , N) is the
smallest positive integer M such that there is a polynomial f(x1, . . . , xM ) with

si+M = f(si, . . . , si+M−1), 0 ≤ i ≤ N −M − 1.

If si = a for i = 0, . . . , N − 2, we define M (S , N) = 0 if sN−1 = a and
M (S , N) = N − 1 else.

A sequence with small maximum order complexity cannot be used in cryp-
tography, since the sequence can be constructed from relatively short blocks
of consecutive terms. However, a sequence with large maximum order complex-
ity, is not automatically adapted in cryptography. It can still be very predictable
as we will state later for the Thue–Morse sequence.

Diem [4] introduced the expansion complexity of a sequence as follows.

���������� 2 (Expansion complexity)� LetN be a positive integer, S = (sn)n≥0

be a sequence over {0, 1} and G(x) its generating function defined by

G(x) =
∑
i≥0

six
i.

The N th expansion complexity E(S , N) is defined as the least total degree
of a nonzero polynomial h(x, y) ∈ F2[x, y] with

h
(
x,G(x)

)
≡ 0 (mod xN )

if s0, . . . , sN−1 are not all equal to 0, and E(S , N) = 0, otherwise.

Similarly to the maximum order complexity, a sequence with small Nth ex-
pansion complexity is predictable. By Christol’s theorem (see [3]) automatic
sequences over Fp are characterized by

sup
N≥1

E(S , N) < ∞.

This indicates that automatic sequences are not pseudorandom and may be
considered as cryptographically weak.
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Mauduit and Sárközy [9] introduced the correlation measure.

���������� 3 (Correlation measure of order 2)� Let N be a positive integer,
S = (sn)n≥0 be a sequence over {0, 1}. The N th correlation measure of order 2
of S is

C2(S , N) = max
M,d1,d2

∣∣∣∣∣ ∑
0≤n≤M

(−1)sn+d1
+sn+d2

∣∣∣∣∣,
where the maximum is taken over all M , d1 and d2 such that 0 ≤ d1 < d2 and
d2 +M < N .

For a random sequence, the correlation measure of order 2 is of order

of
(
N log(N/2)

)1/2
(see [2]).

We introduce the symbolic complexity as an other measure of pseudorandom-
ness.

���������� 4 (Symbolic complexity)� The symbolic complexity, or subword
complexity, of a sequence S over {0, 1} is the function pS defined for every
positive integer k by

pS(k) = Card{(b0, . . . , bk−1) ∈ {0, 1}k : ∃i, u(i) = b0, . . . , u(i+ k − 1) = bk−1}.

A sequence S over {0, 1} is normal if for every k ≥ 1 and any (b0, . . . , bk−1) ∈
{0, 1}k, we have

lim
N→∞

1

N
Card{i < N : u(i) = b0, . . . , u(i+ k − 1) = bk−1} =

1

2k
.

For a normal sequence, each block of length k appears and each block appears
with the same frequency. A “good” pseudorandom sequence should have a large
symbolic complexity.

We now look at these complexity measures for the Thue–Morse sequence.
One possible definition of this emblematic sequence is as follows.

���������� 5 (Thue–Morse sequence)� For an integer n ≥ 0, we write n =∑
i≥0 εi2

i with εi ∈ {0, 1} for all i and (n)2 = · · · ε1ε0. The binary sum-of-digits

of n equals s1(n) =
∑

i≥0 εi. The Thue–Morse sequence T =
(
t(n)

)
n≥0

is defined

by t(n) = s1(n) mod 2.

Note that the index in the sum-of-digits function relates to the length of the
1-pattern that we consider (the length is 1 here; we will consider k consecutive
1’s for pattern sequences). In what follows, we use Vinogradov’s notation f 	 g
if there is a constant c > 0 such that f ≤ cg.
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Sun and Winterhof [13] showed that the Thue–Morse sequence has large max-
imum order complexity, M (T , N) 
 N . Mauduit and Sárközy [8, Theorem 2]
showed that the correlation measure of order 2 of the Thue–Morse sequence is
large, C2(T , N) 
 N . On the other hand, it is well-known that E(T , N) ≤ 5
for all N since h(x, y) = (x + 1)3y2 + (x + 1)2y + x satisfies h

(
x,G(x)

)
= 0,

where G(x) is the generating function of T . Also, its symbolic complexity is
small, pT (k) 	 k (see [1, Corollary 10.3.2] for a general result for all automatic
sequences). The small upper bounds of the expansion complexity and of the
symbolic complexity imply that the Thue–Morse sequence is far from being a
pseudorandom sequence with respect to these measures.

Several of the mentioned results also hold true for more general pattern se-
quences (also called Rudin–Shapiro sequences of degree k, see [7]). For the sake
of shortness, we refer to them as pattern sequences, as they were called by Sun
and Winterhof [13].

���������� 6 (Pattern sequences)� Let k ≥ 1. Denote by Pk = 1 · · · 1 ∈ Fk
2

the all 1-pattern of length k and by sk(n) the number of occurrences of Pk

in the binary digital representation of n. The k-pattern sequence Pk=
(
pk(n)

)
n≥0

(or, for short, pattern sequence) is defined by

pk(n) = sk(n) mod 2.

For k = 1 we get the Thue–Morse sequence T = P1 and for k = 2 we get
the Rudin–Shapiro (or Golay–Rudin–Shapiro) sequence R = P2 =

(
r(n)

)
n
.

As the Thue–Morse sequence, the pattern sequence Pk is 2-automatic and has a
large maximum order complexity (see [13, Theorem 2]). Its expansion complexity
satisfies E(Pk, N) ≤ 2k + 3 for N ≥ 1 since

h(x, y) = (x+ 1)2
k+1+1y2 + (x+ 1)2

k

y + x2k−1

satisfies h
(
x,G(x)

)
= 0 with G(x) the generating function of Pk (see [14]).

Mérai and Winterhof [10, Corollary 4] showed that the correlation of order 2
for pattern sequences is still large. However, since pattern sequences are still
automatic, their symbolic complexity is linear [1, Corollary 10.3.2]. Therefore,
the pattern sequences are not pseudorandom with respect to each of the defined
measures.

The behaviour of these sequences regarding the defined pseudorandomness
measures changes when these sequences are rarefied along specific subsequences.
Sun and Winterhof [14] showed that the maximum order complexity of the Thue-
-Morse sequence and pattern sequences along squares remains large. Note that
the largest possible order of magnitude of M (S , N) is N , while the expected
value of M (S , N) is logN (see [14]).
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����� 1 ([14], Theorem 1)� Let T ′ =
(
t(n2)

)
n
be the subsequence of the

Thue–Morse sequence along squares. Then the N th maximum order complexity
of T ′ satisfies

M (T ′, N) ≥
√

2N

5
, N ≥ 21.

	
����� 2 ([14], Theorem 2)� For k ≥ 2 let P ′
k =

(
pk(n

2)
)
n
be the subsequence

of Pk along squares. Then the N th maximum order complexity of P ′
k satisfies

M (P ′
k, N) ≥

√
N

8
, N ≥ 22k+2.

Drmota, Mauduit and Rivat [6] showed that T ′ is a normal sequence, and
Müllner [12] showed that R′ and more general pattern sequences along squares
are normal, too. These statements mean that T ′ and R′ might be better can-
didates for cryptographic applications as the inherent weaknesses for automatic
sequences disappear.

By [1, Theorem 6.10.1], T ′ = P ′
1 is no longer automatic and so

sup
N≥1

E(T ′, N) = +∞.

By [12] and Christol’s theorem we also have for R′ = P ′
2,

sup
N≥1

E(R′, N) = +∞.

Passing from the subsequence of squares to more general polynomials seems to
be a natural question. More specifically, Sun and Winterhof (Problem 4 in [14])
posed the problem to extend their results to this more general context.

In this paper we provide an answer to their problem.

	
����� 3� Let d ≥ 2 and P (X) ∈ Z[X] be a monic polynomial of degree d
with P (N) ⊂ N. Let TP =

(
t(P (n))

)
n
be the subsequence of the Thue-Morse

sequence along the polynomial subsequence
(
P (n)

)
n
. Then TP satisfies

M (TP , N) 
 N1/d,

where the implied constant only depends on P.

We recover the same bound for pattern sequences, too.

	
����� 4� Let d ≥ 2 and P (X) ∈ Z[X] be a monic polynomial of degree
d with P (N) ⊂ N. Let Pk,P =

(
pk(P (n))

)
n
be the subsequence of the pattern

sequence along the polynomial subsequence
(
P (n)

)
n
. Then Pk,P satisfies

M (Pk,P , N) 
 N1/d,

where the implied constant only depends on P and k.
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It is possible to generalize our theorem for the case of integer-valued poly-
nomials with rationals coefficients, we leave this rather straightforward exten-
sion to the interested reader (the proof runs along the same lines). We remark,
however, that our construction crucially depends on the fact that the leading
coefficient of the polynomial equals one.

The paper is structured as follows. In Section 2, we generalize Theorem 1
to any polynomial subsequence in place of the subsequence of squares and in Sec-
tion 3 we establish the result for any pattern sequence. This answers a question
posed by Sun and Winterhof (Problem 4 in [14]). We finish the paper with a list
of open problems in Section 4.

2. Thue–Morse sequence

The Thue–Morse sequence along arithmetic progressions is 2-automatic
[1, Theorem 6.8.1]. By [1, Theorem 6.10.1], the Thue–Morse sequence along poly-
nomial subsequences is non-automatic if and only if the polynomial is at least
of degree 2. The problem raised by Sun and Winterhof [14] is to know whether
there still holds a result such as Theorem 1 for general polynomial subsequences.

The following trivial identity will be essential for our general proof. Let a, b
be positive integers and 0 ≤ b < 2r, then we have

s1(a2
r + b) = s1(a) + s1(b). (1)

If we have such a and b we say that the sum is non-interfering. The proof of our
main result is based both on non-interfering sums and on carry propagation.

���� 5� Let d ≥ 2 and P (X) ∈ Z[X] with P (X) = Xd + αd−1X
d−1 + · · ·

· · · + α1X + α0 such that P (N) ⊂ N and all αi ≥ 0. Put αmax = max(αi).
Then there exists a positive integer l0(P ) such that for all l > l0(P ) the following
two properties hold:

(i) For all 1 ≤ n < 1
2(2αmax)1/d

2l and for all r ≥ 1,

t
(
P
(
n+ 2dl

))
= t
(
P
(
n+ 2dl+r

))
.

(ii) There are nonnegative integers y and r depending only on P, such that

t
(
P
(
1 + y2l + 2dl

))
�= t
(
P
(
1 + y2l + 2dl+r

))
.
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P r o o f. Set αd = 1. For the first part we write

P
(
n+ 2dl

)
=
∑

0≤j≤d

αj

(
n+ 2dl

)j
,

=
∑

0≤i≤d

⎛
⎝ ∑

i≤j≤d

(
j

i

)
αjn

j−i

⎞
⎠ 2idl. (2)

Set βi =
∑

i≤j≤d

(
j
i

)
αjn

j−i. We note that for all 0 ≤ i ≤ d,

βi ≤ αmax n
d−i

∑
i≤j≤d

(
j

i

)
≤ αmax n

d

(
d+ 1

i+ 1

)
≤ αmax n

d2d+1.

There exists a positive integer l0(P ) such that for all l > l0(P ) and all integers n
with

1 ≤ n <
1

2(2αmax)1/d
2l, (3)

we have βi < 2dl. Thus, for l > l0(P ) and all n with (3) the sum (2) is non-
interfering, thus we get for all r ≥ 1,

t
(
P
(
n+ 2dl

))
=
∑

0≤i≤d

t(βi) = t
(
P
(
n+ 2dl+r

))
,

which shows property (i). As for the second part, we write

P
(
1 + y2l + 2dl

)
=
∑

0≤i≤d

⎛
⎝ ∑

i≤j≤d

(
j

i

)
αj(1 + y2l)j−i

⎞
⎠ 2idl. (4)

We regroup terms by powers of 2 and check for possible interferences. The general
term is 2idl+l(j−i), for 0 ≤ i ≤ j ≤ d, whereas the coefficients depend only
on P and y. We represent the general terms in Table 1:

Table 1.

�����i
j

0 1 2 · · · d

0 20 2l 22l 2dl

1 2dl 2dl+l 2dl+(d−1)l

2 22dl 22dl+(d−2)l

...
. . .

d 2d·dl
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The only possible interference, for l > l1(P ), is between (i, j) = (0, d) and
(i, j) = (1, 1) that both correspond to the general term 2dl. Each coefficient
in front of 2idl+(j−i)l does not depend on l since y will be chosen later to depend
only on P and the gap between any two distinct general terms in (4) is at least 2l.
The interfering term is the term in front of 2dl in the expansion of(

α0 + α1

(
1 + y2l

)
+ · · ·+

(
1 + y2l

)d)
20·dl+(

α1 + 2α2

(
1 + y2l

)
+ · · ·+ d

(
1 + y2l

)d−1
)
21·dl,

since all the other general terms are at least of size 22dl. Therefore, the interfering
term is

yd +
∑

1≤i≤d

iαi.

On the other hand, by a similar calculation, we have

P
(
1 + y2l + 2dl+r

)
=
∑

0≤i≤d

⎛
⎝ ∑

i≤j≤d

(
j

i

)
αj

(
1 + y2l

)j−i

⎞
⎠ 2i(dl+r).

We regroup terms by powers of 2 as before. The general term is 2i(dl+r)+(j−i)l

and we have Table 2.

Table 2.

�����i
j

0 1 2 · · · d

0 20 2l 22l 2dl

1 2dl+r 2dl+l2r 2dl+(d−1)l2r

2 22dl22r 22dl+(d−2)l22r

...
. . .

d 2d·dl2dr

Once again the only interference possible is for

(i, j) = (0, d) and (i, j) = (1, 1) for l > l2(P ).

Here, the interfering term is yd + 2r
∑

1≤i≤d iαi. All the coefficients in the
second table are identical to the ones given in the first table up to a multi-
plicative factor (a power of 2). Since t(2μn) = t(n) for all μ ≥ 0, the contribu-
tions coming from the non-interfering terms are the same as in the former case.
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Put z =
∑

1≤i≤d iαi > 0; we note that z is a positive integer that only depends

on P and that z ≥ 2. Summing up, for l > l3(P ), we have

t
(
P
(
1 + y2l + 2dl

))
+ t
(
P
(
1 + y2l + 2dl+r

))
≡

t
(
yd + z

)
+ t
(
yd + 2rz

)
(mod 2). (5)

Our final aim is to guarantee the existence of r and y, only depending on P,
such that right hand side of (5) equals 1 (mod 2). Let λ ≥ 1 be the unique
integer with 2λ ≤ z < 2λ+1. Thus the most significant bit of z is at position 2λ.
Let y = 2λ, thus z < 2λd, then we have

t(yd + z) = t(2λd + z) ≡ 1 + t(z) (mod 2).

Let r = λd− λ ≥ 1, we have

t
(
yd + 2rz

)
= t
(
2λd + 2λd−λz

)
= t
(
2λ + z

)
= t(z)

since the most significant bit of z is at position 2λ. We therefore conclude

t
(
P
(
1 + y2l + 2dl

))
+ t
(
P
(
1 + y2l + 2dl+r

))
≡ 1 + 2 t(z) ≡ 1 (mod 2)

and we get property (ii). �

We have now all we need to prove Theorem 3.

P r o o f o f T h e o r e m 3. We first note that we can suppose αi ≥ 0 for all
0 ≤ i < d− 1 and αd = 1. Indeed, for positive integers n, a we have

P (n+ a) =
∑

0≤i≤d

βin
i with βi =

∑
i≤j≤d

(
j

i

)
αja

j−i and αd = 1,

such that for sufficiently large a,

βi = ad−i

((
d

i

)
αd +

∑
i≤j<d

(
j

i

)
αja

j−d

)

P ad−i,

and therefore we have βi ≥ 0 for all i ≥ 0. This translation by the positive
integer a that only depends on P does not affect the measures of complexity
that we study since we will suppose N sufficiently large. Hence, without loss
of generality, we can assume that all the coefficients of P are positive integers.

Let αmax, z, λ, y, r be such as in the proof of the second part of Lemma 5.
Note that all these quantities only depend on P and not on l. Let N > N0(P )
be large enough and M (TP , N) = M . Let l ≥ 2 be the integer defined by

1 + y2l + 2dl+r < N ≤ 1 + y2l+1 + 2d(l+1)+r.

17



PIERRE POPOLI

We follow the argument in the proof of Sun and Winterhof [14, Theorem 1].
Assume that

M <
1

2(2αmax)1/d
2l,

that is, there is a polynomial f(x1, . . . , xM ) in M variables with

t
(
P (j +M )

)
=

f
(
t
(
P (j)

)
, . . . , t

(
P (j +M − 1)

))
, j = 0, 1 . . . , N −M − 1. (6)

Note that for 0 ≤ k ≤ N −M −1 the values of t
(
P (k+M )

)
, . . . , t

(
P (N −1)

)
are uniquely determined by the values of t

(
P (k)

)
, . . . , t

(
P (k + M − 1)

)
by applying (6) successively for j = k, . . . , N −M − 1. In particular, if(

t
(
P (k1)

)
, . . . , t

(
P (k1 +M − 1)

))
=
(
t
(
P (k2)

)
, . . . , t

(
P (k2 +M − 1)

))
(7)

for some k1 and k2 with 0 ≤ k1 < k2 ≤ N −M − 1, we get also(
t
(
P (k1 +M )

)
, . . . , t

(
P (k1 +N − k2 − 1)

))
=(

t
(
P (k2 +M )

)
, . . . , t

(
P (N − 1)

))
.

Take k1 = 2ld and k2 = 2ld+r. By the first part of Lemma 5, (k1, k2) satisfies (7).
Then we have(

t
(
P
(
2ld +M

))
, . . . , t

(
P
(
N + 2ld(1− 2r)− 1

)))
=(

t
(
P
(
2ld+r +M

))
, . . . , t

(
P (N − 1)

))
.

Since N − 1 ≥ 1 + y2l + 2dl+r and M ≤ 1 + y2l, this includes

t

(
P
(
1 + y2l + 2dl

))
= t

(
P
(
1 + y2l + 2dl+r

))
,

which contradicts the second part of Lemma 5 and we get

M ≥ 1

2(2αmax)1/d
2l 
P N1/d. (8)

This finishes the proof of Theorem 3. �
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3. Pattern sequences

The identity (1) is not true in general for sk instead of s1. For example,
we have s2(4 + 2) = s2(110) = 1 and s2(4) + s2(2) = s2(100) + s2(10) = 0.
However, a very similar identity holds true when we add a 0-bit in (1) between
the expansions of a2r and b. Let a, b be positive integers and 0 ≤ b < 2r,
then we have for all k ≥ 2,

sk
(
a2r+1 + b

)
= sk(a) + sk(b). (9)

���� 6� Let d ≥ 2 and P (X) ∈ Z[X] with P (X) = Xd + αd−1X
d−1 + · · · +

α1X +α0 such that P (N) ⊂ N and all αi ≥ 0. Put αmax = max(αi). Then there
exists a positive integer l0(P, k) such that for all l > l0(P, k) the following two
properties hold:

(i) For all 1 ≤ n < 1
4(2αmax)1/d

2l and for all s ≥ 1,

pk

(
P
(
n+ 2dl

))
= pk

(
P
(
n+ 2dl+s

))
.

(ii) There are nonnegative integers y = y(P, k) and s = s(P, k) such that

pk

(
P
(
1 + y2l + 2dl

))
�= pk

(
P
(
1 + y2l + 2dl+s

))
.

P r o o f. We can directly proceed as in the proof of Lemma 5 with (1) replaced
by (9). The “digital gap” in (9) translates into a change by a factor 2. We use
the same notation as in Lemma 5. For the second part we get that for l > l0(P ),

pk

(
P
(
1+y2l+2dl

))
+pk

(
P
(
1+y2l+2dl+s

))
≡pk

(
yd+z

)
+pk

(
yd+2sz

)
(mod 2).

Let fa(x) = ax3 + ax2 − x + a be a polynomial where a is a suitable positive
integer that we will chose later. We write

fa(x)
d =

∑
0≤i≤3d

μix
i

with μi ∈ Z. For a > a0(d), we have μi > 0 for i �= 1 and μ1 = −dad−1 < 0.
It follows that for u > u0(d) we have(

fa(2
u)d
)
2
= η10 . . . 0η20 . . .0ηt−11 . . . 1ηt0 . . .0ηt+1

with t = 3d and some ηi = ηi(a, d). (10)

For i ∈ {1, . . . , t − 2, t + 1}, we can choose ηi the binary expansion of μi, ηt−1

such that its first bit is 1 and its last bit is 0 and ηt such that its first bit is 0
and its last bit is 1. Note that the decomposition in (10) is not unique in general.
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For a = 2λ with λ > λ0(z) we have

pk

((
fa(2

u)d
)
+ z
)
= pk

(
fa(2

u)d
)
+ pk(z).

Furthermore, the length of the 1-block depends on u and the transition from u
to (u + 1) adds exactly one 1-bit to that 1-block. Let y = fa(2

u) for a = 2λ >
max(a0, 2

λ0) and u > u0(a, d). We write in the following

yd = ω10 . . . 0ω201
(α)0ω3,

where 1(α) is the block of 1-bits in (10) between ηt−1 and ηt. For u > u1(a, d, z, k)
sufficiently large, we can ensure that α > max(�log2(z), k). We write z = 1(i)0ω′

or z = 1(i) for some i ≥ 1 and digital block ω′ which can be possibly empty.
We choose s in a way that the first i 1-bits interfere with the last i 1-bits of the
inner 1-bits block of yd. Note that this is always possible since α is larger than
the length of z. When z = 1(i)0ω′ we get

ω10 . . . 0 w2

α−i︷ ︸︸ ︷
1 . . .1

i︷ ︸︸ ︷
1 . . . 11 0ω3 = yd,

+ 1 . . . 11 0ω′ = 2sz,

ω10 . . . 0 (w2 + 1) 0 . . .0 1 . . . 10 0(ω3 + ω′) = yd + 2sz.

When z = 1(i) we get

ω10 . . . 0 w2

α−i︷ ︸︸ ︷
1 . . .1

i︷ ︸︸ ︷
1 . . . 11 0ω3 = yd,

+ 1 . . . 11 0 · · · 0 = 2sz,

ω10 . . . 0 (w2 + 1) 0 . . .0 1 . . . 10 0ω3 = yd + 2sz.

In both cases, for u > u2(a, d, z, k) sufficiently large, pk(y
d + 2sz) is constant

with respect to u since no more k-pattern is created or canceled. In fact, only
the length of the 0-blocks and the one of the 1-block change with u in (10) but
the sum yd + 2sz reduces the 1-block of length α to a 1-block of length (i − 1)
which does not depend on u anymore. Furthermore, the number of k-patterns
in ω1, ω2, ω3 and ω′ are independent from u. Hence pk(y

d + 2sz) is constant for
all u > u2(a, d, z, k). What matters now is the number of k-patterns we cancel
in yd by adding 2sz. Since α > k, the transition from u to (u+ 1) implies that
if we add 2sz to yd, we cancel one more k-pattern in yd. Thus we can choose
u > u2(a, d, z, k) in such a way that the parity of the number of k-patterns that
are canceled in yd by adding 2sz changes. This leads to a solution of

pk(y
d + 2sz) ≡ pk(y

d) + pk(z) + 1 (mod 2)

and the lemma is proved. �
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P r o o f o f T h e o r e m 4. The proof follows the lines of the proof of Theorem 3
where we replace Lemma 5 by Lemma 6. We note that the size of y only occurs
in the final step of the proof, namely, inequality (8). Thus we have

M ≥ 1

4(2αmax)1/d
2l 
P,k N1/d,

which proves Theorem 4. �

4. Open problems

We can define a larger family of automatic sequences on {0, . . . , q−1} for q ≥ 2
by the following procedure. Let ω ∈ {0, . . . , q − 1}k \ {0 . . .0} be a pattern
of length k and eω(n) be the number of occurrences of ω in the q-ary represen-
tation of n. We define the sequence

(
ρ(n)

)
n
by

ρ(n) ≡ eω(n) (mod m), (11)

where m ≥ 2 is a fixed integer. From our reasoning in the proofs, one can
extend our result for ω = (q − 1) . . . (q − 1) and any m ≥ 2. Indeed in the proof
of Lemma 6, we use a 1-bit carry propagation along a large block of 1-bits.
The same argument works to cancel bits of digits (q − 1) in base-q expansions.

������� 1� Extend Theorem 4 to general pattern sequences as defined in (11).
It is essential to our proof that the pattern must appear at least once in yd.
For prime m and d such m � d, Hensel’s lifting lemma can be useful to make sure
that it appears. It seems that other ideas are needed in the case m | d.

������� 2 ([6], Conjecture 1)� Show that the subsequences of the Thue–Morse
sequence along any polynomial of degree d ≥ 3 are normal. A lower bound on
the subword complexity was established by Moshe [11, Corollary 3] and [5] gives
a partial answer for generalized Thue–Morse sequence with large q.

������� 3 ([14])� Prove lower bounds on the expansion complexity of the
Thue–Morse sequence along polynomials of degree d ≥ 2. This question seems
to be hard even for small degree polynomials.

Acknowledgements� This work was supported partly by the french PIA
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